1
|
Zuhair M, Keene D, Panagopoulos D, Malcolme-Lawes L, Porter B, Kanagaratnam P, Lim PB. Catheter Ablation for Vasovagal Syncope: The Therapeutic Potential of Gateway Plexi. Arrhythm Electrophysiol Rev 2025; 14:e01. [PMID: 39981423 PMCID: PMC11836605 DOI: 10.15420/aer.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 02/22/2025] Open
Abstract
Vasovagal syncope (VVS) is the most common cause of syncope, and significantly impacts quality of life despite its benign nature. For some patients, conventional management strategies such as lifestyle changes, pharmacotherapy and pacemaker implantation, fail to prevent recurrence. Cardioneuroablation (CNA), a novel intervention targeting the cardiac autonomic nervous system's ganglionated plexi, has shown promise in addressing refractory VVS. This review examines the therapeutic potential of CNA, exploring the anatomy and physiology of the cardiac autonomic nervous system, the role of ganglionated plexi in cardiac regulation and the rationale behind their selection as ablation targets. The review also discusses diverse strategies for ganglionated plexi identification and ablation. The gateway ganglionated plexi hypothesis is used to explain the success of CNA across varied procedural methods, despite the absence of a standardized technique. These gateway ganglionated plexi, located near the sinoatrial and atrioventricular nodes, potentially serve as central nodes influencing heart rhythm and rate, thus explaining the high success rates in VVS treatment using different approaches.
Collapse
Affiliation(s)
- Mohamed Zuhair
- National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - Daniel Keene
- National Heart and Lung Institute, Imperial College LondonLondon, UK
| | | | | | | | | | - Phang Boon Lim
- National Heart and Lung Institute, Imperial College LondonLondon, UK
| |
Collapse
|
2
|
Lizot G, Pasqualin C, Tissot A, Pagès S, Faivre JF, Chatelier A. Molecular and functional characterization of the mouse intracardiac nervous system. Heart Rhythm 2022; 19:1352-1362. [PMID: 35447308 DOI: 10.1016/j.hrthm.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The intracardiac nervous system (ICNS) refers to clusters of neurons, located within the heart, which participate to the neuronal regulation of cardiac functions and which are involved in the initiation of cardiac arrhythmias. Therefore, deciphering its role in cardiac physiology and physiopathology is mandatory. OBJECTIVE The aim of this study is to provide a phenotypic, electrophysiological and pharmacological characterization of the mouse ICNS, which is still poorly characterized. METHODS Global cardiac innervation and phenotypic diversity were investigated using immunohistochemistry on cleared murine heart and on tissue sections. Patch clamp technique was used for electrophysiological and pharmacological characterization of isolated mouse intracardiac neurons. RESULTS We have identified the expression of seven distinct neuronal markers within mouse ICNS, thus proving the neurochemical diversity of this network. Of note, it was the first time that the existence of neurons expressing the calcium binding protein calbindin, the neuropeptide Y (NPY) and the cocain and amphetamine regulated transcript (CART) peptide, was described in the mouse. Electrophysiological studies also revealed the existence of four different neuronal populations based on their electrical behavior. Finally, we showed that these neurons can be modulated by several neuromodulators. CONCLUSION This study showed that mouse ICNS presents a molecular and functional complexity similar to other species, and is therefore a suitable model to decipher the role of individual neuronal subtypes regarding the modulation of cardiac function and the initiation of cardiac arrhythmias.
Collapse
Affiliation(s)
| | - Côme Pasqualin
- PReTI laboratory, UR 24184, University of Poitiers, France
| | - Audrey Tissot
- Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland
| | - Stephane Pagès
- Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland
| | | | | |
Collapse
|
3
|
Leung C, Robbins S, Moss A, Heal M, Osanlouy M, Christie R, Farahani N, Monteith C, Chen J, Hunter P, Tappan S, Vadigepalli R, Cheng Z(J, Schwaber JS. 3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. iScience 2021; 24:102795. [PMID: 34355144 PMCID: PMC8324857 DOI: 10.1016/j.isci.2021.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
We developed and analyzed a single cell scale anatomical map of the rat intrinsic cardiac nervous system (ICNS) across four male and three female hearts. We find the ICNS has a reliable structural organizational plan across individuals that provide the foundation for further analyses of the ICNS in cardiac function and disease. The distribution of the ICNS was evaluated by 3D visualization and data-driven clustering. The pattern, distribution, and clustering of ICNS neurons across all male and female rat hearts is highly conserved, demonstrating a coherent organizational plan where distinct clusters of neurons are consistently localized. Female hearts had fewer neurons, lower packing density, and slightly reduced distribution, but with identical localization. We registered the anatomical data from each heart to a geometric scaffold, normalizing their 3D coordinates for standardization of common anatomical planes and providing a path where multiple experimental results and data types can be integrated and compared.
Collapse
Affiliation(s)
- Clara Leung
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alison Moss
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Mahyar Osanlouy
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - James S. Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Achanta S, Gorky J, Leung C, Moss A, Robbins S, Eisenman L, Chen J, Tappan S, Heal M, Farahani N, Huffman T, England S, Cheng ZJ, Vadigepalli R, Schwaber JS. A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. iScience 2020; 23:101140. [PMID: 32460006 PMCID: PMC7327996 DOI: 10.1016/j.isci.2020.101140] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
We have developed and integrated several technologies including whole-organ imaging and software development to support an initial precise 3D neuroanatomical mapping and molecular phenotyping of the intracardiac nervous system (ICN). While qualitative and gross anatomical descriptions of the anatomy of the ICN have each been pursued, we here bring forth a comprehensive atlas of the entire rat ICN at single-cell resolution. Our work precisely integrates anatomical and molecular data in the 3D digitally reconstructed whole heart with resolution at the micron scale. We now display the full extent and the position of neuronal clusters on the base and posterior left atrium of the rat heart, and the distribution of molecular phenotypes that are defined along the base-to-apex axis, which had not been previously described. The development of these approaches needed for this work has produced method pipelines that provide the means for mapping other organs. Comprehensive single-neuron-scale mapping of the intrinsic cardiac nervous system Whole-organ high-throughput imaging and reconstruction at a cellular resolution 3D anatomical framework for spatially tracked single-neuron molecular phenotypes Integrated histology, neuron mapping, and molecular profiles for 3D organ reconstruction
Collapse
Affiliation(s)
- Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan Gorky
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Clara Leung
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Alison Moss
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaina Robbins
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Eisenman
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | | | | | | | | | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Kim JH, Cho KH, Jin ZW, Murakami G, Abe H, Chai OH. Ganglion cardiacum or juxtaductal body of human fetuses. Anat Cell Biol 2018; 51:266-273. [PMID: 30637161 PMCID: PMC6318452 DOI: 10.5115/acb.2018.51.4.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 02/08/2023] Open
Abstract
The ganglion cardiacum or juxtaductal body is situated along the left recurrent laryngeal nerve in the aortic window and is an extremely large component of the cardiac nerve plexus. This study was performed to describe the morphologies of the ganglion cardiacum or juxtaductal body in human fetuses and to compare characteristics with intracardiac ganglion. Ganglia were immunostained in specimens from five fetuses of gestational age 12–16 weeks and seven fetuses of gestational age 28–34 weeks. Many ganglion cells in the ganglia were positive for tyrosine hydroxylase (TH; sympathetic nerve marker) and chromogranin A, while a few neurons were positive for neuronal nitric oxide synthase (NOS; parasympathetic nerve marker) or calretinin. Another ganglion at the base of the ascending aorta carried almost the same neuronal populations, whereas a ganglion along the left common cardinal vein contained neurons positive for chromogranin A and NOS but no or few TH-positive neurons, suggesting a site-dependent difference in composite neurons. Mixtures of sympathetic and parasympathetic neurons within a single ganglion are consistent with the morphology of the cranial base and pelvic ganglia. Most of the intracardiac neurons are likely to have a non-adrenergic non-cholinergic phenotype, whereas fewer neurons have a dual cholinergic/noradrenergic phenotype. However, there was no evidence showing that chromogranin A- and/or calretinin-positive cardiac neurons corresponded to these specific phenotypes. The present study suggested that the ganglion cardiacum was composed of a mixture of sympathetic and parasympathetic neurons, which were characterized the site-dependent differences in and near the heart.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Anatomy and Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Korea
| | - Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea
| | - Zhe Wu Jin
- Department of Anatomy, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Gen Murakami
- Division of Internal Medicine, Asuka Hospital, Sapporo, Japan
| | - Hiroshi Abe
- Department of Anatomy, Akita University School of Medicine, Akita, Japan
| | - Ok Hee Chai
- Department of Anatomy and Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
6
|
Chottova Dvorakova M, Mistrova E, Paddenberg R, Kummer W, Slavikova J. Substance P Receptor in the Rat Heart and Regulation of Its Expression in Long-Term Diabetes. Front Physiol 2018; 9:918. [PMID: 30057556 PMCID: PMC6053525 DOI: 10.3389/fphys.2018.00918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Substance P (SP) is a neuropeptide engaged in the signal transmission of neural C fibers afferents in the myocardium. The actions of SP in the heart are extensive and they are mediated by the neurokinin 1 receptor (NK1R), a member of the tachykinin subfamily of G-protein coupled receptors. The receptors have been found in the heart, but to our knowledge, their exact localization in the heart has not been described yet. Here, we investigated the presence of NK1R protein in separate rat heart compartments by means of western blot and its tissue distribution by means of immunofluorescence. Specificity of NK1R immunolabeling was controlled by preabsorption of the antiserum with its corresponding peptide. Additionally, we investigated abundance of gene for NK1R in separated heart chambers by means of quantitative real-time PCR (RT-PCR). Relative abundance of NK1R mRNA was expressed as a ratio of target gene Cq value to Cq value of control gene - beta-actin. Finally, we studied abundance of NK1R mRNA in different cell types of heart isolated by laser capture microdissection. Immunofluorescence showed NK1R immunoreactivity on the surface of some intracardiac neurons and smooth muscle cells of coronary vessels. The results of quantitative RT-PCR indicate abundance of mRNA for NK1R in all heart chambers with highest level in the left atrium. The presence of NK1R mRNA was detected in some samples of dissected intracardiac neurons, but not in cardiomyocytes or smooth muscle cells of coronary vessels. In the course of long-term diabetes, a significant downregulation of the NK1R mRNA was seen in the right atrium and upregulation in the right ventricle 53 weeks after the induction of diabetes. Our results indicate localization of NK1R in some intracardiac neurons and smooth muscle cells. Impaired transcription of the NK1R gene in the diabetic heart may be induced by unidentified genes or factors involved in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Magdalena Chottova Dvorakova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Eliska Mistrova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Renate Paddenberg
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Slavikova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
7
|
Masliukov PM, Budnik AF, Nozdrachev AD. Neurochemical Features of Metasympathetic System Ganglia in the Course of Ontogenesis. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057017040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Abstract
Ganglionated plexi (GP), consisting of conglomerations of autonomic ganglia on the epicardial surface of the heart, have been shown to play a significant role in different arrhythmias, including atrial fibrillation. GP ablation has become an adjunctive procedure in the treatment of atrial fibrillation, while it has been used successfully in preliminary studies in vasovagal syncope. This review will present the current data on the physiology and clinical applications of GP ablation in the treatment of atrial fibrillation and other diseases.
