1
|
Armstrong WE, Foehring RC, Kirchner MK, Sladek CD. Electrophysiological properties of identified oxytocin and vasopressin neurones. J Neuroendocrinol 2019; 31:e12666. [PMID: 30521104 PMCID: PMC7251933 DOI: 10.1111/jne.12666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
To understand the contribution of intrinsic membrane properties to the different in vivo firing patterns of oxytocin (OT) and vasopressin (VP) neurones, in vitro studies are needed, where stable intracellular recordings can be made. Combining immunochemistry for OT and VP and intracellular dye injections allows characterisation of identified OT and VP neurones, and several differences between the two cell types have emerged. These include a greater transient K+ current that delays spiking to stimulus onset, and a higher Na+ current density leading to greater spike amplitude and a more stable spike threshold, in VP neurones. VP neurones also show a greater incidence of both fast and slow Ca2+ -dependent depolarising afterpotentials, the latter of which summate to plateau potentials and contribute to phasic bursting. By contrast, OT neurones exhibit a sustained outwardly rectifying potential (SOR), as well as a consequent depolarising rebound potential, not found in VP neurones. The SOR makes OT neurones more susceptible to spontaneous inhibitory synaptic inputs and correlates with a longer period of spike frequency adaptation in these neurones. Although both types exhibit prominent Ca2+ -dependent afterhyperpolarising potentials (AHPs) that limit firing rate and contribute to bursting patterns, Ca2+ -dependent AHPs in OT neurones selectively show significant increases during pregnancy and lactation. In OT neurones, but not VP neurones, AHPs are highly dependent on the constitutive presence of the second messenger, phosphatidylinositol 4,5-bisphosphate, which permissively gates N-type channels that contribute the Ca2+ during spike trains that activates the AHP. By contrast to the intrinsic properties supporting phasic bursting in VP neurones, the synchronous bursting of OT neurones has only been demonstrated in vitro in cultured hypothalamic explants and is completely dependent on synaptic transmission. Additional differences in Ca2+ channel expression between the two neurosecretory terminal types suggests these channels are also critical players in the differential release of OT and VP during repetitive spiking, in addition to their importance to the potentials controlling firing patterns.
Collapse
Affiliation(s)
- William E Armstrong
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Matthew K Kirchner
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Celia D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
2
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Maícas Royo J, Brown CH, Leng G, MacGregor DJ. Oxytocin Neurones: Intrinsic Mechanisms Governing the Regularity of Spiking Activity. J Neuroendocrinol 2016; 28. [PMID: 26715365 PMCID: PMC4879516 DOI: 10.1111/jne.12358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 12/26/2015] [Indexed: 12/15/2022]
Abstract
Oxytocin neurones of the rat supraoptic nucleus are osmoresponsive and, with all other things being equal, they fire at a mean rate that is proportional to the plasma sodium concentration. However, individual spike times are governed by highly stochastic events, namely the random occurrences of excitatory synaptic inputs, the probability of which is increased by increasing extracellular osmotic pressure. Accordingly, interspike intervals (ISIs) are very irregular. In the present study, we show, by statistical analyses of firing patterns in oxytocin neurones, that the mean firing rate as measured in bins of a few seconds is more regular than expected from the variability of ISIs. This is consistent with an intrinsic activity-dependent negative-feedback mechanism. To test this, we compared observed neuronal firing patterns with firing patterns generated by a leaky integrate-and-fire model neurone, modified to exhibit activity-dependent mechanisms known to be present in oxytocin neurones. The presence of a prolonged afterhyperpolarisation (AHP) was critical for the ability to mimic the observed regularisation of mean firing rate, although we also had to add a depolarising afterpotential (DAP; sometimes called an afterdepolarisation) to the model to match the observed ISI distributions. We tested this model by comparing its behaviour with the behaviour of oxytocin neurones exposed to apamin, a blocker of the medium AHP. Good fits indicate that the medium AHP actively contributes to the firing patterns of oxytocin neurones during non-bursting activity, and that oxytocin neurones generally express a DAP, even though this is usually masked by superposition of a larger AHP.
Collapse
Affiliation(s)
- J Maícas Royo
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - C H Brown
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Otago, New Zealand
| | - G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - D J MacGregor
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Histamine receptor signaling in energy homeostasis. Neuropharmacology 2015; 106:13-9. [PMID: 26107117 DOI: 10.1016/j.neuropharm.2015.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 01/20/2023]
Abstract
Histamine modulates several aspects of energy homeostasis. By activating histamine receptors in the hypothalamus the bioamine influences thermoregulation, its circadian rhythm, energy expenditure and feeding. These actions are brought about by activation of different histamine receptors and/or the recruitment of distinct neural pathways. In this review we describe the signaling mechanisms activated by histamine in the hypothalamus, the evidence for its role in modulating energy homeostasis as well as recent advances in the understanding of the cellular and neural network mechanisms involved. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
|
5
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
6
|
Yu J, Fang Q, Lou GD, Shou WT, Yue JX, Tang YY, Hou WW, Xu TL, Ohtsu H, Zhang SH, Chen Z. Histamine modulation of acute nociception involves regulation of Nav 1.8 in primary afferent neurons in mice. CNS Neurosci Ther 2013; 19:649-58. [PMID: 23773488 DOI: 10.1111/cns.12134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 11/27/2022] Open
Abstract
AIMS To explore the role of histamine in acute pain perception and its possible mechanisms. METHODS Pain-like behaviors induced by four types of noxious stimuli (hot-plate, tail-pressure, acetic acid, and formalin) were accessed in mice. Nav 1.8 expression and functions in primary afferent neurons were compared between histidine decarboxylase knockout (HDC(-/-) ) mice and their wild-types. RESULTS HDC(-/-) mice, lacking in endogenous histamine, showed elevated sensitivity to all these noxious stimuli, as compared with the wild-types. In addition, a depletion of endogenous histamine with α-fluoromethylhistidine (α-FMH), a specific HDC inhibitor, or feeding mice a low-histamine diet also enhanced nociception in the wild-types. Nav 1.8 expression in primary afferent neurons was increased both in HDC(-/-) and in α-FMH-treated wild-type mice. A higher Nav 1.8 current density, a lower action potential (AP) threshold, and a higher firing rate in response to suprathreshold stimulation were observed in nociception-related small DRG neurons of HDC(-/-) mice. Nav 1.8 inhibitor A-803467, but not TTX, diminished the hyperexcitability and blocked repetitive AP firing of these neurons. CONCLUSION Our results indicate that histamine participates in acute pain modulation in a dose-related manner. The regulation of Nav 1.8 expression and the excitability of nociceptive primary afferent neurons may be involved in the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Yu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Thomson AM, Armstrong WE. Biocytin-labelling and its impact on late 20th century studies of cortical circuitry. BRAIN RESEARCH REVIEWS 2011; 66:43-53. [PMID: 20399808 PMCID: PMC2949688 DOI: 10.1016/j.brainresrev.2010.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
Abstract
In recognition of the impact that a powerful new anatomical tool, such as the Golgi method, can have, this essay highlights the enormous influence that biocytin-filling has had on modern neuroscience. This method has allowed neurones that have been recorded intracellularly, 'whole-cell' or juxta-cellularly, to be identified anatomically, forming a vital link between functional and structural studies. It has been applied throughout the nervous system and has become a fundamental component of our technical armoury. A comprehensive survey of the applications to which the biocytin-filling approach has been put, would fill a large volume. This essay therefore focuses on one area, neocortical microcircuitry and the ways in which combining physiology and anatomy have revealed rules that help us explain its previously indecipherable variability and complexity.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
8
|
