1
|
Lyu C, Xia S, Lyu GW, Dun XP, Zheng K, Su J, Barde S, Xu ZQD, Hökfelt T, Shi TJS. A preliminary study on DRGs and spinal cord of a galanin receptor 2-EGFP transgenic mouse. Neuropeptides 2020; 79:102000. [PMID: 31864679 DOI: 10.1016/j.npep.2019.102000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/31/2023]
Abstract
The neuropeptide galanin functions via three G-protein coupled receptors, Gal1-3-R. Both Gal1-R and 2-R are involved in pain signaling at the spinal level. Here a Gal2-R-EGFP transgenic (TG) mouse was generated and studied in pain tests and by characterizing Gal2-R expression in both sensory ganglia and spinal cord. After peripheral spared nerve injury, mechanical allodynia developed and was ipsilaterally similar between wild type (WT) and TG mice. A Gal2-R-EGFP-positive signal was primarily observed in small and medium-sized dorsal root ganglion (DRG) neurons and in spinal interneurons and processes. No significant difference in size distribution of DRG neuronal profiles was found between TG and WT mice. Both percentage and fluorescence intensity of Gal2-R-EGFP-positive neuronal profiles were overall significantly upregulated in ipsilateral DRGs as compared to contralateral DRGs. There was an ipsilateral reduction in substance P-positive and calcitonin gene-related peptide (CGRP)-positive neuronal profiles, and this reduction was more pronounced in TG as compared to WT mice. Moreover, Gal2-R-EGFP partly co-localized with three pain-related neuropeptides, CGRP, neuropeptide Y and galanin, both in intact and injured DRGs, and with galanin also in local neurons in the superficial dorsal horn. Taken together, the present results provide novel information on the localization and phenotype of DRG and spinal neurons expressing the second galanin receptor, Gal2-R, and on phenotypic changes following peripheral nerve injury. Gal2-R may also be involved in autoreceptor signaling.
Collapse
Affiliation(s)
- Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| | - Sheng Xia
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gong-Wei Lyu
- Department of Neurology, 1st Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xin-Peng Dun
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kang Zheng
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jie Su
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Neurobiology, Capital Medical University, Beijing 100069, PR China
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tie-Jun Sten Shi
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
2
|
Duan H, Zhang Y, Zhang XM, Xu HH, Shu J, Xu SL. Antinociceptive roles of galanin receptor 1 in nucleus accumbens of rats in a model of neuropathic pain. J Neurosci Res 2015; 93:1542-51. [DOI: 10.1002/jnr.23611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Hao Duan
- Department of Physiology; School of Basic Medicine, Kunming Medical University; Chenggong Kunming Yunnan People's Republic of China
- Department of Orthopedics, Second Affiliated Hospital; Kunming Medical University; Xishan Kunming Yunnan People's Republic of China
| | - Ying Zhang
- Department of Pathophysiology; School of Basic Medicine, Kunming Medical University; Chenggong Kunming Yunnan People's Republic of China
| | - Xiao-Min Zhang
- Department of Physiology; School of Basic Medicine, Kunming Medical University; Chenggong Kunming Yunnan People's Republic of China
| | - Huan-Huan Xu
- Department of Pathophysiology; School of Basic Medicine, Kunming Medical University; Chenggong Kunming Yunnan People's Republic of China
| | - Jun Shu
- Department of Orthopedics, Second Affiliated Hospital; Kunming Medical University; Xishan Kunming Yunnan People's Republic of China
| | - Shi-Lian Xu
- Department of Physiology; School of Basic Medicine, Kunming Medical University; Chenggong Kunming Yunnan People's Republic of China
| |
Collapse
|
3
|
VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN NEUROLOGY 2013; 2013:829753. [PMID: 24349795 PMCID: PMC3856137 DOI: 10.1155/2013/829753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) are key molecules for the incorporation of glutamate in synaptic vesicles across the nervous system, and since their discovery in the early 1990s, research on these transporters has been intense and productive. This review will focus on several aspects of VGLUTs research on neurons in the periphery and the spinal cord. Firstly, it will begin with a historical account on the evolution of the morphological analysis of glutamatergic systems and the pivotal role played by the discovery of VGLUTs. Secondly, and in order to provide an appropriate framework, there will be a synthetic description of the neuroanatomy and neurochemistry of peripheral neurons and the spinal cord. This will be followed by a succinct description of the current knowledge on the expression of VGLUTs in peripheral sensory and autonomic neurons and neurons in the spinal cord. Finally, this review will address the modulation of VGLUTs expression after nerve and tissue insult, their physiological relevance in relation to sensation, pain, and neuroprotection, and their potential pharmacological usefulness.
Collapse
|
4
|
Malet M, Vieytes CA, Lundgren KH, Seal RP, Tomasella E, Seroogy KB, Hökfelt T, Gebhart GF, Brumovsky PR. Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice - effects of peripheral axotomy or hindpaw inflammation. Neuroscience 2013; 248:95-111. [PMID: 23727452 PMCID: PMC3800240 DOI: 10.1016/j.neuroscience.2013.05.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/30/2022]
Abstract
Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)₁-VGLUT₃ transcripts in lumbar 4-5 (L4-5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT₁-, VGLUT₂- and VGLUT₃ mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT₁ was expressed in large and medium-sized NPs, VGLUT₂ in NPs of all sizes, and VGLUT₃ in small and medium-sized NPs. In the spinal cord, VGLUT₁ was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT₂ was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT₃ was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT₃, whereas VGLUT₁ and VGLUT₂ were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT₁, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT₁ and VGLUT₂ transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.
