1
|
Björklund A, Barker RA. The basal forebrain cholinergic system as target for cell replacement therapy in Parkinson's disease. Brain 2024; 147:1937-1952. [PMID: 38279949 PMCID: PMC11146424 DOI: 10.1093/brain/awae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024] Open
Abstract
In recent years there has been a renewed interest in the basal forebrain cholinergic system as a target for the treatment of cognitive impairments in patients with Parkinson's disease, due in part to the need to explore novel approaches to treat the cognitive symptoms of the disease and in part to the development of more refined imaging tools that have made it possible to monitor the progressive changes in the structure and function of the basal forebrain system as they evolve over time. In parallel, emerging technologies allowing the derivation of authentic basal forebrain cholinergic neurons from human pluripotent stem cells are providing new powerful tools for the exploration of cholinergic neuron replacement in animal models of Parkinson's disease-like cognitive decline. In this review, we discuss the rationale for cholinergic cell replacement as a potential therapeutic strategy in Parkinson's disease and how this approach can be explored in rodent models of Parkinson's disease-like cognitive decline, building on insights gained from the extensive animal experimental work that was performed in rodent and primate models in the 1980s and 90s. Although therapies targeting the cholinergic system have so far been focused mainly on patients with Alzheimer's disease, Parkinson's disease with dementia may be a more relevant condition. In Parkinson's disease with dementia, the basal forebrain system undergoes progressive degeneration and the magnitude of cholinergic cell loss has been shown to correlate with the level of cognitive impairment. Thus, cell therapy aimed to replace the lost basal forebrain cholinergic neurons represents an interesting strategy to combat some of the major cognitive impairments in patients with Parkinson's disease dementia.
Collapse
Affiliation(s)
- Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
2
|
Maurer SV, Williams CL. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front Immunol 2017; 8:1489. [PMID: 29167670 PMCID: PMC5682336 DOI: 10.3389/fimmu.2017.01489] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Degeneration of central cholinergic neurons impairs memory, and enhancement of cholinergic synapses improves cognitive processes. Cholinergic signaling is also anti-inflammatory, and neuroinflammation is increasingly linked to adverse memory, especially in Alzheimer's disease. Much of the evidence surrounding cholinergic impacts on the neuroimmune system focuses on the α7 nicotinic acetylcholine (ACh) receptor, as stimulation of this receptor prevents many of the effects of immune activation. Microglia and astrocytes both express this receptor, so it is possible that some cholinergic effects may be via these non-neuronal cells. Though the presence of microglia is required for memory, overactivated microglia due to an immune challenge overproduce inflammatory cytokines, which is adverse for memory. Blocking these exaggerated effects, specifically by decreasing the release of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6), has been shown to prevent inflammation-induced memory impairment. While there is considerable evidence that cholinergic signaling improves memory, fewer studies have linked the "cholinergic anti-inflammatory pathway" to memory processes. This review will summarize the current understanding of the cholinergic anti-inflammatory pathway as it relates to memory and will argue that one mechanism by which the cholinergic system modulates hippocampal memory processes is its influence on neuroimmune function via the α7 nicotinic ACh receptor.
Collapse
Affiliation(s)
- Sara V. Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Christina L. Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Hodges H, Pollock K, Stroemer P, Patel S, Stevanato L, Reuter I, Sinden J. Making Stem Cell Lines Suitable for Transplantation. Cell Transplant 2017. [DOI: 10.3727/000000007783464605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human stem cells, progenitor cells, and cell lines have been derived from embryonic, fetal, and adult sources in the search for graft tissue suitable for the treatment of CNS disorders. An increasing number of experimental studies have shown that grafts from several sources survive, differentiate into distinct cell types, and exert positive functional effects in experimental animal models, but little attention has been given to developing cells under conditions of good manufacturing practice (GMP) that can be scaled up for mass treatment. The capacity for continued division of stem cells in culture offers the opportunity to expand their production to meet the widespread clinical demands posed by neurodegenerative diseases. However, maintaining stem cell division in culture long term, while ensuring differentiation after transplantation, requires genetic and/or oncogenetic manipulations, which may affect the genetic stability and in vivo survival of cells. This review outlines the stages, selection criteria, problems, and ultimately the successes arising in the development of conditionally immortal clinical grade stem cell lines, which divide in vitro, differentiate in vivo, and exert positive functional effects. These processes are specifically exemplified by the murine MHP36 cell line, conditionally immortalized by a temperature-sensitive mutant of the SV40 large T antigen, and cell lines transfected with the c-myc protein fused with a mutated estrogen receptor (c-mycERTAM), regulated by a tamoxifen metabolite, but the issues raised are common to all routes for the development of effective clinical grade cells.
Collapse
Affiliation(s)
- Helen Hodges
- Department of Psychology, Institute of Psychiatry, Kings College, London, UK
- ReNeuron Ltd., Guildford, Surrey, UK
| | | | | | | | | | - Iris Reuter
- Department of Psychology, Institute of Psychiatry, Kings College, London, UK
- Department of Neurology, University of Giessen and Marburg, Germany
| | | |
Collapse
|
4
|
Wogensen E, Marschner L, Gram MG, Mehlsen S, Uhre VHB, Bülow P, Mogensen J, Malá H. Effects of different delayed exercise regimens on cognitive performance in fimbria-fornix transected rats. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Karthick C, Periyasamy S, Jayachandran KS, Anusuyadevi M. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology. Front Mol Neurosci 2016; 9:28. [PMID: 27199654 PMCID: PMC4844917 DOI: 10.3389/fnmol.2016.00028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/01/2016] [Indexed: 01/27/2023] Open
Abstract
Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal pyramidal layer thickness and live neurons in IBO induced rats, with slight pathological changes in the entorhinal cortex (EC) of rat brain, which was prevented on RSV administration. Our study thus concludes that RSV administration significantly ameliorated the deleterious effects in the IBO lesioned rat model for AD by alleviating cholinergic pathways, reducing oxidative stress and thereby improving spatial memory.
Collapse
Affiliation(s)
- Chennakesavan Karthick
- Molecular Gerontology Laboratory, Department of Biochemistry (DST-FIST Sponsored), Bharathidasan University Tiruchirappalli, India
| | - Sabapathy Periyasamy
- Molecular Gerontology Laboratory, Department of Biochemistry (DST-FIST Sponsored), Bharathidasan University Tiruchirappalli, India
| | - Kesavan S Jayachandran
- Molecular Cardiology and Drug Discovery Laboratory, Department of Bioinformatics, Bharathidasan University Tiruchirappalli, India
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Laboratory, Department of Biochemistry (DST-FIST Sponsored), Bharathidasan University Tiruchirappalli, India
| |
Collapse
|
6
|
Thompson LH, Björklund A. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiol Dis 2015; 79:28-40. [PMID: 25913029 DOI: 10.1016/j.nbd.2015.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022] Open
Abstract
Pluripotent stem cells (embryonic stem cells, ESCs, and induced pluripotent stem cells, iPSCs) have the capacity to generate neural progenitors that are intrinsically patterned to undergo differentiation into specific neuronal subtypes and express in vivo properties that match the ones formed during normal embryonic development. Remarkable progress has been made in this field during recent years thanks to the development of more refined protocols for the generation of transplantable neuronal progenitors from pluripotent stem cells, and the access to new tools for tracing of neuronal connectivity and assessment of integration and function of grafted neurons. Recent studies in brains of neonatal mice or rats, as well as in rodent models of brain or spinal cord damage, have shown that ESC- or iPSC-derived neural progenitors can be made to survive and differentiate after transplantation, and that they possess a remarkable capacity to extend axons over long distances and become functionally integrated into host neural circuitry. Here, we summarize these recent developments in the perspective of earlier studies using intracerebral and intraspinal transplants of primary neurons derived from fetal brain, with special focus on the ability of human ESC- and iPSC-derived progenitors to reconstruct damaged neural circuitry in cortex, hippocampus, the nigrostriatal system and the spinal cord, and we discuss the intrinsic and extrinsic factors that determine the growth properties of the grafted neurons and their capacity to establish target-specific long-distance axonal connections in the damaged host brain.