Collapse
Affiliation(s)
- Stavros Stavrakis
- University of Oklahoma Health Sciences Center,Oklahoma City, Oklahoma, USA
| | - Sunny Po
- University of Oklahoma Health Sciences Center,Oklahoma City, Oklahoma, USA
| |
Collapse
|
9
|
Abstract
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| | - John Andrew Armour
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
10
|
Wake E, Brack K. Characterization of the intrinsic cardiac nervous system. Auton Neurosci 2016; 199:3-16. [DOI: 10.1016/j.autneu.2016.08.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
|
11
|
Stavrakis S, Nakagawa H, Po SS, Scherlag BJ, Lazzara R, Jackman WM. The role of the autonomic ganglia in atrial fibrillation. JACC Clin Electrophysiol 2015; 1:1-13. [PMID: 26301262 DOI: 10.1016/j.jacep.2015.01.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent experimental and clinical studies have shown that the epicardial autonomic ganglia play an important role in the initiation and maintenance of atrial fibrillation (AF). In this review, we present the current data on the role of the autonomic ganglia in the pathogenesis of AF and discuss potential therapeutic implications. Experimental studies have demonstrated that acute autonomic remodeling may play a crucial role in AF maintenance in the very early stages. The benefit of adding ablation of the autonomic ganglia to the standard pulmonary vein (PV) isolation procedure for patients with paroxysmal AF is supported by both experimental and clinical data. The interruption of axons from these hyperactive autonomic ganglia to the PV myocardial sleeves may be an important factor in the success of PV isolation procedures. The vagus nerve exerts an inhibitory control over the autonomic ganglia and attenuation or loss of this control may allow these ganglia to become hyperactive. Autonomic neuromodulation using low-level vagus nerve stimulation inhibits the activity of the autonomic ganglia and reverses acute electrical atrial remodeling during rapid atrial pacing and may provide an alternative non-ablative approach for the treatment of AF, especially in the early stages. This notion is supported by a preliminary human study. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Hiroshi Nakagawa
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sunny S Po
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Benjamin J Scherlag
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Ralph Lazzara
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Warren M Jackman
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
12
|
Newton CM, Stoyek MR, Croll RP, Smith FM. Regional innervation of the heart in the goldfish, Carassius auratus: a confocal microscopy study. J Comp Neurol 2014; 522:456-78. [PMID: 23853005 DOI: 10.1002/cne.23421] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 11/09/2022]
Abstract
The intracardiac nervous system represents the final common pathway for autonomic control of the vertebrate heart in maintaining cardiovascular homeostasis. In teleost fishes, details of the organization of this system are not well understood. Here we investigated innervation patterns in the heart of the goldfish, a species representative of a large group of cyprinids. We used antibodies against the neuronal markers zn-12, acetylated tubulin, and human neuronal protein C/D, as well as choline acetyltransferase, tyrosine hydroxylase, nitric oxide synthetase, and vasoactive intestinal polypeptide (VIP) to detect neural elements and their transmitter contents in wholemounts and sections of cardiac tissue. All chambers of the heart were innervated by choline acetyltransferase-positive axons, implying cholinergic regulation; and by tyrosine hydroxylase-containing axons, implying adrenergic regulation. The mean total number of intracardiac neurons was 713 ± 78 (SE), nearly half of which were cholinergic. Neuronal somata were mainly located in a ganglionated plexus around the sinoatrial valves. Somata were contacted by cholinergic, adrenergic, nitrergic, and VIP-positive terminals. Putative pacemaker cells, identified by immunoreactivity for hyperpolarization activated, cyclic nucleotide-gated channel 4, were located in the base of the sinoatrial valves, and this region was densely innervated by cholinergic and adrenergic terminals. We have shown that the goldfish heart possesses the necessary neuroanatomical substrate for fine, region-by-region autonomic control of the myocardial effectors that are involved in determining cardiac output.
Collapse
Affiliation(s)
- Cecilia M Newton
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | | | | | |
Collapse
|
13
|
Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Mao J, Varma V, Lazzara R, Po SS. Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. J Interv Card Electrophysiol 2012. [PMID: 23179922 DOI: 10.1007/s10840-012-9752-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE We examined the role of the phosphatidylinositol-3 kinase (PI3K)/nitric oxide (NO) signaling pathway in low-level vagus nerve stimulation (LLVNS)-mediated inhibition of atrial fibrillation (AF). METHODS In 17 pentobarbital anesthetized dogs, bilateral thoracotomies allowed the attachment of electrode catheters to the superior and inferior pulmonary veins and atrial appendages. Rapid atrial pacing (RAP) was maintained for 6 h. Each hour, programmed stimulation was used to determine the window of vulnerability (WOV), a measure of AF inducibility, at all sites. During the last 3 h, RAP was overlapped with right LLVNS (50 % below that which slows the sinus rate). In group 1 (n = 7), LLVNS was the only intervention, whereas in groups 2 (n = 6) and 3 (n = 4), the NO synthase inhibitor N (G)-nitro-L-arginine methyl ester (L-NAME) and the PI3K inhibitor wortmannin, respectively, were injected in the right-sided ganglionated plexi (GP) during the last 3 h. The duration of acetylcholine-induced AF was determined at baseline and at 6 h. Voltage-sinus rate curves were constructed to assess GP function. RESULTS LLVNS significantly decreased the acetylcholine-induced AF duration by 8.2 ± 0.9 min (p < 0.0001). Both L-NAME and wortmannin abrogated this effect. The cumulative WOV (the sum of the individual WOVs) decreased toward baseline with LLVNS (p < 0.0001). L-NAME and wortmannin blunted this effect during the fifth (L-NAME only, p < 0.05) and the sixth hour (L-NAME and wortmannin, p < 0.05). LLVNS suppressed the ability of GP stimulation to slow the sinus rate, whereas L-NAME and wortmannin abolished this effect. CONCLUSION The anti-arrhythmic effects of LLVNS involve the PI3K/NO signaling pathway.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
LIU YU, SCHERLAG BENJAMINJ, FAN YOUQI, VARMA VANDANA, MALE SHAILESH, CHAUDHRY MUHAMMADA, HUANG CONGXIN, PO SUNNYS. Inducibility of Atrial Fibrillation After GP Ablations and “Autonomic Blockade”: Evidence for the Pathophysiological Role of the Nonadrenergic and Noncholinergic Neurotransmitters. J Cardiovasc Electrophysiol 2012; 24:188-95. [DOI: 10.1111/j.1540-8167.2012.02449.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
|
16
|
Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Liu Q, Mao J, Cai H, Lazzara R, Po SS. Antiarrhythmic effects of vasostatin-1 in a canine model of atrial fibrillation. J Cardiovasc Electrophysiol 2012; 23:771-7. [PMID: 22487376 DOI: 10.1111/j.1540-8167.2012.02317.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND We examined the antiarrhythmic effects of vasostatin-1, a recently identified cardioregulatory peptide, in canine models of atrial fibrillation (AF). METHODS AND RESULTS In 13 pentobarbital-anesthetized dogs bilateral thoracotomies allowed the attachment of multielectrode catheters to superior and inferior pulmonary veins and atrial appendages (AA). Rapid atrial pacing (RAP) was maintained for 6 hours. Each hour, programmed stimulation was performed to determine the window of vulnerability (WOV), a measure of AF inducibility, at all sites. During the last 3 hours, vasostatin-1, 33 nM, was injected into the anterior right (AR) ganglionated plexus (GP) and inferior right (IR) GP every 30 minutes (n = 6). Seven dogs underwent 6 hours of RAP only (controls). At baseline, acetylcholine, 100 mM, was applied on the right AA and AF duration was recorded before and after injection of vasostatin-1, 33 nM, into the ARGP and IRGP. In separate experiments (n = 8), voltage-sinus rate response curves (surrogate for GP function) were constructed by applying high-frequency stimulation to the ARGP with incremental voltages with or without vasostatin-1. Vasostatin-1 significantly decreased the duration of acetylcholine-induced AF (11.0 ± 4.1 vs 5.5 ± 2.6 min, P = 0.02). The cumulative WOV (the sum of individual WOVs) significantly increased (P < 0.0001) during the first 3 hours and decreased toward baseline in the presence of vasostatin-1 (P < 0.0001). Cumulative WOV in controls steadily increased. Vasostatin-1 blunted the slowing of sinus rate with increasing stimulation voltage of ARGP. CONCLUSIONS Vasostatin-1 suppresses AF inducibility, likely by inhibiting GP function. These data may provide new insights into the role of peptide neuromodulators for AF therapy.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McAllen RM, Salo LM, Paton JFR, Pickering AE. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. J Physiol 2011; 589:5801-18. [PMID: 22005679 DOI: 10.1113/jphysiol.2011.214320] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac vagal tone is an important indicator of cardiovascular health, and its loss is an independent risk factor for arrhythmias and mortality. Several studies suggest that this loss of vagal tone can occur at the cardiac ganglion but the factors affecting ganglionic transmission in vivo are poorly understood. We have employed a novel approach allowing intracellular recordings from functionally connected cardiac vagal ganglion cells in the working heart-brainstem preparation. The atria were stabilised in situ preserving their central neural connections, and ganglion cells (n = 32) were impaled with sharp microelectrodes. Cardiac ganglion cells with vagal synaptic inputs (spontaneous, n = 10; or electrically evoked from the vagus, n = 3) were identified as principal neurones and showed tonic firing responses to current injected to their somata. Cells lacking vagal inputs (n = 19, presumed interneurones) were quiescent but showed phasic firing responses to depolarising current. In principal cells the ongoing action potentials and EPSPs exhibited respiratory modulation, with peak frequency in post-inspiration. Action potentials arose from unitary EPSPs and autocorrelation of those events showed that each ganglion cell received inputs from a single active preganglionic source. Peripheral chemoreceptor, arterial baroreceptor and diving response activation all evoked high frequency synaptic barrages in these cells, always from the same single preganglionic source. EPSP amplitudes showed frequency dependent depression, leading to more spike failures at shorter inter-event intervals. These findings indicate that rather than integrating convergent inputs, cardiac vagal postganglionic neurones gate preganglionic inputs, so regulating the proportion of central parasympathetic tone that is transmitted on to the heart.