Armstrong WE, Wang L, Li C, Teruyama R. Performance, properties and plasticity of identified oxytocin and vasopressin neurones in vitro. J Neuroendocrinol 2010; 22:330-42. [PMID: 20210845 PMCID: PMC2910405 DOI: 10.1111/j.1365-2826.2010.01989.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurohypophysial hormones oxytocin (OT) and vasopressin (VP) originate from hypothalamic neurosecretory cells in the paraventricular and supraoptic (SON) nuclei. The firing rate and pattern of action potentials arising from these neurones determine the timing and quantity of peripheral hormone release. We have used immunochemical identification of biocytin-filled SON neurones in hypothalamic slices in vitro to uncover differences between OT and VP neurones in membrane and synaptic properties, firing patterns, and plasticity during pregnancy and lactation. In this review, we summarise some recent findings from this approach: (i) VP neuronal excitability is influenced by slow (sDAP) and fast (fDAP) depolarising afterpotentials that underlie phasic bursting activity. The fDAP may relate to a transient receptor potential (TRP) channel, type melastatin (TRPM4 and/or TRPM5), both of which are immunochemically localised more to VP neurones, and especially, to their dendrites. Both TRPM4 and TRPM5 mRNAs are found in the SON, but single cell reverse transcriptase-polymerisation suggests that TRPM4 might be the more prominent channel. Phasic bursting in VP neurones is little influenced by spontaneous synaptic activity in slices, being shaped largely by intrinsic currents. (ii) The firing pattern of OT neurones ranges from irregular to continuous, with the coefficient of variation determined by randomly distributed, spontaneous GABAergic, inhibitory synaptic currents (sIPSCs). These sIPSCs are four- to five-fold more frequent in OT versus VP neurones, and much more frequent than spontaneous excitatory synaptic currents. (iii) Both cell types express Ca(2+)-dependent afterhyperpolarisations (AHPs), including an apamin-sensitive, medium duration AHP and a slower, apamin-insensitive AHP (sAHP). In OT neurones, both AHPs are enhanced during pregnancy and lactation. During pregnancy, the plasticity of the sAHP is blocked by antagonism of central OT receptors. AHP enhancement is mimicked by exposing slices from day 19 pregnant rats to OT and oestradiol, suggesting that central OT and sex steroids programme this plasticity during pregnancy by direct hypothalamic actions. In conclusion, the differences in VP and OT neuronal function are underlain by differences in both membrane and synaptic properties, and differentially modulated by reproductive state.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
In December 2009, Glenn Hatton died, and neuroendocrinology lost a pioneer who had done much to forge our present understanding of the hypothalamus and whose productivity had not faded with the passing years. Glenn, an expert in both functional morphology and electrophysiology, was driven by a will to understand the significance of his observations in the context of the living, behaving organism. He also had the wit to generate bold and challenging hypotheses, the wherewithal to expose them to critical and elegant experimental testing, and a way with words that gave his papers and lectures clarity and eloquence. The hypothalamo-neurohypophysial system offered a host of opportunities for understanding how physiological functions are fulfilled by the electrical activity of neurones, how neuronal behaviour changes with changing physiological states, and how morphological changes contribute to the physiological response. In the vision that Glenn developed over 35 years, the neuroendocrine brain is as dynamic in structure as it is adaptable in function. Its adaptability is reflected not only by mere synaptic plasticity, but also by changes in neuronal morphology and in the morphology of the glial cells. Astrocytes, in Glenn's view, were intimate partners of the neurones, partners with an essential role in adaptation to changing physiological demands.
Collapse
Affiliation(s)
- G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | |
Collapse
|
10
|
Teruyama R, Armstrong WE. Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus. J Neurophysiol 2007; 98:2612-21. [PMID: 17715195 DOI: 10.1152/jn.00599.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxytocin (OT) and vasopressin (VP) synthesizing magnocellular cells (MNCs) in the supraoptic nucleus (SON) display distinct firing patterns during the physiological demands for these hormones. Depolarizing afterpotentials (DAPs) in these neurons are involved in controlling phasic bursting in VP neurons. Our whole cell recordings demonstrated a Cs(+)-resistant fast DAP (fDAP; decay tau = approximately 200 ms), which has not been previously reported, in addition to the well-known Cs(+)-sensitive slower DAP (sDAP; decay tau = approximately 2 s). Immunoidentification of recorded neurons revealed that all VP neurons, but only 20% of OT neurons, expressed the fDAP. The activation of the fDAP required influx of Ca(2+) through voltage-gated Ca(2+) channels as it was strongly suppressed in Ca(2+)-free extracellular solution or by bath application of Cd(2+). Additionally, the current underlying the fDAP (I(fDAP)) is a Ca(2+)-activated current rather than a Ca(2+) current per se as it was abolished by strongly buffering intracellular Ca(2+) with BAPTA. The I-V relationship of the I(fDAP) was linear at potentials less than -60 mV but showed pronounced outward rectification near -50 mV. I(fDAP) is sensitive to changes in extracellular Na(+) and K(+) but not Cl(-). A blocker of Ca(2+)-activated nonselective cation (CAN) currents, flufenamic acid, blocked the fDAP, suggesting the involvement of a CAN current in the generation of fDAP in VP neurons. We speculate that the two DAPs have different roles in generating after burst discharges and could play important roles in determining the distinct firing properties of VP neurons in the SON neurons.
Collapse
Affiliation(s)
- Ryoichi Teruyama
- Department of Anatomy and Neurobiology, University of Tennessee, Health Science Center, TN 38163, USA.
| | | |
Collapse
|
11
|
Radács M, Gálfi M, Juhász A, Varga C, Molnár A, László F, László FA. Histamine-induced enhancement of vasopressin and oxytocin secretion in rat neurohypophyseal tissue cultures. ACTA ACUST UNITED AC 2006; 134:82-8. [PMID: 16530280 DOI: 10.1016/j.regpep.2006.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/17/2006] [Accepted: 01/27/2006] [Indexed: 11/18/2022]
Abstract
The effects of histamine (HA) on vasopressin (VP) and oxytocin (OT) secretion were studied in 13-14-day cultures of isolated rat neurohypophyseal (NH) tissue. The VP and OT contents of the supernatant were determined by radioimmunoassay (RIA) after a 1 or 2-h incubation. Significantly increased levels of VP and OT production were detected in the tissue culture media following HA administration, depending on the HA dose. The elevation of NH hormone secretion could be partially blocked by previous administration of the HA antagonist mepyramine (MEP, an H1 receptor antagonist) or cimetidine (CIM, an H2 receptor antagonist). Thioperamide (TPE, an H3-H4 receptor antagonist) did not influence the VP or OT secretion increase induced by HA. The application of MEP, CIM or TPE after HA administration proved ineffective. The H1 and H2 receptors are mainly involved in the HA-induced increase of both VP and OT secretion in isolated NH tissue cultures. The results indicate that NH hormone release is influenced directly by the histaminergic system, and the histaminergic control of VP and OT secretion from the NH tissue in rats can occur at the level of the posterior pituitary.
Collapse
Affiliation(s)
- M Radács
- Department of Biology, Faculty of Juhász Gyula Teachers Training College, University of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Kuehl-Kovarik MC, Partin KM, Handa RJ, Dudek FE. Spike-dependent depolarizing afterpotentials contribute to endogenous bursting in gonadotropin releasing hormone neurons. Neuroscience 2005; 134:295-300. [PMID: 15961246 DOI: 10.1016/j.neuroscience.2005.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/24/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Pulsatile secretion of gonadotropin releasing hormone in mammals is thought to depend on repetitive and prolonged bursts of action potentials in specific neuroendocrine cells. We have previously described episodes of electrical activity in isolated gonadotropin releasing hormone neurons, but the intrinsic mechanisms underlying the generation of spike bursts are unknown. In acutely isolated gonadotropin releasing hormone neurons, which had been genetically targeted to express enhanced green fluorescent protein, current pulses generated spike-mediated depolarizing afterpotentials in 69% of cells. Spike-dependent depolarizing afterpotentials could evoke bursts of action potentials that lasted for tens of seconds. Brief pulses of glutamate (as short as 1 ms), which simulated excitatory postsynaptic potentials, also triggered spike-mediated depolarizing afterpotentials and episodic activity. These data indicate that spike-dependent depolarizing afterpotentials, an endogenous mechanism in gonadotropin releasing hormone neurons, likely contribute to the episodic firing thought to underlie pulsatile secretion of gonadotropin releasing hormone. Furthermore, fast excitatory postsynaptic potentials mediated by glutamate can activate this intrinsic mechanism.