Collapse
Affiliation(s)
- Lachlan H Thompson
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden.
| |
Collapse
|
7
|
Gould TJ, Leach PT. Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiol Learn Mem 2013; 107:108-32. [PMID: 23973448 DOI: 10.1016/j.nlm.2013.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
8
|
Abstract
AbstractThe work of Sinden et al. suggests that it may be possible to produce improvement in the “highest” areas of brain function by transplanting brain tissue. What appears to be the limiting factor is not the complexity of the mental process under consideration but the discreteness of the lesion which causes the impairment and the appropriateness and accuracy of placement of the grafted tissue.
Collapse
|
9
|
Abstract
AbstractIn spite of Stein and Glasier's justifiable conclusion that initial optimism concerning the immediate clinical applicability of neural transplantation was premature, there exists much experimental evidence to support the potential for incorporating this procedure into a therapeutic arsenal in the future. To realize this potential will require continued evolution of our knowledge at multiple levels of the clinical and basic neurosciences.
Collapse
|
10
|
Abstract
AbstractThe concept of structure, operation, and functionality, as they may be understood by clinicians or researchers using neural transplantation techniques, are briefly defined. Following Stein & Glasier, we emphasize that the question of whether an intracerebral graft is really functional should be addressed not only in terms of what such a graft does in a given brain structure, but also in terms of what it does at the level of the organism.
Collapse
|
11
|
The NGF superfamily of neurotrophins: Potential treatment for Alzheimer's and Parkinson's disease. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStein & Glasier suggest embryonic neural tissue grafts as a potential treatment strategy for Alzheimer's and Parkinson's disease. As an alternative, we suggest that the family of nerve growth factor-related neurotrophins and their trk (tyrosine kinase) receptors underlie cholinergic basal forebrain (CBF) and dopaminergic substantia nigra neuron degeneration in these diseases, respectively. Therefore, treatment approaches for these disorders could utilize neurotrophins.
Collapse
|
12
|
Some practical and theoretical issues concerning fetal brain tissue grafts as therapy for brain dysfunctions. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGrafts of embryonic neural tissue into the brains of adult patients are currently being used to treat Parkinson's disease and are under serious consideration as therapy for a variety of other degenerative and traumatic disorders. This target article evaluates the use of transplants to promote recovery from brain injury and highlights the kinds of questions and problems that must be addressed before this form of therapy is routinely applied. It has been argued that neural transplantation can promote functional recovery through the replacement of damaged nerve cells, the reestablishment of specific nerve pathways lost as a result of injury, the release of specific neurotransmitters, or the production of factors that promote neuronal growth. The latter two mechanisms, which need not rely on anatomical connections to the host brain, are open to examination for nonsurgical, less intrusive therapeutic use. Certain subjective judgments used to select patients who will receive grafts and in assessment of the outcome of graft therapy make it difficult to evaluate the procedure. In addition, little long-term assessment of transplant efficacy and effect has been done in nonhuman primates. Carefully controlled human studies, with multiple testing paradigms, are also needed to establish the efficacy of transplant therapy.
Collapse
|
13
|
Abstract
AbstractThe transition from research to patient following advances in transplantation research is likely to be disappointing unless it includes a better understanding of critically relevant characteristics of the neurological disorder and improvements in the animal models, particularly the behavioral features. The appropriateness of the model has less to do with the species than with how the species is used.
Collapse
|
14
|
The impact of flavonoids on spatial memory in rodents: from behaviour to underlying hippocampal mechanisms. GENES AND NUTRITION 2009; 4:251-70. [PMID: 19727888 DOI: 10.1007/s12263-009-0137-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition.
Collapse
|
15
|
Poulin AM, Timofeeva E. The dynamics of neuronal activation during food anticipation and feeding in the brain of food-entrained rats. Brain Res 2008; 1227:128-41. [DOI: 10.1016/j.brainres.2008.06.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/04/2008] [Accepted: 06/15/2008] [Indexed: 02/04/2023]
|
16
|
Kim JH, Hahm DH, Lee HJ, Pyun KH, Shim I. Acori graminei rhizoma ameliorated ibotenic acid-induced amnesia in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2007; 6:457-64. [PMID: 18955253 PMCID: PMC2781782 DOI: 10.1093/ecam/nem158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study, we investigated the effects of Acori graminei rhizoma (AGR) on learning and memory for the Morris water maze task and on the central cholinergic system of the rats with excitotoxic medial septum (MS) lesion. On the water maze test, the rats were trained to find a platform that was in a fixed position during 6 days and then they received a 60 s probe trial in which the platform was removed from the pool on the 7th day. Ibotenic lesioning of the MS impaired the performance on the maze test and it caused degeneration of choline acetyltransferase and acetylcholine esterase in the hippocampus, which are markers of the central cholinergic system. Daily administrations of AGR (100 mg kg−1, i.p.) for 21 consecutive days produced reversals of the ibotenic acid-induced deficit in learning and memory. These treatments also reduced the loss of cholinergic immunoreactivity in the hippocampus that was induced by ibotenic acid. These results demonstrated that AGR ameliorated learning and memory deficits through their effects on the central nervous system, and neuroprotection was partly evaluated through the effect of AGR on the cholinergic system. Our studies suggest that AGR can possibly be used as treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Immunology and Cell Biology Core Laboratory, Catholic Research Institutes of Medical Science,The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
17
|
Kan I, Melamed E, Offen D. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb Exp Pharmacol 2007:219-42. [PMID: 17554511 DOI: 10.1007/978-3-540-68976-8_10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurodegenerative diseases are characterized by a progressive degeneration of selective neural populations. This selective hallmark pathology and the lack of effective treatment modalities make these diseases appropriate candidates for cell therapy. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewing precursors that reside in the bone marrow and may further be exploited for autologous transplantation. Autologous transplantation of MSCs entirely circumvents the problem of immune rejection, does not cause the formation of teratomas, and raises very few ethical or political concerns. More than a few studies showed that transplantation of MSCs resulted in clinical improvement. However, the exact mechanisms responsible for the beneficial outcome have yet to be defined. Possible rationalizations include cell replacement, trophic factors delivery, and immunomodulation. Cell replacement theory is based on the idea that replacement of degenerated neural cells with alternative functioning cells induces long-lasting clinical improvement. It is reasoned that the transplanted cells survive, integrate into the endogenous neural network, and lead to functional improvement. Trophic factor delivery presents a more practical short-term approach. According to this approach, MSC effectiveness may be credited to the production of neurotrophic factors that support neuronal cell survival, induce endogenous cell proliferation, and promote nerve fiber regeneration at sites of injury. The third potential mechanism of action is supported by the recent reports claiming that neuroinflammatory mechanisms play an important role in the pathogenesis of neurodegenerative disorders. Thus, inhibiting chronic inflammatory stress might explain the beneficial effects induced by MSC transplantation. Here, we assemble evidence that supports each theory and review the latest studies that have placed MSC transplantation into the spotlight of biomedical research.