Collapse
Affiliation(s)
- M Malet
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - C A Vieytes
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina
| | - K H Lundgren
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - R P Seal
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Tomasella
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - K B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - T Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - G F Gebhart
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - P R Brumovsky
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina; Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Duric V, McCarson KE. Hippocampal Mechanisms Linking Chronic Pain and Depression. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/j426v02n04_03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
The dipeptidyl peptidase IV (CD26, EC 3.4.14.5) inhibitor vildagliptin is a potent antihyperalgesic in rats by promoting endomorphin-2 generation in the spinal cord. Eur J Pharmacol 2011; 650:195-9. [DOI: 10.1016/j.ejphar.2010.09.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 12/17/2022]
|
7
|
Zhang X, Bao L, Ma GQ. Sorting of neuropeptides and neuropeptide receptors into secretory pathways. Prog Neurobiol 2009; 90:276-83. [PMID: 19853638 DOI: 10.1016/j.pneurobio.2009.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 08/11/2009] [Accepted: 10/09/2009] [Indexed: 01/07/2023]
Abstract
There are two major secretory pathways in neurons, the regulated pathway and the constitutive pathway. Neuropeptides and other regulated secretory proteins are known to be sorted into large dense-core vesicles of the regulated pathway in the trans-Golgi network and are secreted upon stimulus-induced increases in intracellular Ca(2+). The newly synthesized cell surface receptors are usually sorted into microvesicles of the constitutive pathway and inserted into the plasma membrane by spontaneous exocytosis. Small-diameter sensory neurons in dorsal root ganglia and pheochromocytoma cells express neuropeptides (e.g., substance P) and several neuropeptide receptors including opioid receptors. The mu-opioid receptors are delivered to the cell surface through the constitutive pathway, whereas another type of opioid receptor, the delta-opioid receptor, is often found in the membrane of large dense-core vesicles and can be inserted into the plasma membrane when exocytosis occurs. Recent studies show that sequences with opposite electrical polarity within the prohormones of substance P are essential for their sorting into large dense-core vesicles. Moreover, the delta-opioid receptor is sorted into large dense-core vesicles by its interaction with protachykinin, a prohormone of substance P. These findings provide insight into the molecular mechanisms that determine the sorting and trafficking of neuropeptides and neuropeptide receptors in neurons.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | | | | |
Collapse
|
8
|
Kozsurek M, Lukácsi E, Fekete C, Puskár Z. Nonselective innervation of lamina I projection neurons by cocaine- and amphetamine-regulated transcript peptide (CART)-immunoreactive fibres in the rat spinal dorsal horn. Eur J Neurosci 2009; 29:2375-87. [PMID: 19490082 DOI: 10.1111/j.1460-9568.2009.06773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides have been implicated in spinal pain transmission. A dense plexus of CART-immunoreactive fibres has been described in the superficial laminae of the spinal cord, which are key areas in sensory information and pain processing. We demonstrated previously that the majority of these fibres originate from nociceptive primary afferents. Using tract tracing, multiple immunofluorescent labelling and electronmicroscopy we determined the proportion of peptidergic primary afferents expressing CART, looked for evidence for coexistence of CART with galanin in these afferents in lamina I and examined their targets. Almost all (97.9%) randomly selected calcitonin gene-related peptide (CGRP)-immunoreactive terminals were substance P (SP)-positive (+) and CART was detected in approximately half (48.6%) of them. Most (81.4%) of the CGRP/SPergic boutons were galanin+ and approximately half (49.0%) of these contained CART. Many (72.9%) of the CARTergic boutons which expressed CGRP were also immunoreactive for galanin, while only 8.6% of the CARTergic terminals were galanin+ without CGRP. Electron microscopy showed that most of the CART terminals formed asymmetrical synapses, mainly with dendrites. All different morphological and neurochemical subtypes of spinoparabrachial projection neurons in the lamina I received contacts from CART-immunoreactive nociceptive afferents. The innervation density from these boutons did not differ significantly between either the different neurochemical or the morphological subclasses of these cells. This suggests a nonselective innervation of lamina I projection neurons from a subpopulation of CGRP/SP afferents containing CART peptide. These results provide anatomical evidence for involvement of CART peptide in spinal pain transmission.
Collapse
Affiliation(s)
- Márk Kozsurek
- Department of Anatomy, Histology and Embryology, János Szentágothai Laboratory, Semmelweis University, Tuzoltó u. 58, 1094-Budapest, Hungary
| | | | | | | |
Collapse
|
9
|
Alier KA, Chen Y, Sollenberg UE, Langel Ü, Smith PA. Selective stimulation of GalR1 and GalR2 in rat substantia gelatinosa reveals a cellular basis for the anti- and pro-nociceptive actions of galanin. Pain 2007; 137:138-146. [PMID: 17910903 DOI: 10.1016/j.pain.2007.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/08/2007] [Accepted: 08/21/2007] [Indexed: 11/17/2022]
Abstract
Galanin modulates spinal nociceptive processing by interacting with two receptors, GalR1 and GalR2. The underlying neurophysiological mechanisms were examined by whole-cell recording from identified neurons in the substantia gelatinosa of young adult rats. GalR1 was activated with a 'cocktail' containing the GalR1/2 agonist, AR-M 961 (0.5 microM), in the presence of the GalR2 antagonist, M871 (1.0-2.5 microM). GalR2 was activated with the selective agonist, AR-M 1896 (0.5-1.0 microM). Application of the 'GalR1 agonist cocktail' often activated an inwardly-rectifying conductance in delay firing (excitatory) and tonically firing (inhibitory) neurons. This conductance was not activated by AR-M 1896 which instead decreased or increased an outwardly-rectifying conductance at voltages positive to -70 mV. Despite this variability in its actions on current-voltage relationships, AR-M 1896 very consistently decreased membrane excitability, as measured by cumulative action potential latency in response to a depolarizing current ramp. This strong GalR2-mediated effect was seen in neurons where membrane conductance was decreased, and where membrane excitability might be predicted to increase. GalR2 was also located presynaptically, as AR-M 1896 increased the interevent interval of spontaneous EPSCs in both delay and tonic cells. By contrast, the 'GalR1 agonist cocktail' had little effect on spontaneous EPSCs, suggesting that presynaptic terminals do not express GalR1. These diverse actions of GalR1 and GalR2 activation on both inhibitory and excitatory neurons are discussed in relation to the known spinal antinociceptive and pro-nociceptive actions of galanin, to the possible association of GalR1 with the inhibitory G-protein, G(i/o) and to report that GalR2 activation suppresses Ca2+ channel currents.
Collapse
Affiliation(s)
- Kwai A Alier
- Department of Pharmacology, University of Alberta, 9.75 Medical Sciences Building, Edmonton, Alta., Canada T6G 2H7 Centre for Neuroscience, University of Alberta, Edmonton, Alta., Canada Department of Neurochemistry, Stockholm University, Stockholm 10691, Sweden
| | | | | | | | | |
Collapse
|
10
|
Wang LH, Lu YJ, Bao L, Zhang X. Peripheral nerve injury induces reorganization of galanin-containing afferents in the superficial dorsal horn of monkey spinal cord. Eur J Neurosci 2007; 25:1087-96. [PMID: 17331205 DOI: 10.1111/j.1460-9568.2007.05372.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripheral nerve injury-induced structural and chemical modifications of the sensory circuits in the dorsal horn of the spinal cord contribute to the mechanism of neuropathic pain. In contrast to the topographic projection of primary afferents in laminae I-IV in the rat spinal cord, the primary afferents of Macaca mulatta monkeys almost exclusively project into laminae I-II of the spinal cord. After peripheral nerve injury, up-regulation of galanin has been found in sensory neurons in both monkey and rat dorsal root ganglia. However, the nerve injury-induced ultrastructural modification of galanin-containing afferents in the monkey spinal cord remains unknown. Using immunoelectron microscopy, we found that 3 weeks after unilateral sciatic nerve transection, the number of galanin-containing afferents was increased in ipsilateral lamina II of monkey spinal cord. Branching of these galanin-positive afferents was often observed. The afferent terminals contained a large number of synaptic vesicles, peptidergic vesicles and mitochondria, whereas the number of synapses was markedly reduced. Some of the afferents-enriched microtubules were often packed into bundles. Moreover, galanin-labeling could be associated with endosomal structures in many dendrites and axonal terminals of dorsal horn neurons. These results suggest that peripheral nerve injury induces an expansion of the central projection of galanin-containing afferents in lamina II of the monkey spinal cord, not only by increasing galanin levels in primary afferents but also by triggering afferent branching.
