1
|
Reed M, Jonz MG. Oxygen chemoreceptor inhibition by dopamine D 2 receptors in isolated zebrafish gills. J Physiol 2025; 603:2369-2385. [PMID: 40055972 PMCID: PMC12013790 DOI: 10.1113/jp287824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/13/2025] [Indexed: 04/23/2025] Open
Abstract
Dopamine is an essential modulator of oxygen sensing and control of ventilation and is the most well described and abundant neurotransmitter in the mammalian carotid body. Little is known of the evolutionary significance of dopamine in oxygen sensing, or whether it plays a similar role in anamniotes. In the model vertebrate, zebrafish (Danio rerio), presynaptic dopamine D2 receptor (D2R) expression was demonstrated in gill neuroepithelial cells (NECs), analogues of mammalian oxygen chemoreceptors; however, a mechanism for dopamine and D2R in the gills had not been defined. The present study tested the hypothesis that presynaptic D2Rs provide a feedback mechanism attenuating the chemoreceptor response to hypoxia. Using an isolated gill preparation from Tg(elavl3:GCaMP6s) zebrafish, we measured hypoxia-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in NECs and postsynaptic neurons. Activation of D2R with dopamine or specific D2R agonist, quinpirole, decreased hypoxic responses in NECs; whereas D2R antagonist, domperidone, had the opposite effect. Addition of SQ22536, an adenylyl cyclase (AC) inhibitor, decreased the effect of hypoxia on [Ca2+]i, similar to dopamine. Activation of AC by forskolin partially recovered the suppressive effect of dopamine on the Ca2+ response to hypoxia. Furthermore, we demonstrate that the response to hypoxia in postsynaptic neurons was dependent upon innervation with NECs, and was subject to modulation by activation of presynaptic D2R. Our results provide the first evidence of neurotransmission of the hypoxic signal at the NEC-nerve synapse in the gill and suggest that a presynaptic, modulatory role for dopamine in oxygen sensing arose early in vertebrate evolution. KEY POINTS: For the first time, we present an experimental model that permits imaging of intracellular Ca2+ in identified oxygen chemoreceptors in zebrafish using GCaMP in a whole/intact sensing organ. The hypoxic response of zebrafish chemoreceptors is attenuated by dopamine through a mechanism involving D2 receptors and adenylyl cyclase. Zebrafish oxygen chemoreceptors send a hypoxic signal to postsynaptic (sensory) neurons. Postsynaptic neuronal responses to hypoxia are modulated by presynaptic D2 receptors, suggesting a link between chemoreceptor inhibition by dopamine and modulation of the hypoxic ventilatory response. Our results suggests that a modulatory role for dopamine in oxygen sensing arose early in vertebrate evolution.
Collapse
Affiliation(s)
- Maddison Reed
- Department of BiologyUniversity of OttawaOttawaONCanada
| | - Michael G. Jonz
- Department of BiologyUniversity of OttawaOttawaONCanada
- Brain and Mind Research InstituteUniversity of OttawaOttawaONCanada
| |
Collapse
|
2
|
Li C, Zhao B, Zhao C, Huang L, Liu Y. Metabotropic Glutamate Receptors 1 Regulates Rat Carotid Body Response to Acute Hypoxia via Presynaptic Mechanism. Front Neurosci 2021; 15:741214. [PMID: 34675769 PMCID: PMC8524001 DOI: 10.3389/fnins.2021.741214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The carotid body (CB) plays a critical role in oxygen sensing; however, the role of glutamatergic signaling in the CB response to hypoxia remains uncertain. We previously found that functional multiple glutamate transporters and inotropic glutamate receptors (iGluRs) are expressed in the CB. The aim of this present research is to investigate the expression of group I metabotropic glutamate receptors (mGluRs) (mGluR1 and 5) in the CB and its physiological function in rat CB response to acute hypoxia. Methods: RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of group I mGluRs in the human and rat CB. Immunofluorescence staining was performed to examine the cellular localization of mGluR1 in the rat CB. In vitro carotid sinus nerve (CSN) discharge recording was performed to detect the physiological function of mGluR1 in CB response to acute hypoxia. Results: We found that (1) mRNAs of mGluR1 and 5 were both expressed in the human and rat CB. (2) mGluR1 protein rather than mGluR5 protein was present in rat CB. (3) mGluR1 was distributed in type I cells of rat CB. (4) Activation of mGluR1 inhibited the hypoxia-induced enhancement of CSN activity (CSNA), as well as prolonged the latency time of CB response to hypoxia. (5) The inhibitory effect of mGluR1 activation on rat CB response to hypoxia could be blocked by GABAB receptor antagonist. Conclusion: Our findings reveal that mGluR1 in CB plays a presynaptic feedback inhibition on rat CB response to hypoxia.
Collapse
Affiliation(s)
- Chaohong Li
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chenlu Zhao
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lu Huang
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
3
|
Shenton FC, Campbell T, Jones JFX, Pyner S. Distribution and morphology of sensory and autonomic fibres in the subendocardial plexus of the rat heart. J Anat 2021; 238:36-52. [PMID: 32783212 PMCID: PMC7754995 DOI: 10.1111/joa.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Cardiac reflexes originating from sensory receptors in the heart ensure blood supply to vital tissues and organs in the face of constantly changing demands. Atrial volume receptors are mechanically sensitive vagal afferents which relay to the medulla and hypothalamus, affecting vasopressin release and renal sympathetic activity. To date, two anatomically distinct sensory endings have been identified which may subserve cardiac mechanosensation: end-nets and flower-spray endings. To map the distribution of atrial receptors in the subendocardial space, we have double-labelled rat right atrial whole mounts for neurofilament heavy chain (NFH) and synaptic vesicle protein 2 (SV2) and generated high-resolution maps of the rat subendocardial neural plexus at the cavo-atrial region. In order to elucidate the nature of these fibres, double labelling with synaptophysin (SYN) and either NFH, calcitonin gene-related peptide (CGRP), choline acetyltransferase (ChAT) or tyrosine hydroxylase (TH) was performed. The findings show that subendocardial nerve nets are denser at the superior cavo-atrial junction than the mid-atrial region. Adluminal plexuses had the finest diameters and stained positively for synaptic vesicles (SV2 and SYN), CGRP and TH. These plexuses may represent sympathetic post-ganglionic fibres and/or sensory afferents. The latter are candidate substrates for type B volume receptors which are excited by stretch during atrial filling. Deeper nerve fibres appeared coarser and may be cholinergic (positive staining for ChAT). Flower-spray endings were never observed using immunohistochemistry but were delineated clearly with the intravital stain methylene blue. We suggest that differing nerve fibre structures form the basis by which atrial deformation and hence atrial filling is reflected to the brain.
Collapse
Affiliation(s)
| | - Thomas Campbell
- Discipline of AnatomySchool of MedicineUniversity College DublinDublin 4Ireland
| | - James F. X. Jones
- Discipline of AnatomySchool of MedicineUniversity College DublinDublin 4Ireland
| | - Susan Pyner
- Department of BiosciencesDurham UniversityDurhamUK
| |
Collapse
|
4
|
Badoer E. The Carotid Body a Common Denominator for Cardiovascular and Metabolic Dysfunction? Front Physiol 2020; 11:1069. [PMID: 32982794 PMCID: PMC7478291 DOI: 10.3389/fphys.2020.01069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
The carotid body is a highly vascularized organ designed to monitor oxygen levels. Reducing oxygen levels in blood results in increased activity of the carotid body cells and reflex increases in sympathetic nerve activity. A key contributor to elevated sympathetic nerve activity in neurogenic forms of hypertension is enhanced peripheral chemoreceptor activity. Hypertension commonly occurs in metabolic disorders, like obesity. Such metabolic diseases are serious global health problems. Yet, the mechanisms contributing to increased sympathetic nerve activity and hypertension in obesity are not fully understood and a better understanding is urgently required. In this review, we examine the literature that suggests that overactivity of the carotid body may also contribute to metabolic disturbances. The purine ATP is an important chemical mediator influencing the activity of the carotid body and the role of purines in the overactivity of the carotid body is explored. We will conclude with the suggestion that tonic overactivity of the carotid body may be a common denominator that contributes to the hypertension and metabolic dysfunction seen in conditions in which metabolic disease exists such as obesity or insulin resistance induced by high caloric intake. Therapeutic treatment targeting the carotid bodies may be a viable treatment since translation to the clinic could be more easily performed than expected via repurposing antagonists of purinergic receptors currently in clinical practice, and the use of other minimally invasive techniques that reduce the overactivity of the carotid bodies which may be developed for such clinical use.
Collapse
Affiliation(s)
- Emilio Badoer
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Zera T, Moraes DJA, da Silva MP, Fisher JP, Paton JFR. The Logic of Carotid Body Connectivity to the Brain. Physiology (Bethesda) 2020; 34:264-282. [PMID: 31165684 DOI: 10.1152/physiol.00057.2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The carotid body has emerged as a therapeutic target for cardio-respiratory-metabolic diseases. With the expansive functions of the chemoreflex, we sought mechanisms to explain differential control of individual responses. We purport a remarkable correlation between phenotype of a chemosensory unit (glomus cell-sensory afferent) with a distinct component of the reflex response. This logic could permit differential modulation of distinct chemoreflex responses, a strategy ideal for therapeutic exploitation.