Collapse
Affiliation(s)
- Robin M McAllen
- Florey Neuroscience Institutes and Department of Anatomy & Cell Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
18
|
|
19
|
Mousa SA, Shaqura M, Schäper J, Treskatsch S, Habazettl H, Schäfer M, Abdul-Khaliq H. Developmental expression of δ-opioid receptors during maturation of the parasympathetic, sympathetic, and sensory innervations of the neonatal heart: early targets for opioid regulation of autonomic control. J Comp Neurol 2011; 519:957-71. [PMID: 21280046 DOI: 10.1002/cne.22560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Evidence is accumulating regarding the local opioid regulation of heart function. However, the exact anatomical location of δ-opioid receptors (DORs) and expression during maturation of the autonomic and sensory innervations of the neonatal heart is unknown. Therefore, we aimed to characterize target sites for opioids in neonatal rat heart intracardiac ganglia at postnatal day (P)1, P7 and adulthood (P56-P84). Rat heart atria were subjected to reverse-transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis of DORs with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and substance P (SP). Our results demonstrated DOR mRNA, protein, and binding sites that gradually increased from P1 toward adulthood. Immunofluorescence confocal microscopy showed DOR co-localized with VAChT in large-diameter principal neurons, TH-immunoreactive (IR) small intensely fluorescent (SIF) catecholaminergic cells, and CGRP- or SP-IR afferent nerve terminals arborizing within intracardiac ganglia and atrial myocardium. Co-expression of DOR with VAChT-IR neurons was observed from the first day of birth (P1). In contrast, DORs on TH-IR SIF cells or CGRP-IR fibers were not observed in intracardiac ganglia of P1, but rather in P7 rats. The density of nerve fibers in atrial myocardium co-expressing DORs with different neuronal markers increased from neonatal age toward adulthood. In summary, the enhanced DOR expression parallel to the maturation of cardiac parasympathetic, sympathetic, and sensory innervation of the heart suggests that the cardiac opioid system is an important regulator of neonatal and adult heart function through the autonomic nervous system.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Implication of Substance P in myocardial contractile function during ischemia in rats. ACTA ACUST UNITED AC 2011; 167:185-91. [PMID: 21256875 DOI: 10.1016/j.regpep.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/03/2010] [Accepted: 01/14/2011] [Indexed: 11/23/2022]
Abstract
Evidence suggests that substance P (SP) participates in the pathology of acute myocardial ischemia and infarction but the profiles of the peptide in regulation of cardiac functions are still elusive. The aim of this study was to investigate the role of substance P in regulation of cardiac functions and its association with adrenergic mechanism in acute myocardial ischemia and infarction with rodent models. The experiments were carried out in Sprague-Dawley rats. SP and norepinephrine were significantly up-regulated in myocardium at 15min, 30min and 60min of coronary artery occlusion. Pretreatment of the rats with a specific antagonist of neurokinin-1 receptor, D-SP, significant increased+dp/dt and decreased -dp/dt, compared with the controls, pretreated with 0.9% saline. Pretreatment of the isolated CAO hearts with substance P (10(-7)mol/L) significantly increased left ventricular end diastolic pressure. SP producing no effects on cardiac functions when given alone to isolated (non-CAO) heart caused significant attenuation of the changes in the contractility and diastolic functions induced by norepinephrine, when given with norepinephrine. SP attenuated the increase in the activity of PKA provoked by norepinephrine in cultured myocytes. In conclusion, the findings may indicate SP regulates cardiac functions via modulation of adrenergic activity, through suppression of over-activation of PKA.
Collapse
|
21
|
Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, Pauza DH. Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm 2011; 8:731-8. [PMID: 21232628 DOI: 10.1016/j.hrthm.2011.01.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/05/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND The intrinsic neural plexus of the mouse heart has not been adequately investigated despite the extensive use of this species in experimental cardiology. OBJECTIVE The purpose of this study was to determine the distribution of cholinergic, adrenergic, and sensory neural components in whole-mount mouse heart preparations using double immunohistochemical labeling. METHODS/RESULTS Intrinsic neurons were concentrated within 19 ± 3 ganglia (n = 20 mice) of varying size, scattered on the medial side of the inferior caval (caudal) vein on the right atrium and close to the pulmonary veins on the left atrium. Of a total of 1,082 ± 160 neurons, most somata (83%) were choline acetyltransferase (ChAT) immunoreactive, whereas 4% were tyrosine hydroxylase (TH) immunoreactive; 14% of ganglionic cells were biphenotypic for ChAT and TH. The most intense ChAT staining was observed in axonal varicosities. ChAT was evident in nerve fibers interconnecting intrinsic ganglia. Both ChAT and TH immunoreactivity were abundant within the nerves accessing the heart. However, epicardial TH-immunoreactive nerve fibers were predominant on the dorsal and ventral left atrium, whereas most ChAT-positive axons proceeded on the heart base toward the large intrinsic ganglia and on the epicardium of the root of the right cranial vein. Substance P-positive and calcitonin gene-related peptide-immunoreactive nerve fibers were abundant on the epicardium and within ganglia adjacent to the heart hilum. Small intensely fluorescent cells were grouped into clusters of 3 to 8 and were dispersed within large ganglia or separately on the atrial and ventricular walls. CONCLUSION Although some nerves and neuronal bundles of the mouse epicardial plexus are mixed, most express either adrenergic or cholinergic markers. Therefore, selective stimulation and/or ablation of the functionally distinct intrinsic neural pathways should allow the study of specific effects on cardiac function.
