1
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
2
|
Hernandes MS, Britto LRG. Inflammatory responses in the rat superior colliculus after eye enucleation. Brain Res Bull 2013; 101:1-6. [PMID: 24333190 DOI: 10.1016/j.brainresbull.2013.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
Ocular enucleation induces profound morphological alterations in central visual areas. However, little is known about the response of glial cells and possible inflammatory processes in visual brain areas resulting from eye enucleation. In this study, immunoblotting and immunostaining assays revealed increased expression of astrocyte and microglia markers in the rat superior colliculus (SC) between 1 and 15 days after contralateral enucleation. A transient increase of neuronal COX-2 protein expression was also found in the SC. To evaluate the role of an anti-inflammatory drug in attenuating both COX-2 and glial cell activation, the synthetic glucocorticoid dexamethasone (DEX) was administered (1 mg/kg i.p., for 3 days) to enucleated rats. Immunoblotting data revealed that DEX treatment significantly inhibited COX-2 protein expression. Postlesion immunostaining for astrocyte and microglia markers was also significantly reduced by DEX treatment. These findings suggest that the removal of retinal ganglion cell input generates inflammatory responses in central retinorecipient structures.
Collapse
Affiliation(s)
- Marina S Hernandes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, USP, SP, Brazil.
| | - Luiz R G Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, USP, SP, Brazil
| |
Collapse
|
3
|
Hernandes MS, Lima LS, Scavone C, Lopes LR, Britto LRG. Eye enucleation activates the transcription nuclear factor kappa-B in the rat superior colliculus. Neurosci Lett 2012; 521:104-8. [PMID: 22634628 DOI: 10.1016/j.neulet.2012.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022]
Abstract
Ocular enucleation produces significant morphological and physiological changes in central visual areas. However, our knowledge of the molecular events resulting from eye enucleation in visual brain areas remains elusive. We characterized here the transcription nuclear factor kappa-B (NF-κB) activation induced by ocular enucleation in the rat superior colliculus (SC). We also tested the effectiveness of the synthetic glucocorticoid dexamethasone in inhibiting its activation. Electrophoretic mobility shift assays to detect NF-κB indicated that this transcription factor is activated in the SC from 1h to day 15 postlesion. The expression of p65 and p50 proteins in the nuclear extracts was also increased. Dexamethasone treatment was able to significantly inhibit NF-κB activation. These findings suggest that this transcriptional factor is importantly involved in the visual system short-term processes that ensue after retinal lesions in the adult brain.
Collapse
Affiliation(s)
- Marina S Hernandes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, USP, SP, Brazil.
| | | | | | | | | |
Collapse
|
4
|
Bissig D, Berkowitz BA. Same-session functional assessment of rat retina and brain with manganese-enhanced MRI. Neuroimage 2011; 58:749-60. [PMID: 21749922 DOI: 10.1016/j.neuroimage.2011.06.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 06/24/2011] [Indexed: 11/27/2022] Open
Abstract
Manganese-enhanced MRI (MEMRI) is a powerful non-invasive approach for objectively measuring either retina or binocular visual brain activity in vivo. In this study, we investigated the sensitivity of MEMRI to monocular stimulation using a new protocol for providing within-subject functional comparisons in the retina and brain in the same scanning session. Adult Sprague Dawley or Long-Evans rats had one eye covered with an opaque patch. After intraperitoneal Mn(2+) administration on the following day, rats underwent visual stimulation for 8h. Animals were then anesthetized, and the brain and each eye examined by MEMRI. Function was assessed through pairwise comparisons of the patched (dark-adapted) versus unpatched (light-exposed) eyes, and of differentially-stimulated brain structures - the dorsal lateral geniculate nucleus, superior colliculus, and visual cortical regions - contralateral to the patched versus unpatched eye. As expected, Mn(2+) uptake was greater in the outer retina of dark-adapted, relative to light-exposed, eyes (P<0.05). Contralateral to the unpatched eye, significantly more Mn(2+) uptake was found throughout the visual brain regions than in the corresponding structures contralateral to the patched eye (P<0.05). Notably, this regional pattern of activity corresponded well to previous work with monocular stimulation. No stimulation-dependent differences in Mn(2+) uptake were observed in negative control brain regions (P>0.05). Post-hoc assessment of functional data by animal age and strain revealed no significant effects. These results demonstrate, for the first time, the acquisition of functional MRI data from the eye and visual brain regions in a single scanning session.