Collapse
Affiliation(s)
- Li-Hua Wang
- Institute of Neuroscience and Key Laboratory of Neurobiology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
11
|
Landry M, Bouali-Benazzouz R, André C, Shi TJS, Léger C, Nagy F, Hökfelt T. Galanin receptor 1 is expressed in a subpopulation of glutamatergic interneurons in the dorsal horn of the rat spinal cord. J Comp Neurol 2006; 499:391-403. [PMID: 16998907 DOI: 10.1002/cne.21109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 29/30 amino acid neuropeptide galanin has been implicated in pain processing at the spinal level and local dorsal horn neurons expressing the Gal(1) receptor may play a critical role. In order to determine the transmitter identity of these neurons, we used immunohistochemistry and antibodies against the Gal(1) receptor and the three vesicular glutamate transporters (VGLUTs), as well as in situ hybridization, to explore a possible glutamatergic phenotype. Gal(1) protein, which could not be demonstrated in Gal(1) knockout mice, colocalized with VGLUT2 protein, but not with glutamate decarboxylase, in many nerve endings in lamina II. Moreover, Gal(1) and VGLUT2 transcripts were often found in the same cell bodies in laminae I-IV. Gal(1)-protein and galanin-peptide showed an overlapping distribution but were not colocalized. Gal(1) staining did not appear to be affected by dorsal rhizotomy. Taken together, these findings provide strong evidence that Gal(1) is a heteroreceptor expressed on excitatory glutamatergic dorsal horn interneurons. Activation of such Gal(1) receptors may thus decrease the inhibitory tone in the superficial dorsal horn, and possibly cause antinociception.
Collapse
Affiliation(s)
- Marc Landry
- Inserm E 0358, Institut Francois Magendie, University of Bordeaux 2, F-33077 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Experimental animal models of bone cancer pain have emerged and findings have provided a unique glimpse into unraveling the mechanism that drives this debilitating condition. Key contributors to the generation and maintenance of bone cancer pain are tumor-induced osteolysis, tumor itself, and production of nociceptive mediators in the bone-tumor microenvironment.
Collapse
Affiliation(s)
- M J Goblirsch
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
13
|
Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses. J Neurosci 2003. [PMID: 12805317 DOI: 10.1523/jneurosci.23-11-04775.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Opiate abuse causes adaptive changes in several processes of synaptic transmission in which the glutamatergic system appears a critical element involved in opiate tolerance and dependence, but the underlying mechanisms remain unclear. In the present study, we found that glutamate uptake in hippocampal synaptosomes was significantly increased (by 70% in chronic morphine-treated rats) during the morphine withdrawal period, likely attributable to an increase in the number of functional glutamate transporters. Immunoblot analysis showed that expression of GLT1 (glutamate transporter subtype 1) was identified to be upregulated in synaptosomes but not in total tissues, suggesting a redistribution of glutamate transporter expression. Moreover, the increase in glutamate uptake was reproduced in cultured neurons during morphine withdrawal, and the increase of uptake in neurons could be blocked by dihydrokainate, a specific inhibitor of GLT1. Cell surface biotinylation and immunoblot analysis showed that morphine withdrawal produced an increase in GLT1 expression rather than EAAC1 (excitatory amino acids carrier 1), a neuronal subtype, at the cultured neuronal cell surface, whereas no significant change was observed in that of cultured astrocytes. Electron microscopy also revealed that GLT1 expression was markedly increased in the nerve terminals of hippocampus and associated with the plasma membrane in vivo. These results suggest that GLT1 in hippocampal neurons can be induced to translocate to the nerve terminals and express on the cell surface during morphine withdrawal. The translocation of GLT1 at synapses during morphine withdrawal provides a neuronal mechanism for modulation of excitatory neurotransmission during opiate abuse.
Collapse
|
14
|
Hofmann HA, De Vry J, Siegling A, Spreyer P, Denzer D. Pharmacological sensitivity and gene expression analysis of the tibial nerve injury model of neuropathic pain. Eur J Pharmacol 2003; 470:17-25. [PMID: 12787826 DOI: 10.1016/s0014-2999(03)01753-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tibial nerve injury model is a novel, surgically uncomplicated, rat model of neuropathic pain based on a unilateral transection (neurotomy) of the tibial branch of the sciatic nerve. The aim of the present study was to describe some behavioral and molecular features of the model, and to test its sensitivity to a number of drugs which are currently used for the treatment of neuropathic pain. The model was characterized by a pronounced mechanical allodynia which was present in all subjects and a less robust thermal hyperalgesia. Mechanical allodynia developed within 2 weeks post-surgery and was reliably present for at least 9 weeks. Neurotomized rats showed no autotomy and their body weight developed normally. Gene expression in ipsilateral L5 dorsal root ganglia, analyzed by quantitative polymerase chain reaction (PCR), showed a pronounced up-regulation of galanin and vasointestinal peptide (VIP). This up-regulation developed rapidly (within 1 to 2 days following neurotomy) and remained present for at least 12 days. On the other hand, expression of calcitonin gene-related peptide (CGRP) and substance P mRNA was down-regulated 12 days following neurotomy. Mechanical allodynia was completely reversed by morphine [minimal effective dose (MED): 8 mg/kg, i.p.] and partially reversed by carbamazepine (MED: 64 mg/kg, i.p.), baclofen (MED: 3 mg/kg, i.p.) and amitriptyline (trend for efficacy at 32 mg/kg, i.p.), but not by gabapentin (50-100 mg/kg, i.p.). The finding that the tibial nerve injury model shows a robust and persistent mechanical allodynia which is sensitive to a number of established analgesics, as well as a gene expression profile which is compatible with that obtained in other models of neuropathic pain, further supports its validity as a reliable and surgically uncomplicated model for the study of neuropathic pain.