Collapse
Affiliation(s)
- Kristina Rysevaite
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | | | | | | | | |
Collapse
|
22
|
Mousa SA, Shaqura M, Schäper J, Huang W, Treskatsch S, Habazettl H, Abdul-Khaliq H, Schäfer M. Identification of mu- and kappa-opioid receptors as potential targets to regulate parasympathetic, sympathetic, and sensory neurons within rat intracardiac ganglia. J Comp Neurol 2010; 518:3836-47. [PMID: 20653037 DOI: 10.1002/cne.22427] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent interest has been focused on the opioid regulation of heart performance; however, specific allocation of opioid receptors to the parasympathetic, sympathetic, and sensory innervations of the heart is scarce. Therefore, the present study aimed to characterize such specific target sites for opioids in intracardiac ganglia, which act as a complex network for the integration of the heart's neuronal in- and output. Tissue samples from rat heart atria were subjected to RT-PCR, Western blot, radioligand-binding, and double immunofluorescence confocal analysis of mu (M)- and kappa (K)-opioid receptors (ORs) with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and substance P (SP). Our results demonstrated MOR- and KOR-specific mRNA, receptor protein, and selective membrane ligand binding. By using immunofluorescence confocal microscopy, MOR and KOR immunoreactivity were colocalized with VAChT in large-diameter parasympathetic principal neurons, with TH-immunoreactive small intensely fluorescent (SIF) cells, and on nearby TH-IR varicose terminals. In addition, MOR and KOR immunoreactivity were identified on CGRP- and SP-IR sensory neurons throughout intracardiac ganglia and atrial myocardium. Our findings show that MOR and KOR are expressed as mRNA and translated into specific receptor proteins on cardiac parasympathetic, sympathetic, and sensory neurons as potential binding sites for opioids. Thus, they may well play a role within the complex network for the integration of the heart's neuronal in- and output.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charite Mitte, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hoover DB, Isaacs ER, Jacques F, Hoard JL, Pagé P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 2009; 164:1170-9. [PMID: 19747529 DOI: 10.1016/j.neuroscience.2009.09.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Dysfunction of the intrinsic cardiac nervous system is implicated in the genesis of atrial and ventricular arrhythmias. While this system has been studied extensively in animal models, far less is known about the intrinsic cardiac nervous system of humans. This study was initiated to anatomically identify neurotransmitters associated with the right atrial ganglionated plexus (RAGP) of the human heart. Biopsies of epicardial fat containing a portion of the RAGP were collected from eight patients during cardiothoracic surgery and processed for immunofluorescent detection of specific neuronal markers. Colocalization of markers was evaluated by confocal microscopy. Most intrinsic cardiac neuronal somata displayed immunoreactivity for the cholinergic marker choline acetyltransferase and the nitrergic marker neuronal nitric oxide synthase. A subpopulation of intrinsic cardiac neurons also stained for noradrenergic markers. While most intrinsic cardiac neurons received cholinergic innervation evident as punctate immunostaining for the high affinity choline transporter, some lacked cholinergic inputs. Moreover, peptidergic, nitrergic, and noradrenergic nerves provided substantial innervation of intrinsic cardiac ganglia. These findings demonstrate that the human RAGP has a complex neurochemical anatomy, which includes the presence of a dual cholinergic/nitrergic phenotype for most of its neurons, the presence of noradrenergic markers in a subpopulation of neurons, and innervation by a host of neurochemically distinct nerves. The putative role of multiple neurotransmitters in controlling intrinsic cardiac neurons and mediating efferent signaling to the heart indicates the possibility of novel therapeutic targets for arrhythmia prevention.
Collapse
Affiliation(s)
- D B Hoover
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hardwick JC, Baran CN, Southerland EM, Ardell JL. Remodeling of the guinea pig intrinsic cardiac plexus with chronic pressure overload. Am J Physiol Regul Integr Comp Physiol 2009; 297:R859-66. [PMID: 19605763 DOI: 10.1152/ajpregu.00245.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pressure overload (PO) is associated with cardiac hypertrophy and altered autonomic control of cardiac function, in which the latter may involve adaptations in central and/or peripheral cardiac neural control mechanisms. To evaluate the specific remodeling of the intrinsic cardiac nervous system following pressure overload, the descending thoracic aorta artery of the guinea pig was constricted approximately 20%, and the animals recovered for 9 wk. Thereafter, atrial neurons of the intrinsic cardiac plexus were isolated for electrophysiological and immunohistochemical analyses. Intracellular voltage recordings from intrinsic cardiac neurons demonstrated no significant changes in passive membrane properties or action potential depolarization compared with age-matched controls and sham-operated animals, but afterhyperpolarization duration was increased in PO animals. Neuronal excitability, as determined by the number of action potentials produced with depolarizing stimuli, was differentially increased in phasic neurons derived from PO animals in response to exogenously applied histamine compared with sham and age-matched controls. Conversely, pituitary adenylate cyclase-activating polypeptide-induced increases in intrinsic cardiac neuron evoked AP frequency were similar between control and PO animals. Immunohistochemical analysis demonstrated a twofold increase in the percentage of neurons immunoreactive for neuronal nitric oxide synthase in PO animals compared with control. The density of mast cells within the intrinsic cardiac plexus from PO animals was also increased twofold compared with preparations from control animals. These results indicate that congestive heart failure associated with chronic pressure overload induces a differential remodeling of intrinsic cardiac neurons and upregulation of neuronal responsiveness to specific neuromodulators.
Collapse
Affiliation(s)
- Jean C Hardwick
- Biology Dept., Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA.
| | | | | | | |
Collapse
|
25
|
Singh S, Gray T, Wurster RD. Nitric oxide and carbon monoxide synthesizing enzymes and soluble guanylyl cyclase within neurons of adult human cardiac ganglia. Auton Neurosci 2009; 145:93-8. [DOI: 10.1016/j.autneu.2008.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 11/05/2008] [Accepted: 11/10/2008] [Indexed: 11/12/2022]
|
26
|
Hardwick JC, Southerland EM, Ardell JL. Chronic myocardial infarction induces phenotypic and functional remodeling in the guinea pig cardiac plexus. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1926-33. [PMID: 18832084 DOI: 10.1152/ajpregu.90306.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic myocardial infarction (CMI) is associated with remodeling of the ventricle and evokes adaption in the cardiac neurohumoral control systems. To evaluate the remodeling of the intrinsic cardiac nervous system following myocardial infarction, the dorsal descending coronary artery was ligated in the guinea pig heart and the animals were allowed to recover for 7-9 wk. Thereafter, atrial neurons of the intrinsic cardiac plexus were isolated for electrophysiological and immunohistochemical analyses. Intracellular voltage recordings from intrinsic cardiac neurons demonstrated no significant changes in passive membrane properties or action potential configuration compared with age-matched controls and sham-operated animals. The intrinsic cardiac neurons from chronic infarcted hearts did demonstrate an increase in evoked action potential (AP) frequency (as determined by the number of APs produced with depolarizing stimuli) and an increase in responses to exogenously applied histamine compared with sham and age-matched controls. Conversely, pituitary adenylate cyclase-activating polypeptide (PACAP)-induced increases in intrinsic cardiac neuron-evoked AP frequency were similar between control and CMI animals. Immunohistochemical analysis demonstrated a threefold increase in percentage of neurons immunoreactive for neuronal nitric oxide synthase (NOS) in CMI animals compared with control and the additional expression of inducible NOS by some neurons, which was not evident in control animals. Finally, the density of mast cells within the intrinsic cardiac plexus was increased threefold in preparations from CMI animals. These results indicate that CMI induces a differential remodeling of intrinsic cardiac neurons and functional upregulation of neuronal responsiveness to specific neuromodulators.
Collapse
Affiliation(s)
- Jean C Hardwick
- Department of Biology, Ithaca College, Ithaca, NY 14850, USA.
| | | | | |
Collapse
|
27
|
Hoard JL, Hoover DB, Mabe AM, Blakely RD, Feng N, Paolocci N. Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75. Neuroscience 2008; 156:129-42. [PMID: 18674600 DOI: 10.1016/j.neuroscience.2008.06.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/05/2008] [Accepted: 06/28/2008] [Indexed: 11/20/2022]
Abstract
Half of the cholinergic neurons of human and primate intrinsic cardiac ganglia (ICG) have a dual cholinergic/noradrenergic phenotype. Likewise, a large subpopulation of cholinergic neurons of the mouse heart expresses enzymes needed for synthesis of norepinephrine (NE), but they lack the vesicular monoamine transporter type 2 (VMAT2) required for catecholamine storage. In the present study, we determined the full scope of noradrenergic properties (i.e. synthetic enzymes and transporters) expressed by cholinergic neurons of mouse ICG, estimated the relative abundance of neurons expressing different elements of the noradrenergic phenotype, and evaluated the colocalization of cholinergic and noradrenergic markers in atrial nerve fibers. Stellate ganglia were used as a positive control for noradrenergic markers. Using fluorescence immunohistochemistry and confocal microscopy, we found that about 30% of cholinergic cell bodies contained tyrosine hydroxylase (TH), including the activated form that is phosphorylated at Ser-40 (pSer40 TH). Dopamine beta-hydroxylase (DBH) and norepinephrine transporter (NET) were present in all cholinergic somata, indicating a wider capability for dopamine metabolism and catecholamine uptake. Yet, cholinergic somata lacked VMAT2, precluding the potential for NE storage and vesicular release. In contrast to cholinergic somata, cardiac nerve fibers rarely showed colocalization of cholinergic and noradrenergic markers. Instead, these labels were closely apposed but clearly distinct from each other. Since cholinergic somata expressed several noradrenergic proteins, we questioned whether these neurons might also contain trophic factor receptors typical of noradrenergic neurons. Indeed, we found that all cholinergic cell bodies of mouse ICG, like noradrenergic cell bodies of the stellate ganglia, contained both tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptors. Collectively, these findings demonstrate that mouse intrinsic cardiac neurons (ICNs), like those of humans, have a complex neurochemical phenotype that goes beyond the classical view of cardiac parasympathetic neurons. They also suggest that neurotrophins and local NE synthesis might have important effects on neurons of the mouse ICG.
Collapse
Affiliation(s)
- J L Hoard
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
28
|
Pan P, Guo Y, Gu J. Expression of cystic fibrosis transmembrane conductance regulator in ganglion cells of the hearts. Neurosci Lett 2008; 441:35-8. [PMID: 18584958 DOI: 10.1016/j.neulet.2008.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/25/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) as an important chloride-selective channel is known to distribute on the apical membrane of chloride-secreting epithelial cells. However, CFTR is also reported to express in the neurons of human and rat brain. In this study we aim to investigate the expression of CFTR in ganglion cells of the hearts. We used immunohistochemistry, in situ hybridization, laser microdissection (LMD) and nested reverse transcriptase polymerase chain reaction (nested RT-PCR) to detect CFTR in the ganglion cells of the Sprague-Dawley rat hearts and found widespread and abundant the expression of CFTR protein and its mRNA in the ganglion cells of the rat hearts. The presence of CFTR in ganglia does not only provide a possible explanation for cardiovascular symptoms of cystic fibrosis patients but also may lead to a better understanding of a possible role for CFTR in the neuronal regulation of the heart.