Collapse
Affiliation(s)
- David Bissig
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
5
|
Balaram P, Takahata T, Kaas JH. VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti). Eye Brain 2011; 2011:5-15. [PMID: 22984342 DOI: 10.2147/eb.s16998] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vesicular glutamate transporters (VGLUTs) control the storage and presynaptic release of glutamate in the central nervous system, and are involved in the majority of glutamatergic transmission in the brain. Two VGLUT isoforms, VGLUT1 and VGLUT2, are known to characterize complementary distributions of glutamatergic neurons in the rodent brain, which suggests that they are each responsible for unique circuits of excitatory transmission. In rodents, VGLUT2 is primarily utilized in thalamocortical circuits, and is strongly expressed in the primary sensory nuclei, including all areas of the visual thalamus. The distribution of VGLUT2 in the visual thalamus and midbrain has yet to be characterized in primate species. Thus, the present study describes the expression of VGLUT2 mRNA and protein across the visual thalamus and superior colliculus of prosimian galagos to provide a better understanding of glutamatergic transmission in the primate brain. VGLUT2 is strongly expressed in all six layers of the dorsal lateral geniculate nucleus, and much less so in the intralaminar zones, which correspond to retinal and superior collicular inputs, respectively. The parvocellular and magnocellular layers expressed VGLUT2 mRNA more densely than the koniocellular layers. A patchy distribution of VGLUT2 positive terminals in the pulvinar complex possibly reflects inputs from the superior colliculus. The upper superficial granular layers of the superior colliculus, with inputs from the retina, most densely expressed VGLUT2 protein, while the lower superficial granular layers, with projections to the pulvinar, most densely expressed VGLUT2 mRNA. The results are consistent with the conclusion that retinal and superior colliculus projections to the thalamus depend highly on the VGLUT2 transporter, as do cortical projections from the magnocellular and parvocellular layers of the lateral geniculate nucleus and neurons of the pulvinar complex.
Collapse
Affiliation(s)
- Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
6
|
Synaptic circuitry in the retinorecipient layers of the optic tectum of the lamprey (Lampetra fluviatilis). A combined hodological, GABA and glutamate immunocytochemical study. Brain Struct Funct 2009; 213:395-422. [PMID: 19252925 DOI: 10.1007/s00429-009-0205-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
The ultrastructure of the retinorecipient layers of the lamprey optic tectum was analysed using tract tracing techniques combined with GABA and glutamate immunocytochemistry. Two types of neurons were identified; a population of large GABA-immunonegative cells, and a population of smaller, highly GABA-immunoreactive interneurons, some of whose dendrites contain synaptic vesicles (DCSV). Five types of axon terminals were identified and divided into two major categories. The first of these are GABA-immunonegative, highly glutamate-immunoreactive, contain round synaptic vesicles, make asymmetrical synaptic contacts, and can in turn be divided into AT1 and AT2 terminals. The AT1 terminals are those of the retinotectal projection. The origin of the nonretinal AT2 terminals could not be determined. AT1 and AT2 terminals establish synaptic contacts with DCSV, with dendrites of the retinopetal neurons (DRN), and with conventional dendritic (D) profiles. The terminals of the second category are GABA-immunoreactive and can similarly be divided into AT3 and AT4 terminals. The AT3 terminals contain pleiomorphic synaptic vesicles and make symmetrical synaptic contacts for the most part with glutamate-immunoreactive D profiles. The AT4 terminals contain rounded synaptic vesicles and make asymmetrical synaptic contacts with DRN, with DCSV, and with D profiles. A fifth, rarely observed category of terminals (AT5) contain both clear synaptic vesicles and a large number of dense-core vesicles. Synaptic triads involving AT1, AT2 or AT4 terminals are rare. Our findings are compared to these of previous studies of the fine structure and immunochemical properties of the retinorecipient layers of the optic tectum or superior colliculus of Gnathostomes.