Collapse
Affiliation(s)
- Heiko A Hofmann
- CNS Research, Bayer Health Care, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | | | | | | | | |
Collapse
|
15
|
Abstract
Galanin, a 29-amino-acid peptide expressed in dorsal root ganglia (DRG) and spinal dorsal horn interneurones, is regulated by nerve injury and peripheral inflammation. The functional significance of such regulation has been subject to intense studies, including the analysis of galanin null mice, with the production of apparently conflicting results. Here, we suggest that upregulation of galanin in DRG neurones following nerve injury results in antinociception via stimulation of galanin GAL1 receptors on dorsal horn neurones, and that the pro-nociceptive effect of galanin is related to presynaptic galanin GAL2 receptors on primary afferents. A selective GAL1 receptor agonist could therefore be valuable for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hong-Xiang Liu
- Dept of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
16
|
De-Miguel FF, Muller KJ, Adams WB, Nicholls JG. Axotomy of single fluorescent nerve fibers in developing mammalian spinal cord by photoconversion of diaminobenzidine. J Neurosci Methods 2002; 117:73-9. [PMID: 12084566 DOI: 10.1016/s0165-0270(02)00078-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A technique has been developed for cutting single nerve fibers in mammalian spinal cord. In the presence of diaminobenzidine (DAB), a laser microbeam was applied to carbocyanine (Dil) stained sensory fibers in cultured spinal cords of the newly born opossum Monodelphis domestica. Digital images of fluorescent fibers were acquired with an intensified video CCD-camera coupled to an image processor. Laser illumination of two spots on a fiber in the presence of 3 mg/ml DAB cut it, so that following DAB wash out, Dil fluorescence did not return after the intermediate segment was bleached. In contrast, when a similar procedure was carried out without DAB, fluorescence of the bleached segment was recovered within minutes in darkness, by dye diffusion from adjacent regions of the uncut fiber. After exposure to DAB, through-conduction of compound action potentials continued in undamaged fibers. The DAB reaction product remained as a dark precipitate, helping to localize the lesion sites. By illuminating a continuous series of spots it was possible to cut whole nerve roots. Fluorescent fibers extended across the cut segment 24 h later. With minor modifications, the procedure described here allows a precise lesioning of single fibers within an intact nervous system.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Departamento de Biofísica, Instituto de Fisiología Celular, UNAM. Apartado Postal 70-253, C.P. 04510, Mexico, D.F., Mexico.
| | | | | | | |
Collapse
|
17
|
Rydh-Rinder M, Kerekes N, Svensson M, Hökfelt T. Glutamate release from adult primary sensory neurons in culture is modulated by growth factors. REGULATORY PEPTIDES 2001; 102:69-79. [PMID: 11730978 DOI: 10.1016/s0167-0115(01)00297-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to examine possible modulatory effects of some trophic molecules, i.e. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF), on potassium (K(+))-, bradykinin (BK)- or capsaicin (CAPS)-evoked release of glutamate (GLU) from dorsal root ganglion (DRG) neurons in vitro. BK (0.5 and 1 microM) induced a dramatic and significant increase in glutamate release. Neither CAPS nor K(+) (60 mM) produced any significant increase of GLU release vs. basal levels during a 5-min stimulation. The BK-evoked release of GLU was almost completely blocked by HOE 140, a selective BK2-receptor antagonist at high doses. Basal release of GLU was significantly reduced in cultures grown in the presence of bFGF, whereas BDNF and NGF had no significant effect. Incubation with growth factors generally decreased the BK-stimulated GLU release, an effect most pronounced for bFGF, which completely blocked BK-stimulated release. The rise in intracellular [Ca(2+)] following stimulation with BK (100 nM-1 microM), potassium (60 mM) or ATP (10 microM) was also studied using a Ca(2+)-sensitive indicator, Fura-2, in cultures grown in basal medium with or without bFGF. None of the bFGF-treated cells exhibited strong Ca(2+) responses to BK or ATP stimulation, while 10-20% of the responding cells grown in basal medium exhibited strong responses. The K(+)-induced increase of [Ca(2+)] did not vary between the different groups. The present findings suggest that sensory neurotransmission involving glutamate may be modulated by growth factors and that regulation of intracellular Ca(2+) homeostasis may be a contributing factor.
Collapse
|
18
|
Abstract
Pain is necessary for survival, but persistent pain can result in anxiety, depression and a reduction in the quality of life. The discriminative and affective qualities of pain are both thought to be regulated in an activity-dependent fashion. Recent studies have identified cells and molecules that regulate pain sensitivity and the parallel pathways that distribute nociceptive information to limbic or sensory areas of the forebrain. Here, we emphasize the cellular and neurobiological consequences of pain, especially those that are involved in the generation and maintenance of chronic pain. These new insights into pain processing will significantly alter our approach to pain control and the development of new analgesics.
Collapse
Affiliation(s)
- S P Hunt
- Department of Anatomy and Developmental Biology, Medawar Building, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
19
|
Xu S, Zhang Y, Lundeberg T, Yu L. Effects of galanin on wide-dynamic range neuron activity in the spinal dorsal horn of rats with sciatic nerve ligation. REGULATORY PEPTIDES 2000; 95:19-23. [PMID: 11062328 DOI: 10.1016/s0167-0115(00)00127-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galanin is a 29-amino acid peptide with a suggested role in nociception. The effect of galanin on wide-dynamic range neuron discharge frequency in rats with nerve ligation, used as a model of neurogenic pain, was investigated by extracellular recording methods. Seven to 14 days after sciatic nerve ligation, 0.1, 0.5 or 1 nmol of galanin was administered directly on the dorsal surface of the L3-L5 spinal cord of rats with sciatic nerve ligation. It was found that galanin inhibited the activity of wide-dynamic range neurons dose-dependently, an effect was more pronounced in sciatic nerve ligated rats than intact rats. Furthermore, when 1 nmol of galantide, the galanin antagonist, was administered on the dorsal surface of the L3-L5 spinal cord, the wide-dynamic range neuron discharge frequency increased significantly. The results suggest that galanin plays an important role in the modulation of presumed nociception in mononeuropathy.
Collapse
Affiliation(s)
- S Xu
- Department of Physiology, College of Life Sciences, and National Laboratory of Biomembranes and Membrane Biotechnology, Peking University, 100871, Beijing, PR China
| | | | | | | |
Collapse
|
20
|
Honore P, Rogers SD, Schwei MJ, Salak-Johnson JL, Luger NM, Sabino MC, Clohisy DR, Mantyh PW. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 2000; 98:585-98. [PMID: 10869852 DOI: 10.1016/s0306-4522(00)00110-x] [Citation(s) in RCA: 425] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this investigation was to determine whether murine models of inflammatory, neuropathic and cancer pain are each characterized by a unique set of neurochemical changes in the spinal cord and sensory neurons. All models were generated in C3H/HeJ mice and hyperalgesia and allodynia behaviorally characterized. A variety of neurochemical markers that have been implicated in the generation and maintenance of chronic pain were then examined in spinal cord and primary afferent neurons.Three days after injection of complete Freund's adjuvant into the hindpaw (a model of persistent inflammatory pain) increases in substance P, calcitonin gene-related peptide, protein kinase C gamma, and substance P receptor were observed in the spinal cord. Following sciatic nerve transection or L5 spinal nerve ligation (a model of persistent neuropathic pain) significant decreases in substance P and calcitonin gene-related peptide and increases in galanin and neuropeptide Y were observed in both primary afferent neurons and the spinal cord. In contrast, in a model of cancer pain induced by injection of osteolytic sarcoma cells into the femur, there were no detectable changes in any of these markers in either primary afferent neurons or the spinal cord. However, in this cancer-pain model, changes including massive astrocyte hypertrophy without neuronal loss, increase in the neuronal expression of c-Fos, and increase in the number of dynorphin-immunoreactive neurons were observed in the spinal cord, ipsilateral to the limb with cancer. These results indicate that a unique set of neurochemical changes occur with inflammatory, neuropathic and cancer pain in C3H/HeJ mice and further suggest that cancer induces a unique persistent pain state. Determining whether these neurochemical changes are involved in the generation and maintenance of each type of persistent pain may provide insight into the mechanisms that underlie each of these pain states.
