1
|
Roos S, Dahlgren A, Mao Y, Pallin A, Stanisz AM, Forsythe P, Kunze W, Hellström PM. Therapeutic Value of Lactobacillus gasseri 345A in Chronic Constipation. Neurogastroenterol Motil 2025; 37:e70012. [PMID: 40033155 PMCID: PMC11996050 DOI: 10.1111/nmo.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/16/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Chronic constipation is a prevalent, burdensome gastrointestinal disorder whose etiology and pathophysiology remain poorly understood. Differences in the composition of the intestinal microbiota have been shown between constipated patients and healthy people. Data indicate that these microbial differences contribute to the disorder. METHODS Preclinical studies in mice examined the effects of Lactobacillus gasseri on intestinal motility ex vivo, the reversal of motility inhibition by μ-opioid receptor agonists ex vivo and in vivo in mice, and the effects on capsaicin-stimulated transient receptor potential vanilloid 1 (TRPV1) in Jurkat cells. Thereafter, a clinical study of 40 women with functional constipation was conducted to investigate the effects of Lactobacillus gasseri with a randomized parallel design. After 14 days of baseline recording, treatment with Lactobacillus gasseri or placebo was given over 28 days, with 14 days of follow-up. Outcomes with complete spontaneous bowel movements (CSBM), spontaneous bowel movements, emptying frequency, abdominal pain, time spent for defecation, Bristol stool form scale, use of rescue laxatives, and impact on sex life were investigated. KEY RESULTS In preclinical studies, Lactobacillus gasseri increased intestinal motility in an ex vivo model, reversed the motility inhibition caused by μ-opioid receptor agonist ex vivo and in vivo in mice, and counteracted capsaicin-stimulated activity of TRPV1 in Jurkat cells. In the clinical trial, Lactobacillus gasseri showed a significant reduction in abdominal pain, along with a correlation and tendency for an increased number of CSBM. Few adverse events were encountered. CONCLUSIONS AND INFERENCES Treatment with Lactobacillus gasseri can alleviate pain sensations in functional constipation, possibly with an improved bowel-emptying function.
Collapse
Affiliation(s)
- Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenterSwedish University of Agricultural SciencesUppsalaSweden
- BioGaia ABStockholmSweden
| | | | - Yu‐Kang Mao
- Brain‐Body InstituteMcMaster UniversityHamiltonOntarioCanada
| | - Anton Pallin
- Department of Molecular Sciences, Uppsala BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Paul Forsythe
- Brain‐Body InstituteMcMaster UniversityHamiltonOntarioCanada
| | - Wolfgang Kunze
- Brain‐Body InstituteMcMaster UniversityHamiltonOntarioCanada
- Department of PsychiatryMcMaster UniversityHamiltonOntarioCanada
| | | |
Collapse
|
2
|
Llorente C. The Imperative for Innovative Enteric Nervous System-Intestinal Organoid Co-Culture Models: Transforming GI Disease Modeling and Treatment. Cells 2024; 13:820. [PMID: 38786042 PMCID: PMC11119846 DOI: 10.3390/cells13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
Collapse
Affiliation(s)
- Cristina Llorente
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Cavin JB, Wongkrasant P, Glover JB, Balemba OB, MacNaughton WK, Sharkey KA. Intestinal distension orchestrates neuronal activity in the enteric nervous system of adult mice. J Physiol 2023; 601:1183-1206. [PMID: 36752210 PMCID: PMC10319177 DOI: 10.1113/jp284171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The enteric nervous system (ENS) regulates the motor, secretory and defensive functions of the gastrointestinal tract. Enteric neurons integrate mechanical and chemical inputs from the gut lumen to generate complex motor outputs. How intact enteric neural circuits respond to changes in the gut lumen is not well understood. We recorded intracellular calcium in live-cell confocal recordings in neurons from intact segments of mouse intestine in order to investigate neuronal response to luminal mechanical and chemical stimuli. Wnt1-, ChAT- and Calb1-GCaMP6 mice were used to record neurons from the jejunum and colon. We measured neuronal calcium response to KCl (75 mM), veratridine (10 μM), 1,1-dimethyl-4-phenylpiperazinium (DMPP; 100 μM) or luminal nutrients (Ensure®), in the presence or absence of intraluminal distension. In the jejunum and colon, distension generated by the presence of luminal content (chyme and faecal pellets, respectively) renders the underlying enteric circuit unresponsive to depolarizing stimuli. In the distal colon, high levels of distension inhibit neuronal response to KCl, while intermediate levels of distension reorganize Ca2+ response in circumferentially propagating slow waves. Mechanosensitive channel inhibition suppresses distension-induced Ca2+ elevations, and calcium-activated potassium channel inhibition restores neuronal response to KCl, but not DMPP in the distended colon. In the jejunum, distension prevents a previously unknown tetrodotoxin-resistant neuronal response to luminal nutrient stimulation. Our results demonstrate that intestinal distension regulates the excitability of ENS circuits via mechanosensitive channels. Physiological levels of distension locally silence or synchronize neurons, dynamically regulating the excitability of enteric neural circuits based on the content of the intestinal lumen. KEY POINTS: How the enteric nervous system of the gastrointestinal tract responds to luminal distension remains to be fully elucidated. Here it is shown that intestinal distension modifies intracellular calcium levels in the underlying enteric neuronal network, locally and reversibly silencing neurons in the distended regions. In the distal colon, luminal distension is integrated by specific mechanosensitive channels and coordinates the dynamics of neuronal activation within the enteric network. In the jejunum, distension suppresses the neuronal calcium responses induced by luminal nutrients. Physiological levels of distension dynamically regulate the excitability of enteric neuronal circuits.
Collapse
Affiliation(s)
- Jean-Baptiste Cavin
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Preedajit Wongkrasant
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Joel B Glover
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Live Cell Imaging Laboratory, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Onesmo B Balemba
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Kuehs S, Teege L, Hellberg AK, Stanke C, Haag N, Kurth I, Blum R, Nau C, Leipold E. Isolation and transfection of myenteric neurons from mice for patch-clamp applications. Front Mol Neurosci 2022; 15:1076187. [PMID: 36618826 PMCID: PMC9810798 DOI: 10.3389/fnmol.2022.1076187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The enteric nervous system (ENS) is a complex neuronal network organized in ganglionated plexuses that extend along the entire length of the gastrointestinal tract. Largely independent of the central nervous system, the ENS coordinates motility and peristalsis of the digestive tract, regulates secretion and absorption, and is involved in immunological processes. Electrophysiological methods such as the patch-clamp technique are particularly suitable to study the function of neurons as well as the biophysical parameters of the underlying ion channels under both physiological and pathophysiological conditions. However, application of the patch-clamp method to ENS neurons remained difficult because they are embedded in substantial tissue layers that limit access to and targeted manipulation of these cells. Here, we present a robust step-by-step protocol that involves isolation of ENS neurons from adult mice, culturing of the cells, their transfection with plasmid DNA, and subsequent electrophysiological characterization of individual neurons in current-clamp and voltage-clamp recordings. With this protocol, ENS neurons can be prepared, transfected, and electrophysiologically characterized within 72 h. Using isolated ENS neurons, we demonstrate the feasibility of the approach by functional overexpression of recombinant voltage-gated NaV1.9 mutant channels associated with hereditary sensory and autonomic neuropathy type 7 (HSAN-7), a disorder characterized by congenital analgesia and severe constipation that can require parenteral nutrition. Although our focus is on the electrophysiological evaluation of isolated ENS neurons, the presented methodology is also useful to analyze molecules other than sodium channels or to apply alternative downstream assays including calcium imaging, proteomic and nucleic acid approaches, or immunochemistry.