Collapse
Affiliation(s)
- I Kan
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, 49100 Petah-Tikva, Israel
| | | | | |
Collapse
|
18
|
Nakagawasai O, Yamadera F, Sato S, Taniguchi R, Hiraga H, Arai Y, Murakami H, Mawatari K, Niijima F, Tan-No K, Tadano T. Alterations in cognitive function in prepubertal mice with protein malnutrition: Relationship to changes in choline acetyltransferase. Behav Brain Res 2006; 167:111-7. [PMID: 16242790 DOI: 10.1016/j.bbr.2005.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 08/22/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
We have found that protein malnutrition (PM) causes a significant impairment of memory-related behavior on the 15th and 20th day after the start of PM (5% casein) feeding in prepubertal mice but not in postpubertal mice, as measured by a passive-avoidance task. This impairment was almost completely reversed by merely switching to a standard protein (20% casein) diet on the 10th day after the start of PM. However, the reversal was not observed when the switching to a standard protein regimen was done on the 15th day of the PM diet. Interestingly, the impairment of memory-related behavior on the 20th day was improved by the chronic administration of physostigmine (0.1 mg/kg/day x last 10 days, i.p.), a cholinesterase inhibitor. To correlate brain cholinergic neuron function with the memory-related behavior impairment induced by PM, microphotometry was used to determine the histological distribution of the imunofluorescence intensity for choline acetyltransferase (ChAT), a functional marker of presynapse in cholinergic neurons. The change in the intensity of fluorescence indicated that ChAT protein was decreased in the hippocampus (CA1, CA3 and dentate gyrus) on the 20th day after PM feeding in comparison with controls. These results suggest the possibility that the memory-related behavior deficits observed in prepubertal mice with PM are caused by a dysfunction of the cholinergic neurons in the hippocampus.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Niewiadomska G, Baksalerska-Pazera M, Riedel G. Cytoskeletal Transport in the Aging Brain: Focus on the Cholinergic System. Rev Neurosci 2006; 17:581-618. [PMID: 17283606 DOI: 10.1515/revneuro.2006.17.6.581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is now compelling evidence for the aging-related breakdown of cytoskeletal support in neurons. Similarly affected are the principal components of the intracellular microtubule system, the transport units involved in active shuttle of organelles and molecules in an antero- and retrograde manner, and the proteins stabilizing the cytoskeleton and providing trophic support. Here, we review the basic organization of the cytoskeleton, and describe its elements and their interactions. We then critically assess the role of these cytoskeletal proteins in physiological aging and aging-related malfunction. Our focus is on the microtubule-associated protein tau, for which comprehensive investigations suggest a critical role in neurodegenerative diseases, for instance tauopathies. These diseases frequently lead to cognitive decline and are often paralleled by reductions in cholinergic neurotransmission. We propose this reduction to be due to destabilization of the cytoskeleton and protein transport mechanisms in these neurons. Therefore, maintenance of the neuronal cytoskeleton during aging may prevent or delay neurodegeneration as well as cognitive decline during physiological aging.
Collapse
Affiliation(s)
- Grazyna Niewiadomska
- Nencki Institute for Experimental Biology, Department of Neurophysiology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
20
|
Kim JH, Chung JY, Lee YJ, Park S, Kim JH, Hahm DH, Lee HJ, Shim I. Effects of Methanol Extract of Uncariae Ramulus et Uncus on Ibotenic Acid-Induced Amnesia in the Rat. J Pharmacol Sci 2004; 96:314-23. [PMID: 15557736 DOI: 10.1254/jphs.fp0040179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In the present study, we investigated the effects of Uncariae Ramulus et Uncus (UR) on learning and memory in the Morris water maze task and the central cholinergic system of rats with excitotoxic medial septum (MS) lesion. In the water maze test, the animals were trained to find a platform in a fixed position during 6 days and then received a 60-s probe trial in which the platform was removed from the pool on the 7th day. Ibotenic lesion of the MS showed impaired performance of the maze test and severe cell losses in the septohippocampal cholinergic system (SHC), as indicated by decreased choline acetyltransferase-immunoreactivity and acetylcholinesterase-reactivity in the hippocampus. Daily administrations of UR (100 mg/kg, i.p.) for 21 consecutive days produced significant reversals of ibotenic acid-induced deficit in learning and memory. These treatments also reduced the loss of cholinergic immunoreactivity in the hippocampus induced by ibotenic acid. These results demonstrated that impairments of spatial learning and memory may be attributable to degeneration of SHC neurons and that UR ameliorated learning and memory deficits partly through neuroprotective effects on the central acetylcholine system. Our studies suggest that UR may be useful in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Graduate School of East-West Medical Science, College of Oriental Medicine, Kyung Hee University, Yongin-shi, Kyungki-do, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Modo M, Stroemer RP, Tang E, Patel S, Hodges H. Effects of implantation site of dead stem cells in rats with stroke damage. Neuroreport 2003; 14:39-42. [PMID: 12544827 DOI: 10.1097/00001756-200301200-00007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Searching for valid control grafts, we assessed the performance of rats subjected to middle cerebral artery occlusion (MCAO) and grafted with freeze-thawed dead stem cells into sites previously used for active grafts (ipsilateral and contralateral striatum and ventricle) on bilateral asymmetry and water maze tests. We expected to find that sham grafted groups had impairments equivalent to those of MCAO-only controls, relative to intact controls. This proved to be the case for contralateral and intraventricular grafts, and for asymmetry in rats with ipsilateral grafts. However, spatial learning was substantially impaired and lesion volume was increased by 55% with ipsilateral dead cell grafts. Exacerbation of stroke effects indicates potential hazards in the use of dead cells for sham grafts.
Collapse
Affiliation(s)
- Michel Modo
- Institute of Psychiatry, Neuroimaging Research Group-Neurology P042, De Crespigny Park, London SE5 8AF, UK
| | | | | | | | | |
Collapse
|
22
|
Abstract
Two features of Alzheimer's disease (AD) are beta-amyloid protein (betaAP) deposition and a severe cholinergic deficit. beta-Amyloid protein is a 39- to 43-amino acid transmembrane fragment of a larger precursor molecule, amyloid precursor protein. It is a major constituent of senile plaque, a neuropathologic hallmark of AD, and has been shown to be neurotoxic in vivo and in vitro. The cholinergic neurotransmission system is seen as the primary target of AD. However, other systems are also found to show functional deficit. An association between cholinergic deficit and betaAP is suggested by a negative correlation between cigarette smoking and AD. Evidence hitherto suggests that betaAP causes neuronal death possibly via apoptosis by disrupting calcium homeostasis, which may involve direct activation or enhancement of ligand-gated or voltage-dependent calcium channels. Selective second messengers such as protein kinases are triggered that signal neuronal death. Nicotine or acetylcholinesterase inhibitors can partially prevent the neurotoxicity of betaAP in vivo and in vitro. However, the exact mechanism by which nicotine provides its protective effects is not fully understood, but clearly there are protective roles for nicotine. Here, some aspects of betaAP neurotoxicity and nicotinic intervention as a protective agent are discussed.