Collapse
MESH Headings
- Animals
- Astrocytes/pathology
- Axotomy
- Behavior, Animal/physiology
- Disease Models, Animal
- Dynorphins/analysis
- Dynorphins/metabolism
- Fluorescent Antibody Technique
- Freund's Adjuvant
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Male
- Mice
- Mice, Inbred C3H
- Neoplasm Transplantation
- Neuralgia/chemically induced
- Neuralgia/metabolism
- Neuralgia/pathology
- Neuritis/metabolism
- Neuritis/pathology
- Neurons, Afferent/chemistry
- Neurons, Afferent/metabolism
- Osteolysis/metabolism
- Osteolysis/pathology
- Pain/etiology
- Pain/metabolism
- Pain/pathology
- Palpation
- Physical Stimulation
- Proto-Oncogene Proteins c-fos/analysis
- Proto-Oncogene Proteins c-fos/metabolism
- Receptors, Neurokinin-1/analysis
- Receptors, Neurokinin-1/metabolism
- Sarcoma, Experimental/complications
- Sarcoma, Experimental/metabolism
- Sarcoma, Experimental/pathology
- Sciatic Nerve/injuries
- Sciatic Nerve/metabolism
- Spinal Cord/cytology
- Spinal Cord/metabolism
- Spinal Nerves/injuries
- Spinal Nerves/metabolism
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- P Honore
- Neurosystems Center and Departments of Preventive Sciences, Psychiatry, Neuroscience, and Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Landry M, Holmberg K, Zhang X, Hökfelt T. Effect of axotomy on expression of NPY, galanin, and NPY Y1 and Y2 receptors in dorsal root ganglia and the superior cervical ganglion studied with double-labeling in situ hybridization and immunohistochemistry. Exp Neurol 2000; 162:361-84. [PMID: 10739642 DOI: 10.1006/exnr.1999.7329] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Using double-labeling techniques for both in situ hybridization and immunohistochemistry some peptides and peptide receptors were studied quantitatively in a sensory and a sympathetic ganglion after axotomy. In the lumbar 5 dorsal root ganglion (DRG) normally no neuropeptide Y- and only a few galanin-positive cell bodies are seen. Following complete transection of the sciatic nerve around 60% of all neuropeptide Y (NPY) neuron profiles (NPs) were galanin positive (+) and 33-44% of all galanin NPs were NPY(+). A good agreement between immunohistochemistry and in situ hybridization was observed for NPY and galanin. NPY Y1- and Y2-receptor (R) mRNAs were found in around 40% of all NPY mRNA(+) NPs, and more than half of the Y1-R mRNA(+) NPs and two-thirds of the Y2-R mRNA(+) NPs were NPY(+). In addition, more than one-third of the galanin mRNA-containing NPs showed colocalization with NPY receptor mRNAs and up to 70% of the Y2-R mRNA(+) NPs also expressed galanin mRNA. In the control superior cervical ganglion (SCG) 10% of the NPY(+) NPs were Y2-R mRNA(+), and 85% of the Y2-R(+) NPs were NPY mRNA(+), and the corresponding percentages after axotomy were around 35 and 45%, respectively. Following axotomy of the carotid nerves around half of all NPY(+) NPs were galanin(+), and conversely around 50% of all galanin NPs were NPY(+) at the mRNA level, whereas much lower percentages (15 and 9%, respectively) were observed with immunohistochemistry. These results demonstrate that double-labeling procedures are valid tools to quantitatively evaluate coexistence situations in sensory and sympathetic ganglia, showing a high degree of coexistence for NPY and galanin in axotomized neurons both in the lumbar 5 DRG and in the SCG. However, the immunohistochemical analysis in the SCG demonstrated much lower numbers of peptide-positive neurons than seen with in situ hybridization, suggesting that the latter technique is more sensitive. The fact that a considerable number of neurons express NPY together with Y1- and/or Y2-Rs indicates that both receptors may act as autoreceptors, the Y1-R presumably at the level of the cell body and the Y2-R on nerve terminals in the dorsal horn and/or the periphery. The present results also show that in both sensory and sympathetic neurons there is a strong upregulation of the Y2-R after nerve injury, suggesting a possible role in trophic and regenerative events.
Collapse
Affiliation(s)
- M Landry
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
22
|
Ma W, Bisby MA. Ultrastructural localization of increased neuropeptide immunoreactivity in the axons and cells of the gracile nucleus following chronic constriction injury of the sciatic nerve. Neuroscience 1999; 93:335-48. [PMID: 10430497 DOI: 10.1016/s0306-4522(99)00145-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptide plasticity in the gracile nucleus is thought to play a role in the development of neuropathic pain following nerve injury. Two weeks after chronic constriction injury of adult rat sciatic nerve, galanin, neuropeptide Y and calcitonin gene-related peptide immunoreactivities were increased in fibers and cells in the gracile nucleus ipsilateral to injury. At the electron microscopic level, this increased neuropeptide immunoreactivity was localized in myelinated axons, boutons, dendrites, neurons and glial cells. Galanin-, neuropeptide Y- and calcitonin gene-related peptide-immunoreactive boutons were frequently presynaptic to dendrites of both immunoreactive and non-immunoreactive neurons. However, no neuropeptide Y, galanin and calcitonin gene-related peptide messenger RNA was detected in the injured side gracile nuclei by in situ hybridization. These results show that partial nerve injury to the sciatic nerve induces increases in the content of galanin, neuropeptide Y and calcitonin gene-related peptide immunoreactivities in synaptic terminals within the gracile nucleus, which suggests that there may be increased release of these neuropeptides following sensory or spontaneous stimulation of large-diameter primary afferents following partial nerve injury, perhaps one mechanism involved in neuropathic pain. We also show an apparent transfer of these neuropeptides to the cells of the gracile nucleus, both neurons and glial cells, an intriguing phenomenon of unknown functional significance.
Collapse
Affiliation(s)
- W Ma
- Department of Physiology, Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
23
|
Shortland P, Wang HF, Molander C. Distribution of transganglionically labelled soybean agglutinin primary afferent fibres after nerve injury. Brain Res 1999; 815:206-12. [PMID: 9878739 DOI: 10.1016/s0006-8993(98)01152-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The distribution of the retrogradely-transganglionically transported lectin soybean agglutinin (SBA) and of SBA conjugated to horseradish peroxidase (SBA-HRP) has been examined in the L4-5 dorsal root ganglia, lumbar spinal cord and gracile nucleus at 2, 6 and 14 weeks after sciatic nerve transection and ligation. Cell size analysis showed there were no changes in the mean area of labelled DRG profiles after injury. In the spinal cord, terminal labelling was restricted to laminae I and II with no evidence of labelling in novel territories such as the deeper laminae after injury. At 2 weeks, the labelling on the injured side was similar in distribution and intensity to that of the contralateral, uninjured side. At 6-14 weeks the labelling on the injured side was significantly weaker as compared to the contralateral side, but not completely depleted. In the gracile nucleus, at all survival times, an increased distribution and amount of labelling was seen which may reflect sprouting of C and A-delta fibres. These results suggest that SBA is a useful tracer to study the effects of nerve injury on the central terminals of axotomised afferents terminating in laminae I-II and that C-fibres appear not to sprout outside their normal laminar distribution in the dorsal horn after injury.