Collapse
Affiliation(s)
- Samuel Kuehs
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Laura Teege
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Hellberg
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christina Stanke
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany,Institute of Physiology, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Carla Nau
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany,*Correspondence: Enrico Leipold,
| |
Collapse
|
5
|
Spencer NJ, Hibberd T, Xie Z, Hu H. How should we define a nociceptor in the gut-brain axis? Front Neurosci 2022; 16:1096405. [PMID: 36601592 PMCID: PMC9806170 DOI: 10.3389/fnins.2022.1096405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In the past few years, there has been extraordinary interest in how the gut communicates with the brain. This is because substantial and gathering data has emerged to suggest that sensory nerve pathways between the gut and brain may contribute much more widely in heath and disease, than was originally presumed. In the skin, the different types of sensory nerve endings have been thoroughly characterized, including the morphology of different nerve endings and the sensory modalities they encode. This knowledge is lacking for most types of visceral afferents, particularly spinal afferents that innervate abdominal organs, like the gut. In fact, only recently have the nerve endings of spinal afferents in any visceral organ been identified. What is clear is that spinal afferents play the major role in pain perception from the gut to the brain. Perhaps surprisingly, the majority of spinal afferent nerve endings in the gut express the ion channel TRPV1, which is often considered to be a marker of "nociceptive" neurons. And, a majority of gut-projecting spinal afferent neurons expressing TRPV1 are activated at low thresholds, in the "normal" physiological range, well below the normal threshold for detection of painful sensations. This introduces a major conundrum regarding visceral nociception. How should we define a "nociceptor" in the gut? We discuss the notion that nociception from the gut wall maybe a process encrypted into multiple different morphological types of spinal afferent nerve ending, rather than a single class of sensory ending, like free-endings, suggested to underlie nociception in skin.
Collapse
Affiliation(s)
- Nick J. Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia,*Correspondence: Nick J. Spencer,
| | - Tim Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Guidetti C, Salvini E, Viri M, Deidda F, Amoruso A, Visciglia A, Drago L, Calgaro M, Vitulo N, Pane M, Caucino AC. Randomized Double-Blind Crossover Study for Evaluating a Probiotic Mixture on Gastrointestinal and Behavioral Symptoms of Autistic Children. J Clin Med 2022; 11:jcm11185263. [PMID: 36142909 PMCID: PMC9504504 DOI: 10.3390/jcm11185263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a diagnostic challenge with a still partially uncertain etiology, in which genetic and environmental factors have now been assessed. Among the hypotheses underlying the involvement of biological and environmental factors, the gut–brain axis is of particular interest in autism spectrum disorders. Several studies have highlighted the related incidence of particular gastrointestinal symptoms (GISs) in children suffering from ASDs. Probiotics have shown success in treating several gastrointestinal dysbiotic disorders; therefore, it is plausible to investigate whether they can alleviate behavioral symptoms as well. On these bases, a randomized double-blind crossover study with a placebo was conducted, evaluating the effects of a mixture of probiotics in a group of 61 subjects aged between 24 months and 16 years old with a diagnosis of ASD. Behavioral evaluation was performed through the administration of a questionnaire including a Parenting Stress Index (PSI) test and the Vineland Adaptive Behavior Scale (VABS). The Psycho-Educational Profile and the Autism Spectrum Rating Scale (ASRS) were also evaluated. Microbial composition analyses of fecal samples of the two groups was also performed. The study showed significant improvements in GISs, communication skills, maladaptive behaviors, and perceived parental stress level after the administration of probiotics. Microbiome alpha diversity was comparable between treatment arms and no significant differences were found, although beta diversity results were significantly different in the treatment group between T0 and T1 time points. Streptococcus thermophilus, Bifidobacterium longum, Limosilactobacillus fermentum, and Ligilactobacillus salivarius species were identified as some of the most discriminant taxa positively associated with T1 samples. This preliminary study corroborates the relationship between intestinal microbiota and ASD recently described in the literature.
Collapse
Affiliation(s)
- Cristina Guidetti
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Elena Salvini
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Maurizio Viri
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | | | - Angela Amoruso
- Probiotical Research Srl, Via E. Mattei 3, 28100 Novara, Italy
| | | | - Lorenzo Drago
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence:
| | - Matteo Calgaro
- Department of Biotechnology, University of Verona, 37100 Verona, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37100 Verona, Italy
| | - Marco Pane
- Probiotical Research Srl, Via E. Mattei 3, 28100 Novara, Italy
| | - Anna Claudia Caucino
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| |
Collapse
|
7
|
Hibberd TJ, Yew WP, Dodds KN, Xie Z, Travis L, Brookes SJ, Costa M, Hu H, Spencer NJ. Quantification of CGRP-immunoreactive myenteric neurons in mouse colon. J Comp Neurol 2022; 530:3209-3225. [PMID: 36043843 DOI: 10.1002/cne.25403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/07/2022]
Abstract
Quantitative data of biological systems provide valuable baseline information for understanding pathology, experimental perturbations, and computational modeling. In mouse colon, calcitonin gene-related peptide (CGRP) is expressed by myenteric neurons with multiaxonal (Dogiel type II) morphology, characteristic of intrinsic primary afferent neurons (IPANs). Analogous neurons in other species and gut regions represent 5-35% of myenteric neurons. We aimed to quantify proportions of CGRP-immunopositive (CGRP+) myenteric neurons. Colchicine-treated wholemount preparations of proximal, mid, and distal colon were labeled for HuC/D, CGRP, nitric oxide synthase (NOS), and peripherin (Per). The pan-neuronal markers (Hu+/Per+) co-labeled 94% of neurons. Hu+/Per- neurons comprised ∼6%, but Hu-/Per+ cells were rare. Thus, quantification was based on Hu+ myenteric neurons (8576 total; 1225 ± 239 per animal, n = 7). CGRP+ cell bodies were significantly larger than the average of all Hu+ neurons (329 ± 13 vs. 261 ± 12 μm2 , p < .0001). CGRP+ neurons comprised 19% ± 3% of myenteric neurons without significant regional variation. NOS+ neurons comprised 42% ± 2% of myenteric neurons overall, representing a lower proportion in proximal colon, compared to mid and distal colon (38% ± 2%, 44% ± 2%, and 44% ± 3%, respectively). Peripherin immunolabeling revealed cell body and axonal morphology in some myenteric neurons. Whether all CGRP+ neurons were multiaxonal could not be addressed using peripherin immunolabeling. However, of 118 putatively multiaxonal neurons first identified based on peripherin immunoreactivity, all were CGRP+ (n = 4). In conclusion, CGRP+ myenteric neurons in mouse colon were comprehensively quantified, occurring within a range expected of a putative IPAN marker. All Per+ multiaxonal neurons, characteristic of Dogiel type II/IPAN morphology, were CGRP+.