Collapse
|
7
|
Bissig D, Berkowitz BA. Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats. Neuroimage 2008; 44:627-35. [PMID: 19015035 DOI: 10.1016/j.neuroimage.2008.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/08/2008] [Accepted: 10/12/2008] [Indexed: 10/21/2022] Open
Abstract
Cortical responses to visual stimulation have been studied extensively in the rodent, but often require post-stimulation ex vivo examination of the tissue. Here, we test the hypothesis that visual stimulus-dependent cortical activity from awake and free-moving rats can be encoded following systemically administered MnCl(2), and activity subsequently readout using manganese-enhanced MRI (MEMRI), a technique that can be performed without sacrificing the animal. Unanesthetized Sprague-Dawley rats, with or without systemic injection of MnCl(2), were maintained for 8 h in either a visually stimulating environment or darkness. To identify vision-dependent changes in cortical activity, animals were anesthetized and cortices were examined by 3D RARE MEMRI. Mean signal intensities in sub-cortical regions (e.g., superior colliculus and the lateral geniculate), and cortical regions (primary and accessory visual cortices) were compared. Cortex linearization was performed to aid in layer-specific signal intensity comparisons. Manganese administration alone globally increased signal intensity in the brain (P<0.0001). In visually stimulated and unstimulated rats, layer-specific analysis revealed that stimulated rats had on average significantly (P<0.05) higher signal intensities in layers IV and V of the primary visual cortex, as well as in deeper portions of the superficial superior colliculus, relative to dark adapted rats. Such differences went undetected without layer-specific analysis. We demonstrate, for the first time, the feasibility of layer-specific stimulus-dependant non-invasive MEMRI readout after encoding activity in awake and free moving rats. Future MEMRI studies are envisioned that measure the effects on cortical activity of sensory stimulation, as well as normal development, disease, plasticity, and therapy in longitudinal studies.
Collapse
Affiliation(s)
- David Bissig
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
8
|
Puente N, Hermida D, Azkue JJ, Bilbao A, Elezgarai I, Díez J, Kuhn R, Doñate-Oliver F, Grandes P. Immunoreactivity for the group III receptor subtype mGluR4a in the visual layers of the rat superior colliculus. Neuroscience 2005; 131:627-33. [PMID: 15730868 DOI: 10.1016/j.neuroscience.2004.06.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2004] [Indexed: 11/25/2022]
Abstract
Several studies indicate that metabotropic glutamate receptors (mGluRs) participate in the transmission of visual stimuli in optic layers of the superior colliculus (SC). We examined the cellular and subcellular distribution of the group III mGluR4a in superficial layers of the rat SC by means of a specific antiserum and a preembedding immunogold method for electron microscopy. Deposits of mGluR4a immunoparticles were mostly observed on presynaptic membranes of large synaptic terminals, which made asymmetrical synapses and contained abundant spherical, clear synaptic vesicles and numerous electron translucent mitochondria. These characteristic ultrastructural features correspond to retinocollicular synaptic terminals. Also, chains of synaptic retinal terminals along dendrites were labeled for mGluR4a. About 70% of morphologically identified retinal terminals were mGluR4a immunopositive. Furthermore, mGluR4a immunoreactivity in SC greatly disappeared following retinal ablation. About 28% of cortical terminals identified by anterograde tracing showed mGluR4a labeling, whereas only 2% of collicular GABAergic profiles were labeled for mGluR4a. These results reveal that retinal terminals are the major contributors to the mGluR4a immunoreactivity observed in the superior collicular circuitry.
Collapse
Affiliation(s)
- N Puente
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, 699-48080 Bilbao, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vugler AA, Coffey PJ. Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat. Exp Neurol 2003; 184:464-78. [PMID: 14637116 DOI: 10.1016/s0014-4886(03)00267-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P < 0.02). In dystrophic animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.