Collapse
Affiliation(s)
- P Shortland
- Department of Neuroscience, Karolinska Institutet, S171 77, Stockholm,
| | | | | |
Collapse
|
24
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
25
|
Abstract
Galanin-like immunoreactivity and galanin receptors are found in dorsal root ganglion (DRG) cells and in dorsal horn interneurons, suggesting that this neuropeptide may have a role in sensory transmission and modulation at the spinal level. Expression of galanin or galanin receptors in the DRG and spinal cord are altered, sometimes in a dramatic fashion, by peripheral nerve injury or inflammation. Under normal conditions, galanin occurs in a small population of primary sensory neurons as well as in spinal interneurons. However, following peripheral nerve injury or inflammation, expression of galanin in primary afferents and spinal cord is upregulated. We examined the role of galanin in spinal processing of nociceptive information under normal and pathologic conditions in a large series of electrophysiologic and behavioral studies. Results suggest that under normal conditions galanin exerts tonic inhibition of nociceptive input to the central nervous system. After peripheral nerve injury the inhibitory control exerted by endogenous galanin, probably released from DRG neurons, is increased. During inflammation, galanin presumably released from dorsal horn interneurons also exerts an inhibitory function. Thus, stable galanin agonists may be useful in the treatment of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Z Wiesenfeld-Hallin
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Sweden.
| | | |
Collapse
|
26
|
Popratiloff A, Weinberg RJ, Rustioni A. AMPA receptors at primary afferent synapses in substantia gelatinosa after sciatic nerve section. Eur J Neurosci 1998; 10:3220-30. [PMID: 9786215 DOI: 10.1046/j.1460-9568.1998.00330.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increased excitability of superficial laminae of the spinal cord may contribute to the pathological pain consequent to peripheral nerve injury. Among several mechanisms that may be responsible for this occurrence is upregulation of receptors for glutamate in the spinal cord. To explore this possibility, we investigated changes in AMPA receptors in substantia gelatinosa of rats after section of the sciatic nerve. Immunofluorescence was performed on sections from the fourth lumbar segment. Quantitative analysis of digitally captured images suggested that staining for an antibody to a sequence shared by GluR2 and GluR3 (GluR2/3) was increased on the side ipsilateral to the lesion. To determine whether antigen accumulation was at synaptic sites and to probe whether it was selective for primary afferent terminals, we performed electron microscopy on immunogold-labelled material. Gold particles coding for GluR2/3 subunits were counted from synaptic active zones of glomerular terminals in substantia gelatinosa that originate from small calibre afferent fibres, and from active zones of terminals of probable intrinsic origin. Counts were significantly increased on the side ipsilateral to the lesion only at synapses of primary afferent terminals. These results document selective upregulation of receptor protein at the synapse. This upregulation may contribute to the increased sensitivity of dorsal horn neurons following peripheral nerve injury.
Collapse
Affiliation(s)
- A Popratiloff
- Department of Cell Biology & Anatomy, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
27
|
Xu IS, Grass S, Xu XJ, Wiesenfeld-Hallin Z. On the role of galanin in mediating spinal flexor reflex excitability in inflammation. Neuroscience 1998; 85:827-35. [PMID: 9639276 DOI: 10.1016/s0306-4522(97)00676-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of exogenous and endogenous galanin on spinal flexor reflex excitability was evaluated in rats one to eight days after the induction of inflammation by subcutaneous injection of carrageenan into the sural nerve innervation area. In normal rats, electrical stimulation of C-fibres in the sural nerve elicited a brisk reflex discharge. Conditioning stimulation of C-fibres (1/s) generated a gradual increase in reflex magnitude (wind-up), which was followed by a period of reflex hyperexcitability. Intrathecal galanin dose-dependently blocked reflex hyperexcitability induced by C-fibre conditioning stimulation whereas i.t. M-35, a high-affinity galanin receptor antagonist, moderately potentiated this effect. At one to three days after the injection of carrageenen, when inflammation was at its peak, the magnitude of the reflex was significantly increased and discharge duration became prolonged. However, wind-up and reflex hyperexcitability were significantly reduced. Furthermore, reduced reflex excitability during conditioning stimulation ("wind-down") and depression of the reflex were sometimes present, which are rarely observed in normal rats. Intrathecal galanin reduced hyperexcitability during inflammation, although its potency was weaker than in normals. However, the galanin receptor antagonist M-35 strongly enhanced wind-up and reflex hyperexcitability, similarly as in normal rats. The baseline flexor reflex, wind-up and C-fibre conditioning stimulation-induced facilitation were normalized four to eight days after carrageenan injection when signs of inflammation were diminishing. Interestingly, intrathecal galanin and M-35 failed to influence spinal excitability. The results suggest a complex functional plasticity in the role of endogenous galanin in mediating spinal excitability during inflammation. There appears to be an enhanced endogenous inhibitory control by galanin on C-afferent input during the peak of inflammation, which may explain the relative ineffectiveness of exogenous galanin. During the recovery phase there may be a reduction in galanin receptors, which may impair the action of endogenous and exogenous galanin. These results further support the notion that galanin is an endogenous inhibitory peptide in nociception.