Collapse
Affiliation(s)
- M C Kuehl-Kovarik
- Department of Biomedical Sciences, Anatomy and Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
13
|
Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 2003; 4:121-30. [PMID: 12563283 DOI: 10.1038/nrn1034] [Citation(s) in RCA: 625] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Helmut Haas
- Department of Neurophysiology, Heinrich-Heine University, Dusseldorf, Germany.
| | | |
Collapse
|
14
|
Teruyama R, Armstrong WE. Changes in the active membrane properties of rat supraoptic neurones during pregnancy and lactation. J Neuroendocrinol 2002; 14:933-44. [PMID: 12472874 DOI: 10.1046/j.1365-2826.2002.00844.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To better understand the plasticity of intrinsic membrane properties of supraoptic magnocellular neuroendocrine cells associated with reproductive function, intracellular recordings were performed in oxytocin (OT) and vasopressin (VP) neurones from virgin, late pregnant (E19-22), and lactating (8-12 days of lactation) rats in vitro, using hypothalamic explants. OT neurones from virgin rats displayed a narrower spike width than neurones from pregnant and lactating rats, characterized by faster rise and decay times. Spike width changes in VP neurones were not as prominent as those observed in OT neurones. In OT neurones, the amplitude and the decay of the afterhyperpolarization following spike trains was significantly larger and faster, respectively, in pregnant and lactating rats compared to virgin rats. These properties did not change during pregnancy and lactation in VP neurones. The incidence of the depolarizing afterpotential following spikes significantly increased from approximately 20% in virgin rats to 40-50% during pregnancy and lactation in OT neurones, but was stable (80-90%) across states in VP neurones. Repetitive firing properties (frequency adaptation, the first interspike interval frequency and frequency-current (F-I) relationship) were altered during pregnancy and lactation in OT neurones, but not VP neurones. The increased incidence of depolarizing afterpotentials in OT neurones enhances excitability, while the increased afterhyperpolarization results in suppression of firing rate. Thus, the changes may favour the short bursting activity seen in OT neurones during lactation. These results confirmed reproductive state-dependent changes in intrinsic membrane properties of OT neurones during lactation, and suggest these changes are in place during late pregnancy. This argues that the plasticity in the electrical properties in OT neurones associated with lactation is not instigated by suckling.
Collapse
Affiliation(s)
- R Teruyama
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA.
| | | |
Collapse
|
15
|
Donald AN, Wallace DJ, McKenzie S, Marley PD. Phospholipase C-mediated signalling is not required for histamine-induced catecholamine secretion from bovine chromaffin cells. J Neurochem 2002; 81:1116-29. [PMID: 12065624 DOI: 10.1046/j.1471-4159.2002.00915.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A possible role for signalling through phospholipase C in histamine-induced catecholamine secretion from bovine adrenal chromaffin cells has been investigated. Secretion evoked by histamine over 10 min was not prevented by inhibiting inositol-1,4,5-trisphosphate receptors with 2-APB, by blocking ryanodine receptors with a combination of ryanodine and caffeine, or by depleting intracellular Ca(2+) stores by pretreatment with thapsigargin. Inhibition of protein kinase C with Ro31-8220 also failed to reduce secretion. Inhibition of phospholipase C with ET-18-OCH(3) reduced both histamine- and K(+) -induced inositol phosphate responses by 70-80% without reducing their secretory responses. Stimulating phospholipase C with Pasteurella multocida toxin did not evoke secretion or enhance the secretory response to histamine. The secretory response to histamine was little affected by tetrodotoxin or by substituting extracellular Na(+) with N -methyl-d-glucamine(+) or choline(+), or by substituting external Cl(-) with nitrate(-). Blocking various K(+) channels with apamin, charybdotoxin, Ba(2+), tetraethylammonium, 4-aminopyridine, tertiapin or glibenclamide failed to reduce the ability of histamine to evoke secretion. These results indicate that histamine evokes secretion by a mechanism that does not require inositol-1,4,5-trisphosphate-mediated mobilization of stored Ca(2+), diacylglycerol-mediated activation of protein kinase C, or activation of phospholipase C. The results are consistent with histamine acting by depolarizing chromaffin cells through a phospholipase C-independent mechanism.
Collapse
Affiliation(s)
- Amanda N Donald
- Department of Pharmacology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
16
|
Sladek CD, Kapoor JR. Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release. Exp Neurol 2001; 171:200-9. [PMID: 11573972 DOI: 10.1006/exnr.2001.7779] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of neurohypophyseal hormone release reflects the convergence of a large number of afferent pathways on the vasopressin (VP)- and oxytocin-producing neurons. These pathways utilize a broad range of neurotransmitters and neuropeptides. In this review, the mechanisms by which this information is coordinated into appropriate physiological responses is discussed with a focus on the responses to agents that are coreleased from A1 catecholamine nerve terminals in the supraoptic nucleus. The A1 pathway transmits hemodynamic information to the vasopressin neurons by releasing several neuroactive agents including ATP, norepinephrine, neuropeptide Y, and substance P. These substances stimulate VP release from explants of the hypothalamo-neurohypophyseal system and certain combinations of these agents elicit potent but selective synergism. Evaluation of the signal cascades elicited by these agents provides insights into mechanisms underlying these synergistic interactions and suggests mechanisms responsible for coordinated responses of the VP neurons to activation of a range of ion-gated ion channel and G-protein-coupled receptors.
Collapse
Affiliation(s)
- C D Sladek
- Department of Physiology and Biophysics, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
17
|
Ionotropic histamine receptors and H2 receptors modulate supraoptic oxytocin neuronal excitability and dye coupling. J Neurosci 2001. [PMID: 11312281 DOI: 10.1523/jneurosci.21-09-02974.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Histaminergic neurons of the tuberomammillary nucleus (TM) project monosynaptically to the supraoptic nucleus (SON). This projection remains intact in our hypothalamic slices and permits investigation of both brief synaptic responses and the effects of repetitively activating this pathway. SON oxytocin (OX) neurons respond to single TM stimuli with fast IPSPs, whose kinetics resemble those of GABA(A) or glycine receptors. IPSPs were blocked by the Cl(-) channel blocker picrotoxin, but not by bicuculline or strychnine, and by histamine H(2), but not by H(1) or H(3) receptor antagonists, suggesting the presence of an ionotropic histamine receptor and the possible nonspecificity of currently used H(2) antagonists. G-protein mediation of the IPSPs was ruled out using guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS), pertussis toxin, and Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPs), none of which blocked evoked IPSPs. We also investigated the effects of synaptically released histamine on dye coupling and neuronal excitability. One hundred seventy-three OX neurons were Lucifer yellow-injected in horizontal slices. Repetitive TM stimulation (10 Hz, 5-10 min) reduced coupling, an effect blocked by H(2), but not by H(1) or H(3), receptor antagonists. Because H(2) receptors are linked to activation of adenylyl cyclase, TM-stimulated reduction in coupling was blocked by GDP-betaS, pertussis toxin, and Rp-cAMPs and was mimicked by 8-bromo-cAMP, 3-isobutyl-1-methylxanthine, and Sp-cAMP. Membrane potentials of OX and vasopressin neurons were hyperpolarized, accompanied by decreased conductances, in response to bath application of 8-bromo-cAMP but not the membrane-impermeable cAMP. These results suggest that synaptically released histamine, in addition to evoking fast IPSPs in OX cells, mediates a prolonged decrease in excitability and uncoupling of the neurons.