Collapse
Affiliation(s)
- Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw , Warsaw , Poland
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - James P Fisher
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| |
Collapse
|
6
|
Zhang M, Vollmer C, Nurse CA. Adenosine and dopamine oppositely modulate a hyperpolarization-activated current I h in chemosensory neurons of the rat carotid body in co-culture. J Physiol 2017; 596:3101-3117. [PMID: 28801916 DOI: 10.1113/jp274743] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Adenosine and dopamine (DA) are neuromodulators in the carotid body (CB) chemoafferent pathway, but their mechanisms of action are incompletely understood. Using functional co-cultures of rat CB chemoreceptor (type I) cells and sensory petrosal neurons (PNs), we show that adenosine enhanced a hyperpolarization-activated cation current Ih in chemosensory PNs via A2a receptors, whereas DA had the opposite effect via D2 receptors. Adenosine caused a depolarizing shift in the Ih activation curve and increased firing frequency, whereas DA caused a hyperpolarizing shift in the curve and decreased firing frequency. Acute hypoxia and isohydric hypercapnia depolarized type I cells concomitant with increased excitation of adjacent PNs; the A2a receptor blocker SCH58261 inhibited both type I and PN responses during hypoxia, but only the PN response during isohydric hypercapnia. We propose that adenosine and DA control firing frequency in chemosensory PNs via their opposing actions on Ih . ABSTRACT Adenosine and dopamine (DA) act as neurotransmitters or neuromodulators at the carotid body (CB) chemosensory synapse, but their mechanisms of action are not fully understood. Using a functional co-culture model of rat CB chemoreceptor (type I) cell clusters and juxtaposed afferent petrosal neurons (PNs), we tested the hypothesis that adenosine and DA act postsynaptically to modulate a hyperpolarization-activated, cyclic nucleotide-gated (HCN) cation current (Ih ). In whole-cell recordings from hypoxia-responsive PNs, cAMP mimetics enhanced Ih whereas the HCN blocker ZD7288 (2 μm) reversibly inhibited Ih . Adenosine caused a potentiation of Ih (EC50 ∼ 35 nm) that was sensitive to the A2a blocker SCH58261 (5 nm), and an ∼16 mV depolarizing shift in V½ for voltage dependence of Ih activation. By contrast, DA (10 μm) caused an inhibition of Ih that was sensitive to the D2 blocker sulpiride (1-10 μm), and an ∼11 mV hyperpolarizing shift in V½ . Sulpiride potentiated Ih in neurons adjacent to, but not distant from, type I cell clusters. DA also decreased PN action potential frequency whereas adenosine had the opposite effect. During simultaneous paired recordings, SCH58261 inhibited both the presynaptic hypoxia-induced receptor potential in type I cells and the postsynaptic PN response. By contrast, SCH58261 inhibited only the postsynaptic PN response induced by isohydric hypercapnia. Confocal immunofluorescence confirmed the localization of HCN4 subunits in tyrosine hydroxylase-positive chemoafferent neurons in tissue sections of rat petrosal ganglia. These data suggest that adenosine and DA, acting through A2a and D2 receptors respectively, regulate PN excitability via their opposing actions on Ih .
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Cathy Vollmer
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
7
|
Age-related changes in immunoreactivity for dopamine β-hydroxylase in carotid body glomus cells in spontaneously hypertensive rats. Auton Neurosci 2017; 205:50-56. [PMID: 28473232 DOI: 10.1016/j.autneu.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to investigate immunoreactivity for dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in carotid body (CB) glomus cells in spontaneously hypertensive rats (SHR/Izm) at 4 (prehypertensive stage), 8 (early stage of developmental hypertension), 12 (later stage of developmental hypertension), and 16weeks of age (established hypertensive stage). Age-matched Wistar Kyoto rats (WKY/Izm) were used as controls. Staining properties for TH were similar between both strains at each age. Regarding DBH immunostaining, although some glomus cells showed intense DBH immunoreactivity at 4weeks of age, these cells were rarely observed at 8, 12, and 16weeks of age in WKY/Izm. In SHR/Izm, intense DBH immunoreactivity was observed in some glomus cells at 4weeks of age, these cells were also observed at 8 and 12weeks of age, and their number increased at 16weeks of age. An image analysis showed that the percentage of DBH-immunopositive glomus cells in WKY/Izm was approximately 30% at 4weeks of age and significantly decreased to approximately 10% at 8, 12, and 16weeks of age (p<0.05). This percentage in SHR/Izm was approximately 40% at each age. The gray scale intensity for DBH immunoreactivity in DBH-immunopositive glomus cells was similar in both strains at 4weeks of age, but became significantly lower in WKY/Izm and higher in SHR/Izm with increase in age (p<0.05). These results suggest that noradrenaline in glomus cells plays an important role in the regulation of neurotransmission between CB and afferent nerves during developmental hypertension.
Collapse
|
8
|
Sienkiewicz W, Dudek A, Zacharko-Siembida A, Marszałek M. Immunohistochemical characterization of the jugular (superior vagal) ganglion in the pig. Pol J Vet Sci 2017; 20:377-385. [PMID: 28865207 DOI: 10.1515/pjvs-2017-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study was carried out on three 4-month old female pigs. All the animals were deeply anesthetized and transcardially perfused with 4% buffered paraformaldehyde (pH 7.4). Left and right superior vagal ganglia (SVG) were collected and processed for immunofluorescence labeling method. The preparations were examined under a Zeiss LSM 710 confocal microscope equipped with adequate filter block. Neurons forming SVG were round or oval in shape with a round nucleus in the center. The majority of them (52%) were medium (M) (31-50 μm in diameter) while 7% and 41% were small (S) (up to 30μm in diameter) or large (L) (above 50 μm in diameter) in size, respectively. Double-labeling immunofluorescence revealed that SVG neurons stained for CGRP (approx. 57%; among them 37%, 9% and 54% were M, S and L in size, respectively), SP (14.5%; 72.4% M, 3.4% S, 24.2% L), VACHT (26%; 63% M, 24% S and 13% L), GAL (14%; 57% M, 29% S, 14% L), NPY (12%; 53% M, 12% S, 35% L), Met-Enk (5%; 40% M, 6% S and 54% L), PACAP (15%; 52% M, 24% S and 24% L), VIP (6.3%; 67% M, 8% S and 25% L), and NOS-positive (6%; 31% M and 69% L). The most abundant populations of intraganglionic nerve fibers were those which stained for CGRP or GAL, whereas only single SP-, PACAP- or Met-ENK-positive nerve terminals were observed.
Collapse
|
9
|
Dorsal root ganglion neurons and tyrosine hydroxylase--an intriguing association with implications for sensation and pain. Pain 2016; 157:314-320. [PMID: 26447702 DOI: 10.1097/j.pain.0000000000000381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Vagal afferents, sympathetic efferents and the role of the PVN in heart failure. Auton Neurosci 2016; 199:38-47. [DOI: 10.1016/j.autneu.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 01/18/2023]
|
11
|
Substance P differentially modulates firing rate of solitary complex (SC) neurons from control and chronic hypoxia-adapted adult rats. PLoS One 2014; 9:e88161. [PMID: 24516602 PMCID: PMC3917864 DOI: 10.1371/journal.pone.0088161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+)-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.
Collapse
|
12
|
Abstract
This study reports for the first time the presence of several biologically active substances in the nodose ganglion of immature female pigs. The expression and distribution pattern of the studied substances was examined using a double-labeling immunofluorescence technique. In order to visualize the entire population of the ganglionic cell bodies, PGP 9.5, the pan-neuronal marker was used. The distribution and relative proportion of immunolocalized substance P, calcitonin gene related peptide, neuronal isoform of nitric oxide synthase and galanin in perikarya were evaluated. Quantitative analysis of the nodose ganglion neurons revealed that 16.187% (±1.22) of the immunoreactive PGP 9.5 was localized in the perikarya of the left-side ganglion whereas 14.234% (±3.63) of the right-side ganglion neurons expressed substance P, respectively. Accordingly, the proportion of the perikarya with calcitonin gene related peptide ranged from 12.667% (±2.66) for the left ganglion compared with 14.875% (±2.33) for the right one. With regard to the neuronal isoform of the nitric oxide synthase expression, our study revealed a population of 18.703% (±2.50) in the left and 13.336% (±1.25) in the right ganglion, respectively. The immunoreactivity for galanin was found in a relatively small population of neurons of the left nodose ganglion, where galanin-immunoreactive perikarya constituted 1.163% (±1.26), while in the contralateral ganglion 0.865% (±0.32) of total perikarya. No nerve fibers immunopositive for the above studied substances were encountered.
Collapse
|
13
|
Gauda EB, Shirahata M, Mason A, Pichard LE, Kostuk EW, Chavez-Valdez R. Inflammation in the carotid body during development and its contribution to apnea of prematurity. Respir Physiol Neurobiol 2013; 185:120-31. [DOI: 10.1016/j.resp.2012.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
|
14
|
Coccimiglio ML, Jonz MG. Serotonergic neuroepithelial cells of the skin in developing zebrafish: morphology, innervation and oxygen-sensitive properties. ACTA ACUST UNITED AC 2012; 215:3881-94. [PMID: 22855620 DOI: 10.1242/jeb.074575] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In teleost fish, O(2) chemoreceptors of the gills (neuroepithelial cells or NECs) initiate cardiorespiratory reflexes during hypoxia. In developing zebrafish, hyperventilatory and behavioural responses to hypoxia are observed before development of gill NECs, indicating that extrabranchial chemoreceptors mediate these responses in embryos. We have characterised a population of cells of the skin in developing zebrafish that resemble O(2)-chemoreceptive gill NECs. Skin NECs were identified by serotonin immunolabelling and were distributed over the entire skin surface. These cells contained synaptic vesicles and were associated with nerve fibres. Skin NECs were first evident in embryos 24-26 h post-fertilisation (h.p.f.), and embryos developed a behavioural response to hypoxia between 24 and 48 h.p.f. The total number of NECs declined with age from approximately 300 cells per larva at 3 days post-fertilisation (d.p.f.) to ~120 cells at 7 d.p.f., and were rarely observed in adults. Acclimation to hypoxia (30 mmHg) or hyperoxia (300 mmHg) resulted in delayed or accelerated development, respectively, of peak resting ventilatory frequency and produced changes in the ventilatory response to hypoxia. In hypoxia-acclimated larvae, the temporal pattern of skin NECs was altered such that the number of cells did not decrease with age. By contrast, hyperoxia produced a more rapid decline in NEC number. The neurotoxin 6-hydroxydopamine degraded catecholaminergic nerve terminals that made contact with skin NECs and eliminated the hyperventilatory response to hypoxia. These results indicate that skin NECs are sensitive to changes in O(2) and suggest that they may play a role in initiating responses to hypoxia in developing zebrafish.