Collapse
Affiliation(s)
- Timothy J Hibberd
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Kelsi N Dodds
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Brookes
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
O’Day C, Finkelstein DI, Diwakarla S, McQuade RM. A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1841-1861. [PMID: 35848035 PMCID: PMC9535602 DOI: 10.3233/jpd-223262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 06/06/2023]
Abstract
Constipation afflicts many patients with Parkinson's disease (PD) and significantly impacts on patient quality of life. PD-related constipation is caused by intestinal dysfunction, but the etiology of this dysfunction in patients is unknown. One possible cause is neuron loss within the enteric nervous system (ENS) of the intestine. This review aims to 1) Critically evaluate the evidence for and against intestinal enteric neuron loss in PD patients, 2) Justify why PD-related constipation must be objectively measured, 3) Explore the potential link between loss of enteric neurons in the intestine and constipation in PD, 4) Provide potential explanations for disparities in the literature, and 5) Outline data and study design considerations to improve future research. Before the connection between intestinal enteric neuron loss and PD-related constipation can be confidently described, future research must use sufficiently large samples representative of the patient population (majority diagnosed with idiopathic PD for at least 5 years), implement a consistent neuronal quantification method and study design, including standardized patient recruitment criteria, objectively quantify intestinal dysfunctions, publish with a high degree of data transparency and account for potential PD heterogeneity. Further investigation into other potential influencers of PD-related constipation is also required, including changes in the function, connectivity, mitochondria and/or α-synuclein proteins of enteric neurons and their extrinsic innervation. The connection between enteric neuron loss and other PD-related gastrointestinal (GI) issues, including gastroparesis and dysphagia, as well as changes in nutrient absorption and the microbiome, should be explored in future research.
Collapse
Affiliation(s)
- Chelsea O’Day
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - David Isaac Finkelstein
- Parkinson’s Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Shanti Diwakarla
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - Rachel Mai McQuade
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| |
Collapse
|
9
|
Identifying Types of Neurons in the Human Colonic Enteric Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:243-249. [PMID: 36587163 DOI: 10.1007/978-3-031-05843-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Distinguishing and characterising the different classes of neurons that make up a neural circuit has been a long-term goal for many neuroscientists. The enteric nervous system is a large but moderately simple part of the nervous system. Enteric neurons in laboratory animals have been extensively characterised morphologically, electrophysiologically, by projections and immunohistochemically. However, studies of human enteric nervous system are less advanced despite the potential availability of tissue from elective surgery (with appropriate ethics permits). Recent studies using single cell sequencing have confirmed and extended the classification of enteric neurons in mice and human, but it is not clear whether an encompassing classification has been achieved. We present preliminary data on a means to distinguish classes of myenteric neurons in specimens of human colon combining immunohistochemical, morphological, projection and size data on single cells. A method to apply multiple layers of antisera to specimens was developed, allowing up to 12 markers to be characterised in individual neurons. Applied to multi-axonal Dogiel type II neurons, this approach demonstrated that they constitute fewer than 5% of myenteric neurons, are nearly all immunoreactive for choline acetyltransferase and tachykinins. Many express the calcium-binding proteins calbindin and calretinin and they are larger than average myenteric cells. This methodology provides a complementary approach to single-cell mRNA profiling to provide a comprehensive account of the types of myenteric neurons in the human colon.
Collapse
|
10
|
Spencer NJ, Costa M. Rhythmicity in the Enteric Nervous System of Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:295-306. [PMID: 36587167 DOI: 10.1007/978-3-031-05843-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity. Neuronal imaging studies of the mouse large intestine have provided major new insights into how the different classes of myenteric neurons are activated during cyclical neurogenic motor patterns, such as the colonic motor complex (CMC). It has been revealed that during CMCs (in the isolated mouse whole colon), large populations of myenteric neurons, across large spatial fields, coordinate their firing, via bursts of fast synaptic inputs at ~2 Hz. This coordinated firing of many thousands of myenteric neurons synchronously over many rows of interconnected ganglia occurs irrespective of the functional class of neuron. Aborally directed propulsion of content along the mouse colon is due, in large part, to polarity of the enteric circuits including the projections of the intrinsic excitatory and inhibitory motor neurons but still involves the fundamental ~2 Hz rhythmic activity of specific classes of enteric neurons. What remains to be determined are the mechanisms that initiate and terminate the patterned firing of large ensembles of enteric neurons during cyclic activity. This remains an exciting challenge for future studies.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
11
|
Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications. J Clin Invest 2021; 131:143768. [PMID: 34523615 PMCID: PMC8439601 DOI: 10.1172/jci143768] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern research on gastrointestinal behavior has revealed it to be a highly complex bidirectional process in which the gut sends signals to the brain, via spinal and vagal visceral afferent pathways, and receives sympathetic and parasympathetic inputs. Concomitantly, the enteric nervous system within the bowel, which contains intrinsic primary afferent neurons, interneurons, and motor neurons, also senses the enteric environment and controls the detailed patterns of intestinal motility and secretion. The vast microbiome that is resident within the enteric lumen is yet another contributor, not only to gut behavior, but to the bidirectional signaling process, so that the existence of a microbiota-gut-brain "connectome" has become apparent. The interaction between the microbiota, the bowel, and the brain now appears to be neither a top-down nor a bottom-up process. Instead, it is an ongoing, tripartite conversation, the outline of which is beginning to emerge and is the subject of this Review. We emphasize aspects of the exponentially increasing knowledge of the microbiota-gut-brain "connectome" and focus attention on the roles that serotonin, Toll-like receptors, and macrophages play in signaling as exemplars of potentially generalizable mechanisms.