Collapse
|
18
|
Abstract
Histamine-releasing neurons are located exclusively in the TM of the hypothalamus, from where they project to practically all brain regions, with ventral areas (hypothalamus, basal forebrain, amygdala) receiving a particularly strong innervation. The intrinsic electrophysiological properties of TM neurons (slow spontaneous firing, broad action potentials, deep after hyperpolarisations, etc.) are extremely similar to other aminergic neurons. Their firing rate varies across the sleep-wake cycle, being highest during waking and lowest during rapid-eye movement sleep. In contrast to other aminergic neurons somatodendritic autoreceptors (H3) do not activate an inwardly rectifying potassium channel but instead control firing by inhibiting voltage-dependent calcium channels. Histamine release is enhanced under extreme conditions such as dehydration or hypoglycemia or by a variety of stressors. Histamine activates four types of receptors. H1 receptors are mainly postsynaptically located and are coupled positively to phospholipase C. High densities are found especially in the hypothalamus and other limbic regions. Activation of these receptors causes large depolarisations via blockade of a leak potassium conductance, activation of a non-specific cation channel or activation of a sodium-calcium exchanger. H2 receptors are also mainly postsynaptically located and are coupled positively to adenylyl cyclase. High densities are found in hippocampus, amygdala and basal ganglia. Activation of these receptors also leads to mainly excitatory effects through blockade of calcium-dependent potassium channels and modulation of the hyperpolarisation-activated cation channel. H3 receptors are exclusively presynaptically located and are negatively coupled to adenylyl cyclase. High densities are found in the basal ganglia. These receptors mediated presynaptic inhibition of histamine release and the release of other neurotransmitters, most likely via inhibition of presynaptic calcium channels. Finally, histamine modulates the glutamate NMDA receptor via an action at the polyamine binding site. The central histamine system is involved in many central nervous system functions: arousal; anxiety; activation of the sympathetic nervous system; the stress-related release of hormones from the pituitary and of central aminergic neurotransmitters; antinociception; water retention and suppression of eating. A role for the neuronal histamine system as a danger response system is proposed.
Collapse
Affiliation(s)
- R E Brown
- Institut für Neurophysiologie, Heinrich-Heine-Universität, D-40001, Düsseldorf, Germany.
| | | | | |
Collapse
|
19
|
|
20
|
Stern JE, Hestrin S, Armstrong WE. Enhanced neurotransmitter release at glutamatergic synapses on oxytocin neurones during lactation in the rat. J Physiol 2000; 526 Pt 1:109-14. [PMID: 10878104 PMCID: PMC2269998 DOI: 10.1111/j.1469-7793.2000.t01-1-00109.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The increased release of oxytocin during lactation has been shown to be dependent upon glutamatergic transmission and is associated with an increased synaptic innervation of the supraoptic nucleus (SON). To determine whether the glutamatergic synaptic properties of oxytocin neurones are changed during lactation, we recorded excitatory postsynaptic currents (EPSCs) from identified oxytocin neurones in the SON of slices taken from adult virgin and lactating rats. The frequency of AMPA-mediated miniature EPSCs (mEPSCs) more than doubled during lactation. In addition, the decay time constant, but not the amplitude of the mEPSCs was significantly increased in both vasopressin and oxytocin neurones. Paired-pulse facilitation (PPF) was significantly reduced in oxytocin neurones during lactation, whereas no change was observed in vasopressin neurones. Elevating Ca(2+) reduced PPF in oxytocin neurones in virgin rats but did not alter PPF in oxytocin neurones from lactating rats. Collectively, our results suggest that excitatory glutamatergic transmission is strengthened in oxytocin neurones during lactation, probably by a combination of an increased number of terminals, slower decay kinetics, and an increase in the probability of release.
Collapse
Affiliation(s)
- J E Stern
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
21
|
Li Z, Hatton GI. Histamine suppresses non-NMDA excitatory synaptic currents in rat supraoptic nucleus neurons. J Neurophysiol 2000; 83:2616-25. [PMID: 10805662 DOI: 10.1152/jn.2000.83.5.2616] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recordings were obtained from supraoptic neurons to investigate the effects of histamine on excitatory postsynaptic currents evoked by electrical stimulation of areas around the posterior supraoptic nucleus. When cells were voltage-clamped at -70 mV, evoked excitatory postsynaptic currents had amplitudes of 88.4 +/- 9.6 pA and durations of 41.1 +/- 3.0 ms (mean +/- SE; n = 43). With twin stimulus pulses (20 Hz) used, paired-pulse facilitation ratios were 1.93 +/- 0.12. Bath application of 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX) abolished synaptic currents. Histamine at concentrations approximately 0.1-10 microM reversibly suppressed excitatory postsynaptic currents in all supraoptic neurons tested. Within 2 min after application of (10 microM) histamine, current amplitudes and durations decreased by 61. 5 and 31.0%, respectively, with little change in the paired-pulse facilitation ratio. Dimaprit or imetit (H(2) or H(3) receptor agonists) did not reduce synaptic currents, whereas pyrilamine (H(1) receptor antagonist) blocked histamine-induced suppression of synaptic currents. When patch electrodes containing guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) were used to record cells, histamine still suppressed current amplitudes by 49.1% and durations by 41.9%. Similarly, intracellular diffusion of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) and H(7) did not abolish histamine-induced suppression of synaptic currents, either. Bath perifusion of 8-bromo-quanosine 3',5'-cyclic monophosphate reduced current amplitudes by 32.3% and durations by 27.9%. After bath perfusion of slices with N(omega)-nitro-L-arginine methyl ester (L-NAME), histamine injection decreased current amplitudes only by 31.9%, much less than the inhibition rate in control (P < 0.01). In addition, histamine induced little change in current durations and paired-pulse facilitation ratios, representing a partial blockade of histamine effects on synaptic currents by L-NAME. In supraoptic neurons recorded using electrodes containing BAPTA and perifused with L-NAME, the effects of histamine on synaptic currents were completely abolished. Norepinephrine injection reversibly decreased current amplitudes by 39.1% and duration by 64.5%, with a drop in the paired-pulse facilitation ratio of 47.9%. Bath perifusion of L-NAME, as well as intracellular diffusion of GDP-beta-S, 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine, or BAPTA, failed to block norepinephrine-induced suppression of evoked synaptic currents. The present results suggest that histamine suppresses non-N-methyl-D-aspartate synaptic currents in supraoptic neurons through activation of H(1) receptors. It is possible that histamine first acts at supraoptic cells (perhaps both neuronal and nonneuronal) and induces the production of nitric oxide, which then diffuses to nearby neurons and modulates synaptic transmission by a postsynaptic mechanism.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
22
|