Collapse
Affiliation(s)
- I S Xu
- Department of Medical Laboratory Sciences and Technology, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | |
Collapse
|
28
|
Miki K, Fukuoka T, Tokunaga A, Noguchi K. Calcitonin gene-related peptide increase in the rat spinal dorsal horn and dorsal column nucleus following peripheral nerve injury: up-regulation in a subpopulation of primary afferent sensory neurons. Neuroscience 1998; 82:1243-52. [PMID: 9466443 DOI: 10.1016/s0306-4522(97)00258-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcitonin gene-related peptide in sensory primary afferent neurons has an excitatory effect on postsynaptic neurons and potentiates the effect of substance P in the rat spinal dorsal horn. It has been established that calcitonin gene-related peptide expression in dorsal root ganglion neurons is depressed, and the effect of calcitonin gene-related peptide on dorsal horn neurons is attenuated, following peripheral nerve injury. We report here that a subpopulation of injured dorsal root ganglion neurons show increased expression of calcitonin gene-related peptide. Using in situ hybridization and the retrograde tracer, FluoroGold, we detected an increased number of medium- to large-sized rat dorsal root ganglion neurons projecting to the gracile nucleus that expressed alpha-calcitonin gene-related peptide messenger RNA following spinal nerve transection. Immunohistochemistry revealed a significant increase in calcitonin gene-related peptide immunoreactivity in the gracile nucleus and in laminae III-IV of the spinal dorsal horn. These results indicate that a subpopulation of dorsal root ganglion neurons express alpha-calcitonin gene-related peptide messenger RNA in response to peripheral nerve injury, and transport this peptide to the gracile nucleus and to laminae III-IV of the spinal dorsal horn. The increase of the excitatory neuropeptide, calcitonin gene-related peptide, in sites of primary afferent termination may affect the excitability of postsynaptic neurons, and have a role in neuronal plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- K Miki
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | |
Collapse
|
29
|
Colvin LA, Mark MA, Duggan AW. The effect of a peripheral mononeuropathy on immunoreactive (ir)-galanin release in the spinal cord of the rat. Brain Res 1997; 766:259-61. [PMID: 9359612 DOI: 10.1016/s0006-8993(97)00700-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pattern of ir-galanin release in the spinal cord of rats with a peripheral mononeuropathy was studied. On the side of the cord ipsilateral to the nerve injury enhanced ir-galanin release was found in the superficial dorsal horn. It is probable that, after nerve injury, some primary afferent neurons spontaneously release galanin from their central terminals.
Collapse
Affiliation(s)
- L A Colvin
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, UK.
| | | | | |
Collapse
|
30
|
Cameron AA, Cliffer KD, Dougherty PM, Garrison CJ, Willis WD, Carlton SM. Time course of degenerative and regenerative changes in the dorsal horn in a rat model of peripheral neuropathy. J Comp Neurol 1997; 379:428-42. [PMID: 9067834 DOI: 10.1002/(sici)1096-9861(19970317)379:3<428::aid-cne8>3.0.co;2-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The time course of histochemical changes in the dorsal horn of rats subjected to an experimental peripheral neuropathy has been examined. Qualitative and quantitative analyses of the changes in dorsal horn staining were made for soybean agglutinin (SBA)-binding glycoconjugates, the soluble lectins RL-14.5 and RL-29, the growth-associated protein (GAP)-43, and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP). These analyses were made at various time points after chronic constriction of the sciatic nerve. Quantitative analysis indicated that staining density increased in the normal territories stained for SBA-binding glycoconjugates, RL-14.5, RL-29, and GAP-43 on the neuropathic side compared with the control side. In addition, there was an extension of the territories stained for SBA-binding glycoconjugates and RL-29 ipsilateral to the injury. The peak increases occurred at 14 or 28 days, followed by a decrease toward control levels by 70 days. In contrast, the staining density for SP in the ipsilateral dorsal horn decreased at 3 and 5 days and reached a peak decrease at 14 days. Then, the staining for SP returned toward control values. The staining for CGRP was unchanged at all time points examined. Dorsal rhizotomies ipsilateral to the nerve injury in neuropathic rats indicated that the increases in staining were attributable to changes in primary afferent neurons. These data suggest that peripheral neuropathy causes complex degenerative and regenerative changes in the central branches of primary afferent neurons. The associated synaptic reorganization may contribute to the sensory abnormalities that accompany peripheral neuropathy.
Collapse
Affiliation(s)
- A A Cameron
- Department of Biology, University of California, San Diego 92093, USA
| | | | | | | | | | | |
Collapse
|
31
|
Schweitzer ES, Jeng CJ, Tao-Cheng JH. Selective localization and regulated release of calcitonin gene-related peptide from dense-core vesicles in engineered PC12 cells. J Neurosci Res 1996; 46:519-30. [PMID: 8951664 DOI: 10.1002/(sici)1097-4547(19961201)46:5<519::aid-jnr1>3.0.co;2-m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction of the gene for calcitonin into the neuroendocrine PC12 cell line resulted in the expression of the neuronal-specific splice product, calcitonin gene-related peptide (CGRP). Expression of this neuropeptide did not require treatment of the PC12 cells with NGF. By all available criteria, including biochemical, immunological, and morphological analysis, we have determined that the CGRP in stably transfected PC12 cells is sorted selectively into the large, dense-core catecholamine-containing secretory vesicles. Conversely, the CGRP is excluded from the small, synaptophysin-rich vesicles present in the same cells. Stimulation conditions that trigger the release of catecholamines cause a parallel burst in the release of CGRP. In all these respects, the engineered PC12 cells process the foreign CGRP in a manner similar to that seen in spinal motor neurons in vivo. These results indicate that this small (37 amino acids) peptide contains sorting information sufficient for targeting to large, dense-core vesicles in heterologous cells, placing very narrow constraints on the possible location of sorting signals. In addition, this CGRP-expressing cell line opens the possibility of studying the physiological role of CGRP in the establishment and maintenance of neuromuscular contacts.
Collapse
Affiliation(s)
- E S Schweitzer
- Department of Neurobiology, University of California, Los Angeles Medical School, USA
| | | | | |
Collapse
|
32
|
Corness J, Shi TJ, Xu ZQ, Brulet P, Hökfelt T. Influence of leukemia inhibitory factor on galanin/GMAP and neuropeptide Y expression in mouse primary sensory neurons after axotomy. Exp Brain Res 1996; 112:79-88. [PMID: 8951409 DOI: 10.1007/bf00227180] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of unilateral transection of the sciatic nerve on expression of immunoreactive galanin (GAL), galanin-message-associated peptide (GMAP) and neuropeptide tyrosine (NPY) in dorsal root ganglia (DRGs) was studied in wild-type mice and in leukemia inhibitory factor (LIF)-deficient mice. In normal and contralateral DRGs small numbers of weakly fluorescent GAL- and GMAP-positive neuronal cell bodies and numerous positive fibers were observed. No NPY-positive cell bodies but a few fibers surrounding blood vessels were seen. In LIF deficient mice hardly any GAL- or GMAP-positive neurons or fibers were seen, nor was NPY-like immunoreactivity present in cell bodies. After axotomy there was a dramatic upregulation of all three peptides in wild-type DRG neurons, whereby 50-60% of the neuron profiles, encompassing both small and large profiles, were GAL- and GMAP-immunoreactive (IR). About one third of all neuron profiles, mainly large ones, were NPY-positive. In LIF-deficient mice this upregulation was much less pronounced. Thus GAL- and GMAP-IR neuron profiles were reduced by 65-70% compared with the wild-type mice. The number of NPY-positive neuron profiles was reduced to half but this difference was not significant. There was also an ipsilateral decrease in fluorescence intensity for all three peptide immunoreactivities in the LIF-deficient mice as compared with wild-type mice after axotomy. There was no apparent difference in size between, respectively, GAL- and GMAP-positive profiles when comparing LIF-deficient and wild-type mice before or after axotomy. There were, however, no small NPY-IR profiles in the LIF-deficient group. The present results suggests that LIF is important for the dramatic upregulation of GAL and GMAP seen after axotomy. It may also be important for the normal expression of galanin in mouse DRGs, since wild-type mice seemed to have somewhat more positive cell bodies and more fluorescent fibers. LIF seems to be less important for the control of NPY synthesis, but may be involved in NPY regulation in small-sized neurons.