Collapse
Affiliation(s)
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
12
|
Günther C, Rothhammer V, Karow M, Neurath M, Winner B. The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int J Mol Sci 2021; 22:ijms22168870. [PMID: 34445575 PMCID: PMC8396333 DOI: 10.3390/ijms22168870] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The gut–brain axis is a bidirectional communication system driven by neural, hormonal, metabolic, immunological, and microbial signals. Signaling events from the gut can modulate brain function and recent evidence suggests that the gut–brain axis may play a pivotal role in linking gastrointestinal and neurological diseases. Accordingly, accumulating evidence has suggested a link between inflammatory bowel diseases (IBDs) and neurodegenerative, as well as neuroinflammatory diseases. In this context, clinical, epidemiological and experimental data have demonstrated that IBD predisposes a person to pathologies of the central nervous system (CNS). Likewise, a number of neurological disorders are associated with changes in the intestinal environment, which are indicative for disease-mediated gut–brain inter-organ communication. Although this axis was identified more than 20 years ago, the sequence of events and underlying molecular mechanisms are poorly defined. The emergence of precision medicine has uncovered the need to take into account non-intestinal symptoms in the context of IBD that could offer the opportunity to tailor therapies to individual patients. The aim of this review is to highlight recent findings supporting the clinical and biological link between the gut and brain, as well as its clinical significance for IBD as well as neurodegeneration and neuroinflammation. Finally, we focus on novel human-specific preclinical models that will help uncover disease mechanisms to better understand and modulate the function of this complex system.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Correspondence: (C.G.); (B.W.); Tel.: +49-(0)9131-85-45240 (C.G.); +49-(0)9131-85-39301 (B.W.)
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (C.G.); (B.W.); Tel.: +49-(0)9131-85-45240 (C.G.); +49-(0)9131-85-39301 (B.W.)
| |
Collapse
|
13
|
Spencer NJ, Travis L, Wiklendt L, Costa M, Hibberd TJ, Brookes SJ, Dinning P, Hu H, Wattchow DA, Sorensen J. Long range synchronization within the enteric nervous system underlies propulsion along the large intestine in mice. Commun Biol 2021; 4:955. [PMID: 34376798 PMCID: PMC8355373 DOI: 10.1038/s42003-021-02485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
How the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Discipline of Gastroenterology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Simon J Brookes
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Phil Dinning
- Discipline of Gastroenterology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University, St Louis, MO, USA
| | - David A Wattchow
- Discipline of Surgery, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Julian Sorensen
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
14
|
Dalziel JE, Spencer NJ, Young W. Microbial signalling in colonic motility. Int J Biochem Cell Biol 2021; 134:105963. [PMID: 33636395 DOI: 10.1016/j.biocel.2021.105963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Sensory nerve endings within the wall of the gastrointestinal (GI) tract may respond to bacterial signalling, providing the basis for key biological processes that underlie intestinal motility and microbial homeostasis. Enteric neurons and smooth muscle cells are well known to express an array of receptors, including G-protein coupled receptors and ligand-gated ion channels, that can sense chemical ligands and other bacterially-derived substances. These include short chain fatty acids, secondary bile acids and lipopolysaccharide. For neural detection of microbial activators to occur, luminal substances must first interact with enterocytes for direct signalling or cross paracellularly. Recent studies indicate that bacterial-derived microvesicles can cross the gut epithelial barrier and affect motility. This suggests a possible intercellular communication pathway between the GI tract and the ENS. We explore the idea that bacterial microvesicles can behave as a delivery package for communication between microbe and host.
Collapse
Affiliation(s)
- Julie E Dalziel
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.
| | - Nick J Spencer
- Discipline of Physiology, College of Medicine and Public Health, Flinders University, School of Medicine, Adelaide, SA, Australia
| | - Wayne Young
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
15
|
Spencer NJ, Costa M, Hibberd TJ, Wood JD. Advances in colonic motor complexes in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G12-G29. [PMID: 33085903 DOI: 10.1152/ajpgi.00317.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The primary functions of the gastrointestinal (GI) tract are to absorb nutrients, water, and electrolytes that are essential for life. This is accompanied by the capability of the GI tract to mix ingested content to maximize absorption and effectively excrete waste material. There have been major advances in understanding intrinsic neural mechanisms involved in GI motility. This review highlights major advances over the past few decades in our understanding of colonic motor complexes (CMCs), the major intrinsic neural patterns that control GI motility. CMCs are generated by rhythmic coordinated firing of large populations of myenteric neurons. Initially, it was thought that serotonin release from the mucosa was required for CMC generation. However, careful experiments have now shown that neither the mucosa nor endogenous serotonin are required, although, evidence suggests enteroendocrine (EC) cells modulate CMCs. The frequency and extent of propagation of CMCs are highly dependent on mechanical stimuli (circumferential stretch). In summary, the isolated mouse colon emerges as a good model to investigate intrinsic mechanisms underlying colonic motility and provides an excellent preparation to explore potential therapeutic agents on colonic motility, in a highly controlled in vitro environment. In addition, during CMCs, the mouse colon facilitates investigations into the emergence of dynamic assemblies of extensive neural networks, applicable to the nervous system of different organisms.
Collapse
Affiliation(s)
- N J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - M Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - T J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - J D Wood
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77:4505-4522. [PMID: 32424438 PMCID: PMC7599184 DOI: 10.1007/s00018-020-03543-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
18
|
Hao MM, Fung C, Boesmans W, Lowette K, Tack J, Vanden Berghe P. Development of the intrinsic innervation of the small bowel mucosa and villi. Am J Physiol Gastrointest Liver Physiol 2020; 318:G53-G65. [PMID: 31682159 DOI: 10.1152/ajpgi.00264.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.
Collapse
Affiliation(s)
- Marlene M Hao
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Anatomy and Neuroscience, the University of Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Pathology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Katrien Lowette
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Jan Tack
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| |
Collapse
|
19
|
Current In Vivo Models of Varicella-Zoster Virus Neurotropism. Viruses 2019; 11:v11060502. [PMID: 31159224 PMCID: PMC6631480 DOI: 10.3390/v11060502] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Varicella-zoster virus (VZV), an exclusively human herpesvirus, causes chickenpox and establishes a latent infection in ganglia, reactivating decades later to produce zoster and associated neurological complications. An understanding of VZV neurotropism in humans has long been hampered by the lack of an adequate animal model. For example, experimental inoculation of VZV in small animals including guinea pigs and cotton rats results in the infection of ganglia but not a rash. The severe combined immune deficient human (SCID-hu) model allows the study of VZV neurotropism for human neural sub-populations. Simian varicella virus (SVV) infection of rhesus macaques (RM) closely resembles both human primary VZV infection and reactivation, with analyses at early times after infection providing valuable information about the extent of viral replication and the host immune responses. Indeed, a critical role for CD4 T-cell immunity during acute SVV infection as well as reactivation has emerged based on studies using RM. Herein we discuss the results of efforts from different groups to establish an animal model of VZV neurotropism.
Collapse
|
20
|
Smolilo DJ, Costa M, Hibberd TJ, Wattchow DA, Spencer NJ. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon. J Comp Neurol 2018; 526:1662-1672. [PMID: 29574743 DOI: 10.1002/cne.24436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility.
Collapse
Affiliation(s)
- D J Smolilo
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - T J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - D A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Hibberd TJ, Travis L, Wiklendt L, Costa M, Brookes SJH, Hu H, Keating DJ, Spencer NJ. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol 2018; 314:G53-G64. [PMID: 28935683 DOI: 10.1152/ajpgi.00234.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways. Putative sensory Dogiel type II calcitonin gene-related peptide-immunoreactive myenteric neurons may receive widespread fast synaptic inputs in mouse colon.