Li Z, Miyata S, Hatton GI. Inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in rat supraoptic neurons: involvement in histamine-induced enhancement of depolarizing afterpotentials. Neuroscience 1999; 93:667-74. [PMID: 10465450 DOI: 10.1016/s0306-4522(99)00168-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Histamine, a putative neuromodulator and neurotransmitter, can depolarize supraoptic neurons and enhance depolarizing afterpotentials that play a key role in determining the excitability of these neurons. This study investigated intracellular signal transduction involved in histamine-induced enhancement of depolarizing afterpotentials utilizing immunohistochemical and electrophysiological methods. Abundant inositol 1,4,5-trisphosphate receptor-related immunostaining was seen in all parts of the supraoptic nucleus, mainly within somata and proximal processes of the magnocellular neurons, but also in astrocytes of the ventral glial lamina. In supraoptic neurons displaying depolarizing afterpotentials, three brief depolarizations evoked a slow inward current. Bath application of histamine (1-2.5 microM) reversibly enhanced this slow inward current in almost all supraoptic neurons tested. Amplitudes and durations of the slow inward current were increased by 68.1% and 22.8%, respectively. Pretreatment of cells with a histamine receptor (subtype 1) antagonist (pyrilamine) or inhibitors of phospholipase C activation (neomycin or U73122) prevented histamine-induced enhancement of the slow inward current. When electrodes containing heparin, an inositol 1,4,5-trisphosphate receptor blocker, were used for recording, histamine had no effect on the slow inward current. Heparin, however, failed to abolish norepinephrine-induced enhancement of the slow inward current. After H7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine], an inhibitor of protein kinase C, was infused into supraoptic neurons via the electrodes, histamine-induced enhancement of the slow inward current was also blocked. These results indicate the presence of, and functional roles for, inositol 1,4,5-trisphosphate receptor-sensitive Ca2+ stores in supraoptic neurons. Following activation of histamine receptors (subtype 1) and phospholipase C, Ca2+ mobilization from internal stores participates in mediating histamine-induced enhancement of depolarizing afterpotentials.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California at Riverside, 92521, USA
| | | | | |
Collapse
|
23
|
Knigge U, Willems E, Kjaer A, Jørgensen H, Warberg J. Histaminergic and catecholaminergic interactions in the central regulation of vasopressin and oxytocin secretion. Endocrinology 1999; 140:3713-9. [PMID: 10433231 DOI: 10.1210/endo.140.8.6891] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of histaminergic and noradrenergic/adrenergic neurons in the brain stimulates the release of the neurohypophysial hormones arginine vasopressin (AVP) and oxytocin (OT) and are involved the mediation of the hormone responses to physiological stimuli such as dehydration and suckling. We therefore investigated whether the two neuronal systems interact in their regulation of AVP and OT secretion in conscious male rats. When administered intracerebroventricularly (i.c.v.), histamine (HA) as well as the H1 receptor agonist 2-thiazolylethylamine or the H2 receptor agonist 4-methylHA stimulated AVP and OT secretion. Prior i.c.v. infusion of antagonists specific to alpha or beta adrenergic receptors or their subtypes did not significantly affect the hormone response to HA or the histaminergic agonists. Infused i.c.v. norepinephrine (NE) or epinephrine (E) increased AVP and OT secretion. Prior i.c.v. infusion of the H1 receptor antagonist mepyramine or the H2 receptor antagonist cimetidine significantly inhibited the AVP and OT responses to NE and the AVP response to E, whereas only cimetidine inhibited the OT response to E significantly. Systemic pretreatment with imetit, which by activation of presynaptic H3 receptors inhibits neuronal synthesis and release of HA, decreased the AVP and OT responses to NE and E significantly. In the doses used, HA and E had no significant effect on mean arterial blood pressure. NE increased mean arterial blood pressure 10% at 1 and 2.5 min, whereafter the blood pressure returned to basal level within 10 min. The results indicate that noradrenergic and adrenergic neurons stimulate AVP and OT secretion via an involvement of histaminergic neurons, which may occur at magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. The stimulatory effect of the amines on neurohypophysial hormone secretion seems to be independent of a central action on blood pressure. In contrast, a functionally intact noradrenergic and adrenergic neuronal system seems not to be a prerequisite for a HA-induced release of AVP and OT. The present findings further substantiate the role of histaminergic neurons in the central regulation of neurohypophysial hormone secretion.
Collapse
Affiliation(s)
- U Knigge
- Department of Medical Physiology, The Panum Institute, Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Differences in the properties of ionotropic glutamate synaptic currents in oxytocin and vasopressin neuroendocrine neurons. J Neurosci 1999. [PMID: 10212296 DOI: 10.1523/jneurosci.19-09-03367.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxytocin (OT) and vasopressin (VP) hormone release from neurohypophysial terminals is controlled by the firing pattern of neurosecretory cells located in the hypothalamic supraoptic (SON) and paraventricular nuclei. Although glutamate is a key modulator of the electrical activity of both OT and VP neurons, a differential contribution of AMPA receptors (AMPARs) and NMDA receptors (NMDARs) has been proposed to mediate glutamatergic influences on these neurons. In the present study we examined the distribution and functional properties of synaptic currents mediated by AMPARs and NMDARs in immunoidentified SON neurons. Our results suggest that the properties of AMPA-mediated currents in SON neurons are controlled in a cell type-specific manner. OT neurons displayed AMPA-mediated miniature EPSCs (mEPSCs) with larger amplitude and faster decay kinetics than VP neurons. Furthermore, a peak-scaled nonstationary noise analysis of mEPSCs revealed a larger estimated single-channel conductance of AMPARs expressed in OT neurons. High-frequency summation of AMPA-mediated excitatory postsynaptic potentials was smaller in OT neurons. In both cell types, AMPA-mediated synaptic currents showed inward rectification, which was more pronounced in OT neurons, and displayed Ca2+ permeability. On the other hand, NMDA-mediated mEPSCs of both cell types had similar amplitude and kinetic properties. The cell type-specific expression of functionally different AMPARs can contribute to the adoption of different firing patterns by these neuroendocrine neurons in response to physiological stimuli.
Collapse
|
25
|
Li WC, Tang XH, Li HZ, Wang JJ. Histamine excites rat cerebellar granule cells in vitro through H1 and H2 receptors. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:239-44. [PMID: 10399680 DOI: 10.1016/s0928-4257(99)80157-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of histamine on the firing of cerebellar granule cells were investigated in vitro. Histamine predominantly produced excitatory (117/123, 95.1%) and in a few cases inhibitory (6/123, 4.9%) responses in granule cells. The histamine-induced excitation was not blocked by perfusing the slice with low Ca2+/high Mg2+ medium, supporting a direct postsynaptic action of histamine. The H1 receptor antagonists triprolidine and chlorpheniramine significantly diminished the histamine-induced excitation, but the H2 receptor antagonist ranitidine did not significantly reduce the excitation. On the other hand, the H2 receptor agonist dimaprit could elicit a weak excitation of granule cells. This dimaprit-induced excitation was blocked by ranitidine but not triprolidine. These results reveal that the excitatory effect of histamine on cerebellar granule cells is mediated by both H1 and H2 receptors with a predominant contribution of H1 receptors. The relevance of these findings to the possible function of the hypothalamocerebellar histaminergic fibers in cerebellum is discussed.