Collapse
Affiliation(s)
- Anthony A Vugler
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL, London, UK.
| | | |
Collapse
|
10
|
Demonstration of cholinergic ganglion cells in rat retina: expression of an alternative splice variant of choline acetyltransferase. J Neurosci 2003. [PMID: 12684474 DOI: 10.1523/jneurosci.23-07-02872.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine acts as a neurotransmitter in the retina. Although previous physiological studies have indicated that some retinal ganglion cells may be cholinergic, several immunohistochemical studies using antibodies to choline acetyltransferase (ChAT) have stained only amacrine cells but not ganglion cells. Recently, we identified a splice variant of ChAT mRNA, lacking exons 6-9, in rat peripheral nervous system. The encoded protein was designated as ChAT of a peripheral type (pChAT), against which an antiserum was raised. In the present study, we examined expression of pChAT in rat retina, both at the protein level by immunohistochemistry using the antiserum and at the mRNA level by RT-PCR. Immunohistochemistry revealed that although no positive neurons were found in untreated intact retinas, many neurons became immunoreactive for pChAT after intravitreal injection of colchicine. Damage of the optic nerve was also effective in disclosing positive cells. Such positive neurons were shown to be ganglion cells by double labeling with a retrograde tracer that had been injected into the contralateral superior colliculus. Western blot analysis and RT-PCR revealed a corresponding band to the pChAT protein and to the amplified pChAT gene fragment, respectively, in retinal samples. In addition, ChAT activity was definitely detected in retinofugal fibers of the optic nerve. These results indicate the presence of cholinergic ganglion cells in rat retina.
Collapse
|
11
|
Tan SS, Valcanis H, Kalloniatis M, Harvey A. Cellular dispersion patterns and phenotypes in the developing mouse superior colliculus. Dev Biol 2002; 241:117-31. [PMID: 11784099 DOI: 10.1006/dbio.2001.0505] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian superior colliculus is structurally and functionally divided into two entities: superficial visual and deep multimodal motor. To discover the role, if any, of developmental processes in establishing separate tectal compartments, we have used highly unbalanced mouse chimaeras to mark cell dispersion pathways and trace cell lineages. Two forms of cell dispersion were detected: radial and tangential. Neither radial nor tangential forms of cell dispersion were found to exist on their own in any group of labeled cells. Radial cell dispersion was the predominant form of cell movement from the germinal zones and primarily associated with the differentiation of glutamatergic neurons. In contrast, tangential cell dispersion involved a minority of tectal cells, concentrated chiefly in the superficial layers and often associated with the upper aspects of radial columns. More scattered cells expressed gamma-aminobutyric acid (GABA) compared to columnar cells. Taken together, these results indicate separate developmental constraints for the development of glutamatergic and GABAergic neurons in the superior colliculus.
Collapse
Affiliation(s)
- Seong-Seng Tan
- Brain Development Group, Howard Florey Institute, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
12
|
Broman J, Hassel B, Rinvik E, Ottersen O. Chapter 1 Biochemistry and anatomy of transmitter glutamate. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Dori IE, Dinopoulos A, Parnavelas JG. The development of the synaptic organization of the serotonergic system differs in brain areas with different functions. Exp Neurol 1998; 154:113-25. [PMID: 9875273 DOI: 10.1006/exnr.1998.6937] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The serotonergic innervation of the developing superior colliculus and ventrolateral nucleus of the thalamus of the rat were studied with light and electron microscope immunocytochemistry. We compared the pattern of innervation and synaptic organization of the serotonin (5-HT) system in the superficial and deep layers of the superior colliculus. We also compared the developmental pattern of synaptic incidence of 5-HT varicosities in the superior colliculus with that in the ventrolateral nucleus. Serotonin fibers were present in the superior colliculus at birth, concentrated mainly in the deep layers, whereas the superficial layers were only sparsely innervated. By the end of the first postnatal week the overall density of 5-HT fibers increased, but was still higher in the deep than in the superficial layers. The distribution pattern, density, and morphology of serotonergic axons acquired mature features by the end of the third postnatal week. In the adult, these axons were thin, varicose, forming a complex network which was denser in the lower part of the superficial layers and the upper part of the deep layers. Electron microscopical analysis revealed that the vast majority of 5-HT varicosities established symmetrical synapses with dendritic shafts in all layers of the superior colliculus throughout development. In the superficial layers, known to be involved in visual functions, the proportion of varicosities forming synapses increased gradually from birth to reach a peak at the end of the first postnatal week, then declined markedly in the subsequent 2 weeks before rising again at later stages. In contrast, in the deep layers and in the ventrolateral nucleus of the thalamus, areas involved in motor functions, the proportion of 5-HT varicosities engaged in synaptic contacts showed a continuous increase from birth until adulthood. Considering these results together with data from our previous studies, we speculate that the regional heterogeneity in the synaptic organization of the serotonergic system may reflect a differential role of 5-HT in the development of brain areas with different functions.