Collapse
Affiliation(s)
- M R Zamani
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
23
|
Perry T, Hodges H, Gray JA. Behavioural, histological and immunocytochemical consequences following 192 IgG-saporin immunolesions of the basal forebrain cholinergic system. Brain Res Bull 2001; 54:29-48. [PMID: 11226712 DOI: 10.1016/s0361-9230(00)00413-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Use of the selective immunotoxin; 192 IgG-saporin, is helping to elucidate the role of the cholinergic system in cognition by overcoming the problems of interpretation associated with the use of non-specific lesioning agents. In separate studies, we have compared the long- and short-term effects of single site and combined saporin lesions of the nucleus basalis magnocellularis and medial septal area, on spatial learning and memory in radial arm and water maze tasks. At 11 months, only rats with combined lesions showed deficits in both radial and water maze tasks, although terminal cholinergic deafferentation was substantial and extensive tissue loss was seen at the injection sites in both single and combined lesions. However, the extensive tissue loss with long-term lesions suggested that behavioural deficits were not solely attributable to cholinergic deafferentation. In contrast, when rats with combined lesions were tested 5 months after lesioning, no deficits were apparent, although there was almost complete loss of choline acetyltransferase- and nerve growth factor receptor-immunoreactivity in the basal forebrain with no tissue damage at the injection sites. This study supports existing literature that selective loss of cholinergic neurons in the basal forebrain does not produce behavioural impairments in standard tasks of learning and memory, but deficits are apparent when damage is non-selective as occurs late after lesioning, confounding interpretation of behavioural data. It further highlights potential problems with this immunotoxin in long-term studies.
Collapse
Affiliation(s)
- T Perry
- Department of Psychology, Institute of Psychiatry, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
24
|
González CL, Miranda MI, Gutiérrez H, Ormsby C, Bermúdez-Rattoni F. Differential participation of the NBM in the acquisition and retrieval of conditioned taste aversion and Morris water maze. Behav Brain Res 2000; 116:89-98. [PMID: 11090888 DOI: 10.1016/s0166-4328(00)00250-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Deficits in both learning and memory after lesions of the cholinergic basal forebrain, in particular the nucleus basalis magnocellularis (NBM), have been widely reported. However, the participation of the cholinergic system in either acquisition or retrieval of memory process is still unclear. In this study, we tested the possibility that excitotoxic lesions of the NBM affect either acquisition or retrieval of two tasks. In the first experiment, animals were trained for two conditioned taste aversion tasks using different flavors, saccharine and saline. The acquisition of the first task was before NBM lesions (to test retrieval) and the acquisition of the second task was after the lesions (to test acquisition). Accordingly, in the first part of the second experiment, animals were trained in the Morris water maze (MWM), lesioned and finally tested. In the final part of this experiment, another set of animals was lesioned, then trained in the MWM and finally tested. All animals were able to retrieve conditioned taste aversion (CTA) and MWM when learned before NBM lesions; however, lesions disrupted the acquisition of CTA and MWM. The results suggest that the NBM and cholinergic system may play an important role in acquisition but not during retrieval of aversive memories.
Collapse
Affiliation(s)
- C L González
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510 D.F., Mexico, Mexico
| | | | | | | | | |
Collapse
|
25
|
Lukoyanov NV, Andrade JP. Behavioral effects of protein deprivation and rehabilitation in adult rats: relevance to morphological alterations in the hippocampal formation. Behav Brain Res 2000; 112:85-97. [PMID: 10862939 DOI: 10.1016/s0166-4328(00)00164-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present study we have analyzed the behavioral and neuroanatomical effects of protein deprivation in adult rats. Starting at 2 months of age, animals were maintained on 8%-casein diet either for 8 months (malnourished group), or for 6 months followed by a 2-month period of nutritional rehabilitation (17%-protein diet, rehabilitated group). Malnourished rats exhibited reduced emotional reactivity and impaired habituation in the open field. In a water maze, these animals did not differ from controls during training, but showed retention deficits on the probe trial. However, working memory, sensorimotor abilities and passive avoidance behavior were not significantly impaired in malnourished rats. The performance of rehabilitated group was similar to that of the control group throughout behavioral testing. Postmortem morphological analysis revealed that the total number of neurons in the granular layer of the dentate gyrus, and in CA3 and CA1 hippocampal fields was reduced in protein-deprived and rehabilitated rats relative to controls. In addition, it was found that protein deprivation caused a 30% loss of synapses established between mossy fibers and dendrites of CA3 pyramidal cells, whereas nutritional rehabilitation resulted in a reversal of this effect. These results show that prolonged malnutrition in adult rats produces marked loss of hippocampal neurons and synapses accompanied by substantial impairments of hippocampal-dependent behaviors. The fact that nutritional rehabilitation results in restoration of the total number of hippocampal synapses and parallel amelioration of the behavioral impairments suggests that the mature CNS possesses a remarkable potential for structural and functional recovery from the damage induced by this type of dietary insult.
Collapse
Affiliation(s)
- N V Lukoyanov
- Department of Anatomy, Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | | |
Collapse
|
26
|
Gray JA, Grigoryan G, Virley D, Patel S, Sinden JD, Hodges H. Conditionally immortalized, multipotential and multifunctional neural stem cell lines as an approach to clinical transplantation. Cell Transplant 2000; 9:153-68. [PMID: 10811390 DOI: 10.1177/096368970000900203] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Experiments are described using rats with two kinds of brain damage and consequent cognitive deficit (in the Morris water maze, three-door runway, and radial maze): 1) ischemic damage to the CA1 hippocampal cell field after four-vessel occlusion (4VO), and 2) damage to the forebrain cholinergic projection system by local injection of excitotoxins to the nuclei of origin or prolonged ethanol administration. Cell suspension grafts derived from primary fetal brain tissue display a stringent requirement for homotypical cell replacement in the 4VO model: cells from the embryonic day (E)18-19 CA1 hippocampal subfield, but not from CA3 or dentate gyrus or from E16 basal forebrain (cholinergic rich) led to recovery of cognitive function. After damage to the cholinergic system, conversely, recovery of function was seen with cell suspension grafts from E16 basal forebrain or cholinergic-rich E14 ventral mesencephalon, but not with implants of hippocampal tissue. These two models therefore provided a test of multifunctionality for a clonal line of conditionally immortalized neural stem cells, MHP36, derived from the E14 "immortomouse" hippocampal anlage. Implanted above the damaged CA1 cell field in 4VO-treated adult rats, these cells (multipotential in vitro) migrated to the damaged area, reconstituted the gross morphology of the CA1 pyramidal layer, took up both neuronal and glial phenotypes, and gave rise to cognitive recovery. Similar recovery of function and restoration of species-typical morphology was observed when MHP36 cells were implanted into marmosets with excitotoxic CAI damage. MHP36 implants led to recovery of cognitive function also in two experiments with rats with excitotoxic damage to the cholinergic system damage, either unilaterally in the nucleus basalis or bilaterally in both the nucleus basalis and the medial septal area. Thus, MHP36 cells are both multipotent (able to take up multiple cellular phenotypes) and multifunctional (able to repair diverse types of brain damage).