Collapse
Affiliation(s)
- J Corness
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
33
|
Wiesenfeld-Hallin Z, Xu XJ. Plasticity of messenger function in primary afferents following nerve injury--implications for neuropathic pain. PROGRESS IN BRAIN RESEARCH 1996; 110:113-24. [PMID: 9000720 DOI: 10.1016/s0079-6123(08)62569-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Z Wiesenfeld-Hallin
- Karolinska Institute, Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Sweden
| | | |
Collapse
|
34
|
Zhang X, Aman K, Hökfelt T. Secretory pathways of neuropeptides in rat lumbar dorsal root ganglion neurons and effects of peripheral axotomy. J Comp Neurol 1995; 352:481-500. [PMID: 7536758 DOI: 10.1002/cne.903520402] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using immunocytochemistry combined with confocal and electron microscopy, the secretory pathways related to substance P (SP), calcitonin gene-related peptide (CGRP), galanin (GAL), and neuropeptide Y (NPY) were investigated in neurons in rat lumbar (L) 4 and L5 dorsal root ganglia (DRGs) before and after peripheral axotomy. All four peptides were processed through the regulated secretory pathway in many small neurons in normal DRGs, and CGRP through this pathway also in some large neurons. In many small neurons, two neuropeptides could be sorted into the same or separate large dense-core vesicles (LDCVs). The LDCVs had a significantly larger diameter in small as compared to large DRG neurons. Fourteen days after sciatic nerve cut, the levels of SP- and CGRP-like immunoreactivities (-LIs) and the number of LDCVs containing these peptides were markedly reduced, but SP- and CGRP-LIs were still seen in the regulated pathway. GAL-LI was markedly increased in many small neurons and some large neurons and NPY-LI mainly in large neurons. Both peptides were particularly abundant in the Golgi region. In small neurons, the number of LDCVs containing GAL- or NPY-LI was increased, but did not appear to reach the numbers containing SP- or CGRP-LI in normal DRG neurons. After axotomy, CGRP-LI and GAL-LI were often in separate LDCVs. One type of NPY-positive large neurons showed budding off of LDCVs after axotomy, but also some "scattered" labeling in the cytoplasm. In the second type, NPY-LI was mainly found in multivesicular bodies. In several myelinated nerve fibers a "diffuse" distribution of NPY was seen together with some LDCVs containing NPY-LI. In contrast, in unmyelinated nerve fibers, NPY-, GAL-, SP-, and CGRP-LIs were always observed in LDCVs. Thus, both in normal and axotomized DRG neurons, peptides are processed through the regulated pathway. However, in some large neurons, NPY is, in addition, secreted through the constitutive pathway, perhaps as a consequence of limited sorting mechanisms for NPY, i.e., the plasticity of the secretory mechanisms does not match the rate of peptide synthesis after axotomy.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
35
|
Zhang X, Nicholas AP, Hökfelt T. Ultrastructural studies on peptides in the dorsal horn of the rat spinal cord--II. Co-existence of galanin with other peptides in local neurons. Neuroscience 1995; 64:875-91. [PMID: 7538639 DOI: 10.1016/0306-4522(94)00451-a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using light microscopic immunoperoxidase and immunofluorescence histochemistry, double-staining methodology, and electron microscopic pre-embedding and post-embedding immunocytochemistry, we studied galanin-immunoreactive neurons in the superficial dorsal horn of the rat spinal cord. Co-existence of galanin with other neuropeptides was also analysed. The lumbar 4 and 5 segments of normal rats and after rhizotomy or spinal cord transection were studied. Galanin-positive local neurons in lamina II were often islet cells and could be classified as type A, which had abundant electron-dense cytoplasm containing many large dense-core vesicles, and type B, which had electron-lucent cytoplasm with only a few large dense-core vesicles. Galanin-positive and -negative peripheral afferent terminals made synaptic contact mostly with galanin-negative dendrites and cell bodies, but also with type B galanin cell bodies and with galanin-positive dendrites of unidentified type. Galanin-immunoreactive terminals from local neurons could also be classified into two types. Type alpha terminals were most common; they contained densely packed synaptic vesicles and many large dense-core vesicles, were strongly immunostained and most frequently made synaptic contact with galanin-negative dendrites. Type beta terminals contained loosely packed synaptic vesicles and a few large dense-core vesicles, and were weakly immunostained. Axosomatic synaptic contact were sometimes found between type beta terminals and type B galanin-positive cell bodies, but were most often associated with galanin-negative dendrites. Double immunostaining showed that galanin-like immunoreactivity co-localized mainly with enkephalin-like, but sometimes also with neuropeptide Y-like immunoreactivity in some local neurons in lamina II. Galanin-like and substance P-like immunoreactivities were identified in the same neurons in deeper layers of the dorsal horn. Coexistence of these neuropeptides and neurotensin with galanin was demonstrated not only in terminals in lamina II but also in large dense-core vesicles, as revealed by post-embedding immunocytochemistry. These results show that galanin-immunoreactive neurons in lamina II receive inputs directly from primary afferents and frequently make synaptic contacts with other intrinsic neurons. Galanin in the superficial dorsal horn may be released both from primary afferents and local neurons to modulate sensory processing in many different ways, including interacting with enkephalin, neuropeptide Y, neurotensin and substance P released from the same and/or other local neurons.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
36
|
Xu XJ, Zhang X, Hökfelt T, Wiesenfeld-Hallin Z. Plasticity in spinal nociception after peripheral nerve section: reduced effectiveness of the NMDA receptor antagonist MK-801 in blocking wind-up and central sensitization of the flexor reflex. Brain Res 1995; 670:342-6. [PMID: 7743203 DOI: 10.1016/0006-8993(94)01360-t] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have examined and compared the effects of systemically applied MK-801, an NMDA receptor/channel blocker, on the wind-up and facilitation of the flexor reflex during and after conditioning stimulation (CS) of C-afferents in rats with intact sciatic nerves or 13-16 days after axotomy. In rats with intact sciatic nerves, intravenous MK-801 (0.5 mg/kg) partially reduced wind-up and totally blocked reflex facilitation following C-fiber CS to the sural nerve. In contrast, 13-16 days after unilateral section of the sciatic nerve, the same dose of MK-801 failed to reduce the wind-up and reflex facilitation following C-fiber CS to the axotomized sural nerve, although the duration of reflex facilitation was significantly shortened. These findings indicate that the involvement of NMDA receptors in mediating activity-dependent spinal hyperexcitability is substantially reduced after peripheral nerve section, possibly reflecting a reduced release of glutamate by primary sensory afferents.
Collapse
Affiliation(s)
- X J Xu
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Sweden
| | | | | | | |
Collapse
|