Collapse
Affiliation(s)
- Peng Pan
- Department of Pathology, School of Basic Medical Sciences, Beijing University Health Science Center, Beijing, China
| | | | | |
Collapse
|
29
|
Hancock JC, Hoover DB. Capsaicin-evoked bradycardia in anesthetized guinea pigs is mediated by endogenous tachykinins. ACTA ACUST UNITED AC 2008; 147:19-24. [DOI: 10.1016/j.regpep.2007.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/12/2007] [Accepted: 12/09/2007] [Indexed: 10/22/2022]
|
30
|
Hoard JL, Hoover DB, Wondergem R. Phenotypic properties of adult mouse intrinsic cardiac neurons maintained in culture. Am J Physiol Cell Physiol 2007; 293:C1875-83. [PMID: 17913847 DOI: 10.1152/ajpcell.00113.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrinsic cardiac neurons are core elements of a complex neural network that serves as an important integrative center for regulation of cardiac function. Although mouse models are used frequently in cardiovascular research, very little is known about mouse intrinsic cardiac neurons. Accordingly, we have dissociated neurons from adult mouse heart, maintained these cells in culture, and defined their basic phenotypic properties. Neurons in culture were primarily unipolar, and 89% had prominent neurite outgrowth after 3 days (longest neurite length of 258 ± 20 μm, n = 140). Many neurites formed close appositions with other neurons and nonneuronal cells. Neurite outgrowth was drastically reduced when neurons were kept in culture with a majority of nonneural cells eliminated. This finding suggests that nonneuronal cells release molecules that support neurite outgrowth. All neurons in coculture showed immunoreactivity for a full complement of cholinergic markers, but about 21% also stained for tyrosine hydroxylase, as observed previously in sections of intrinsic cardiac ganglia from mice and humans. Whole cell patch-clamp recordings demonstrated that these neurons have voltage-activated sodium current that is blocked by tetrodotoxin and that neurons exhibit phasic or accommodating patterns of action potential firing during a depolarizing current pulse. Several neurons exhibited a fast inward current mediated by nicotinic ACh receptors. Collectively, this work shows that neurons from adult mouse heart can be maintained in culture and exhibit appropriate phenotypic properties. Accordingly, these cultures provide a viable model for evaluating the physiology, pharmacology, and trophic factor sensitivity of adult mouse cardiac parasympathetic neurons.
Collapse
Affiliation(s)
- Jennifer L Hoard
- Department of Physiology, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | | | | |
Collapse
|
31
|
Abstract
It is hypothesized that the heart possesses a nervous system intrinsic to it that represents the final relay station for the co-ordination of regional cardiac indices. This 'little brain' on the heart is comprised of spatially distributed sensory (afferent), interconnecting (local circuit) and motor (adrenergic and cholinergic efferent) neurones that communicate with others in intrathoracic extracardiac ganglia, all under the tonic influence of central neuronal command and circulating catecholamines. Neurones residing from the level of the heart to the insular cortex form temporally dependent reflexes that control overlapping, spatially determined cardiac indices. The emergent properties that most of its components display depend primarily on sensory transduction of the cardiovascular milieu. It is further hypothesized that the stochastic nature of such neuronal interactions represents a stabilizing feature that matches cardiac output to normal corporal blood flow demands. Thus, with regard to cardiac disease states, one must consider not only cardiac myocyte dysfunction but also the fact that components within this neuroaxis may interact abnormally to alter myocyte function. This review emphasizes the stochastic behaviour displayed by most peripheral cardiac neurones, which appears to be a consequence of their predominant cardiac chemosensory inputs, as well as their complex functional interconnectivity. Despite our limited understanding of the whole, current data indicate that the emergent properties displayed by most neurones comprising the cardiac neuroaxis will have to be taken into consideration when contemplating the targeting of its individual components if predictable, long-term therapeutic benefits are to accrue.
Collapse
Affiliation(s)
- J A Armour
- Hôpital du Sacré-Coeur de Montréal, Research Center, 5400 Gouin Boulevard West, Montreal, QC H4J 1C5, Canada.
| |
Collapse
|
32
|
Ai J, Gozal D, Li L, Wead WB, Chapleau MW, Wurster R, Yang B, Li H, Liu R, Cheng Z. Degeneration of vagal efferent axons and terminals in cardiac ganglia of aged rats. J Comp Neurol 2007; 504:74-88. [PMID: 17614301 DOI: 10.1002/cne.21431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Baroreflex control of the heart rate is significantly reduced during aging. However, neural mechanisms that underlie such a functional reduction are not fully understood. We injected the tracer DiI into the left nucleus ambiguus (NA), then used confocal microscopy and a Neurolucida Digitization System to examine qualitatively and quantitatively vagal efferent projections to cardiac ganglia of young adult (5-6 months) and aged (24-25 months) rats (Sprague Dawley). Fluoro-Gold was injected intraperitoneally to counterstain cardiac ganglionic principal neurons (PNs). In aged, as in young rats, NA axons projected to all cardiac ganglia and formed numerous basket endings around PNs in the hearts. However, significant structural changes were found in aged rats compared with young rats. Vagal efferent axons contained abnormally swollen axonal segments and exhibited reduced or even absent synaptic-like terminals around PNs, such that the numbers of vagal fibers and basket endings around PNs were substantially reduced (P < 0.01). Furthermore, synaptic-like varicose contacts of vagal cardiac axons with PNs were significantly reduced by approximately 50% (P < 0.01). These findings suggest that vagal efferents continue to maintain homeostatic control over the heart during aging. However, the marked morphological reorganization of vagal efferent axons and terminals in cardiac ganglia may represent the structural substrate for reduced vagal control of the heart rate and attenuated baroreflex function during aging.
Collapse
Affiliation(s)
- Jing Ai
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yasuhara O, Matsuo A, Bellier JP, Aimi Y. Demonstration of Choline Acetyltransferase of a Peripheral Type in the Rat Heart. J Histochem Cytochem 2006; 55:287-99. [PMID: 17142806 DOI: 10.1369/jhc.6a7092.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic innervation of the heart has been analyzed using cholinergic markers including acetylcholinesterase, choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). In the present study we demonstrate putative cholinergic nerves in the rat heart using an antibody to ChAT of a peripheral type (pChAT), which is the product of a splice variant of ChAT mRNA and preferentially localized to peripheral cholinergic nerves. Expression of mRNAs for pChAT and the conventional form of ChAT (cChAT) were verified in the rat atrium by RT-PCR. Localization of both protein products in the atrium was confirmed by Western blotting. Virtually all neurons and small intensely fluorescent cells in the intrinsic cardiac ganglia were stained immunohistochemically for pChAT. The density of pChAT-positive fibers was very high in the conducting system, high in both atria, the right atrium in particular, and low in the ventricular walls. pChAT and VAChT immunoreactivities were closely associated in some fibers and fiber bundles in the ventricular walls. These results indicate that intrinsic cardiac neurons homogeneously express both pChAT and cChAT. Furthermore, innervation of the ventricular walls by pChAT- and VAChT-positive fibers provides morphological evidence for a significant role of cholinergic mechanisms in ventricular functions.
Collapse
Affiliation(s)
- Osamu Yasuhara
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | | | | | | |
Collapse
|
34
|
Richardson RJ, Grkovic I, Allen AM, Anderson CR. Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart. Cell Tissue Res 2006; 324:9-16. [PMID: 16418838 DOI: 10.1007/s00441-005-0105-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 10/25/2005] [Indexed: 11/26/2022]
Abstract
The sympathetic innervation of the rat heart was investigated by retrograde neuronal tracing and multiple label immunohistochemistry. Injections of Fast Blue made into the left ventricular wall labelled sympathetic neurons that were located along the medial border of both the left and right stellate ganglia. Cardiac projecting sympathetic postganglionic neurons could be grouped into one of four neurochemical populations, characterised by their content of calbindin and/or neuropeptide Y (NPY). The subpopulations of neurons contained immunoreactivity to both calbindin and NPY, immunoreactivity to calbindin only, immunoreactivity to NPY only and no immunoreactivity to calbindin or NPY. Sympathetic postganglionic neurons were also labelled in vitro with rhodamine dextran applied to the cut end of a cardiac nerve. The same neurochemical subpopulations of sympathetic neurons were identified by using this technique but in different proportions to those labelled from the left ventricle. Preganglionic terminals that were immunoreactive for another calcium-binding protein, calretinin, preferentially surrounded retrogradely labelled neurons that were immunoreactive for both calbindin and NPY. The separate sympathetic pathways projecting to the rat heart may control different cardiac functions.