Collapse
|
15
|
Brumovsky PR, La JH, McCarthy CJ, Hökfelt T, Gebhart GF. Dorsal root ganglion neurons innervating pelvic organs in the mouse express tyrosine hydroxylase. Neuroscience 2012; 223:77-91. [PMID: 22858598 DOI: 10.1016/j.neuroscience.2012.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/02/2012] [Accepted: 07/18/2012] [Indexed: 12/30/2022]
Abstract
Previous studies in rat and mouse documented that a subpopulation of dorsal root ganglion (DRG) neurons innervating non-visceral tissues express tyrosine hydroxylase (TH). Here we studied whether or not mouse DRG neurons retrogradely traced with Fast Blue (FB) from colorectum or urinary bladder also express immunohistochemically detectable TH. The lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) were included in the analysis. Previously characterized antibodies against TH, norepinephrine transporter type 1 (NET-1) and calcitonin gene-related peptide (CGRP) were used. On average, ∼14% of colorectal and ∼17% of urinary bladder DRG neurons expressed TH and spanned virtually all neuronal sizes, although more often in the medium-sized to small ranges. Also, they were more abundant in lumbosacral than thoracolumbar DRGs, and often coexpressed CGRP. We also detected several TH-immunoreactive (IR) colorectal and urinary bladder neurons in the LSC and the MPG, more frequently in the former. No NET-1-IR neurons were detected in DRGs, whereas the majority of FB-labeled, TH-IR neurons in the LSC and MPG coexpressed this marker (as did most other TH-IR neurons not labeled from the target organs). TH-IR nerve fibers were detected in all layers of the colorectum and the urinary bladder, with some also reaching the basal mucosal cells. Most TH-IR fibers in these organs lacked CGRP. Taken together, we show: (1) that a previously undescribed population of colorectal and urinary bladder DRG neurons expresses TH, often CGRP but not NET-1, suggesting the absence of a noradrenergic phenotype; and (2) that TH-IR axons/terminals in the colon or urinary bladder, naturally expected to derive from autonomic sources, could also originate from sensory neurons.
Collapse
Affiliation(s)
- P R Brumovsky
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
16
|
Nunes AR, Chavez-Valdez R, Ezell T, Donnelly DF, Glover JC, Gauda EB. Effect of development on [Ca2+]i transients to ATP in petrosal ganglion neurons: a pharmacological approach using optical recording. J Appl Physiol (1985) 2012; 112:1393-402. [PMID: 22241051 DOI: 10.1152/japplphysiol.00511.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ATP, acting through P2X(2)/P2X(3) receptor-channel complexes, plays an important role in carotid body chemoexcitation in response to natural stimuli in the rat. Since the channels are permeable to calcium, P2X activation by ATP should induce changes in intracellular calcium ([Ca(2+)](i)). Here, we describe a novel ex vivo approach using fluorescence [Ca(2+)](i) imaging that allows screening of retrogradely labeled chemoafferent neurons in the petrosal ganglion of the rat. ATP-induced [Ca(2+)](i) responses were characterized at postnatal days (P) 5-8 and P19-25. While all labeled cells showed a brisk increase in [Ca(2+)](i) in response to depolarization by high KCl (60 mM), only a subpopulation exhibited [Ca(2+)](i) responses to ATP. ATP (250-1,000 μM) elicited one of three temporal response patterns: fast (R1), slow (R2), and intermediate (R3). At P5-8, R2 predominated and its magnitude was attenuated 44% by the P2X(1) antagonist, NF449 (10 μM), and 95% by the P2X(1)/P2X(3)/P2X(2/3) antagonist, TNP-ATP (10 μM). At P19-25, R1 and R3 predominated and their magnitudes were attenuated 15% by NF449, 66% by TNP-ATP, and 100% by suramin (100 μM), a nonspecific P2 purinergic receptor antagonist. P2X(1) and P2X(2) protein levels in the petrosal ganglion decreased with development, while P2X(3) protein levels did not change significantly. We conclude that the profile of ATP-induced P2X-mediated [Ca(2+)](i) responses changes in the postnatal period, corresponding with changes in receptor isoform expression. We speculate that these changes may participate in the postnatal maturation of chemosensitivity.
Collapse
Affiliation(s)
- Ana R Nunes
- Dept. of Pediatrics, Division of Neonatology, Johns Hopkins Medical Institutions, 600 N. Wolfe St., Baltimore, MD 21287-3200, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article.
Collapse
Affiliation(s)
- Prem Kumar
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom.
| | | |
Collapse
|
18
|
Liu X, He L, Dinger B, Fidone SJ. Chronic hypoxia-induced acid-sensitive ion channel expression in chemoafferent neurons contributes to chemoreceptor hypersensitivity. Am J Physiol Lung Cell Mol Physiol 2011; 301:L985-92. [PMID: 21890510 DOI: 10.1152/ajplung.00132.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previously we demonstrated that chronic hypoxia (CH) induces an inflammatory condition characterized by immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. It is well established that chronic inflammatory pain induces the expression of acid-sensitive ion channels (ASIC) in primary sensory neurons, where they contribute to hyperalgesia and allodynia. The present study examines the effect of CH on ASIC expression in petrosal ganglion (PG), which contains chemoafferent neurons that innervate oxygen-sensitive type I cells in the carotid body. Five isoforms of ASIC transcript were increased ∼1.5-2.5-fold in PG following exposure of rats to 1, 3, or 7 days of hypobaric hypoxia (380 Torr). ASIC transcript was not increased in the sympathetic superior cervical ganglion (SCG). In the PG, CH also increased the expression of channel-interacting PDZ domain protein, a scaffolding protein known to enhance the surface expression and the low pH-induced current density mediated by ASIC3. Western immunoblot analysis showed that CH elevated ASIC3 protein in PG, but not in SCG or the (sensory) nodose ganglion. ASIC3 transcript was likewise elevated in PG neurons cultured in the presence of inflammatory cytokines. Increased ASIC expression was blocked in CH rats concurrently treated with the nonsteroidal anti-inflammatory drug ibuprofen (4 mg·kg(-1)·day(-1)). Electrophysiological recording of carotid sinus nerve (CSN) activity in vitro showed that the specific ASIC antagonist A-317567 (100 μM) did not significantly alter hypoxia-evoked activity in normal preparations but blocked ∼50% of the hypoxic response following CH. Likewise, a high concentration of ibuprofen, which is known to block ASIC1a, reduced hypoxia-evoked CSN activity by ∼50% in CH preparations. Our findings indicate that CH induces inflammation-dependent phenotypic adjustments in chemoafferent neurons. Following CH, ASIC are important participants in chemotransmission between type I cells and chemoafferent nerve terminals, and these proton-gated channels appear to enhance chemoreceptor sensitivity.
Collapse
Affiliation(s)
- X Liu
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, USA
| | | | | | | |
Collapse
|
19
|
Raghuraman G, Rai V, Peng YJ, Prabhakar NR, Kumar GK. Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal 2009; 11:1777-89. [PMID: 19335094 PMCID: PMC2848511 DOI: 10.1089/ars.2008.2368] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the role of protein phosphatases (PP) and protein kinases in tyrosine hydroxylase (TH) activation by two patterns of intermittent hypoxia (IH) in rat brainstem. Rats exposed to either IH(15s) (15 s, 5% O(2); 5 min, 21%O(2)) or IH(90s) (90 s each of 10% O(2) & 21%O(2)) for 10 days were used. IH(15s) but not IH(90s) caused a robust increase in TH activity, dopamine (DA) level, and TH phosphorylation at Ser-31 and Ser-40 in the medulla but not in the pons. Likewise, IH(15s) but not IH(90s) decreased activity and expression of protein phosphatase 2A (PP2A) and increased activity of multiple protein kinases. In vitro dephosphorylation with PP2A nearly abolished IH(15s)-induced increase in TH activity. IH(15s) increased generation of reactive oxygen species (ROS) in brainstem medullary regions which was nearly threefold higher than that evoked by IH(90s). Antioxidants prevented IH(15s)-induced downregulation of PP2A and increases in multiple protein kinase activity with subsequent reversal of serine phosphorylation of TH, TH activity, and DA to control levels. These findings demonstrate that IH in a pattern-specific manner activates TH involving ROS-mediated sustained increase in TH phosphorylation via downregulation of PP2A and upregulation of protein kinases.
Collapse
Affiliation(s)
- Gayatri Raghuraman
- Center for Systems Biology of Oxygen Sensing, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
20
|
Gauda EB, Carroll JL, Donnelly DF. Developmental maturation of chemosensitivity to hypoxia of peripheral arterial chemoreceptors--invited article. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:243-55. [PMID: 19536487 DOI: 10.1007/978-90-481-2259-2_28] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Peripheral arterial chemoreceptors, particularly the carotid body chemoreceptors, are the primary sites for the detection of hypoxia and reflexly increase ventilatory drive and behavioral arousal during hypoxic or asphyxial events. Newborn infants are at risk for hypoxic and asphyxial events during sleep, yet, the strength of the chemoreceptor responses is low or absent at birth and then progressively increases with early postnatal development. This review summarizes the available data showing that even though the "oxygen sensor" in the glomus cells has not been unequivocally identified, it is clear that development affects many of the other properties of the chemoreceptor unit (glomus cell, afferent nerve fibers and neurotransmitter profile at the synapse) that are necessary and essential for the propagation of the "sensing" response, and exposure to hypoxia, hyperoxia and nicotine can modify normal development of each of the components leading to altered peripheral chemoreceptor responses.