Collapse
Affiliation(s)
- Timothy J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lee Travis
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lukasz Wiklendt
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Marcello Costa
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University , Saint Louis, Missouri
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| |
Collapse
|
22
|
Spencer NJ, Keating DJ. Is There a Role for Endogenous 5-HT in Gastrointestinal Motility? How Recent Studies Have Changed Our Understanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:113-22. [PMID: 27379639 DOI: 10.1007/978-3-319-27592-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Over the past few years, there have been dramatic changes in our understanding of the role of endogenous 5-hydroxytryptamine (5-HT) in the generation of gastrointestinal (GI) motility patterns in the small and large intestine. The idea that endogenous 5-HT played a major role in the generation of peristalsis in the small intestine was first proposed in the mid 1950s, after it was discovered that endogenous 5-HT could be released from the mucosa at a similar time that peristalsis occurred; and that exogenous 5-HT could potently stimulate peristalsis. The fact that exogenous 5-HT stimulated peristalsis and that there was a similarity in timing between the release of 5-HT from the mucosa and the onset of peristalsis led investigators to propose that release of endogenous 5-HT from the mucosa was causally related to the generation of peristalsis. In further support of this, other studies showed that selective 5-HT antagonists could inhibit or block peristalsis, and other motor patterns, such as the migrating motor complex. Taken together, based on these findings, some laboratories believed that endogenous 5-HT (synthesized in the gut wall) was an important mediator, or initiator, of different propulsive motor patterns in the lower GI tract. This notion changed dramatically in the past few years, however, after it was discovered that removal of the mucosa abolished all cyclical release of endogenous 5-HT, but did not block peristalsis, nor the cyclical migrating complex. Furthermore, other laboratories revealed that genetic deletion of the gene tryptophan hydroxylase 1 (TPH-1) (that synthesizes endogenous 5-HT in the mucosa) actually had no inhibitory effect on transit of intestinal contents in live animals. Then, perhaps one of the most startling of all observations was the discovery that selective 5-HT receptor antagonists actually have the same inhibitory effects on peristalsis and the migrating complex in segments of intestine that had been depleted of all endogenous 5-HT. Taken together, these recent findings have led to a major revision in our understanding of the functional role of endogenous 5-HT in the generation of propulsive motor patterns in the lower GI tract. This review will focus on how our understanding of endogenous 5-HT in the GI tract has changed substantially in recent times.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia.
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
23
|
Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology 2017; 158:1049-1063. [PMID: 28323941 DOI: 10.1210/en.2016-1839] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a multifunctional bioamine with important signaling roles in a range of physiological pathways. Almost all of the 5-HT in our bodies is synthesized in specialized enteroendocrine cells within the gastrointestinal (GI) mucosa called enterochromaffin (EC) cells. These cells provide all of our circulating 5-HT. We have long appreciated the important contributions of 5-HT within the gut, including its role in modulating GI motility. However, evidence of the physiological and clinical significance of gut-derived 5-HT outside of the gut has recently emerged, implicating 5-HT in regulation of glucose homeostasis, lipid metabolism, bone density, and diseases associated with metabolic syndrome, such as obesity and type 2 diabetes. Although a new picture has developed in the last decade regarding the various metabolic roles of peripheral serotonin, so too has our understanding of the physiology of EC cells. Given that they are scattered throughout the lining of the GI tract within the epithelial cell layer, these cells are typically difficult to study. Advances in isolation procedures now allow the study of pure EC-cell cultures and single cells, enabling studies of EC-cell physiology to occur. EC cells are sensory cells that are capable of integrating cues from ingested nutrients, the enteric nervous system, and the gut microbiome. Thus, levels of peripheral 5-HT can be modulated by a multitude of factors, resulting in both local and systemic effects for the regulation of a raft of physiological pathways related to metabolism and obesity.
Collapse
Affiliation(s)
- Alyce M Martin
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Richard L Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Lex Leong
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Geraint B Rogers
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Claire F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
- Discipline of Anatomy and Histology, Flinders University of South Australia, Adelaide 5042, Australia
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
| |
Collapse
|
24
|
Koussoulas K, Gwynne RM, Foong JPP, Bornstein JC. Cholera Toxin Induces Sustained Hyperexcitability in Myenteric, but Not Submucosal, AH Neurons in Guinea Pig Jejunum. Front Physiol 2017; 8:254. [PMID: 28496413 PMCID: PMC5406514 DOI: 10.3389/fphys.2017.00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
Background and Aims: Cholera toxin (CT)-induced hypersecretion requires activation of secretomotor pathways in the enteric nervous system (ENS). AH neurons, which have been identified as a population of intrinsic sensory neurons (ISNs), are a source of excitatory input to the secretomotor pathways. We therefore examined effects of CT in the intestinal lumen on myenteric and submucosal AH neurons. Methods: Isolated segments of guinea pig jejunum were incubated for 90 min with saline plus CT (12.5 μg/ml) or CT + neurotransmitter antagonist, or CT + tetrodotoxin (TTX) in their lumen. After washing CT away, submucosal or myenteric plexus preparations were dissected keeping circumferentially adjacent mucosa intact. Submucosal AH neurons were impaled adjacent to intact mucosa and myenteric AH neurons were impaled adjacent to, more than 5 mm from, and in the absence of intact mucosa. Neuronal excitability was monitored by injecting 500 ms current pulses through the recording electrode. Results: After CT pre-treatment, excitability of myenteric AH neurons adjacent to intact mucosa (n = 29) was greater than that of control neurons (n = 24), but submucosal AH neurons (n = 33, control n = 27) were unaffected. CT also induced excitability increases in myenteric AH neurons impaled distant from the mucosa (n = 6) or in its absence (n = 5). Coincubation with tetrodotoxin or SR142801 (NK3 receptor antagonist), but not SR140333 (NK1 antagonist) or granisetron (5-HT3 receptor antagonist) prevented the increased excitability induced by CT. Increased excitability was associated with a reduction in the characteristic AHP and an increase in the ADP of these neurons, but not a change in the hyperpolarization-activated inward current, Ih. Conclusions: CT increases excitability of myenteric, but not submucosal, AH neurons. This is neurally mediated and depends on NK3, but not 5-HT3 receptors. Therefore, CT may act to amplify the secretomotor response to CT via an increase in the activity of the afferent limb of the enteric reflex circuitry.