Collapse
Affiliation(s)
- J A Gray
- Department of Psychology, The Institute of Psychiatry, London, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Deacon T, Whatley B, LeBlanc C, Lin L, Isacson O. Pig fetal septal neurons implanted into the hippocampus of aged or cholinergic deafferented rats grow axons and form cross-species synapses in appropriate target regions. Cell Transplant 1999; 8:111-29. [PMID: 10338280 DOI: 10.1177/096368979900800104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anatomical specificity of axon growth from fetal pig septal xenografts was studied by transplanting septal cells from E30-35 pig fetuses into cholinergic deafferented (192-IgG-saporin-infused) rats or into aged rats (> 18 months). Cell suspensions (100,000 cells/microl) were injected bilaterally into the dorsal and ventral hippocampus of immunosuppressed rats (10 mg/kg/day cyclosporine A). To assess axonal growth and synapse formation, acetylcholinesterase histochemistry, an antibody to choline acetyltransferase (ChAT), and three pig-positive/rat-negative antibodies: bovine 70kD neurofilament (NF70), human low-affinity NGF receptor (hNGFr), and human synaptobrevin (hSB) were used. In rats with surviving grafts at 6 months, NF70 axonal labeling was more extensive than either ChAT or hNGFr labeling. All three markers demonstrated graft axons extending selectively through the hippocampal CA fields and the molecular layer of the dentate gyrus. Graft axons did not extend into adjacent entorhinal cortex or neocortex. The distribution of pig hSB-positive synapses correlated with AChE-positive fiber outgrowth in to the host. Electron microscopic analysis of hSB-immunostained hippocampal sections revealed pig presynaptic terminals in contact with normal rat postsynaptic structures in the CA fields and the dentate gyrus. These data demonstrate target-appropriate growth of pig cholinergic axons and the formation of cross-species synapses in the deafferented or aged rat hippocampus.
Collapse
Affiliation(s)
- T Deacon
- Neuroregeneration Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02178, USA
| | | | | | | | | |
Collapse
|
28
|
LeBlanc CJ, Deacon TW, Whatley BR, Dinsmore J, Lin L, Isacson O. Morris water maze analysis of 192-IgG-saporin-lesioned rats and porcine cholinergic transplants to the hippocampus. Cell Transplant 1999; 8:131-42. [PMID: 10338281 DOI: 10.1177/096368979900800105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Adults rats were lesioned with 192-IgG-saporin, an immunotoxin that targets cholinergic neurons in the basal forebrain expressing the low-affinity nerve growth factor receptor (p75). One month later, rats received E30-35 porcine cholinergic neurons bilaterally into the hippocampus, and were tested in the Morris water maze and the passive avoidance task 4.5-6 months after transplantation (in two experiments, rats were retested in the water maze) followed by histological and cellular analyses. The 192-IgG-saporin-lesioned animals displayed clear cognitive deficits in the Morris water maze. In all experiments the lesioned animals had spatial probe deficits on day 5 testing. A large variance was found among the transplanted animals, with individual animals exhibiting improved performance, but little overall improvement when compared to lesion-alone animals as a group. The relationships between behavioral performance and graft cholinergic factors were established by histological analyses. Grafted animals exhibited an increase in cholinergic innervation of the dentate gyrus (DG) region of the dorsal hippocampus when compared to lesion-alone animals. There was a significant correlation between the level of cholinergic innervation in the dentate gyrus and spatial navigation performance (latency and spatial probe) in the Morris water maze task. These data provide evidence of memory and spatial deficits following cholinergic denervation, and of target-specific growth of xenogeneic cholinergic neurons into the hippocampus. The lack of a clear treatment (transplant) effect in the behavioral measures leads us to believe that functional restoration of cognitive function would require cholinergic reinnervation of both the hippocampus and the neocortex in this 192-IgG-saporin animal model.
Collapse
Affiliation(s)
- C J LeBlanc
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, Belmont, MA 01278, USA
| | | | | | | | | | | |
Collapse
|
29
|
Leanza G, Martìnez-Serrano A, Björklund A. Amelioration of spatial navigation and short-term memory deficits by grafts of foetal basal forebrain tissue placed into the hippocampus and cortex of rats with selective cholinergic lesions. Eur J Neurosci 1998; 10:2353-70. [PMID: 9749764 DOI: 10.1046/j.1460-9568.1998.00247.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Impairments in learning and memory, induced by surgical or excitotoxic lesions of the septo-hippocampal or basalo-cortical pathways, can be ameliorated by grafts of cholinergic-rich foetal basal forebrain tissue into the hippocampus and/or neocortex. However, the effects of such grafts have been only partial, which may be due to the non-specific nature of the lesioning procedures used in these studies, known to destroy both cholinergic and non-cholinergic neuronal projections. In the present study, we have explored the effects of cholinergic-rich grafts in rats subjected to selective cholinergic lesions, induced by intraventricular injections of the immunotoxin 192 IgG-saporin. This lesion, which selectively destroyed 85-95% of the cholinergic neurons in both the septal-diagonal band and nucleus basalis, produced a long-lasting, substantial impairment in both the acquisition of spatial reference memory in the Morris water maze task and delay-dependent short-term memory performance, as seen in a delayed matching-to-position test. Foetal cholinergic grafts (but not control grafts of cerebellar tissue) implanted at multiple sites into both the hippocampus and fronto-parietal neocortex, bilaterally, completely reversed the acquisition deficit in place navigation in the water maze, to an extent that greatly exceeded that previously seen in animals with non-selective lesions. Most notably, however, the impairment in short-term memory was only partially and inconsistently affected, and only at the longest delay times. The morphological analysis, performed at about 7 months after transplantation, showed that the grafts had re-established a close to normal cholinergic innervation in the initially denervated cortical and hippocampal territories. It is proposed that the differential effects of cholinergic-rich transplants on different aspects of cognitive performance may define intrinsic limitations to the functional capacity of the ectopically placed grafts, which may be due to incomplete integration of the grafted cholinergic neurons into functional regulatory circuitries normally available to the basal forebrain cholinergic system.
Collapse
Affiliation(s)
- G Leanza
- Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | |
Collapse
|
30
|
Raevsky VV, Dawe GS, Sinden JD, Stephenson JD. Lesions of the nucleus basalis magnocellularis do not alter the proportions of pirenzepine- and gallamine-sensitive responses of somatosensory cortical neurones to acetylcholine in the rat. Brain Res 1998; 782:324-8. [PMID: 9519281 DOI: 10.1016/s0006-8993(97)01364-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of S-alpha-amino-3-hydroxy-4-isoxozolepropionic acid (AMPA) lesions of the nucleus basalis magnocellularis on the M1/M2 nature of the responses of somatosensory cortical neurones to acetylcholine (ACh) in Sprague-Dawley rats were investigated by iontophoretic application and extracellular single unit recording. The responses were characterised using pirenzepine, an M1 receptor antagonist, and gallamine, an M2 antagonist. Eighty two neurones in control and 94 neurones in lesioned animals were studied. In control animals, 37% of responses to ACh were sensitive to pirenzepine, gallamine or to both antagonists. This increased to 62% in lesioned animals, the proportions of pirenzepine- and gallamine-sensitive responses remaining unchanged. These results provide the first electrophysiological confirmation that both pirenzepine- and gallamine-sensitive (M1 and M2) receptors occur postsynaptic to afferent cholinergic terminals and that their postsynaptic stimulation may produce both inhibition and excitation.