Collapse
Affiliation(s)
- Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
21
|
Alheid GF, McCrimmon DR. The chemical neuroanatomy of breathing. Respir Physiol Neurobiol 2009; 164:3-11. [PMID: 18706532 DOI: 10.1016/j.resp.2008.07.014] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 11/29/2022]
Abstract
The chemical neuroanatomy of breathing must ultimately encompass all the various neuronal elements physiologically identified in brainstem respiratory circuits and their apparent aggregation into "compartments" within the medulla and pons. These functionally defined respiratory compartments in the brainstem provide the major source of input to cranial motoneurons controlling the airways, and to spinal motoneurons activating inspiratory and expiratory pump muscles. This review provides an overview of the neuroanatomy of the major compartments comprising brainstem respiratory circuits, and a synopsis of the transmitters used by their constituent respiratory neurons.
Collapse
Affiliation(s)
- George F Alheid
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
22
|
Buniel M, Glazebrook PA, Ramirez-Navarro A, Kunze DL. Distribution of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body. J Comp Neurol 2008; 510:367-77. [PMID: 18668683 DOI: 10.1002/cne.21796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chemosensory glomus cells of the carotid body (CB) detect changes in O2 tension. Carotid sinus nerve fibers, which originate from peripheral sensory neurons located within the petrosal ganglion, innervate the CB. Release of transmitter from glomus cells activates the sensory afferent fibers to transmit information to the nucleus of the solitary tract in the brainstem. The ion channels expressed within the sensory nerve terminals play an essential role in the ability of the terminal to initiate action potentials in response to transmitter-evoked depolarization. However, with a few exceptions, the identity of ion channels expressed in these peripheral nerve fibers is unknown. This study addresses the expression of voltage-gated channels in the sensory fibers with a focus on channels that set the resting membrane potential and regulate discharge patterns. By using immunohistochemistry and fluorescence confocal microscopy, potassium channel subunits and HCN (hyperpolarization-activated) family members were localized both in petrosal neurons that expressed tyrosine hydroxylase and in the CSN axons within the carotid body. Channels contributing to resting membrane potential, including HCN2 responsible in part for I(h) current and the KCNQ2 and KCNQ5 subunits thought to underlie the neuronal "M current," were identified in the sensory neurons and their axons innervating the carotid body. In addition, the results presented here demonstrate expression of several potassium channels that shape the action potential and the frequency of discharge, including Kv1.4, Kv1.5, Kv4.3, and K(Ca) (BK). The role of these channels should be considered in interpretation of the fiber discharge in response to perturbation of the carotid body environment.
Collapse
Affiliation(s)
- Maria Buniel
- Rammelkamp Center for Education and Research, MetroHealth Campus of Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | | | | | |
Collapse
|
23
|
Mahlière S, Perrin D, Peyronnet J, Boussouar A, Annat G, Viale JP, Pequignot J, Pequignot JM, Dalmaz Y. Prenatal nicotine alters maturation of breathing and neural circuits regulating respiratory control. Respir Physiol Neurobiol 2008; 162:32-40. [PMID: 18455969 DOI: 10.1016/j.resp.2008.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
While perinatal nicotine effects on ventilation have been widely investigated, the prenatal impact of nicotine treatment during gestation on both breathing and neural circuits involved in respiratory control remains unknown. We examined the effects of nicotine, from embryonic day 5 (E5) to E20, on baseline ventilation, the two hypoxic ventilatory response components and in vivo tyrosine hydroxylase (TH) activity in carotid bodies and brainstem areas, assessed at postnatal day 7 (P7), P11 and P21. In pups prenatally exposed to nicotine, baseline ventilation and hypoxic ventilatory response were increased at P7 (+48%) and P11 (+46%), with increased tidal volume (p<0.05). Hypoxia blunted frequency response at P7 and revealed unstable ventilation at P11. In carotid bodies, TH activity increased by 20% at P7 and decreased by 48% at P11 (p<0.05). In most brainstem areas it was reduced by 20-33% until P11. Changes were resolved by P21. Prenatal nicotine led to postnatal ventilatory sequelae, partly resulting from impaired maturation of peripheral chemoreceptors and brainstem integrative sites.
Collapse
|
24
|
Zaccone G, Mauceri A, Maisano M, Giannetto A, Parrino V, Fasulo S. Neurotransmitter localization in the neuroepithelial cells and unipolar neurons of the respiratory tract in the bichir, Polypterus bichir bichir G. ST-HIL. Acta Histochem 2008; 110:143-50. [PMID: 18222532 DOI: 10.1016/j.acthis.2007.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 09/06/2007] [Accepted: 09/27/2007] [Indexed: 11/29/2022]
Abstract
Immunohistochemical localisation of neurotransmitters was used to determine the distribution of unipolar neurons and neuroepithelial cells (NECs) in the respiratory tract of the bichir, Polypterus bichir bichir. NECs were commonly encountered in the mucociliated epithelium of the lung. Unipolar neurons were located in the submucosal and muscle layers of the glottis. The results suggest the presence of tyrosine hydroxylase (TH) and nNOS immunoreactivities in NECs. In addition, ACh-E/nNOS and TH/nNOS nerve fibers were also found associated with these cells. Unipolar neuronal cells showed a chemical code including the presence of 5-HT, ACh-E, peptides and P2x2 receptors. The present findings indicate that nitric oxide (NO) is a primitive transmitter of neuroepithelial oxygen-sensitive chemoreceptor cells together with acetylcholine. The coexistence of ACh-E with other substances in the unipolar neurons, but not with NO, may be a property of vagal postganglionic neurons since the emergence of the cranial autonomic pathways in the earliest vertebrates. It would be interesting to know about the provenance of the nerves in contact with NECs, which appear to have a complex innervation pattern.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Animal Biology and Marine Ecology, Faculty of Science, Section of Comparative Neurobiology and Biomonitoring, University of Messina, Via Salita Sperone 31, I-98166 Messina, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Suwabe T, Bradley RM. Effects of 5-Hydroxytryptamine and Substance P on Neurons of the Inferior Salivatory Nucleus. J Neurophysiol 2007; 97:2605-11. [PMID: 17267757 DOI: 10.1152/jn.00859.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The parasympathetic secretomotor innervation of the salivary glands originates from a longitudinal column of neurons in the medulla called the salivatory nucleus. The neurons innervating the parotid and von Ebner salivary glands are situated in the caudal extremity of the column designated as the inferior salivatory nucleus (ISN). Immunocytochemical investigations have demonstrated the presence of a number of neuropeptides surrounding the ISN neurons. We have examined the neurophysiological effect of two of these neuropeptides on neurons of the ISN identified by retrograde transport of a fluorescent label. Both serotonin (5-HT) and substance P (SP) excited virtually all neurons in the ISN. Application of these neuropeptides resulted in membrane depolarization that was concentration dependent. Although the majority of ISN neurons that were depolarized by SP application exhibited an increase in input resistance, application of 5-HT induced widely varied change in input resistance. Membrane depolarization elicited action potential discharges that increased in frequency with increasing concentration of 5-HT and SP. Blocking action potential conduction from surrounding neurons did not eliminate the depolarizing effects of 5-HT and SP, indicating that both neuropeptides acted directly on the ISN neurons. Finally, the use of 5-HT agonists and antagonists indicates that 5-HT acts via a 5-HT2A receptor, and the use of SP agonists suggests that SP acts via neuokinin-1 and -2 receptors. These data show that 5-HT and SP excite most of the ISN neurons innervating the lingual von Ebner glands possibly modulating the synaptic drive to these neurons derived from afferent gustatory input.
Collapse
Affiliation(s)
- Takeshi Suwabe
- Dept. of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
26
|
|
27
|
Kline DD, Buniel MCF, Glazebrook P, Peng YJ, Ramirez-Navarro A, Prabhakar NR, Kunze DL. Kv1.1 deletion augments the afferent hypoxic chemosensory pathway and respiration. J Neurosci 2006; 25:3389-99. [PMID: 15800194 PMCID: PMC6724910 DOI: 10.1523/jneurosci.4556-04.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the potassium channel gene Kv1.1 are associated with human episodic ataxia type 1 (EA-1) syndrome characterized by movement disorders and epilepsy. Ataxic episodes in EA-1 patients are often associated with exercise or emotional stress, which suggests a prominent role for the autonomic nervous system. Many of these alterations are reproduced in the Kv1.1-null mouse. Kv1.1 also regulates excitability of sensory neurons essential in cardiovascular and respiratory reflexes. We examined the neural control of the respiratory system of littermate wild-type (control) and Kv1.1-null mice during low O2 (hypoxia). Immunohistochemical studies demonstrated Kv1.1 in the afferent limb of the carotid body chemoreflex (the major regulator in the response to hypoxia), consisting of the carotid body, petrosal ganglion, and nucleus of the solitary tract (NTS). Respiration was examined by plethysmography. Null mice exhibited a greater increase in respiration during hypoxia compared with controls. In vitro carotid body sensory discharge during hypoxia was greater in null than control mice. In the caudal NTS, evoked EPSCs in brainstem slices were similar between control and null mice. However, the frequency of spontaneous and miniature EPSCs was greater in null mice. Null mice also exhibited more asynchronous release after a stimulus train. These results demonstrate the important role of Kv1.1 in afferent chemosensory activity and suggest that mutations in the human Kv1.1 gene have functional consequences during stress responses that involve respiratory reflexes.