Collapse
Affiliation(s)
- I E Dori
- Department of Anatomy, School of Veterinary Medicine, University of Thessaloniki, Greece
| | | | | |
Collapse
|
14
|
Kenigfest N, Rep�rant J, Rio JP, Belekhova M, Ward R, Vesselkin N, Miceli D, Herbin M. Retinal and cortical afferents to the dorsal lateral geniculate nucleus of the turtle,Emys orbicularis: A combined axonal tracing, glutamate, and GABA immunocytochemical electron microscopic study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980222)391:4<470::aid-cne5>3.0.co;2-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Repérant J, Rio JP, Wasowicz M, Ward R, Miceli D. Differential glutamate immunoreactivity in glial cells of the retino-recipient layer of the viper optic tectum following retinal ablation. A quantitative EM immunogold study. Brain Res 1997; 761:321-8. [PMID: 9252032 DOI: 10.1016/s0006-8993(97)00393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In normal conditions, retino-tectal terminals are densely glutamate-immunoreactive. During the degenerative process of these terminals, a significant increase of glutamate immunoreactivity has been exclusively observed in microglial cells. It is suggested that this phenomenon is consecutive to the synthesis of glutamate by these cells after their activation by degenerating optic terminals.
Collapse
Affiliation(s)
- J Repérant
- INSERM U-106, Hôpital de la Salpêtrière, Bâtiment de Pédiatrie, Paris, France
| | | | | | | | | |
Collapse
|
16
|
Repérant J, Rio JP, Ward R, Wasowicz M, Miceli D, Medina M, Pierre J. Enrichment of glutamate-like immunoreactivity in the retinotectal terminals of the viper Vipera aspis: an electron microscope quantitative immunogold study. J Chem Neuroanat 1997; 12:267-80. [PMID: 9243346 DOI: 10.1016/s0891-0618(97)00018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A post-embedding immunogold study was carried out to estimate the immunoreactivity to glutamate in retinal terminals, P axon terminals and dendrites containing synaptic vesicles in the superficial layers of the optic tectum of Vipera. Retinal terminals, identified following either intraocular injection of tritiated proline, horseradish peroxidase (HRP) or short-term survivals after retinal ablation, were observed to be highly glutamate-immunoreactive. A detailed quantitative analysis showed that about 50% of glutamate immunoreactivity was localized over the synaptic vesicles, 35.8% over mitochondria and 14.2% over the axoplasmic matrix. The close association of immunoreactivity with the synaptic vesicles could indicate that Vipera retino-tectal terminals may use glutamate as their neurotransmitter. P axon terminals and dendrites containing synaptic vesicles, strongly gamma-aminobutyric (GABA)-immunoreactive, were shown to be also moderately glutamate-immunoreactive, but two to three times less than retinal terminals. Moreover, in P axon terminals, the glutamate immunoreactivity was denser over mitochondria than over synaptic vesicles, possibly reflecting the 'metabolic' pool of glutamate, which serves as a precursor in the formation of GABA.
Collapse
Affiliation(s)
- J Repérant
- INSERM U-106, Laboratoire de Neuromorphologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Grandes P, Mateos JM, Azkue J, Sarría R, Cuénod M, Streit P. Light microscopic comparison of the patterns of glutamate-like and homocysteate-like immunoreactivities in rat dorsal lateral geniculate after combined visual cortical and retinal ablations. Neurosci Res 1997; 27:377-80. [PMID: 9152050 DOI: 10.1016/s0168-0102(97)01162-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To study the contribution of retinal and cortical afferents to the patterns of glutamate- and homocysteate-like immunoreactivities in dorsal lateral geniculate, combined retinal and cortical ablations were performed in rats. In controls, glutamate immunoreactivity was in terminal-like dots and neurons. Homocysteate immunoreactivity was in small puncta. In lesioned animals, most glutamate-immunoreactive dots disappeared. In contrast, abundant puncta resembling parts of glial cells were immunoreactive for homocysteate.