Collapse
Affiliation(s)
- V V Raevsky
- Department of Ontogenesis, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | |
Collapse
|
31
|
Cadete-Leite A, Brandão F, Tajrine D, Antunes S, Ribeiro-da-Silva A, Andrade JP. Intracerebral grafts promote recovery of the cholinergic innervation of the hippocampal formation in rats withdrawn from chronic alcohol intake. An immunocytochemical study. Neuroscience 1997; 79:383-97. [PMID: 9200723 DOI: 10.1016/s0306-4522(96)00688-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously found that alcohol withdrawal aggravates the neuronal cell loss induced by chronic alcohol consumption in the rat hippocampal formation. We have also shown that intracerebral grafts of immature hippocampal tissue could reverse the progressive degeneration that occurs during this withdrawal. Furthermore, we have shown that chronic alcohol consumption reduces the areal density of choline acetyltransferase-immunoreactive neurons and the density of choline acetyltransferase-immunoreactive fibres in the hippocampal formation. Thus, we thought it would be of interest to investigate the effects of alcohol withdrawal in the hippocampal cholinergic innervation and to determine whether the intracerebral grafting of immature hippocampal tissue would have beneficial effects upon the cholinergic system in this condition. Choline acetyltransferase-immunoreactive fibres and perikarya were analysed in 14-month-old control, alcohol-fed, withdrawal and withdrawal-grafted groups of rats. The areal density of choline acetyltransferase-immunoreactive neurons was reduced in all experimental groups when compared to controls. The density of choline acetyltransferase-immunoreactive fibres was lower in the alcohol-fed and withdrawal groups than in the control and withdrawal-grafted groups. We conclude that the grafted tissue probably produced neurotrophic factors which allowed a recovery of the hippocampal cholinergic fibre network. This recovery might be of importance to reverse the cognitive dysfunction described after chronic alcohol consumption and withdrawal.
Collapse
|
32
|
Abstract
Previous studies have indicated that galanin is one of the most abundant peptides in the basal forebrain and that it has a significant modulatory influence on cholinergic transmission. The aim of the present study was to use a light electron microscopic correlation technique to determine whether galanin-immunoreactive terminals form synaptic contacts with basal forebrain cholinergic cells of the rat. Sections from fixed-perfused brains were stained at the light and electron microscopic levels for galanin and choline acetyltransferase immunoreactivity in the same section by using a dual-colour immunohistochemical method. The results showed that galanin-immunoreactive axonal terminals are unevenly distributed in the medial septal nucleus, the diagonal band, and the nucleus basalis. Galanin-positive synapses were most prominent on choline acetyltransferase-positive neurons in the lateral parts of the nucleus of the diagonal band and in the posterior half of the nucleus basalis, which is where there was the greatest overlap between the distribution of galanin-immunoreactive terminals and choline acetyltransferase-positive neurons. The origins of these galanin-positive terminals are not known, but the results confirm that the basal forebrain galaninergic system has a synaptic influence on basal forebrain cholinergic neurons in the rat.
Collapse
Affiliation(s)
- Z Henderson
- Department of Physiology, University of Leeds, United Kingdom.
| | | |
Collapse
|
33
|
Cassel JC, Duconseille E, Jeltsch H, Will B. The fimbria-fornix/cingular bundle pathways: a review of neurochemical and behavioural approaches using lesions and transplantation techniques. Prog Neurobiol 1997; 51:663-716. [PMID: 9175161 DOI: 10.1016/s0301-0082(97)00009-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extensive lesions of the fimbria-fornix pathways and the cingular bundle deprive the hippocampus of a substantial part of its cholinergic, noradrenergic and serotonergic afferents and, among several other behavioural alterations, induce lasting impairment of spatial learning and memory capabilities. After a brief presentation of the neuroanatomical organization of the hippocampus and the connections relevant to the topic of this article, studies which have contributed to characterize the neurochemical and behavioural aspects of the fimbria-fornix lesion "syndrome" with lesion techniques differing by the extent, the location or the specificity of the damage produced, are reviewed. Furthermore, several compensatory changes that may occur as a reaction to hippocampal denervation (sprouting changes in receptor sensitivity and modifications of neurotransmitter turnover in spared fibres) are described and discussed in relation with their capacity (or incapacity) to foster recovery from the lesion-induced deficits. According to this background, experiments using intrahippocampal or "parahippocampal" grafts to substitute for missing cholinergic, noradrenergic or serotonergic afferents are considered according to whether the reported findings concern neurochemical and/or behavioural effects. Taken together, these experiments suggest that appropriately chosen fetal neurons (or other cells such as for instance, genetically-modified fibroblasts) implanted into or close to the denervated hippocampus may substitute, at least partially, for missing hippocampal afferents with a neurochemical specificity that closely depends on the neurochemical identity of the grafted neurons. Thereby, such grafts are able not only to restore some functions as they can be detected locally, namely within the hippocampus, but also to attenuate some of the behavioural (and other types of) disturbances resulting from the lesions. In some respects, also these graft-induced behavioural effects might be considered as occurring with a neurochemically-defined specificity. Nevertheless, if a graft-induced recovery of neurochemical markers in the hippocampus seems to be a prerequisite for also behavioural recovery to be observed, this neurochemical recovery is neither the one and only condition for behavioural effects to be expressed, nor is it the one and only mechanism to account for the latter effects.
Collapse
Affiliation(s)
- J C Cassel
- LN2C-URA 1939 du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
34
|
Shoham S, Emson P. Effects of combined ventral forebrain grafts to neocortex and amygdala on behavior of rats with damage to the nucleus basalis magnocellularis. Brain Res Bull 1997; 43:381-92. [PMID: 9241441 DOI: 10.1016/s0361-9230(97)00024-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In rats with damage to the nucleus basalis magnocellularis, transplantation of the embryonic ventral forebrain to the neocortex improves behavioral performance in some behavioral tasks. The present investigation focuses on improvement of behavioral performance by combined graft placement to both neocortex and amygdala. Male rats received unilateral microinjections of quisqualate to the nucleus basalis magnocellularis to produce cell damage. Embryonic ventral forebrain cell suspensions were placed in one group of rats in the frontal and parietal neocortex, in a second group in the amygdala, and in a third group in the frontal and parietal neocortex and in the amygdala. These groups were compared to a group of nonoperated rats and a group of rats with damage but with no grafts. Quisqualate-induced damage to the nucleus basalis magnocellularis reduced cholinergic innervation in the ipsilateral cortical hemisphere, impaired performance in the one-trial training version of passive avoidance, an increased motility and time spent in the open arms of the elevated plus maze. Combined graft placement to neocortex and amygdala normalized performance of passive avoidance and restored the normal time spent in the open arms of an elevated plus maze. These results suggest that after damage to the nucleus basalis magnocellularis, modulation of function in multiple brain regions may be necessary for optimization of adaptive behavior in situations involving induction of fear.