Collapse
Affiliation(s)
- David D Kline
- Rammelkamp Center for Education and Research, MetroHealth Medical System, Cleveland, Ohio 44109-1998, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Brumovsky P, Villar MJ, Hökfelt T. Tyrosine hydroxylase is expressed in a subpopulation of small dorsal root ganglion neurons in the adult mouse. Exp Neurol 2006; 200:153-65. [PMID: 16516890 DOI: 10.1016/j.expneurol.2006.01.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/05/2006] [Accepted: 01/24/2006] [Indexed: 11/17/2022]
Abstract
The expression of tyrosine hydroxylase (TH) was studied in adult mouse dorsal root ganglia (DRGs) and spinal cord by means of immunohistochemistry and in situ hybridization. TH immunoreactivity and TH mRNA were present in 10-15% of lumbar DRG neurons, in most cases being small/medium-sized. Only very few of these neurons coexpressed calcitonin gene-related peptide (CGRP), and only around 6% bound isolectin B4 (IB4). Dopamine beta-hydroxylase-positive(+) or aromatic amino acid decarboxylase (AADC)+ DRG neurons were rare and did not colocalize TH. No evidence for dopamine transporter expression was obtained. Axotomy of the sciatic nerve only showed a tendency towards reduction in the number of TH+ neurons. In the dorsal horn of the spinal cord, moderately dense and widespread TH+ nerve terminals were observed, mainly in the gray matter and they did not show a typical primary afferent pattern. Also, dorsal rhizotomy or peripheral axotomy had no apparent effect on TH-LI in the dorsal horn. In the skin, along with an abundant TH+ innervation of blood vessels and sweat gland acini, a number of fibers was observed in close relation to the skin surface, some even penetrating into the epithelium. These results demonstrate presence, in normal adult mouse DRGs, of a subpopulation of TH+, essentially CGRP- and IB4-negative small/medium-sized neurons. No evidence for transport of TH into central afferents was obtained, but the enzyme may be present in some sensory fibers in the skin. The fact that neither AADC nor the dopamine transporter could be visualized suggests of non-dopaminergic transmitter phenotype, but the levels of these two dopaminergic markers may be too low to be detected with the present methodology. A further alternative is that L-DOPA after release is extracellularly converted to dopamine.
Collapse
Affiliation(s)
- Pablo Brumovsky
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Ichikawa H, De Repentigny Y, Kothary R, Sugimoto T. The survival of vagal and glossopharyngeal sensory neurons is dependent upon dystonin. Neuroscience 2006; 137:531-6. [PMID: 16289886 DOI: 10.1016/j.neuroscience.2005.08.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/22/2005] [Accepted: 08/31/2005] [Indexed: 11/20/2022]
Abstract
The vagal and glossopharyngeal sensory ganglia and their peripheral tissues were examined in wild type and dystonia musculorum mice to assess the effect of dystonin loss of function on chemoreceptive neurons. In the mutant mouse, the number of vagal and glossopharyngeal sensory neurons was severely decreased (70% reduction) when compared with wild type littermates. The mutation also reduced the size of the circumvallate papilla (45% reduction) and the number of taste buds (89% reduction). In addition, immunohistochemical analysis demonstrated that the dystonin mutation reduced the number of PGP 9.5-, calcitonin gene-related peptide-, P2X3 receptor- and tyrosine hydroxylase-containing neurons. Their peripheral endings also decreased in the taste bud and epithelium of circumvallate papillae. These data together suggest that the survival of vagal and glossopharyngeal sensory neurons is dependent upon dystonin.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan.
| | | | | | | |
Collapse
|
30
|
He L, Chen J, Dinger B, Stensaas L, Fidone S. Effect of chronic hypoxia on purinergic synaptic transmission in rat carotid body. J Appl Physiol (1985) 2006; 100:157-62. [PMID: 16357082 DOI: 10.1152/japplphysiol.00859.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies indicate that chemoafferent nerve fiber excitation in the rat carotid body is mediated by acetylcholine and ATP, acting at nicotinic cholinergic receptors and P2X2 purinoceptors, respectively. We previously demonstrated that, after a 10- to 14-day exposure to chronic hypoxia (CH), the nicotinic cholinergic receptor blocker mecamylamine no longer inhibits rat carotid sinus nerve (CSN) activity evoked by an acute hypoxic challenge. The present experiments examined the effects of CH (9–16 days at 380 Torr) on the expression of P2X2 purinoceptors in carotid body and chemoafferent neurons, as well as the effectiveness of P2X2 receptor blocking drugs on CSN activity evoked by hypoxia. In the normal carotid body, immunocytochemical studies demonstrated a dense plexus of P2X2-positive nerve fibers penetrating lobules of type I cells. In addition, type I cells were lightly stained, indicating P2X2 receptor expression. After CH, the intensity of P2X2 receptor immunostaining was maintained in chemosensory type I cells and in the soma of chemoafferent neurons. P2 receptor expression on type I cells was confirmed by demonstrations of ATP-evoked increased intracellular Ca2+; this response was modulated by simultaneous exposure to hypoxia. In normal preparations, CSN activity evoked by hypoxia in vitro was 65% inhibited in the presence of specific P2X2 receptor antagonists. However, unlike the absence of mecamylamine action after CH, P2X2 antagonists remained effective against hypoxia-evoked activity after CH. Our findings indicate that ATP acting at P2X2 receptors contributes to adjusted chemoreceptor activity after CH, indicating a possible role for purinergic mechanisms in the adaptation of the carotid body in a chronic low-O2 environment.
Collapse
Affiliation(s)
- L He
- Department of Physiology, University of Utah School of Medicine, 410 Chipeta Way, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|
31
|
Tolosa JN, Cooper R, Myers AC, McLemore GL, Northington F, Gauda EB. Ontogeny of retrograde labeled chemoafferent neurons in the newborn rat nodose-petrosal ganglion complex: an ex vivo preparation. Neurosci Lett 2005; 384:48-53. [PMID: 15896903 DOI: 10.1016/j.neulet.2005.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/02/2005] [Accepted: 04/11/2005] [Indexed: 11/29/2022]
Abstract
Hypoxic chemosensitivity of the peripheral arterial chemoreceptors in the carotid body is developmentally regulated. Essential neural elements of the chemotransducing unit in the carotid body consist of the Type I cell that depolarizes and releases neurotransmitters in response to hypoxemia and the chemoafferent fibers which form synapses with Type I cells, contain postsynaptic receptors and have cell bodies in the petrosal ganglion. While many properties of the Type I cells have been characterized during postnatal development, less is known about the effect of development on the number and properties of the chemoafferents since localization of the cell bodies of chemoafferents are intermingled with the cell bodies of other sensory neurons that innervate the upper airway. Here, we describe a novel ex vivo preparation that we have developed to retrogradely label cell bodies of chemoafferents in the petrosal ganglion with rhodamine dextran. With this technique, in newborn rats, we show that there is a three-fold increase in retrogradely labeled neurons in the nodose-petrosal ganglion complex from postnatal day (PND) 3-7 with a three-fold decrease by PND 14 (P < 0.001, ANOVA). Furthermore, greater than 85% of these retrogradely labeled neurons co-express TH mRNA in all age groups. This novel ex vivo technique circumvents many of the technical difficulties encountered with retrogradely labeling chemoafferents in small newborn animals in vivo, and provides a method to identify and characterize essential neural components of the chemotranductive unit of the peripheral arterial chemoreceptors.
Collapse
Affiliation(s)
- Jose N Tolosa
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287-3200, USA
| | | | | | | | | | | |
Collapse
|
32
|
Matsumoto I, Emori Y, Nakamura S, Shimizu K, Arai S, Abe K. DNA microarray cluster analysis reveals tissue similarity and potential neuron-specific genes expressed in cranial sensory ganglia. J Neurosci Res 2004; 74:818-28. [PMID: 14648586 DOI: 10.1002/jnr.10814] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Each of four cranial sensory ganglia, trigeminal, geniculate, petrosal, and nodose ganglia, contains multiple kinds of sensory neurons with different cell morphologies and neuronal properties that transmit information about sensory stimuli received peripherally. Here we analyze the complex properties of these neurons from the viewpoint of gene expression using DNA microarrays by cluster analysis. From a total of 8,740 genes, 498 genes were selected as showing tissue-dependent expression on the microarray by hierarchical cluster analysis, and their profiles indicated that, among the four sensory ganglia, the petrosal and trigeminal ganglia are intimately related. Tissue trees of 37 subclusters containing the 498 genes showed that the profiles of gene expression and the subclusters were classified into a smaller number of groups (18 groups) when information on the amounts of expression was added. In situ hybridization analysis of 21 genes selected from 13 different groups was carried out, and the gene expression patterns were classified into eight categories. The putative profiles postulated from the microarray data were essentially consistent with the patterns of expression at the cellular level as shown by in situ hybridization. In conclusion, from the overall analyses of gene expression by DNA microarray, we can identify a number of candidate genes showing neuron type-specific expression in the peripheral ganglia.
Collapse
Affiliation(s)
- Ichiro Matsumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Matsumoto I, Nakamura S, Emori Y, Arai S, Abe K. Gene expression profiling of cranial sensory ganglia that transmit food intake stimuli. Biofactors 2004; 21:15-8. [PMID: 15630163 DOI: 10.1002/biof.552210104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peripheral cranial sensory nerves projecting into the oral cavity receive food intake stimuli and transmit sensory signals to the central nervous system. They are derived from four cranial sensory ganglia, trigeminal, geniculate, petrosal, and nodose ganglia, each of which contains multiple kinds of sensory neurons with different cell morphologies and neuronal properties. We investigated the complex properties of these neurons from the viewpoint of gene expression using DNA microarrays. The 498 genes were selected from a total of 8,740 genes as showing tissue-dependent expression on the microarray by hierarchical cluster analysis, in which several genes known to be differentially expressed in cranial sensory ganglia are included. This suggests that DNA microarray cluster analysis revealed a number of characteristic genes for sensory neurons in these ganglia. Among the selected 498 genes, 44 genes are associated with neurotransmission, such as neuropeptides, their receptors, and vesicle transport, and 26 are ion channels regulating membrane potentials. The identification of a number of genes related directly to neural properties indicates that these sensory ganglia contain heterogeneous types of neurons with different neural properties.