Collapse
Affiliation(s)
- Katerina Koussoulas
- Enteric Neuroscience Laboratory, Department of Physiology, University of MelbourneParkville, VIC, Australia
| | - Rachel M Gwynne
- Enteric Neuroscience Laboratory, Department of Physiology, University of MelbourneParkville, VIC, Australia
| | - Jaime P P Foong
- Enteric Neuroscience Laboratory, Department of Physiology, University of MelbourneParkville, VIC, Australia
| | - Joel C Bornstein
- Enteric Neuroscience Laboratory, Department of Physiology, University of MelbourneParkville, VIC, Australia
| |
Collapse
|
25
|
Spencer NJ, Zagorodnyuk V, Brookes SJ, Hibberd T. Spinal afferent nerve endings in visceral organs: recent advances. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1056-G1063. [PMID: 27856418 DOI: 10.1152/ajpgi.00319.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/02/2016] [Indexed: 01/31/2023]
Abstract
Spinal afferent neurons play a major role in detection and transduction of painful stimuli from internal (visceral) organs. Recent technical advances have made it possible to visualize the endings of spinal afferent axons in visceral organs. Although it is well known that the sensory nerve cell bodies of spinal afferents reside within dorsal root ganglia (DRG), identifying their endings in internal organs has been especially challenging because of a lack of techniques to distinguish them from endings of other extrinsic and intrinsic neurons (sympathetic, parasympathetic, and enteric). We recently developed a surgical approach in live mice that allows selective labeling of spinal afferent axons and their endings, revealing a diverse array of different types of varicose and nonvaricose terminals in visceral organs, particularly the large intestine. In total, 13 different morphological types of endings were distinguished in the mouse distal large intestine, originating from lumbosacral DRG. Interestingly, the stomach, esophagus, bladder, and uterus had less diversity in their types of spinal afferent endings. Taken together, spinal afferent endings (at least in the large intestine) appear to display greater morphological diversity than vagal afferent endings that have previously been extensively studied. We discuss some of the new insights that these findings provide.
Collapse
Affiliation(s)
- Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Simon J Brookes
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Tim Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
26
|
Costa M, Wiklendt L, Simpson P, Spencer NJ, Brookes SJ, Dinning PG. Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon. Neurogastroenterol Motil 2015; 27:1466-77. [PMID: 26251321 DOI: 10.1111/nmo.12646] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. METHODS We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. KEY RESULTS Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. CONCLUSIONS & INFERENCES Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop.
Collapse
Affiliation(s)
- M Costa
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - L Wiklendt
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - P Simpson
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - N J Spencer
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - S J Brookes
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - P G Dinning
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
27
|
Abstract
The human intestine houses an astounding number and species of microorganisms, estimated at more than 10(14) gut microbiota and composed of over a thousand species. An individual's profile of microbiota is continually influenced by a variety of factors including but not limited to genetics, age, sex, diet, and lifestyle. Although each person's microbial profile is distinct, the relative abundance and distribution of bacterial species is similar among healthy individuals, aiding in the maintenance of one's overall health. Consequently, the ability of gut microbiota to bidirectionally communicate with the brain, known as the gut-brain axis, in the modulation of human health is at the forefront of current research. At a basic level, the gut microbiota interacts with the human host in a mutualistic relationship - the host intestine provides the bacteria with an environment to grow and the bacterium aids in governing homeostasis within the host. Therefore, it is reasonable to think that the lack of healthy gut microbiota may also lead to a deterioration of these relationships and ultimately disease. Indeed, a dysfunction in the gut-brain axis has been elucidated by a multitude of studies linked to neuropsychological, metabolic, and gastrointestinal disorders. For instance, altered microbiota has been linked to neuropsychological disorders including depression and autism spectrum disorder, metabolic disorders such as obesity, and gastrointestinal disorders including inflammatory bowel disease and irritable bowel syndrome. Fortunately, studies have also indicated that gut microbiota may be modulated with the use of probiotics, antibiotics, and fecal microbiota transplants as a prospect for therapy in microbiota-associated diseases. This modulation of gut microbiota is currently a growing area of research as it just might hold the key to treatment.
Collapse
Affiliation(s)
- Linghong Zhou
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada ; Brain-Body Institute, St Joseph's Healthcare, Hamilton, ON, Canada
| |
Collapse
|
28
|
Chambers JD, Thomas EA, Bornstein JC. Mathematical modelling of enteric neural motor patterns. Clin Exp Pharmacol Physiol 2014; 41:155-64. [PMID: 24471867 DOI: 10.1111/1440-1681.12209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 01/07/2023]
Abstract
1. The enteric nervous system modulates intestinal behaviours, such as motor patterns and secretion. Although much is known about different types of neurons and simple reflexes in the intestine, it remains unclear how complex behaviours are generated. 2. Mathematical modelling is an important tool for assisting the understanding of how the neurons and reflexes can be pieced together to generate intestinal behaviours. 3. Models have identified a functional role for slow excitatory post-synaptic potentials (EPSPs) by distinguishing between fast and slow EPSPs in the ascending excitation reflex. These models also discovered coordinated firing of similarly located neurons as emergent properties of feed-forward networks of interneurons in the intestine. A model of the recurrent network of intrinsic sensory neurons identified important control mechanisms to prevent uncontrolled firing due to positive feedback and that the interaction between these control mechanisms and slow EPSPs is necessary for the networks to encode ongoing sensory stimuli. This model also showed that such networks may mediate migrating motor complexes. 4. A network model of vasoactive intestinal peptide neurons in the submucosal plexus found this relatively sparse recurrent network could produce uncontrolled firing under conditions that appear to be related to cholera toxin-induced hypersecretion. 5. Abstract modelling of the intestinal fed-state motor patterns has identified how stationary contractions can arise from a polarized network. 6. These models have also helped predict and/or explained pharmacological evidence for two rhythm generators and the requirement of feedback from contractions in the circular muscle.
Collapse
Affiliation(s)
- Jordan D Chambers
- Department of Physiology, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
29
|
Chambers JD, Bornstein JC, Gwynne RM, Koussoulas K, Thomas EA. A detailed, conductance-based computer model of intrinsic sensory neurons of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2014; 307:G517-32. [PMID: 25012843 DOI: 10.1152/ajpgi.00228.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intrinsic sensory neurons (ISNs) of the enteric nervous system respond to stimuli such as muscle tension, muscle length, distortion of the mucosa, and the chemical content in the lumen. ISNs form recurrent networks that probably drive many intestinal motor patterns and reflexes. ISNs express a large number of voltage- and calcium-gated ion channels, some of which are modified by inflammation or repeated physiological stimuli, but how interactions between different ionic currents in ISNs produce both normal and pathological behaviors in the intestine remains unclear. We constructed a model of ISNs including voltage-gated sodium and potassium channels, N-type calcium channels, big conductance calcium-dependent potassium (BK) channels, calcium-dependent nonspecific cation channels (NSCa), intermediate conductance calcium-dependent potassium (IK) channels, hyperpolarization-activated cation (Ih) channels, and internal calcium dynamics. The model was based on data from the literature and our electrophysiological studies. The model reproduced responses to short or long depolarizing current pulses and responses to long hyperpolarizing current pulses. Sensitivity analysis showed that Ih, IK, NSCa, and BK have the largest influence on the number of action potentials observed during prolonged depolarizations. The model also predicts that changes to the voltage of activation for Ih have a large influence on excitability, but changes to the time constant of activation for Ih have a minor effect. Our model identifies how interactions between different iconic currents influence the excitability of ISNs and highlights an important role for Ih in enteric neuroplasticity resulting from disease.