Collapse
Affiliation(s)
- S Shoham
- Department of Research, Herzog Hospital, Jerusalem, Israel
| | | |
Collapse
|
35
|
Calaminici M, Abdulla FA, Sinden JD, Stephenson JD. Plastic changes in the cholinergic innervation of the rat cerebral cortex after unilateral lesion of the nucleus basalis with alpha-amino-3-OH-4-isoxozole propionic acid (AMPA): effects of basal forebrain transplants into neocortex. Brain Res Bull 1997; 42:79-93. [PMID: 8971411 DOI: 10.1016/s0361-9230(96)00212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Unilateral AMPA lesions of the nucleus basalis magnocellularis (nbm) produced a nearly complete loss of cholinergic markers in the ipsilateral frontal and parietal cortices with no recovery at 6 months. The loss was associated with compensatory increases in AChE-positive fibre density in the contralateral cortex, in ipsilateral cortical regions not receiving their cholinergic innervation from the nbm and in the size of cholinergic magnocellular neurones in the contralateral nbm. The hypertrophy and increase in AChE-positive fibre density were apparent at 4-6 weeks after lesion and increased with time. Cholinergic transplants to cholinergically deafferented cortex prevented development of the compensatory increases in AChE-positive fibre density and restored AChE-positive fibre density and ChAT activity to control levels in ipsilateral cholinergically deafferented regions, partially after 6-8 weeks and completely after 6 months. In contrast, when cholinergic grafts were placed into unlesioned cortex, axonal outgrowth was localized to the vicinity of the transplant and did not develop with time. These results support the concept that vacant synapses promote and direct axonal outgrowth from transplanted neurones and that grafted cholinergic neurones integrate into the lesioned forebrain cholinergic projections system and prevent the lesion-induced changes in AChE-positive fibre density and ChAT activity.
Collapse
Affiliation(s)
- M Calaminici
- Department of Neuroscience, Institute of Psychiatry, London, UK
| | | | | | | |
Collapse
|
36
|
Hörtnagl H, Hellweg R. Insights into the role of the cholinergic component of the septohippocampal pathway: what have we learned from experimental lesion studies? Brain Res Bull 1997; 43:245-55. [PMID: 9227833 DOI: 10.1016/s0361-9230(97)00005-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- H Hörtnagl
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité), Humboldt-University at Berlin, Germany
| | | |
Collapse
|
37
|
Leanza G, Nikkhah G, Nilsson OG, Wiley RG, Björklund A. Extensive reinnervation of the hippocampus by embryonic basal forebrain cholinergic neurons grafted into the septum of neonatal rats with selective cholinergic lesions. J Comp Neurol 1996; 373:355-7. [PMID: 8889933 DOI: 10.1002/(sici)1096-9861(19960923)373:3<355::aid-cne4>3.0.co;2-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reconstruction of the septohippocampal pathways by axons extending from embryonic cholinergic neuroblasts grafted into the neuron-depleted septum has been explored in the neonatal rat by using a novel lesioning and grafting protocol. Neonatal ablation of the basal forebrain cholinergic projection neurons, accompanied by extensive bilateral cholinergic denervation of the hippocampus and neocortex, was produced at postnatal day (PD) 4 by 192 immunoglobulin (IgG)-saporin intraventricularly. Four days later, cholinergic neuroblasts (from embryonic day 14 rats) were implanted bilaterally into the neuron-depleted septum by using a microtransplantation approach. The results show that homotopically implanted septal neurons survive and integrate well into the developing septal area, extending axons caudally along the myelinated fimbria-fornix and supracallosal pathways that are able to reach the appropriate targets in the denervated hippocampus and cingulate cortex as early as 4 weeks postgrafting. Moreover, the laminar innervation patterns established by the graft-derived axons closely resembled the normal ones and remained essentially unchanged up to at least 6 months, which was the longest postoperative time studied. The reinnervating fibers restored tissue choline acetyltransferase activity (up to 50% of normal) in the dorsal hippocampus and the parietooccipital cortex. Retrograde labeling with Fluoro-Gold from the host hippocampus combined with immunocytochemistry confirmed that most of the projecting neurons, indeed, were cholinergic. The results suggest that the graft-host interactions that are necessary for target-directed axon growth are present in the septohippocampal system during early postnatal maturation. Thus, the present approach may contribute to overcome the functional limitations inherent in the use of ectopically placed intrahippocampal transplants.
Collapse
Affiliation(s)
- G Leanza
- Department of Physiology and Neuroscience, Wallenberg Neuroscience Center, Lund University, Sweden
| | | | | | | | | |
Collapse
|
38
|
Noonan M, Penque M, Axelrod S. Septal lesions impair rats' Morris test performance but facilitate left-right response differentiation. Physiol Behav 1996; 60:895-900. [PMID: 8873266 DOI: 10.1016/0031-9384(96)00101-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lesions in the septum impaired performance on the Morris test, a task in which the rat locates a hidden escape platform by use of fixed landmarks, but facilitated a water maze-based left-right response differentiation, a task in which the rat finds a hidden escape ramp by means of its internal sense of direction. These results are interpreted as supporting an allocentric/egocentric dichotomy with respect to navigation, and support the notion that rats approach spatial problems with a hierarchy of potential solutions in which allocentric solutions take precedence over egocentric ones. The septal lesions are inferred to disrupt the allocentric mapping system.
Collapse
Affiliation(s)
- M Noonan
- Department of Psychology, Canisius College, Buffalo, NY 14208, USA
| | | | | |
Collapse
|
39
|
Hodges H. Maze procedures: the radial-arm and water maze compared. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1996; 3:167-81. [PMID: 8806020 DOI: 10.1016/0926-6410(96)00004-3] [Citation(s) in RCA: 296] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Open mazes are primarily designed to measure place learning and memory, using environmental visuospatial cues. However, maze tasks differ along many dimensions, including (1) types of apparatus, which vary from arenas (water maze: WM) to highly structured routes (radial-arm maze: RAM); (2) availability of visuospatial, associative or sensory cues; (3) task requirements which range from spontaneous exploration to complex sequences of choices; and (4) motivation which may involve aversive escape, the opportunity to shelter or to discover novel objects or food at particular locations. Given this diversity, it is likely that mazes tap a variety of processes that contribute to, or affect spatial learning. Hence 'spatial' abilities measured in one procedure may not resemble those engaged in another, posing problems for the interpretation of drug- or lesion-induced deficits. This review compares two types of maze that exemplify key differences in procedure: the RAM and the WM. (1) Visuospatial, associative and sensory factors contributing to place learning in the two mazes are discussed, together with the types of search strategy that they foster, their differing motivation and vulnerability to effects of non-spatial factors, such as stress and training regime. (2) The equivalence of memory processes (acquisition, working and reference memory) assessed in different mazes is considered, and the extent that these may generalize to non-spatial tasks. (3) Differences in application of the two mazes are evaluated. The WM is well-adapted to the study of selective visuospatial factors in place learning and working memory, but less suitable for repeated measures or for assessment of long-term memory deficits. The RAM detects steady-state reference and working-memory deficits, and is suitable for repeated measures, at the expense of precise analysis of the nature of the processes involved.