Collapse
Affiliation(s)
- R J Richardson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
35
|
Hardwick JC, Kotarski AF, Powers MJ. Ionic mechanisms of histamine-induced responses in guinea pig intracardiac neurons. Am J Physiol Regul Integr Comp Physiol 2006; 290:R241-50. [PMID: 16166202 DOI: 10.1152/ajpregu.00498.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine, released from mast cells, can modulate the activity of intrinsic neurons in the guinea pig cardiac plexus. The present study examined the ionic mechanisms underlying the histamine-induced responses in these cells. Histamine evokes a small membrane depolarization and an increase in neuronal excitability. Using intracellular voltage recording from individual intracardiac neurons, we were able to demonstrate that removal of extracellular sodium reduced the membrane depolarization, whereas inhibition of K+ channels by 1 mM Ba2+, 2 mM Cs+, or 5 mM tetraethylammonium had no effect. The depolarization was also not inhibited by either 10 μM Gd3+ or a reduced Cl− solution. The histamine-induced increase in excitability was unaffected by K+ channel inhibitors; however, it was reduced by either blockage of voltage-gated Ca2+ channels with 200 μM Cd2+ or replacement of extracellular Ca2+ with Mg2+. Conversely, alterations in intracellular calcium with thapsigargin or caffeine did not inhibit the histamine-induced effects. However, in cells treated with both thapsigargin and caffeine to deplete internal calcium stores, the histamine-induced increase in excitability was decreased. Treatment with the phospholipase C inhibitor U73122 also prevented both the depolarization and the increase in excitability. From these data, we conclude that histamine, via activation of H1 receptors, activates phospholipase C, which results in 1) the opening of a nonspecific cation channel, such as a transient receptor potential channel 4 or 5; and 2) in combination with either the influx of Ca2+ through voltage-gated channels or the release of internal calcium stores leads to an increase in excitability.
Collapse
|
36
|
Girard BM, Young BA, Buttolph TR, Locknar SA, White SL, Parsons RL. Trophic factor modulation of cocaine- and amphetamine-regulated transcript peptide expression in explant cultured guinea-pig cardiac neurons. Neuroscience 2006; 139:1329-41. [PMID: 16516394 DOI: 10.1016/j.neuroscience.2006.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 01/10/2006] [Accepted: 01/21/2006] [Indexed: 11/24/2022]
Abstract
The present study investigated the influence of trophic factors on the expression of cocaine- and amphetamine-regulated transcript peptide (CARTp) in guinea-pig cardiac ganglia maintained in explant culture. In acutely isolated cardiac ganglia preparations, <1% of the cholinergic cardiac neurons exhibited CARTp immunoreactivity. In contrast, this number increased to >25% of the cardiac neurons after 72 h in explant culture. This increase in the number of CARTp neurons in cultured cardiac ganglia explants was accompanied by an increase in CARTp transcript levels as assessed by real time polymerase chain reaction. Treatment of cardiac ganglia cultures with neurturin or glial-derived trophic factor (both at 10 ng/ml) for 72 h prevented the increase in neurons that exhibited CARTp immunoreactivity. In contrast, treatment with ciliary neurotrophic factor (50 ng/ml) for 72 h produced a small significant increase in the percentage of CARTp-immunoreactive cardiac neurons and treatment with nerve growth factor (100 ng/ml) had no effect. Neurturin treatment also decreased cardiac neuron CARTp levels after 72 h in explant culture. Cardiac neurons exhibited immunoreactivity to the neurturin receptor GFRalpha2 whereas non-neural cells preferentially exhibited immunoreactivity to the glial-derived neurotrophic factor receptor GFRalpha1 and neurturin transcripts were detected in cardiac tissue extracts. We hypothesize that a target-derived inhibitory factor, very likely neurturin, is a critical factor suppressing the expression of CARTp in guinea-pig cardiac neurons. These observations contrast with those reported in sympathetic neurons that suggest up-regulation of trophic factors after axotomy or during explant culture is a key factor contributing to the up-regulation of many neuropeptides.
Collapse
Affiliation(s)
- B M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
37
|
Richardson RJ, Grkovic I, Anderson CR. Cocaine- and amphetamine-related transcript peptide and somatostatin in rat intracardiac ganglia. Cell Tissue Res 2005; 324:17-24. [PMID: 16374620 DOI: 10.1007/s00441-005-0087-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 09/23/2005] [Indexed: 12/22/2022]
Abstract
The distribution of somatostatin and cocaine and amphetamine-regulated transcript (CART) was investigated in rat intracardiac ganglia. Somatostatin immunoreactivity was only present in nerve terminals, always colocalised with choline acetyltransferase immunoreactivity, surrounding approximately 10% of intracardiac neurons. Somatostatin-immunoreactive terminals particularly targeted intrinsic cardiac neurons that were immunoreactive for calbindin. Somatostatin was also present in sympathetic cholinergic neurons in the stellate ganglia, but could not be detected in neurons of the nucleus ambiguus and dorsal motor nucleus of the vagus in the brainstem. CART immunoreactivity was present in 46% of intracardiac neuronal somata, including those that expressed either NOS or calbindin immunoreactivity but was never present in terminals forming pericellular baskets around intracardiac neurons. CART immunoreactivity was absent from sympathetic cell bodies in the stellate ganglia, but was present in nerve terminals around sympathetic neurons. Based on the results of this study, additional chemical diversity was identified among elements of the rat cardiac nervous system that may define neural pathways of different function.
Collapse
Affiliation(s)
- Robert J Richardson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
38
|
Harrison TA, Perry KM, Hoover DB. Regional cardiac ganglia projections in the guinea pig heart studied by postmortem DiI tracing. ACTA ACUST UNITED AC 2005; 285:758-70. [PMID: 15977223 DOI: 10.1002/ar.a.20213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our purpose was to identify and localize intrinsic cardiac ganglia innervating distinct regions of the heart using postmortem tracing of nerve projections with DiI, a method not previously used to study the intrinsic cardiac nervous system. We also investigated the possibility of collateral innervation of myocardium and intrinsic ganglia. In isolated paraformaldehyde-fixed guinea pig hearts, crystals of DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) were inserted into the posterior ventricular myocardium below the atrioventricular groove, the right atrium, or the left ventricular septum. Hearts were placed in the dark at 37 degrees C for 2-14 weeks to allow DiI diffusion within neuronal membranes. Labeled neurons were observed in intracardiac ganglia after at least 4 weeks of dye exposure. Labeling was restricted to the inferior-most ganglia (those near the atrioventricular groove) when DiI was inserted into the posterior ventricular myocardium and to ganglia near the sinus node after right atrial DiI placement. Application of DiI to the left ventricular septum resulted in neuron labeling in ganglia primarily in the interatrial septum near the atrioventricular node. After 8 weeks, DiI-labeled nerve fibers and varicosities were seen surrounding unlabeled neurons in some ganglia, suggesting that axons terminating in or passing through the DiI application site in posterior ventricular tissue had collateral branches innervating these ganglia. These results indicate that intrinsic innervation of major cardiac subdivisions is accomplished by regionally segregated cardiac ganglia. Also, tracing with DiI has provided evidence for collateral nerve projections that could be the substrate for novel intracardiac regulatory circuits.
Collapse
Affiliation(s)
- Theresa A Harrison
- Department of Anatomy and Cell Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | |
Collapse
|
39
|
Parsons RL, Locknar SA, Young BA, Hoard JL, Hoover DB. Presence and co-localization of vasoactive intestinal polypeptide with neuronal nitric oxide synthase in cells and nerve fibers within guinea pig intrinsic cardiac ganglia and cardiac tissue. Cell Tissue Res 2005; 323:197-209. [PMID: 16220273 DOI: 10.1007/s00441-005-0074-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 08/02/2005] [Indexed: 11/24/2022]
Abstract
The presence of vasoactive intestinal polypeptide (VIP) has been analyzed in fibers and neurons within the guinea pig intrinsic cardiac ganglia and in fibers innervating cardiac tissues. In whole-mount preparations, VIP-immunoreactive (IR) fibers were present in about 70% of the cardiac ganglia. VIP was co-localized with neuronal nitric oxide synthase (nNOS) in fibers innervating the intrinsic ganglia but was not present in fibers immunoreactive for pituitary adenylate cyclase-activating polypeptide, choline acetyltransferase (ChAT), tyrosine hydroxylase, or substance P. A small number of the intrinsic ChAT-IR cardiac ganglia neurons (approximately 3%) exhibited VIP immunoreactivity. These few VIP-IR cardiac neurons also exhibited nNOS immunoreactivity. After explant culture for 72 h, the intraganglionic VIP-IR fibers degenerated, indicating that they were axons of neurons located outside the heart. In cardiac tissue sections, VIP-IR fibers were present primarily in the atria and in perivascular connective tissue, with the overall abundance being low. VIP-IR fibers were notably sparse in the sinus node and conducting system and generally absent in the ventricular myocardium. Virtually all VIP-IR fibers in tissue sections exhibited immunoreactivity to nNOS. A few VIP-IR fibers, primarily those located within the atrial myocardium, were immunoreactive for both nNOS and ChAT indicating they were derived from intrinsic cardiac neurons. We suggest that, in the guinea pig, the majority of intraganglionic and cardiac tissue VIP-IR fibers originate outside of the heart. These extrinsic VIP-IR fibers are also immunoreactive for nNOS and therefore most likely are a component of the afferent fibers derived from the vagal sensory ganglia.