Collapse
Affiliation(s)
- P Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Correa-Gillieron EM, Cavalcante LA. Asynchronous changes in size, number, and shape of synapses in the developing superior colliculus. Int J Dev Neurosci 1997; 15:61-6. [PMID: 9099617 DOI: 10.1016/s0736-5748(96)00083-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ultra-structural development of synapses in retino-receptive layers of the opossum superior colliculus was studied by the ethanolic phosphotungstic acid (E-PTA) method. There was a tendency for a slight reduction in the diameter of synaptic disks, a rise and fall of numerical densities and, except for an ephemeral period, a general increase in the proportion of "frown" among curve synapses. The lack of strict synchrony and the occurrence of different patterns of changes suggest that multiple factors contribute to synaptic maturation.
Collapse
Affiliation(s)
- E M Correa-Gillieron
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
19
|
Li X, Hallqvist A, Jacobson I, Orwar O, Sandberg M. Studies on the identity of the rat optic nerve transmitter. Brain Res 1996; 706:89-96. [PMID: 8720495 DOI: 10.1016/0006-8993(95)01185-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The possible role of glutamate, aspartate, sulfur-containing excitatory amino acids and gamma-glutamyl peptides as major transmitters in the rat optic nerve was evaluated. Four days following optic nerve lesion the K(+)-evoked Ca(2+)-dependent glutamate release was reduced to 31 +/- 16% (+/- S.D., n = 9) comparing release from slices of the denervated (contralateral to the lesion) and non-denervated (ipsilateral) superior colliculus, indicative of a major transmitter function for glutamate. However, significant decreases in glutamate release could not be detected seven days following the lesion (n = 5). Other studies have shown that optic nerve denervation induce formation of synapses of non-retinal origin and cause other cellular changes which may reduce the effect of deafferentation on glutamate release after 7 days. No significant change was observed in aspartate release following the lesion. The concentrations of cysteine sulfinate, cysteate, homocysteine sulfinate, homocysteate and O-sulfo-serine in the optic layers of the superior colliculus were below 1 nmol/g tissue (n = 6). Theoretical considerations indicate that this level is too low for a function of any of these as a major optic nerve transmitter. All postsynaptic components in the rat superior colliculus response, evoked by electrical optic nerve stimulation, were reduced by kynurenate (1-10 mM), a broad spectrum glutamate-receptor antagonist. The study gives further support for the view that glutamate is a major transmitter in the rat optic nerve.
Collapse
Affiliation(s)
- X Li
- Institute of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
20
|
Azkue J, Bidaurrazaga A, Mateos JM, Sarría R, Streit P, Grandes P. Glutamate-like immunoreactivity in synaptic terminals of the posterior cingulopontine pathway: a light and electron microscopic study in the rabbit. J Chem Neuroanat 1995; 9:261-9. [PMID: 8719275 DOI: 10.1016/0891-0618(95)00090-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A postembedding immunoperoxidase method for light microscopy was used to localize glutamate-like immunoreactivity in the rabbit basilar pontine nuclei. Labelled fibre bundles, neuronal cell bodies and numerous puncta of diverse size were heavily glutamate immunoreactive throughout all subdivisions of the pontine nuclei. To determine whether some of the glutamate-immunoreactive puncta were synaptic terminals of posterior cingulate cortical neurons, a double-labelling technique involving an anterograde tract-tracing method and a postembedding immunogold procedure for electron microscopy was used. A quantitative evaluation of gold particle densities revealed that anterogradely labelled cingulopontine synaptic terminals were about twice as immunoreactive as their postsynaptic dendrites, perikaryal and glial profiles and about three times more than symmetric synaptic terminals. The present results indicate that the posterior cingulopontine projection contains high levels of glutamate at its synaptic terminals. This observation provides further support to the role for glutamate as a neurotransmitter in the corticopontine pathway.
Collapse
Affiliation(s)
- J Azkue
- Department of Neurosciences, Basque Country University, Bilbao, Spain
| | | | | | | | | | | |
Collapse
|