Collapse
Affiliation(s)
- H Hodges
- Department of Psychology, Institute of Psychiatry, Denmark Hill, London, UK
| |
Collapse
|
40
|
Hodges H, Sowinski P, Fleming P, Kershaw TR, Sinden JD, Meldrum BS, Gray JA. Contrasting effects of fetal CA1 and CA3 hippocampal grafts on deficits in spatial learning and working memory induced by global cerebral ischaemia in rats. Neuroscience 1996; 72:959-88. [PMID: 8735223 DOI: 10.1016/0306-4522(96)00004-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Functional effects of fetal hippocampal field grafts were assessed in rats with spatial learning and memory impairments following global cerebral ischaemia. Experiment 1 examined effects of grafts dissected from fields CA1 and CA3 at embryonic day 19 and from the dentate gyrus at postnatal day 1. Cell suspensions (15,000 cells/site) were implanted bilaterally at two points above the dorsal CA1 area two weeks after four-vessel occlusion (electrocoagulation of the vertebral arteries followed the 24 h later by occlusion of the carotid arteries for 15 min). Histological examination showed that CA1 neuronal loss (60-70%) was equivalent in all ischaemic groups and that 80% of CA1 and 60% of CA3 grafts survived and were sited appropriately in the alveus or corpus callosum above the area of ischaemic CA1 damage in the host, but there was no survival of dentate grafts. Results from rats with poor pyramidal cell graft survival were excluded, but those from rats with non-surviving dentate grafts were retained as an additional control group. Acquisition in the water maze was examined nine and 25 weeks after transplantation, and spatial working memory was assessed in three-door runway and water maze matching-to-position tasks 19 and 28 weeks after grafting, respectively. For water maze acquisition rats were trained with two trails/day and a 10 min inter-trial interval for 10-12 days to locate a submerged platform. Ischaemic rats with CA1 grafts learned the platform position as rapidly as non-ischaemic controls, searched appropriately in the training quadrant and were accurate in heading towards the platform, but were initially impaired on recall of the precise platform position on probe trials with the platform removed. Performance of ischaemic controls and groups with CA3 and non-surviving dentate graft groups was significantly impaired relative to controls and to the CA1 grafted group. The CA1 grafted group was also as successful as controls in matching-to-position in the water maze and substantially superior to the other ischaemic groups, assessed using three trials/day, with a 30-s inter-trial interval and a different platform position on each day. In a more complex matching-to-position task in the three-door runway, the performance of the CA1 grafted group was significantly impaired relative to controls, although superior to that of the other ischaemic control and graft groups. Functional recovery with CA1, but not CA3, grafts in ischaemic rats was replicated in a second experiment which assessed water maze acquisition and working memory at 10 and 14 weeks after transplantation, in rats with 90% graft survival. These results indicate that long-lasting, task-dependent improvements can be seen in ischaemic rats with CA1 fetal grafts in both aversively and appetitively motivated spatial learning tasks. The findings suggest that functional recovery requires homotypic replacement of CA1 cells damaged by ischaemia, rather than provision of structurally similar glutamate-releasing CA3 pyramidal cells.
Collapse
Affiliation(s)
- H Hodges
- Department of Psychology, Institute of Psychiatry, Denmark Hill, London, U.K
| | | | | | | | | | | | | |
Collapse
|
41
|
Ansari AA, Sundstrom JB. TRANSPLANTATION OF FETAL TISSUES. Immunol Allergy Clin North Am 1996. [DOI: 10.1016/s0889-8561(05)70250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
TRANSPLANTATION OF FETAL TISSUES. Radiol Clin North Am 1996. [DOI: 10.1016/s0033-8389(22)00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
|
44
|
Bradbury EJ, Kershaw TR, Marchbanks RM, Sinden JD. Astrocyte transplants alleviate lesion induced memory deficits independently of cholinergic recovery. Neuroscience 1995; 65:955-72. [PMID: 7542374 DOI: 10.1016/0306-4522(94)00540-l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Basal forebrain tissue fragments taken from embryonic day 15 were separated into primary astrocytes and primary neurons in culture and grafted to rats with alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid lesions to the nucleus basalis and medial septal regions. The two cell types were compared in two experimental paradigms for their behavioural, biochemical and histochemical effects; standard transplants of whole basal forebrain and sham transplants served as positive and negative controls, respectively. Each transplant cell type was characterised by in vitro immunocytochemistry to assess content and purity. Memory deficits produced by the lesions in a spatial win-stay T-maze task (Experiment 1) and a spatial plus associative radial maze task (Experiment 2) were significantly improved by the astrocyte, but not by the neuronal, primary cell transplants. The astrocyte graft groups performed as well as standard cholinergic rich basal forebrain groups, reaching control levels on both tasks, while the neuronal transplant groups were not significantly different to lesioned (sham transplanted) rats. There was no recovery in choline acetyltransferase activity in brain regions containing astrocyte grafts whereas activity in the neuronal graft regions was increased (often to control levels), similar to recovery produced by basal forebrain grafts. Grafts in all groups survived, transplanted neurons displaying similar morphology and placement in the host brain to unseparated basal forebrain grafts, while astrocytes showed evidence of migration. The cultured astrocytes were estimated to be > 95% pure, showing positive staining for all astrocyte markers and an absence of staining for neuronal markers. The results indicate that the restoration of cognitive function following fetal grafting is not dependent upon a restoration of cholinergic neuronal activity but is more likely mediated via diffuse graft-host communication, with trophic secretion a probable factor. This study emphasizes the usefulness of astrocytes in the repair of central nervous system injury and has implications for therapeutic potential.
Collapse
Affiliation(s)
- E J Bradbury
- Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, London, U.K
| | | | | | | |
Collapse
|
45
|
The spinal cord as an alternative model for nerve tissue graft. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe spinal cord provides an alternative model for nerve tissue grafting experiments. Anatomo-functional correlations are easier to make here than in any other region of the CNS because of a direct implication of spinal cord neurons in sensorimotor activities. Lesions can be easily performed to isolate spinal cord neurons from descending inputs. The anatomy of descending monoaminergic systems is well defined and these systems offer a favourable paradigm for lesion-graft experiments.
Collapse
|
46
|
Multiple obstacles to gene therapy in the brain. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003747x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractNeuwelt et al. have proposed gene-transfer experiments utilizing an animal model that offers many important advantages for investigating the feasibility of gene therapy in the human brain. A variety of tissues concerning the viral vector and mode of delivery of the corrective genes need to be resolved, however, before such therapy is scientifically supportable.
Collapse
|
47
|
Principles of brain tissue engineering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIt is often presumed that effects of neural tissue transplants are due to release of neurotransmitter. In many cases, however, effects attributed to transplants may be related to phenomena such as trophic effects mediated by glial cells or even tissue reactions to injury. Any conclusion regarding causation of graft effects must be based on the control groups or other comparisons used. In human clinical studies, for example, comparing the same subject before and after transplantation allows for many interpretations of the causes of clinical changes.
Collapse
|
48
|
Lessons on transplant survival from a successful model system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractStudies on the snailMelampusreveal that connectivity is crucial to the survival of transplanted ganglia. Transplanted CNS ganglia can innervate targets or induce supernumerary structures. Neuron survival is optimized by the neural incorporation that occurs when a transplanted ganglion is substituted for an excised ganglion. Better provision for the trophic requirements of neurons will improve the success of mammalian fetal transplants.
Collapse
|
49
|
Repairing the brain: Trophic factor or transplant? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThree experiments on neural grafting with adult rat hosts are described. Working memory impairments were produced by lesioning the hippocampus or severing its connections with the septum by ablating the fimbria-fornix. The results suggest that the survival and growth of a neural graft, whether an autograft or a xenograft, is not a necessary condition for functional recovery on a task tapping working memory.
Collapse
|
50
|
Will brain tissue grafts become an important therapy to restore visual function in cerebrally blind patients? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGrafting embryonic brain tissue into the brain of patients with visual field loss due to cerebral lesions may become a method to restore visual function. This method is not without risk, however, and will only be considered in cases of complete blindness after bilateral occipital lesions, when other, risk-free neuropsychological methods fail.
Collapse
|