Collapse
Affiliation(s)
- Rodney L Parsons
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | |
Collapse
|
40
|
Batulevicius D, Pauziene N, Pauza DH. Architecture and age-related analysis of the neuronal number of the guinea pig intrinsic cardiac nerve plexus. Ann Anat 2005; 187:225-43. [PMID: 16130822 DOI: 10.1016/j.aanat.2005.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aims of the present study have been to determine the architecture of the guinea pig intrinsic cardiac nerve plexus (ICNP) and to test whether or not the heart of this species undergoes decrease in neuronal number with aging. Nine young (3-4 weeks of age) and nine adult (18-24 months of age) animals were examined employing histochemistry for acetylcholinesterase to reveal the ICNP in total hearts. The number of intracardiac neurons in seven animals was assessed via counting of the nerve cells both on total hearts and in serial sections of the atrial walls. The intracardiac neurons from adult guinea pigs were amassed within 329 +/- 15 ganglia. The hearts of young animals contained significantly fewer ganglia, only 211 +/- 27. In adult guinea pigs approximately 60% of the intracardiac neurons were distributed within ganglia of not more than 20 neurons, but the ganglia of such size accumulated only 45% of the neurons in young animals. The total number of the intracardiac neurons estimated per guinea pig heart was 2321 +/- 215, and this number did not differ significantly between young and adult animals. The nerves entering the guinea pig heart were found both in the arterial and venous part of the heart hilum. The nerves from the arterial part of the heart hilum proceeded into the ventricles, but the nerves from the venous part of the hilum formed a nerve plexus of the cardiac hilum located on the heart base. Within the guinea pig epicardium, intrinsic nerves divided into six routes and proceeded to separate atrial, ventricular and septal regions. In conclusion, findings of this study contradict the age-related decrease of the neuronal number in the guinea pig heart and illustrate the remarkable similarity in the architecture of the intracardiac nerve plexuses between guinea pig and rat.
Collapse
Affiliation(s)
- Darius Batulevicius
- Laboratory for Biophysics of Excitable Systems, Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | |
Collapse
|
41
|
Zhang L, Hancock JC, Hoover DB. Tachykinin Agonists Modulate Cholinergic Neurotransmission at Guinea-Pig Intracardiac Ganglia. J Pharmacol Sci 2005; 99:228-38. [PMID: 16258231 DOI: 10.1254/jphs.fp0050437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Effects of substance P (SP) and selective tachykinin agonists on neurotransmission at guinea-pig intracardiac ganglia were studied in vitro. Voltage responses of neurons to superfused tachykinins and nerve stimulation were measured using intracellular microelectrodes. Predominant effects of SP (1 microM) were to cause slow depolarization and enable synaptic transmission at low intensities of nerve stimulation. Augmented response to nerve stimulation occurred with 29 of 40 intracardiac neurons (approx. 73%). SP inhibited synaptic transmission at 23% of intracardiac neurons but also caused slow depolarization. Activation of NK(3) receptors with 100 nM [MePhe(7)]neurokinin B caused slow depolarization, enhanced the response of many intracardiac neurons to low intensity nerve stimulation or local application of acetylcholine, and triggered action potentials independent of other stimuli in 6 of 42 neurons. The NK(1) agonist [Sar(9),Met(O(2))(11)]SP had similar actions but was less effective and did not trigger action potentials independently. Neither selective agonist inhibited cholinergic neurotransmission. We conclude that SP can function as a positive or negative neuromodulator at intracardiac ganglion cells, which could be either efferent neurons or interneurons. Potentiation occurs primarily through NK(3) receptors and may enable neuronal responses with less preganglionic nerve activity. Inhibition of neurotransmission by SP is most likely explained by the known blocking action of this peptide at ganglionic nicotine receptors.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | | | | |
Collapse
|
42
|
Abstract
The cardiac neuronal hierarchy can be represented as a redundant control system made up of spatially distributed cell stations comprising afferent, efferent, and interconnecting neurons. Its peripheral and central neurons are in constant communication with one another such that, for the most part, it behaves as a stochastic control system. Neurons distributed throughout this hierarchy interconnect via specific linkages such that each neuronal cell station is involved in temporally dependent cardio-cardiac reflexes that control overlapping, spatially organized cardiac regions. Its function depends primarily, but not exclusively, on inputs arising from afferent neurons transducing the cardiovascular milieu to directly or indirectly (via interconnecting neurons) modify cardiac motor neurons coordinating regional cardiac behavior. As the function of the whole is greater than that of its individual parts, stable cardiac control occurs most of the time in the absence of direct cause and effect. During altered cardiac status, its redundancy normally represents a stabilizing feature. However, in the presence of regional myocardial ischemia, components within the intrinsic cardiac nervous system undergo pathological change. That, along with any consequent remodeling of the cardiac neuronal hierarchy, alters its spatially and temporally organized reflexes such that populations of neurons, acting in isolation, may destabilize efferent neuronal control of regional cardiac electrical and/or mechanical events.
Collapse
Affiliation(s)
- J Andrew Armour
- Department of Pharmacology, Faculty of Medicine, University of Montréal, Montreal, Québec, H3C 3J7 Canada.
| |
Collapse
|
43
|
Cheng Z, Zhang H, Guo SZ, Wurster R, Gozal D. Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence. Am J Physiol Regul Integr Comp Physiol 2004; 286:R625-33. [PMID: 14644755 DOI: 10.1152/ajpregu.00143.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous single-labeling experiments, we showed that neurons in the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DmnX) project to intrinsic cardiac ganglia. Neurons in these two motor nuclei differ significantly in the size of their projection fields, axon caliber, and endings in cardiac ganglia. These differences in NA and DmnX axon cardiac projections raise the question as to whether they target the same, distinct, or overlapping populations of cardiac principal neurons. To address this issue, we examined vagal terminals in cardiac ganglia and tracer injection sites in the brain stem using two different anterograde tracers {1,1′-dioleyl-3,3,3′,3′-tetramethylindocarbocyanine methanesulfonate and 4-[4-(dihexadecylamino)-styryl]- N-methylpyridinium iodide} and confocal microscopy in male Sprague-Dawley rats. We found that 1) NA and DmnX neurons innervate the same cardiac ganglia, but these axons target separate subpopulations of principal neurons and 2) axons arising from neurons in the NA and DmnX in the contralateral sides of the brain stem enter the cardiac ganglionic plexus through separate bundles and preferentially innervate principal neurons near their entry regions, providing topographic mapping of vagal motor neurons in left and right brain stem vagal nuclei. Because the NA and DmnX project to distinct populations of cardiac principal neurons, we propose that they may play different roles in controlling cardiac function.
Collapse
Affiliation(s)
- Zixi Cheng
- Department of Pediatrics, Kosai Children's Hospital Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
44
|
Braas KM, Rossignol TM, Girard BM, May V, Parsons RL. Pituitary adenylate cyclase activating polypeptide (PACAP) decreases neuronal somatostatin immunoreactivity in cultured guinea-pig parasympathetic cardiac ganglia. Neuroscience 2004; 126:335-46. [PMID: 15207351 DOI: 10.1016/j.neuroscience.2004.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 11/27/2022]
Abstract
Postganglionic parasympathetic neurons in guinea-pig cardiac ganglia exhibit choline acetyltransferase (ChAT)-immunoreactivity, and a large fraction (60%) of the ChAT-positive cardiac neurons co-express somatostatin-immunoreactivity. This co-expression remained when the cardiac ganglia explants were maintained in culture for 72 h (40% somatostatin-immunoreactive). The guinea-pig cardiac ganglia neurons express the high affinity pituitary adenylate cyclase activating polypeptide (PACAP)-selective PAC1 receptor, and treatment of the ganglia explants with 20 nM PACAP27 for 72 h to evaluate PACAP regulation of somatostatin expression revealed a dramatic 85% decrease in the number of somatostatin-IR neurons (6% somatostatin-IR neurons) compared with untreated control explant preparations. The decrease in percentage of somatostatin-IR neurons by PACAP27 was time- and concentration-dependent, and selective for PACAP27; PACAP38 and vasoactive intestinal polypeptide were less effective. PACAP6-38, a PACAP antagonist, eliminated the PACAP27-induced change in somatostatin positive neurons. The PACAP-mediated decrease in somatostatin-IR neurons was eliminated in calcium-deficient solutions and by the addition of nifedipine, indicating a requirement for calcium influx through L-type calcium channels. The addition of either the calmodulin inhibitor N-(4-aminobutyl)-1-naphthalenesulfonamide or the MEK inhibitor PD98059, also eliminated the PACAP27-induced decrease in somatostatin-IR cells. The PACAP27-mediated effect on somatostatin expression was not affected by inhibitors of protein kinase A or phospholipase C, but was reduced by the adenylyl cyclase inhibitor SQ22356, suggesting cAMP involvement. Semiquantitative and quantitative reverse transcription PCR prosomatostatin transcript measurements showed that cardiac ganglia prosomatostatin mRNA levels were not diminished by chronic PACAP27 exposure despite the dramatic decrement in somatostatin-expressing neurons. Neuronal peptide-IR content represents a balance between production and secretion. These results suggested that one of the primary effects of PACAP exposure may be enhanced levels of neuropeptide release that exceeded production levels, resulting in somatostatin depletion and a decrement in the number of identifiable somatostatin-expressing cardiac neurons.