Collapse
Affiliation(s)
- W C Li
- Department of Biological Science and Technology, Nanjing University, China
| | | | | | | |
Collapse
|
26
|
Armstrong WE, Stern JE. Phenotypic and state-dependent expression of the electrical and morphological properties of oxytocin and vasopressin neurones. PROGRESS IN BRAIN RESEARCH 1999; 119:101-13. [PMID: 10074783 DOI: 10.1016/s0079-6123(08)61564-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Oxytocin and vasopressin secreting neurones of the hypothalamic supraoptic nucleus share many membrane characteristics and a roughly similar morphology. However, these two neurone types differ in the relative expression of some intrinsic and synaptic currents, and in the extent of their respective dendritic arbors. Spike depolarizing afterpotentials are present in both types, but more frequently give rise to prolonged burst discharges in vasopressin neurones. Oxytocin, but not vasopressin neurones, are characterized by a depolarization-activated, sustained outward rectifier which turns on near spike threshold, and which can produce prolonged spike frequency adaptation. When this sustained current is deactivated by small hyperpolarizing pulses, a rebound depolarization sufficient to evoke short spike trains follows the offset of these pulses. Both oxytocin and vasopressin neurones exhibit a transient outward rectification underlain by an Ia-type current. This transient rectifier delays spiking to depolarizing stimuli from a relatively hyperpolarized baseline, and is more prominent in vasopressin neurones. As a result, oxytocin neurones may be more reactive to depolarizing inputs. Both cell types receive glutamatergic, excitatory synaptic inputs and both possess R,S- alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subtypes. The AMPA receptor channel on both cell types is characterized by a relatively high calcium permeability and voltage-dependent rectification, characteristic of a diminished presence of the GluR2 AMPA subunit. However, AMPA-mediated synaptic transients are larger, and decay faster, in oxytocin compared with vasopressin neurones, suggesting a potential difference for synaptic integration. The characteristics of NMDA-mediated synaptic transients are similar in oxytocin and vasopressin neurones, but some data suggest NMDA receptors may be less involved in the glutamatergic activation of oxytocin neurones. In both cell types, synaptic release of glutamate often coactivates AMPA and NMDA receptors. The dendritic morphology of oxytocin and vasopressin neurones in female rats differs from one another and exhibits considerable plasticity as a function of endocrine state. In virgin rats, oxytocin neurones have more dendritic branches and a greater total dendritic length compared with lactation, when the arbor is much less extensive. A complementary change occurs in vasopressin dendrites, which are more extensive during lactation. This reorganization suggests that oxytocin neurones may be more electronically compact during lactation. In addition, such dramatic shifts in overall dendritic length imply that significant gains and losses in either the total number of synapses, or in synaptic density, are incurred by both cell types as a function of reproductive state.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, College of Medicine 38163, USA.
| | | |
Collapse
|
27
|
Armstrong WE, Stern JE. Electrophysiological distinctions between oxytocin and vasopressin neurons in the supraoptic nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:67-77. [PMID: 10026787 DOI: 10.1007/978-1-4615-4871-3_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Oxytocin and vasopressin neurons can be differentiated from one another, and from neurons in the immediately adjacent perinuclear zone, by their electrophysiological properties. In both sexes, oxytocin and vasopressin neurons are characterized by a prominent transient outward rectification which is conspicuously lacking in most perinuclear neurons. In addition, perinuclear neurons, some of which project to the supraoptic nucleus, exhibit a transient depolarization which underlies short bursts of spikes. Oxytocin neurons are characterized by: 1) the presence of a sustained outward rectifier above -50 mV, active below spike threshold; 2) a rebound depolarization following deactivation of the sustained rectification which can sustain short spike trains; and 3) a smaller transient outward rectification, probably associated with the potassium current, Ia. Vasopressin neurons show little of the sustained outward rectification and rebound depolarization, but have a stronger transient outward rectification. Although both cell types exhibit depolarizing afterpotentials, in vasopressin neurons these lead to plateau potentials underlying prolonged discharges. In oxytocin neurons, the depolarizing potential usually sustains a short spike discharge, but less often leads to prolonged bursts. These data suggest that the intrinsic properties of oxytocin and vasopressin neurons lead to quantitatively different forms of burst discharges, both of which may facilitate hormone release.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis College of Medicine 38163, USA.
| | | |
Collapse
|
28
|
|
29
|
Ghamari-Langroudi M, Bourque CW. Caesium blocks depolarizing after-potentials and phasic firing in rat supraoptic neurones. J Physiol 1998; 510 ( Pt 1):165-75. [PMID: 9625875 PMCID: PMC2231010 DOI: 10.1111/j.1469-7793.1998.165bz.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/1997] [Accepted: 03/10/1998] [Indexed: 11/28/2022] Open
Abstract
1. The effects of Cs+ on the action potential, post-train after-hyperpolarization (AHP), Ca2+-dependent post-spike depolarizing after-potential (DAP) and phasic firing were examined during intracellular recordings from magnocellular neurosecretory cells (MNCs) in superfused rat hypothalamic explants. 2. Extracellular Cs+ reversibly inhibited (IC50, approximately 1 mM) DAPs, and associated after-discharges, that followed brief spike trains in each of sixteen cells tested. Although bath application of Cs+ also provoked a small reversible depolarization, inhibition of the DAP was retained when membrane voltage was kept constant by current injection. 3. Application of Cs+ had no significant effects on spike duration (n = 8), frequency-dependent spike broadening (n = 8), spike hyperpolarizing after-potentials (n = 14), or the amplitude of the isolated AHP (n = 7). Caesium-evoked inhibition of the DAP, therefore, does not result from diminished spike-evoked Ca2+ influx, and may reflect direct blockade of the conductance underlying the DAP. 4. Inhibition of the DAP was associated with an enhancement of the amplitude and duration of the AHP, indicating that the currents underlying the AHP and the DAP overlap in time following a train of action potentials, and that the relative magnitude of these currents is an important factor in determining the shape and time course of post-train after-potentials. 5. Bath application of Cs+ reversibly abolished phasic firing in each of seven cells tested. This effect was reversible and persisted at all subthreshold voltages tested. These results indicate that the current underlying the DAP is necessary for the genesis of plateau potentials and phasic firing in MNCs.
Collapse
Affiliation(s)
- M Ghamari-Langroudi
- Centre for Research in Neuroscience, Montreal General Hospital & McGill University, 1650 Cedar Avenue, Montreal, QC, Canada H3G 1A4
| | | |
Collapse
|
30
|
Bourque CW, Kirkpatrick K, Jarvis CR. Extrinsic modulation of spike afterpotentials in rat hypothalamoneurohypophysial neurons. Cell Mol Neurobiol 1998; 18:3-12. [PMID: 9524726 PMCID: PMC11560155 DOI: 10.1023/a:1022566924921] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Magnocellular neurosecretory cells (MNCs) in the rat hypothalamus adopt a phasic pattern of spike discharge under conditions demanding enhanced vasopressin release, such as during dehydration or hemorrhage. The emergence of phasic firing minimizes the occurrence of secretory fatigue from the axon terminals of MNCs, thereby maximizing vasopressin release from the neurohypophysis. 2. Intracellular and whole-cell recordings from hypothalamic slices or explants in vitro have shown that phasic firing is supported by the presence of a plateau potential which arises from the summation of spike depolarizing afterpotentials (DAPs). Modulatory actions of neurotransmitters on the amplitude of the DAP, therefore, represent possible mechanisms by which the expression of phasic firing may be regulated in vivo. 3. Here we review the basis for phasic firing in MNCs of the rat supraoptic nucleus and present recent findings concerning the direct and indirect mechanisms through which selected neurotransmitters have been found to regulate the amplitude of DAPs.