Collapse
Affiliation(s)
- Ichiro Matsumoto
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Buniel MCF, Schilling WP, Kunze DL. Distribution of transient receptor potential channels in the rat carotid chemosensory pathway. J Comp Neurol 2003; 464:404-13. [PMID: 12900933 DOI: 10.1002/cne.10798] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glomus cells in the carotid body respond to decreases in oxygen tension of the blood and transmit this sensory information in the carotid sinus nerve to the brain via neurons in the petrosal ganglion. G-protein-coupled membrane receptors linked to phospholipase C may play an important role in this response through the activation of the cation channels formed by the transient receptor potential (TRP) proteins. In the present study, expression of TRPC proteins in the rat carotid body and petrosal ganglion was examined using immunohistochemical techniques. TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 were present in neurons throughout the ganglion. TRPC1 was expressed in only 28% of petrosal neurons, and of this population, 45% were tyrosine hydroxylase (TH)-positive, accounting for essentially all the TH-expressing neurons in the ganglion. Because TH-positive neurons project to the carotid body, this result suggests that TRPC1 is selectively associated with the chemosensory pathway. Confocal images through the carotid body showed that TRPC1/3/4/5/6 proteins localize to the carotid sinus nerve fibers, some of which were immunoreactive to an anti-neurofilament (NF) antibody cocktail. TRPC1 and TRPC3 were present in both NF-positive and NF-negative fibers, whereas TPRC4, TRPC5, and TRPC6 expression was primarily localized to NF-negative fibers. Only TRPC1 and TRPC4 were localized in the afferent nerve terminals that encircle individual glomus cells. TRPC7 was not expressed in sensory fibers. All the TRPC proteins studied were present in type I glomus cells. Although their role as receptor-activated cation channels in the chemosensory pathway is yet to be established, the presence of TRPC channels in glomus cells and sensory nerves of the carotid body suggests a role in facilitating and/or sustaining the hypoxic response.
Collapse
Affiliation(s)
- Maria C F Buniel
- Rammelkamp Center for Education and Research, MetroHealth Campus of Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | | | |
Collapse
|
35
|
Iturriaga R, Cerpa V, Zapata P, Alcayaga J. Catecholamine release from isolated sensory neurons of cat petrosal ganglia in tissue culture. Brain Res 2003; 984:104-10. [PMID: 12932844 DOI: 10.1016/s0006-8993(03)03118-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The petrosal ganglion (PG) is entirely constituted by the perikarya of primary sensory neurons, part of which innervates the carotid body via the carotid sinus nerve (CSN). Application of acetylcholine (ACh) or nicotine (Nic) as well as adenosine 5'-triphosphate (ATP) to the PG in vitro increases the frequency of CSN discharges, an effect that is modified by the concomitant application of dopamine (DA). Since a population of PG neurons expresses tyrosine hydroxylase, and DA is released from the cat carotid body in response to electrical stimulation of C-fibers in the CSN, it is possible that DA may be released from the perikarya of PG neurons. Therefore, we studied whether ACh or Nic, ATP and high KCl could induce DA release from PG neurons in culture. Petrosal ganglia were excised from pentobarbitone-anesthetized adult cats, dissociated and their neurons maintained in culture for 7-21 days. Catecholamine release was measured by amperometry via carbon-fiber microelectrodes. In response to KCl, Nic, ACh or ATP application, about 25% of neurons exhibited electrochemical signals compatible with DA release. This percentage increased to 41% after loading the neurons with exogenous DA. The present results suggest that DA release may be induced from the perikarya of a population of PG neurons.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | | | | | | |
Collapse
|
36
|
Chang HM, Liao WC, Lue JH, Wen CY, Shieh JY. Upregulation of NMDA receptor and neuronal NADPH-d/NOS expression in the nodose ganglion of acute hypoxic rats. J Chem Neuroanat 2003; 25:137-47. [PMID: 12663061 DOI: 10.1016/s0891-0618(02)00101-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nitric oxide may serve as a neuronal messenger in the regulation of cardiorespiratory function via the N-methyl-D-aspartate (NMDA) receptor-mediated neuronal nitric oxide synthase (nNOS) activation. Since hypoxic stress would drastically influence the cardiorespiratory function, the present study aimed to examine if the expression of nNOS and NMDA receptor subunit 1 (NMDAR1) in the nodose ganglion (NG) would alter under different extents of hypoxia treatment. The nicotinamine adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry, nNOS and NMDAR1 immunofluorescence were used to examine nNOS and NMDAR1 expression in the NG following exposing of adult rats in the altitude chamber (0.27 atm, PO(2)=43 torr) for 2 and 4 h. The present results showed that NADPH-d, nNOS and NMDAR1 reactivities were co-localized in the NG under normoxic and hypoxic environment. Quantitative evaluation revealed that about 43% of neurons in the NG showed positive response for NADPH-d/nNOS and NMDAR1 reactivities. However, in animals subjected to hypoxia, both the percentage and the staining intensity of NADPH-d/nNOS and NMDAR1 labeled neurons were drastically increased. The percentage of NADPH-d/nNOS and NMDAR1-immunoreactive neurons in the NG was raised to 68% as well as 77%, respectively, following 2 and 4 h of hypoxic exposure. The magnitude of up-regulation was positively correlated with the duration of hypoxic periods. No significant cell loss was observed under this experimental paradigm. These findings suggest that different extents of hypoxia might induce the higher expression of nNOS and NMDAR1 in the NG, which could contribute to the neuronal integration as responding to the different physiological demands under hypoxic stress.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Abstract
Development of the mammalian respiratory control system begins early in gestation and does not achieve mature form until weeks or months after birth. A relatively long gestation and period of postnatal maturation allows for prolonged pre- and postnatal interactions with the environment, including experiences such as episodic or chronic hypoxia, hyperoxia, and drug or toxin exposures. Developmental plasticity occurs when such experiences, during critical periods of maturation, result in long-term alterations in the structure or function of the respiratory control neural network. A critical period is a time window during development devoted to structural and/or functional shaping of the neural systems subserving respiratory control. Experience during the critical period can disrupt and alter developmental trajectory, whereas the same experience before or after has little or no effect. One of the clearest examples to date is blunting of the adult ventilatory response to acute hypoxia challenge by early postnatal hyperoxia exposure in the newborn. Developmental plasticity in neural respiratory control development can occur at multiple sites during formation of brain stem neuronal networks and chemoafferent pathways, at multiple times during development, by multiple mechanisms. Past concepts of respiratory control system maturation as rigidly predetermined by a genetic blueprint have now yielded to a different view in which extremely complex interactions between genes, transcriptional factors, growth factors, and other gene products shape the respiratory control system, and experience plays a key role in guiding normal respiratory control development. Early-life experiences may also lead to maladaptive changes in respiratory control. Pathological conditions as well as normal phenotypic diversity in mature respiratory control may have their roots, at least in part, in developmental plasticity.
Collapse
Affiliation(s)
- John L Carroll
- Pediatric Pulmonary Medicine, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock 72202, USA.
| |
Collapse
|
38
|
Cummins TR, Dib-Hajj SD, Waxman SG, Donnelly DF. Characterization and developmental changes of Na+ currents of petrosal neurons with projections to the carotid body. J Neurophysiol 2002; 88:2993-3002. [PMID: 12466424 DOI: 10.1152/jn.00350.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carotid body chemoreceptors transduce a decrease in arterial oxygen tension into an increase in spiking activity on the sinus nerve, and this response increases with postnatal age over the first week or two of life. Previous work from our laboratory has suggested a major role of axonal Na(+) channels in the initiation of afferent spiking activity. Using RT-PCR of the petrosal ganglia we identified Na(+) channel TTX-S isoforms Na(v)1.1, Na(v)1.6, and Na(v)1.7 and the TTX-resistant (TTX-R) isoforms Na(v)1.8 and Na(v)1.9 at high levels. Electrophysiologic recordings (at 3 ages: 3 days, 9 days, 18-20 days) of neurons that project to the carotid body exhibited predominantly fast-inactivating sodium currents, with a bimodal recovery from inactivation at -80 mV (fast component approximately 8 ms; slow component approximately 90 ms). Developmental age had little effect with no change in peak current density (approximately 1.4 nA/pF) and was associated with a slight, but significant increase in the speed of recovery from inactivation at -140 and -120 mV but not at other potentials. Assuming that the same Na(+) channel complement is present at the nerve terminal as at the soma, the association of a sensory modality (chemoreception) with a relatively uniform Na(+) channel profile suggests that the rapid kinetics of TTX-S channels may be essential for some aspects of chemoreceptor function beyond mediating simple axonal conduction.
Collapse
Affiliation(s)
- Theodore R Cummins
- Department of Neurology, Yale University School of Medicine, New Haven Connecticut 06510, USA.
| | | | | | | |
Collapse
|
39
|
Ichikawa H. Innervation of the carotid body: Immunohistochemical, denervation, and retrograde tracing studies. Microsc Res Tech 2002; 59:188-95. [PMID: 12384963 DOI: 10.1002/jemt.10193] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review presents information about multiple neurochemical substances in the carotid body. Nerve fibers around blood vessels and glomus cells within the chemoreceptive organ contain immunoreactivities (IR) for tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), calretinin (CR), calbindin D-28k (CB), parvalbumin (PV), and nitric oxide synthase (NOS). Parasympathetic neurons scattered around the carotid body contain VIP, choline acetyltransferase, and vanilloid receptor 1-like receptor. In the mammalian carotid body, transection of the carotid sinus nerve (CSN) causes the absence or decrease of CGRP-, SP-, and NOS-immunoreactive (IR) nerve fibers, whereas all NPY-IR nerve fibers disappear after removal of the superior cervical ganglion. Most VIP-IR nerve fibers disappear but a few persist after sympathetic ganglionectomy. In addition, the CSN transection appears to cause the acquisition of GAL-IR in originally immunonegative glomus cells and nerve fibers within the rat carotid body. On the other hand, 4%, 25%, 17%, and less than 1% of petrosal neurons retrogradely labeled from the rat CSN contain TH-, CGRP-, SP-, and VIP-IR, respectively. In the chicken carotid body, many CGRP- and SP-IR nerve fibers disappear after vagus nerve transection or nodose ganglionectomy. GAL-, NPY-, and VIP-IR nerve fibers mostly disappear after removal of the 14th cervical ganglion of the sympathetic trunk. The origin and functional significance of the various neurochemical substances present in the carotid body is discussed.