Collapse
Affiliation(s)
- K M Braas
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
45
|
Batulevicius D, Pauziene N, Pauza DH. Topographic morphology and age-related analysis of the neuronal number of the rat intracardiac nerve plexus. Ann Anat 2003; 185:449-59. [PMID: 14575272 DOI: 10.1016/s0940-9602(03)80105-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study was designed to determine the three-dimensional organization of the rat intrinsic cardiac neural plexus (ICNP) and to ascertain whether the rat heart undergoes a decrease in neuronal number with aging as has been reported for other mammalian species, including human. Juvenile (3-4 weeks of age, n = 14) and adult (more than 2 months of age, n = 23) animals were examined using enzyme histochemistry for acetylcholinesterase in order to visualize the ICNP in total hearts. The number of intrinsic cardiac neurons was estimated by counting nerve cells in serial sections of the atrial pieces stained with cresyl fast violet. The total number of intrinsic cardiac neurons in old rats was 6576 +/- 317. The juvenile animals contained significantly fewer such neurons, only 5009 +/- 332. Approximately 70% of all intracardiac neurons were amassed within the heart hilum, while 30% of the neurons were distributed epicardially. Within the interatrial septum, only 11 +/- 11 neurons were identified in the juvenile and 6 +/- 4 neurons in old rats. Extrinsic nerves entered the rat heart in both the arterial and venous parts of the cardiac hilum. The nerves from the arterial part of the cardiac hilum extended directly to the ventricles but the nerves from the venous part of the hilum formed a particular nerve plexus of the cardiac hilum on the heart base. Within the rat epicardium, intrinsic nerves clustered into six routes by which they selectively projected to different atrial and/or ventricular regions. In conclusion, this study provides a detailed description of the three-dimensional organization of the rat ICNP and contradicts the decrease in neuronal number with aging in the rat heart.
Collapse
Affiliation(s)
- Darius Batulevicius
- Laboratory for Biophysics of Excitable Systems, Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | |
Collapse
|
46
|
Jelson GS, DeMasi GM, Sager KL, Hardwick JC. Modulation of guinea pig intrinsic cardiac neurons by prostaglandins. Am J Physiol Regul Integr Comp Physiol 2003; 285:R682-9. [PMID: 12791585 DOI: 10.1152/ajpregu.00123.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of cardiac mast cells has been shown to alter parasympathetic neuronal function via the activation of histamine receptors. The present study examined the ability of prostaglandins to alter the activity of guinea pig intracardiac neurons. Intracellular voltage recordings from whole mounts of the cardiac plexus showed that antigen-mediated mast cell degranulation produces an attenuation of the afterhyperpolarization (AHP), which was prevented by the phospholipase A2 inhibitor 5,8,11,14-eicosatetraynoic acid. Exogenous application of either PGD2 or PGE2 produced a biphasic change in the membrane potential and an inhibition of both AHP amplitude and duration. Examination of prostanoid receptors using bath perfusions (1 microM PGE2 and PGD2), specific agonists (BW245C, sulprostone, and butaprost), and antagonists (AH6809 and SC19220) found evidence for both the PGE2-specific EP2 and EP3 receptors, but not for EP1 or the PGD2-specific prostanoid (DP) receptors. Sulprostone was able to mimic the PGE2 responses in some cells, but not in all PGE2-sensitive cells. Butaprost was able to mimic the PG-induced hyperpolarization in some cells, but did not alter the AHP. Inhibition of specific potassium channels with either TEA, charybdotoxin, or apamin showed that neither TEA nor charybdotoxin could prevent the PGE2-induced AHP attenuation. Apamin alone inhibited AHP duration, with PGs having no further effect in these cells. These results demonstrate that guinea pig intracardiac neurons can be modulated by PG, most likely through either EP2, EP3, or potentially EP4 receptors, and this response is due, at least in part, to a reduction in small-conductance KCa currents.
Collapse
|
47
|
Slavíková J, Kuncová J, Reischig J, Dvoráková M. Catecholaminergic neurons in the rat intrinsic cardiac nervous system. Neurochem Res 2003; 28:593-8. [PMID: 12675149 DOI: 10.1023/a:1022837810357] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Immunoreactivities (IR) for catecholamine-synthesizing enzymes tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DbetaH), phenylethanolamine N-methyl transferase (PNMT), serotonin-synthesizing enzyme tryptophan hydroxylase, and neuropeptide Y were investigated in the intrinsic cardiac nervous system of 27-40-day-old rats using fluorescent immunohistochemistry. Individual neurons were identified by the general neuronal marker protein gene product 9.5. The presence of DbetaH and PNMT in the atrial specimens was verified using reverse transcriptase-polymerase chain reaction. Two types of catecholamine-handling intrinsic ganglion neurons were observed: small intensely fluorescent (SIF) cells and large-diameter neurons. SIF cells exhibited TH- and tryptophan hydroxylase-IR, but they were not positive for DbetaH. In contrast, large-diameter intrinsic TH-positive neurons, showing in majority also NPY-IR, displayed also DbetaH- and PNMT-IR, thus indicating the capacity for the synthesis of norepinephrine and epinephrine, respectively. In conclusion, the SIF cells are most probably dopaminergic and serotonergic neurons, whereas large-diameter intrinsic cells seem to represent a subpopulation of norepinephrine- and/or epinephrine-secreting neurons.
Collapse
Affiliation(s)
- Jana Slavíková
- Department of Physiology, Faculty of Medicine, Charles University, Lidická 1, 301 66 Plzen, Czech Republic.
| | | | | | | |
Collapse
|
48
|
Arora RC, Waldmann M, Hopkins DA, Armour JA. Porcine intrinsic cardiac ganglia. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:249-58. [PMID: 12552641 DOI: 10.1002/ar.a.10030] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gross, light, and electron microscopic anatomies of the porcine intrinsic cardiac nervous system were investigated in 26 pigs to facilitate functional studies in this model. Gross anatomy: Numerous ganglia and interconnecting nerves (ganglionated plexuses) were found to be concentrated in epicardial fat in five atrial and six ventricular regions. The five atrial ganglionated plexuses identified were (1) the ventral right atrial, (2) the right vena cava-right atrial, (3) the dorsal atrial, (4) the interatrial septal, and (5) the left superior vena cava-left atrial ones. Six ventricular ganglionated plexuses were identified in close proximity to the (1) roots of the aorta and pulmonary artery (craniomedial), extending along the left main coronary artery to the (2) ventral interventricular and (3) circumflex coronary arteries. (4) A ganglionated plexus was identified around the origin of the dorsal interventricular coronary artery, as well as the (5) right main and (6) right marginal coronary arteries. Isolated neurons were identified scattered throughout the cranial interventricular septum. Microscopic anatomy: Approximately 3,000 neuronal somata were estimated to compose this intrinsic cardiac nervous system. Some ganglia contained more than 100 neurons. Neuronal somata had dimensions of roughly 33.1 (short axis) by 46.3 (long axis) microm. Most were multipolar, a small population of unipolar neurons being identified in atrial and ventricular tissues. At the electron microscopic level, asymmetrical axodendritic synapses with small clear, round vesicles were identified, some containing large dense-cored vesicles. In summary, porcine intrinsic cardiac neurons are concentrated in 11 distinct atrial and ventricular ganglionated plexuses. These extensive plexuses, along with fewer scattered neurons, display varied neuronal morphology and synaptology that represent the anatomical substrate for complex information processing within the intrinsic cardiac component of the porcine cardiac neuronal hierarchy. These anatomical data provide a framework for physiological analyses of the porcine intrinsic cardiac nervous system.
Collapse
Affiliation(s)
- R C Arora
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
49
|
De Biasi M. Nicotinic mechanisms in the autonomic control of organ systems. JOURNAL OF NEUROBIOLOGY 2002; 53:568-79. [PMID: 12436421 DOI: 10.1002/neu.10145] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most visceral organs are under the control of the autonomic nervous system (ANS). Information on the state and function of these organs is constantly relayed to the central nervous system (CNS) by sensory afferent fibers. The CNS integrates the sensory inputs and sends neural commands back to the organ through the ANS. The autonomic ganglia are the final site for the integration of the message traveling from the CNS. Nicotinic acetylcholine receptors (nAChRs) are the main mediators of fast synaptic transmission in ganglia, and therefore, are key molecules for the processing of neural information in the ANS. This review focuses on the role of nAChRs in the control of organ systems such as heart, gut, and bladder. The autonomic control of these organ systems is discussed in the light of the results obtained from the analysis of mice carrying mutations targeted to nAChR subunits expressed in the ANS.
Collapse
Affiliation(s)
- Mariella De Biasi
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
50
|
Canning BJ, Reynolds SM, Anukwu LU, Kajekar R, Myers AC. Endogenous neurokinins facilitate synaptic transmission in guinea pig airway parasympathetic ganglia. Am J Physiol Regul Integr Comp Physiol 2002; 283:R320-30. [PMID: 12121843 DOI: 10.1152/ajpregu.00001.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurokinin-containing nerve fibers were localized to guinea pig airway parasympathetic ganglia in control tissues but not in tissues pretreated with capsaicin. The purpose of the present study was to determine whether neurokinins, released during axonal reflexes or after antidromic afferent nerve stimulation, modulate ganglionic synaptic neurotransmission. The neurokinin type 3 (NK(3)) receptor antagonists SB-223412 and SR-142801 inhibited vagally mediated cholinergic contractions of bronchi in vitro at stimulation voltages threshold for preganglionic nerve activation but had no effect on vagally mediated contractions evoked at optimal voltage or field stimulation-induced contractions. Intracellular recordings from the ganglia neurons revealed that capsaicin-sensitive nerve stimulation potentiated subsequent preganglionic nerve-evoked fast excitatory postsynaptic potentials. This effect was mimicked by the NK(3) receptor agonist senktide analog and blocked by SB-223412. In situ, senktide analog markedly increased baseline tracheal cholinergic tone, an effect that was reversed by atropine and prevented by vagotomy or SB-223412. Comparable effects of intravenous senktide analog on pulmonary insufflation pressure were observed. These data highlight the important integrative role played by parasympathetic ganglia and indicate that activation of NK(3) receptors in airway ganglia by endogenous neurokinins facilitates synaptic neurotransmission.
Collapse
Affiliation(s)
- Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|