Collapse
Affiliation(s)
- C W Bourque
- Centre for Research in Neuroscience, Montreal General Hospital, P.Q., Canada
| | | | | |
Collapse
|
31
|
Li Z, Hatton GI. Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones. J Physiol 1997; 505 ( Pt 1):95-106. [PMID: 9409474 PMCID: PMC1160096 DOI: 10.1111/j.1469-7793.1997.095bc.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Whole-cell patch clamp recordings were obtained from sixty-five rat supraoptic nucleus (SON) neurones in brain slices to investigate ionic mechanisms underlying depolarizing after-potentials (DAPs). When cells were voltage clamped around -58 mV, slow inward currents mediating DAPs (IDAP), evoked by three brief depolarizing pulses, had a peak of 17 +/- 1 pA (mean +/- S.E.M.) and lasted for 2.8 +/- 0.1 s. 2. No significant differences in the amplitude and duration were observed when one to three preceding depolarizing pulses were applied, although there was a tendency for twin pulses to evoke larger IDAP than a single pulse. The IDAP was absent when membrane potentials were more negative than -70 mV. In the range -70 to -50 mV, IDAP amplitudes and durations increased as the membrane became more depolarized, with an activation threshold of -65.7 +/- 0.7 mV. 3. IDAP with normal amplitude and duration could be evoked during the decay of a preceding IDAP. As frequencies of depolarizing pulses rose from 2 to 20 Hz, the times to peak IDAP amplitude were reduced but the amplitudes and durations did not change. 4. A consistent reduction in membrane conductance during the IDAP was observed in all SON neurones tested, and averaged 34.6 +/- 3.3%. Small hyperpolarizing pulses used to measure membrane conductances appeared not to disturb major ionic mechanisms underlying IDAP, since the slope and duration of IDAP with and without test pulses were similar. 5. The IDAP had an averaged reversal potential of -87.4 +/- 1.6 mV, which was close to the K+ equilibrium potential. An elevation in [K+]o reduced or abolished the IDAP, and shifted its reversal potential toward more positive levels. Perifusion of slices with 7.5-10 mM TEA, a K+ channel blocker, reversibly suppressed the IDAP. 6. Both Na+ and Ca2+ currents failed to induce an IDAP-like current during perifusion of slices with media containing high [K+]o or TEA. However, the IDAP was abolished by replacing external Ca2+ with Co2+, or replacing 82% of external Na+ with choline or Li+. Perifusion of slices with media containing 1-2 microM TTX also reduced IDAP by 55.5 +/- 9.0%. 7. These results suggest that the generation of DAPs in SON neurones mainly involves a reduction in outward K+ current(s), which probably has little or no inactivation and can be inhibited by [Ca2+]i transients, due to Ca2+ influx during action potentials and Ca2+ release from internal stores. Na+ influx might provide a permissive influence for Ca(2+)-induced reduction of K+ conductances and/or help to raise [Ca2+]i via reverse-mode Ca(2+)-Na+ exchange. Other conductances, making minor contributions to the IDAP, may also be involved.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California at Riverside 92521, USA
| | | |
Collapse
|
32
|
Abstract
The effects of galanin (GAL) on magnocellular neurosecretory cells (MNCs) were examined during microelectrode recordings from supraoptic neurons in superfused hypothalamic explants. Application of the full-length peptide (GAL1-29) or of the N-terminal fragment GAL1-16 produced reversible membrane hyperpolarization with an IC50 near 10 nM. These effects were associated with an increase of membrane conductance, with a reversal potential near -70 mV, and were not blocked by tetrodotoxin, indicating that the receptors mediating these effects are located postsynaptically. Hyperpolarizing responses were also observed in response to the GAL-like chimeric ligands M35 and M40, suggesting that these behave as partial agonists at galanin receptors. The reversal potential of the GAL-mediated effect was unaffected by reducing extracellular chloride or by intracellular chloride injection, indicating that the effects of galanin are not mediated by modulation of chloride conductances. In contrast, reducing the external concentration of potassium ions from 3 to 1 mM shifted the reversal potential of the responses to -85 mV, suggesting the involvement of a potassium conductance. When tested on spontaneously active MNCs, the hyperpolarizing effects of galanin were associated with a suppression of firing in both continuously active and phasically active neurons. Inhibition of phasic bursts was mediated both through the inhibitory effects of the hyperpolarization and through a GAL-mediated inhibition of the depolarizing afterpotential that is responsible for the production of individual bursts. These results suggest that galanin may be a potent endogenous modulator of firing pattern in hypothalamic neuroendocrine cells.
Collapse
|
33
|
Luckman SM, Larsen PJ. Evidence for the involvement of histaminergic neurones in the regulation of the rat oxytocinergic system during pregnancy and parturition. J Physiol 1997; 501 ( Pt 3):649-55. [PMID: 9218223 PMCID: PMC1159464 DOI: 10.1111/j.1469-7793.1997.649bm.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Previous studies have shown that histaminergic neurones of the tuberomammillary nucleus project directly to hypothalamic magnocellular nuclei and that intracerebroventricular administration of histamine increases the synthetic activity of magnocellular oxytocin neurones. 2. Histaminergic neurones of the dorsomedial tuberomammillary nucleus that project to the magnocellular region of the paraventricular nucleus are activated during late pregnancy and lactation, as measured by an increase in mRNA for the synthetic enzyme histidine decarboxylase. 3. There is a concomitant increase in oxytocin mRNA in magnocellular neurones of the paraventricular nucleus. This increase in mRNA contributes to an accumulation of oxytocin before birth and to continued oxytocin synthesis during lactation. 4. Intracerebroventricular administration of mepyramine, a specific antagonist of the H1 histamine receptor, causes a delay in the birth of subsequent pups if given to the mother during parturition. Vehicle or the H2 receptor antagonist cimetidine has no effect. Thus, histamine acts centrally, via H1 receptors, during parturition and may have an excitatory effect on oxytocin release. 5. These results suggest that afferent histaminergic neurones show increased activity during pregnancy and may be responsible for the increase of synthesis in magnocellular oxytocin neurones at this time. If, as previously reported, these histamine neurones can reduce the electrical activity of oxytocin neurones via H2 receptors, then they may have a dual effect, increasing the synthesis of oxytocin while inhibiting its premature release. At term, any inhibitory effects of histamine are overcome to allow oxytocin secretion.
Collapse
Affiliation(s)
- S M Luckman
- Department of Neurobiology, Babraham Institute, Cambridge, UK.
| | | |
Collapse
|
34
|
Smith BN, Armstrong WE. The ionic dependence of the histamine-induced depolarization of vasopressin neurones in the rat supraoptic nucleus. J Physiol 1996; 495 ( Pt 2):465-78. [PMID: 8887757 PMCID: PMC1160805 DOI: 10.1113/jphysiol.1996.sp021607] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The ionic basis of the histamine-induced depolarization of immunohistochemically identified neurones in the supraoptic nucleus (SON) was investigated in the hypothalamo-neurohypophysial explant of male rats. Histamine (0.1-100 microM) caused an H1 receptor-mediated, dose-dependent depolarization of fifty of sixty-two vasopressin neurones in the SON. In contrast, twenty-three oxytocin neurones were either depolarized (n = 6), hyperpolarized (n = 4), or unaffected (n = 13) by histamine. Due to the low percentage of responding cells, oxytocin neurones were not further investigated. 2. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA; 100-500 mM) blocked the depolarization, whereas blocking Ca2+ influx and synaptic transmission with equimolar Co2+ or elevated (5-20 mM) Mg2+ in nominally Ca(2+)-free solutions was without effect. 3. The amplitude of the histamine-induced depolarization was relatively independent of membrane potential. The input resistance was unaltered by histamine in nine neurones, but in nine other neurones it was decreased and in two neurones it was increased by more than 5%. Neither elevating extracellular K+ nor addition of the K+ channel blockers, apamin, d-tubocurarine, tetraethylammonium (TEA), or intracellular Cs+ decreased the histamine effect. Indeed, broadly blocking K+ currents with TEA and Cs+ significantly increased the depolarization to histamine. 4. Tetrodotoxin (2-3 microM) did not inhibit the histamine-induced depolarization. However, equimolar replacement of approximately 50% of extracellular Na+ with Tris+ or N-methyl-D-glucamine reduced or eliminated the response. 5. The depolarization of vasopressin neurones by histamine thus requires extracellular Na+ and intracellular Ca2+. Activation of a Ca(2+)-activated non-specific cation current or a Ca(2+)-Na+ pump are possible mechanisms for this effect.