Collapse
Affiliation(s)
- Jordan D Chambers
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia; and
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia; and
| | - Rachel M Gwynne
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia; and
| | - Katerina Koussoulas
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia; and
| | - Evan A Thomas
- Florey Neuroscience Institutes, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Hibberd T, Spencer N, Zagorodnyuk V, Chen B, Brookes S. Targeted electrophysiological analysis of viscerofugal neurons in the myenteric plexus of guinea-pig colon. Neuroscience 2014; 275:272-84. [DOI: 10.1016/j.neuroscience.2014.04.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
31
|
Specialized functions of Nav1.5 and Nav1.9 channels in electrogenesis of myenteric neurons in intact mouse ganglia. J Neurosci 2014; 34:5233-44. [PMID: 24719102 DOI: 10.1523/jneurosci.0057-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated sodium (Nav) channels play a central role in gastrointestinal physiology because they transmit depolarizing impulses in enteric neurons, thereby enabling the coordination of intestinal motility. However, little is known about the ion channel machinery that specifies firing pattern of enteric neurons. Here, we used in situ patch-clamp recording of myenteric neurons from mice to define functionally the Nav channel subtypes responsible for the electrical signature of myenteric neurons. We found that mouse myenteric neurons exhibit two types of tetrodotoxin-resistant Na(+) currents: an early inactivating Na(+) current (INaT) and a persistent Na(+) current (INaP). INaT was encountered in all myenteric neurons, whereas INaP was preferentially found in Dogiel type II sensory neurons. Knock-out mouse studies, in combination with pharmacological assays, indicate that INaT is carried by the Scn5a-encoded "cardiac" Nav1.5, whereas INaP is attributed to the Scn11a-encoded Nav1.9. Current-clamp experiments show that Nav1.9 flows at subthreshold voltages, generating tonic firing. In addition, action potential (AP) clamp reveals that Nav1.5 contributes to the upstroke velocity of APs, whereas Nav1.9, which remains active during the falling phase, opposes AP repolarization. We developed a computational model of a Dogiel type II myenteric neuron that successfully reproduces all experimentally observed phenomena and highlights the differential roles of Nav1.5 and Nav1.9 in the control of excitability. Our data illustrate how excitability can be finely tuned to provide specific firing templates by the selective deployment of Nav1.5 and Nav1.9 isoforms. We propose that Nav-dependent ENS disorders of excitability may play important roles in the pathogenesis of digestive diseases.
Collapse
|
32
|
Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol 2014; 592:2959-65. [PMID: 24907307 DOI: 10.1113/jphysiol.2014.272948] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) integrates numerous sensory signals in order to control and maintain normal gut functions. Nutrients are one of the prominent factors which determine the chemical milieu in the lumen and, after absorption, also within the gut wall. This review summarizes current knowledge on the impact of key nutrients on ENS functions and phenotype, covering their acute and long-term effects. Enteric neurones contain the molecular machinery to respond specifically to nutrients. These transporters and receptors are not expressed exclusively in the ENS but are also present in other cells such as enteroendocrine cells (EECs) and extrinsic sensory nerves, signalling satiety or hunger. Glucose, amino acids and fatty acids all activate enteric neurones, as suggested by enhanced c-Fos expression or spike discharge. These excitatory effects are the result of a direct neuronal activation but also involve the activation of EECs which, upon activation by luminal nutrients, release mediators such as ghrelin, cholecystokinin or serotonin. The presence or absence of nutrients in the intestinal lumen induces long-term changes in neurotransmitter expression, excitability, neuronal survival and ultimately impact upon gut motility, secretion or intestinal permeability. Together with EECs and vagal nerves, the ENS must be recognized as an important player initiating concerted responses to nutrients. It remains to be studied how, for instance, nutrient-induced changes in the ENS may influence additional gut functions such as intestinal barrier repair, intestinal epithelial stem cell proliferation/differentiation and also the signalling of extrinsic nerves to brain regions which control food intake.
Collapse
Affiliation(s)
- Michel Neunlist
- INSERM, U913, Nantes, F-44093, France Université Nantes, Nantes, F-44093, France CHU Nantes, HôtelDieu, Institut des Maladies de l'Appareil Digestif, Nantes, F-44093, France Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Michael Schemann
- Lehrstuhl für Humanbiologie, Technische Universität München, Liesel-Beckmann-Straße 4, 85350, Freising-Weihenstephan, Germany
| |
Collapse
|
33
|
Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse". FASEB J 2014; 28:3064-74. [PMID: 24719355 DOI: 10.1096/fj.13-245282] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse."
Collapse
Affiliation(s)
- Azucena Perez-Burgos
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and
| | - Yu-Kang Mao
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and
| | - John Bienenstock
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and Department of Medicine, Department of Pathology and Molecular Medicine, and
| | - Wolfgang A Kunze
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
35
|
Abstract
The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Grattan Street, Parkville, Vic 3010, Australia
| | | | | | | | | |
Collapse
|
36
|
Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun 2013; 4:1465. [PMID: 23403566 DOI: 10.1038/ncomms2478] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 01/11/2013] [Indexed: 02/08/2023] Open
Abstract
Symbionts or probiotics are known to affect the nervous system. To understand the mechanisms involved, it is important to measure sensory neuron responses and identify molecules responsible for this interaction. Here we test the effects of adding Lactobacillus rhamnosus (JB-1) and Bacteroides fragilis to the epithelium while making voltage recordings from intestinal primary afferent neurons. Sensory responses are recorded within 8 s of applying JB-1 and excitability facilitated within 15 min. Bacteroides fragilis produces similar results, as does its isolated, capsular exopolysaccharide, polysaccharide A. Lipopolysaccharide-free polysaccharide A completely mimics the neuronal effects of the parent organism. Experiments with a mutant Bacteroides fragilis devoid of polysaccharide A shows that polysaccharide A is necessary and sufficient for the neuronal effects. Complex carbohydrates have not been reported before as candidates for such signalling between symbionts and the host. These observations indicate new neuronal targets and invite further study of bacterial carbohydrates as inter-kingdom signalling molecules between beneficial bacteria and sensory neurons.