Collapse
Affiliation(s)
- Hiroyuki Ichikawa
- Department of Oral Function and Anatomy, Okayama University, Graduate School of Medicine and Dentistry, Okayama 700, Japan.
| |
Collapse
|
40
|
Kline DD, Takacs KN, Ficker E, Kunze DL. Dopamine modulates synaptic transmission in the nucleus of the solitary tract. J Neurophysiol 2002; 88:2736-44. [PMID: 12424308 DOI: 10.1152/jn.00224.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
10.1152/jn.00224.2002. Dopamine (DA) modulates the cardiorespiratory reflex by peripheral and central mechanisms. The aim of this study was to examine the role of DA in synaptic transmission of the nucleus tractus solitarius (NTS), the major integration site for cardiopulmonary reflexes. To examine DA's role, we used whole cell, voltage-clamp recordings in a rat horizontal brain stem slice. Solitary tract stimulation evoked excitatory postsynaptic currents (EPSCs) that were reduced to 70 +/- 5% of control by DA (100 microM). The reduction in EPSCs by DA was accompanied by a decrease in the paired pulse depression ratio with little or no change in input resistance or EPSC decay, suggesting a presynaptic mechanism. The D1-like agonist SKF 38393 Br (30 microM) did not alter EPSC amplitude, whereas the D2-like agonist, quinpirole HCl (30 microM), depressed EPSCs to 73 +/- 4% of control. The D2-like receptor antagonist, sulpiride (20 microM), abolished DA modulation of EPSCs. Most importantly, sulpiride alone increased EPSCs to 131 +/- 10% of control, suggesting a tonic D2-like modulation of synaptic transmission in the NTS. Examination of spontaneous EPSCs revealed DA reversibly decreased the frequency of events from 9.4 +/- 2.2 to 6.2 +/- 1.4 Hz. Sulpiride, however, did not alter spontaneous events. Immunohistochemistry of NTS slices demonstrated that D2 receptors colocalized with synaptophysin and substance P, confirming a presynaptic distribution. D2 receptors also localized to cultured petrosal neurons, the soma of presynaptic afferent fibers. In the petrosal neurons, D2 was found in cells that were TH-immunopositive, suggesting they were chemoreceptor afferent fibers. These results demonstrate that DA tonically modulates synaptic activity between afferent sensory fibers and secondary relay neurons in the NTS via a presynaptic D2-like mechanism.
Collapse
Affiliation(s)
- David D Kline
- Rammelkamp Center for Education and Research, MetroHealth Medical System, Cleveland, Ohio 44109-1998, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
The peripheral arterial chemoreceptors of the carotid body participate in the ventilatory responses to hypoxia and hypercapnia, the arousal responses to asphyxial apnea, and the acclimatization to high altitude. In response to an excitatory stimuli, glomus cells in the carotid body depolarize, their intracellular calcium levels rise, and neurotransmitters are released from them. Neurotransmitters then bind to autoreceptors on glomus cells and postsynaptic receptors on chemoafferents of the carotid sinus nerve. Binding to inhibitory or excitatory receptors on chemoafferents control the electrical activity of the carotid sinus nerve, which provides the input to respiratory-related brainstem nuclei. We and others have used gene expression in the carotid body as a tool to determine what neurotransmitters mediate the response of peripheral arterial chemoreceptors to excitatory stimuli, specifically hypoxia. Data from physiological studies support the involvement of numerous putative neurotransmitters in hypoxic chemosensitivity. This article reviews how in situ hybridization histochemistry and other cellular localization techniques confirm, refute, or expand what is known about the role of dopamine, norepinephrine, substance P, acetylcholine, adenosine, and ATP in chemotransmission. In spite of some species differences, review of the available data support that 1). dopamine and norepinephrine are synthesized and released from glomus cells in all species and play an inhibitory role in hypoxic chemosensitivity; 2). substance P and acetylcholine are not synthesized in glomus cells of most species but may be made and released from nerve fibers innervating the carotid body in essentially all species; 3). adenosine and ATP are ubiquitous molecules that most likely play an excitatory role in hypoxic chemosensitivity.
Collapse
Affiliation(s)
- Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Institutions, Baltimore, Maryland 21287-3200, USA.
| |
Collapse
|
42
|
Kang TC, Lee HS, Lee S, Lee CH. Localization and coexistence of calcium-binding proteins and neuropeptides in the vagal ganglia of the goat. Anat Histol Embryol 2001; 30:281-8. [PMID: 11688738 DOI: 10.1046/j.1439-0264.2001.00333.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was performed to investigate the neurochemical characteristics of the vagal ganglia of the goat by immunohistochemical methods using calbindin D-28k (CB), calretinin (CR). parvalbumin (PA), substance P (SP). calcitonin generelated peptide (CGRP) and galanin (GAL) antibodies. In the proximal vagal ganglia (jugular ganglia), CGRP- (57.1%), SP- (48.2%), GAL- (8.6%), PA- (8.7%), CB- (8.5%) and CR-like (5.3%) immunoreactive cells were observed. In the distal vagal ganglia (nodose ganglia), CGRP- (40.5%), SP- (30.20%), CB- (22.0%) and CR-like (18.10%) immunoreactive cells were present. The double immunohistochemical study showed, that in the proximal vagal ganglia, CGRP immunoreactivity was co-localized in SP- (84.8%), GAL-(100%), CB- (5.6%) and CR- (5.7%) immunoreactive cells: SP immunoreactivity was co-localized in the CGRP- (80.0%), GAL- (100%). CB- (5.3%) and CR- (5.6%) immunoreactive cells; GAL immunoreactivity coexisted in the CGRP- (4.4%) and SP- (19.8%) immunoreactive cells, but not in calcium-binding proteins (CBP)-immunoreactive cells; PA immunoreactivity was absent in the CGRP- and SP-immunoreactive cells; CB and CR immunoreactivities were seen in the CGRP-(0.8%) and SP-immunoreactive (0.9%) cells. On the other hand, in the distal vagal ganglia, CGRP immunoreactivity appeared in SP- (66.6%), CB- (1.0%) and CR- (1.2%) immunoreactive cells; SP immunoreactivities were observed in the CGRP- (44.1%), CB- (1.0%) and CR- (1.2%) immunoreactive cells; CB immunoreactivities were present in the CGRP- (0.5%) and SP- (0.8%) immunoreactive cells; CR immunoreactivities were contained in the CGRP- (0.5%) and SP- (0.8%) immunoreactive cells. These findings indicate that the goat is distinct from other mammalian species in the distribution and localization of neurochemical substances in the vagal ganglia. and suggest that these differences may be related to physiological characteristics, particular those of the ruminant digestive system.
Collapse
Affiliation(s)
- T C Kang
- Department of Anatomy, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Nurse CA, Zhang M. Synaptic mechanisms during re-innervation of rat arterial chemoreceptors in co-culture. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:241-51. [PMID: 11544070 DOI: 10.1016/s1095-6433(01)00392-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The carotid body plays a key role in the control of ventilation during hypoxia, a stimulus that releases catecholamines and other neurotransmitters from chemoreceptor (type 1) cells. Using co-cultures of rat type 1 clusters and 'juxtaposed' petrosal neurons (JPN), we recently showed that hypoxic chemotransmission is mediated via co-release of ACh and ATP. Recordings from JPN at functional, regenerated 'synapses' in vitro revealed spontaneous activity consisting of random e.p.s.p.'s and/or action potentials. This activity depended on chemical transmission since it was inhibited by extracellular solutions containing low Ca2+/high Mg2+, or blockers of nicotinic (e.g. 1-2 microM mecamylamine) and/or P2 purinergic (suramin or reactive blue 2; 10-50 microM) receptors. These solutions also inhibited hypoxia-evoked responses in JPN. The newly formed 'synapses' appeared stable, allowing repeated demonstration of hypoxic chemotransmission in the same JPN after at least a approximately 24-h re-incubation period. Immunofluorescence studies in situ revealed positive staining of P2X2 and P2X3 purinoceptor subunits in chemoafferent nerve terminals, but not type 1 cells; in contrast, both elements were immunopositive for the synaptic vesicle antigen (SV2). These data further support a co-transmitter role for ATP and the involvement of heteromeric P2X2/P2X3 purinoceptors in carotid body function.
Collapse
Affiliation(s)
- C A Nurse
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Ontario, Canada.
| | | |
Collapse
|
44
|
Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels. J Neurosci 2001. [PMID: 11306610 DOI: 10.1523/jneurosci.21-08-02571.2001] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent neuronal gene expression is thought to require activation of L-type calcium channels, a view based primarily on studies in which chronic potassium (K(+)) depolarization was used to mimic neuronal activity. However, N-type calcium channels are primarily inactivated during chronic depolarization, and their potential contribution to gene expression induced by physiological patterns of stimulation has not been defined. In the present study, electrical stimulation of dissociated primary sensory neurons at 5 Hz, or treatment with elevated K(+), produced a large increase in the percentage of neurons that express tyrosine hydroxylase (TH) mRNA and protein. However, blockade of L-type channels, which completely inhibited K(+)-induced expression, had no effect on TH expression induced by patterned stimulation. Conversely, blockade of N-type channels completely inhibited TH induction by patterned stimulation, whereas K(+)-induced expression was unaffected. Similar results were obtained for depolarization-induced expression of the immediate early genes Nurr1 and Nur77. In addition, TH induction by patterned stimulation was significantly reduced by inhibitors of PKA and PKC but was unaffected by inhibition of the mitogen-activated protein kinase (MAPK) pathway. On the other hand, K(+)-induced TH expression was significantly reduced by inhibition of the MAPK pathway but was unaffected by inhibitors of PKA or PKC. These results demonstrate that N-type calcium channels can directly link phasic membrane depolarization to gene expression, challenging the view that activation of L-type channels is required for nuclear responses to physiological patterns of activity. Moreover, our data show that phasic and chronic depolarizing stimuli act through distinct mechanisms to induce neuronal gene expression.