Collapse
Affiliation(s)
- B N Smith
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
35
|
Li Z, Hatton GI. Histamine-induced prolonged depolarization in rat supraoptic neurons: G-protein-mediated, Ca(2+)-independent suppression of K+ leakage conductance. Neuroscience 1996; 70:145-58. [PMID: 8848119 DOI: 10.1016/0306-4522(95)00373-q] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ionic mechanisms responsible for histamine-induced prolonged depolarization in supraoptic nucleus neurons were investigated using whole-cell patch recordings in horizontally prepared brain slices from adult male rats. Bath application of histamine (1-10 microM) in control medium induced membrane depolarization in nine of 12 phasically firing, putative vasopressin cells, but not in continuous firing, putative oxytocin cells (none of five cells). Depolarization, usually accompanied by increased firing rate, started within 20 s after histamine reached the slices, lasting for 3-13 min, after which they repolarized, and this was repeatable upon washout. Chelation of intracellular Ca2+ with 11 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetate and perfusion of slices with Ca(2+)-free medium blocked neither histamine-induced membrane depolarizations nor increased firing rates in 24 of 30 cells recorded. Depolarizations were always associated with decreases in membrane conductance. Following treatment with promethazine (H1 receptor antagonist) in six cells excited previously by histamine, subsequent application induced neither membrane depolarization nor increased firing. H1 receptor agonists mimicked histamine-induced depolarization (four of six cells) but the H2 receptor agonist, dimaprit (10 microM), had no effect (all of nine cells). In medium containing 0 mM Ca2+, 2 mM Co2+ and 1-2 microM tetrodotoxin, with internal Ca2+ chelation, bath application of histamine induced an apparent inward current in 15 of 20 supraoptic neurons tested. The peak of inward current evoked by 1-10 microM histamine at holding potentials around -50 mV varied from 10 to 50 pA (27.3 +/- 0.3 pA, mean +/- S.E.M.). Ramp voltage tests revealed that this inward current decreased as membrane potential was hyperpolarized and had a reversal potential of -90.1 +/- 3.8 mV (n = 10). Subtraction of current obtained before from that during histamine application revealed a current that was linear against membrane potential. Increasing external K+ concentration or introduction of K+ channel blockers in the medium attenuated or abolished histamine-induced inward current at membrane potentials close to -50 mV. When external Cl- concentration was reduced, histamine-induced inward current was still seen in five of seven supraoptic cells tested. Neither inward current nor change in conductance was observed following bath application of histamine in 11 of 12 neurons recorded using patch pipettes containing guanosine 5'-O-(2-thiodiphosphate), and in seven of eight neurons using pipettes containing guanosine 5'-O-(3-thiotriphosphate). These results suggest that histamine depolarizes supraoptic neurons, at least in part, by inhibiting a K+ leakage current mediated by H1 receptors linked to GTP-binding proteins and Ca(2+)-independent pathways. This study provides initial evidence for the second messengers regulating K+ leakage current.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California, Riverside 92521, USA
| | | |
Collapse
|
36
|
Armstrong WE. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80005-s] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Vizuete ML, Dimitriadou V, Traiffort E, Griffon N, Heron A, Schwartz JC. Endogenous histamine induces c-fos expression within paraventricular and supraoptic nuclei. Neuroreport 1995; 6:1041-4. [PMID: 7632891 DOI: 10.1097/00001756-199505090-00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thioperamide, an H3-receptor antagonist that enhances endogenous histamine release, induced c-fos mRNA expression and Fos-like immunoreactivity in magnocellular neurones of rat supraoptic and paraventricular nuclei. This response was prevented as a result of blockade of the H1 receptor, indicating that endogenous histamine is able to activate these magnocellular neurones via stimulation of this receptor.
Collapse
Affiliation(s)
- M L Vizuete
- Laboratoire de Physiologie, Faculté de Pharmacie, Université René Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Yang QZ, Hatton GI. Histamine mediates fast synaptic inhibition of rat supraoptic oxytocin neurons via chloride conductance activation. Neuroscience 1994; 61:955-64. [PMID: 7838389 DOI: 10.1016/0306-4522(94)90415-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Axons from the histaminergic neurons of the tuberomammillary nucleus project to both the anterior and tuberal portions of the supraoptic nucleus. Histamine is known to activate vasopressin neurons via a histamine receptor subtype 1 and to increase release of vasopressin, but effects on oxytocin neurons have been previously unexplored. Here we investigated the effects of tuberomammillary nucleus electrical stimulation as well as of histamine antagonists on supraoptic nucleus oxytocin and vasopressin neurons in slices of rat hypothalamus. Electrical stimulation evoked short constant latency (approximately 5 ms), fast (4-6 ms onset to peak) inhibitory postsynaptic potentials in oxytocin neurons and, as shown previously, fast excitatory postsynaptic potentials in vasopressin neurons. These synaptic responses followed paired-pulse stimulus frequencies up to 100 Hz and were, thus, probably reflecting monosynaptic connections. Inhibitory postsynaptic potentials were selectively blocked by histamine receptor subtype 2 antagonists (either cimetidine or famotidine) and by picrotoxin but not by histamine receptor subtype 1 antagonists or bicuculline. Similar synaptic responses to tuberomammillary nucleus stimulation were found in 16 of 16 neurons immunocytochemically identified as oxytocinergic and in seven putative oxytocin neurons. Perifusion of the slice with low chloride medium (4.8 mM) reversed stimulus-evoked inhibitory postsynaptic potentials. We conclude that histaminergic neurons monosynaptically contact both oxytocin and vasopressin cells of the supraoptic nucleus and inhibit the former via activation of chloride channels which can be blocked by the histamine receptor subtype 2 antagonists, famotidine and cimetidine.
Collapse
Affiliation(s)
- Q Z Yang
- Department of Neuroscience, University of California, Riverside 92521
| | | |
Collapse
|
39
|
Armstrong WE, Smith BN, Tian M. Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. J Physiol 1994; 475:115-28. [PMID: 8189384 PMCID: PMC1160359 DOI: 10.1113/jphysiol.1994.sp020053] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Intracellular recordings were made from supraoptic neurones in vitro from hypothalamic explants prepared from adult male rats. Neurones were injected with biotinylated markers, and of thirty-nine labelled neurones, nineteen were identified immunocytochemically as containing oxytocin-neurophysin and twenty as containing vasopressin-neurophysin. 2. Vasopressin and oxytocin neurones did not differ in their resting membrane potential, input resistance, membrane time constant, action potential height from threshold, action potential width at half-amplitude, and spike hyperpolarizing after-potential amplitude. Both cell types exhibited spike broadening during brief, evoked spike trains (6-8 spikes), but the degree of broadening was slightly greater for vasopressin neurones. When hyperpolarized below -75 mV, all but one neurone exhibited a transient outward rectification to depolarizing pulses, which delayed the occurrence of the first spike. 3. Both cell types exhibited a long after-hyperpolarizing potential (AHP) following brief spike trains evoked either with a square wave pulse or using 5 ms pulses in a train. There were no significant differences between cell types in the size of the AHP evoked with nine spikes, or in the time constant of its decay. The maximal AHP evoked by a 180 ms pulse was elicited by an average of twelve to thirteen spikes, and neither the size of this maximal AHP nor its time constant of decay were different for the two cell types. 4. In most oxytocin and vasopressin neurones the AHP, and concomitantly spike frequency adaptation, were markedly reduced by the bee venom apamin and by d-tubocurarine, known blockers of a Ca(2+)-mediated K+ conductance. However, a minority of neurones, of both cell types, were relatively resistant to both agents. 5. In untreated neurones, 55% of vasopressin neurones and 32% of oxytocin neurones exhibited a depolarizing after-potential (DAP) after individual spikes or, more commonly, after brief trains of spikes evoked with current pulses. For each neurone with a DAP, bursts of spikes could be evoked if the membrane potential was sufficiently depolarized such that the DAP reached spike threshold. In four out of five vasopressin neurones a DAP became evident only after pharmacological blockade of the AHP, whereas in six oxytocin neurones tested no such masking was found. 6. The firing patterns of neurones were examined at rest and after varying the membrane potential with continuous current injection. No identifying pattern was strictly associated with either cell type, and a substantial number of neurones were silent at rest.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|