Collapse
|
45
|
Koga T, Bradley RM. Biophysical properties and responses to neurotransmitters of petrosal and geniculate ganglion neurons innervating the tongue. J Neurophysiol 2000; 84:1404-13. [PMID: 10980013 DOI: 10.1152/jn.2000.84.3.1404] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The properties of afferent sensory neurons supplying taste receptors on the tongue were examined in vitro. Neurons in the geniculate (GG) and petrosal ganglia (PG) supplying the tongue were fluorescently labeled, acutely dissociated, and then analyzed using patch-clamp recording. Measurement of the dissociated neurons revealed that PG neurons were significantly larger than GG neurons. The active and passive membrane properties of these ganglion neurons were examined and compared with each other. There were significant differences between the properties of neurons in the PG and GG ganglia. The mean membrane time constant, spike threshold, action potential half-width, and action potential decay time of GG neurons was significantly less than those of PG neurons. Neurons in the PG had action potentials that had a fast rise and fall time (sharp action potentials) as well as action potentials with a deflection or hump on the falling phase (humped action potentials), whereas action potentials of GG neurons were all sharp. There were also significant differences in the response of PG and GG neurons to the application of acetylcholine (ACh), serotonin (5HT), substance P (SP), and GABA. Whereas PG neurons responded to ACh, 5HT, SP, and GABA, GG neurons only responded to SP and GABA. In addition, the properties of GG neurons were more homogeneous than those of the PG because all the GG neurons had sharp spikes and when responses to neurotransmitters occurred, either all or most of the neurons responded. These differences between neurons of the GG and PG may relate to the type of receptor innervated. PG ganglion neurons innervate a number of receptor types on the posterior tongue and have more heterogeneous properties, while GG neurons predominantly innervate taste buds and have more homogeneous properties.
Collapse
Affiliation(s)
- T Koga
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | |
Collapse
|
46
|
Gauda EB, Northington FJ, Linden J, Rosin DL. Differential expression of a(2a), A(1)-adenosine and D(2)-dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Brain Res 2000; 872:1-10. [PMID: 10924669 DOI: 10.1016/s0006-8993(00)02314-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sensitivity of peripheral arterial chemoreceptors in the carotid body to hypoxia increases with postnatal maturation. Carotid sinus nerve activity is augmented by adenosine binding to A(2a)-adenosine receptors and attenuated by dopamine binding to D(2)-dopamine receptors. In this study, we used in situ hybridization histochemistry to determine the change in the levels of mRNA expression for A(2a) and A(1)-adenosine receptors and D(2)-dopamine receptors in the rat carotid body. We also investigated the cellular distribution and possible colocalization of these receptor mRNAs and tyrosine hydroxylase (TH) mRNAs during the first 2 weeks of postnatal development. By using immunohistocytochemistry, we detected A(2a)-adenosine receptor protein in the carotid body and petrosal ganglion. We found that A(2a)-adenosine receptor mRNA and protein are expressed in the carotid body in animals at 0, 3, 6 and 14 postnatal days. The level of A(2a)-adenosine receptor mRNA expression significantly decreased by 14 postnatal days (P<0.02 vs. day 0) while D(2)-dopamine receptor mRNA levels significantly increased by day 3 and remained greater than D(2)-dopamine receptor mRNA levels at day 0 (P<0.001 all ages vs. day 0). TH mRNA was colocalized in cells in the carotid body with A(2a) adenosine receptor and D(2)-dopamine receptor mRNAs. A(1)-adenosine receptor mRNA was not expressed in the carotid body at any of the ages examined. In the petrosal ganglion, A(1)-adenosine receptor mRNA was abundantly expressed in numerous cells, A(2a)-adenosine receptor mRNA was expressed in a moderate number of cells while D(2)-dopamine receptor mRNA was seen in a few cells in the rostral petrosal ganglion. In conclusion, using in situ hybridization histochemistry, we have shown that mRNA for both the excitatory, A(2a)-adenosine receptor, and the inhibitory, D(2)-dopamine receptor, is developmentally regulated in presumably type I cells in the carotid body which may contribute to the maturation of hypoxic chemosensitivity. Furthermore, the presence A(1)-adenosine receptor mRNAs in cell bodies of the petrosal ganglion suggests that adenosine might also have an inhibitory role in hypoxic chemotransmission.
Collapse
MESH Headings
- Animals
- Arteries/innervation
- Arteries/metabolism
- Carotid Body/cytology
- Carotid Body/growth & development
- Carotid Body/metabolism
- Chemoreceptor Cells/cytology
- Chemoreceptor Cells/growth & development
- Chemoreceptor Cells/metabolism
- Ganglia, Sensory/cytology
- Ganglia, Sensory/growth & development
- Ganglia, Sensory/metabolism
- Gene Expression
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A
- Receptors, Dopamine D2/biosynthesis
- Receptors, Dopamine D2/genetics
- Receptors, Purinergic P1/biosynthesis
- Receptors, Purinergic P1/genetics
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- E B Gauda
- Division of Neonatology, Department of Pediatrics, Johns Hopkins Medical School, 600 N Wolfe St, Baltimore, MD 21287-3200, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
The carotid body chemoreceptors, the major hypoxia sensory organs for the respiratory system, undergo a significant increase in their hypoxia responsiveness in the postnatal period. This is manifest by a higher level of afferent nerve activity for a given level of arterial oxygen tension. The mechanism for the enhanced sensitivity is unresolved, but most work has focused on the glomus cell, a secretory cell apposed to the afferent nerve ending and believed to be the site of hypoxia transduction. The glomus cell secretory response to hypoxia increases postnatally, and this is correlated with an enhanced calcium rise in response to hypoxia and an increase in oxygen-sensitive potassium currents. These changes are sensitive to the level of hypoxia in the postnatal period, and significant impairment of organ function is observed with postnatal hypoxia as well as postnatal hyperoxia. Although many questions remain, especially with regard to the coupling of glomus cells to nerve endings, the use of cellular and molecular techniques should offer resolution in the near future.
Collapse
Affiliation(s)
- D F Donnelly
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Zhang M, Zhong H, Vollmer C, Nurse CA. Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 2000; 525 Pt 1:143-58. [PMID: 10811733 PMCID: PMC2269919 DOI: 10.1111/j.1469-7793.2000.t01-1-00143.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Using functional co-cultures of rat carotid body (CB) O2 chemoreceptors and 'juxtaposed' petrosal neurones (JPNs), we tested whether ATP and ACh acted as co-transmitters. Perforated-patch recordings from JPNs often revealed spontaneous and hypoxia-evoked (PO2 approximately 5 mmHg) excitatory postsynaptic responses. The P2X purinoceptor blocker, suramin (50 microM) or a nicotinic ACh receptor (nAChR) blocker (hexamethonium, 100 microM; mecamylamine, 1 microM) only partially inhibited these responses, but together, blocked almost all activity. Under voltage clamp (-60 mV), fast perfusion of 100 microM ATP over hypoxia-responsive JPNs induced suramin-sensitive (IC50 = 73 microM), slowly-desensitizing, inward currents (IATP) with time constant of activation tauon = 30.6 +/- 4. 8 ms (n = 7). IATP reversed at 0.33 +/- 3.7 mV (n = 4), and the dose-response curve was fitted by the Hill equation (EC50 = 2.7 microM; Hill coefficient approximately 0.9). These purinoceptors contained immunoreactive P2X2 subunits, but their activation by alpha,beta-methylene ATP (alpha,beta-meATP; EC50 = 2.1 microM) suggests they are P2X2/P2X3 heteromultimers. Suramin and nAChR blockers inhibited the extracellular chemosensory discharge in the intact rat carotid body-sinus nerve preparation in vitro. Further, P2X2 immunoreactivity was widespread in rat petrosal ganglia in situ, and co-localized in neurones expressing the CB chemo-afferent marker, tyrosine hydroxylase (TH). P2X2 labelling in the CB co-localized with nerve-terminal markers, and was intimately associated with TH-positive type 1 cells. Thus ATP and ACh are co-transmitters during chemotransduction in the rat carotid body.
Collapse
Affiliation(s)
- M Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
49
|
Paton JF, Kasparov S. Sensory channel specific modulation in the nucleus of the solitary tract. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 80:117-29. [PMID: 10785277 DOI: 10.1016/s0165-1838(00)00077-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Science, University of Bristol, Bristol, UK.
| | | |
Collapse
|
50
|
Donnelly DF, Rigual R. Single-unit recordings of arterial chemoreceptors from mouse petrosal ganglia in vitro. J Appl Physiol (1985) 2000; 88:1489-95. [PMID: 10749846 DOI: 10.1152/jappl.2000.88.4.1489] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A preparation was developed that allows for the recording of single-unit chemoreceptor activity from mouse carotid body in vitro. An anesthetized mouse was decapitated, and each carotid body was harvested, along with the sinus nerve, glossopharyngeal nerve, and petrosal ganglia. After exposure to collagenase/trypsin, the cleaned complex was transferred to a recording chamber where it was superfused with oxygenated saline. The ganglia was searched for evoked or spontaneous unit activity by using a glass suction electrode. Single-unit action potentials were 57 +/- 10 (SE) (n = 16) standard deviations above the recording noise, and spontaneous spikes were generated as a random process. Decreasing superfusate PO(2) to near 20 Torr caused an increase in spiking activity from 1. 3 +/- 0.4 to 14.1 +/- 1.9 Hz (n = 16). The use of mice for chemoreceptor studies may be advantageous because targeted gene deletions are well developed in the mouse model and may be useful in addressing unresolved questions regarding the mechanism of chemotransduction.
Collapse
Affiliation(s)
- D F Donnelly
- Division of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|