Collapse
Affiliation(s)
- Yu-Kang Mao
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada L8N 4A6
| | | | | | | | | | | |
Collapse
|
37
|
Mondal A, Aizawa S, Sakata I, Goswami C, Oda SI, Sakai T. Mechanism of ghrelin-induced gastric contractions in Suncus murinus (house musk shrew): involvement of intrinsic primary afferent neurons. PLoS One 2013; 8:e60365. [PMID: 23565235 PMCID: PMC3614873 DOI: 10.1371/journal.pone.0060365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/26/2013] [Indexed: 12/13/2022] Open
Abstract
Here, we have reported that motilin can induce contractions in a dose-dependent manner in isolated Suncus murinus (house musk shrew) stomach. We have also shown that after pretreatment with a low dose of motilin (10(-10) M), ghrelin also induces gastric contractions at levels of 10(-10) M to 10(-7) M. However, the neural mechanism of ghrelin action in the stomach has not been fully revealed. In the present study, we studied the mechanism of ghrelin-induced contraction in vitro using a pharmacological method. The responses to ghrelin in the stomach were almost completely abolished by hexamethonium and were significantly suppressed by the administration of phentolamine, prazosin, ondansetron, and naloxone. Additionally, N-nitro-l-arginine methylester significantly potentiated the contractions. Importantly, the mucosa is essential for ghrelin-induced, but not motilin-induced, gastric contractions. To evaluate the involvement of intrinsic primary afferent neurons (IPANs), which are multiaxonal neurons that pass signals from the mucosa to the myenteric plexus, we examined the effect of the IPAN-related pathway on ghrelin-induced contractions and found that pretreatment with adenosine and tachykinergic receptor 3 antagonists (SR142801) significantly eliminated the contractions and GR113808 (5-hydroxytryptamine receptor 4 antagonist) almost completely eliminated it. The results indicate that ghrelin stimulates and modulates suncus gastric contractions through cholinergic, adrenergic, serotonergic, opioidergic neurons and nitric oxide synthases in the myenteric plexus. The mucosa is also important for ghrelin-induced gastric contractions, and IPANs may be the important interneurons that pass the signal from the mucosa to the myenteric plexus.
Collapse
Affiliation(s)
- Anupom Mondal
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sayaka Aizawa
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Chayon Goswami
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sen-ichi Oda
- Laboratory of Animal Management and Resources, Department of Zoology, Okayama University of Science, Okayama, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- * E-mail:
| |
Collapse
|
38
|
McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 2013. [PMID: 23181420 DOI: 10.1111/nmo.12049] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of intestinal microbiota in the development and function of host physiology is of high interest, especially with respect to the nervous system. While strong evidence has accrued that intestinal bacteria alter host nervous system function, mechanisms by which this occurs have remained elusive. For this reason, we have carried out experiments examining the electrophysiological properties of neurons in the myenteric plexus of the enteric nervous system (ENS) in germ-free (GF) mice compared with specific pathogen-free (SPF) control mice and adult germ-free mice that have been conventionalized (CONV-GF) with intestinal bacteria. METHODS Segments of jejunum from 8 to 12 week old GF, SPF, and CONV-GF mice were dissected to expose the myenteric plexus. Intracellular recordings in current-clamp mode were made by impaling cells with sharp microelectrodes. Action potential (AP) shapes, firing thresholds, the number of APs fired at 2× threshold, and passive membrane characteristics were measured. KEY RESULTS In GF mice, excitability was decreased in myenteric afterhyperpolarization (AH) neurons as measured by a lower resting membrane potential and by the number of APs generated at 2× threshold. The post AP slow afterhyperpolarization (sAHP) was prolonged for GF compared with SPF and CONV-GF animals. Passive membrane characteristics were also altered in GF mice by a decrease in input resistance. CONCLUSIONS & INFERENCES Here, we report the novel finding that commensal intestinal microbiota are necessary for normal excitability of gut sensory neurons and thus provide a potential mechanism for the transfer of information between the microbiota and nervous system.
Collapse
Affiliation(s)
- K A McVey Neufeld
- McMaster Brain-Body Institute at St Joseph's Healthcare, Hamilton ON, Canada.
| | | | | | | | | |
Collapse
|
39
|
Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci 2013; 70:55-69. [PMID: 22638926 PMCID: PMC11113561 DOI: 10.1007/s00018-012-1028-z] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023]
Abstract
Recent advances in research have greatly increased our understanding of the importance of the gut microbiota. Bacterial colonization of the intestine is critical to the normal development of many aspects of physiology such as the immune and endocrine systems. It is emerging that the influence of the gut microbiota also extends to modulation of host neural development. Furthermore, the overall balance in composition of the microbiota, together with the influence of pivotal species that induce specific responses, can modulate adult neural function, peripherally and centrally. Effects of commensal gut bacteria in adult animals include protection from the central effects of infection and inflammation as well as modulation of normal behavioral responses. There is now robust evidence that gut bacteria influence the enteric nervous system, an effect that may contribute to afferent signaling to the brain. The vagus nerve has also emerged as an important means of communicating signals from gut bacteria to the CNS. Further understanding of the mechanisms underlying microbiome-gut-brain communication will provide us with new insight into the symbiotic relationship between gut microbiota and their mammalian hosts and help us identify the potential for microbial-based therapeutic strategies to aid in the treatment of mood disorders.
Collapse
Affiliation(s)
- Paul Forsythe
- The Brain-Body Institute, St. Joseph's Healthcare, McMaster University, 50 Charlton Avenue East, T3302, Hamilton, ON, L8N 4A6, Canada.
| | | |
Collapse
|
40
|
Smith TH, Grider JR, Dewey WL, Akbarali HI. Morphine decreases enteric neuron excitability via inhibition of sodium channels. PLoS One 2012; 7:e45251. [PMID: 23028881 PMCID: PMC3448635 DOI: 10.1371/journal.pone.0045251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
Gastrointestinal peristalsis is significantly dependent on the enteric nervous system. Constipation due to reduced peristalsis is a major side-effect of morphine, which limits the chronic usefulness of this excellent pain reliever in man. The ionic basis for the inhibition of enteric neuron excitability by morphine is not well characterized as previous studies have mainly utilized microelectrode recordings from whole mount myenteric plexus preparations in guinea pigs. Here we have developed a Swiss-Webster mouse myenteric neuron culture and examined their electrophysiological properties by patch-clamp techniques and determined the mechanism for morphine-induced decrease in neuronal excitability. Isolated neurons in culture were confirmed by immunostaining with pan-neuronal marker, β-III tubulin and two populations were identified by calbindin and calretinin staining. Distinct neuronal populations were further identified based on the presence and absence of an afterhyperpolarization (AHP). Cells with AHP expressed greater density of sodium currents. Morphine (3 µM) significantly reduced the amplitude of the action potential, increased the threshold for spike generation but did not alter the resting membrane potential. The decrease in excitability resulted from inhibition of sodium currents. In the presence of morphine, the steady-state voltage dependence of Na channels was shifted to the left with almost 50% of channels unavailable for activation from hyperpolarized potentials. During prolonged exposure to morphine (two hours), action potentials recovered, indicative of the development of tolerance in single enteric neurons. These results demonstrate the feasibility of isolating mouse myenteric neurons and establish sodium channel inhibition as a mechanism for morphine-induced decrease in neuronal excitability.
Collapse
Affiliation(s)
- Tricia H. Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 2012; 225:118-29. [PMID: 22935724 DOI: 10.1016/j.neuroscience.2012.08.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/31/2012] [Accepted: 08/16/2012] [Indexed: 11/22/2022]
Abstract
Enteric viscerofugal neurons are interneurons with cell bodies in the gut wall; they project to prevertebral ganglia where they provide excitatory synaptic drive to sympathetic neurons which control intestinal motility and secretion. Here, we studied the mechanosensitivity and firing of single, identified viscerofugal neurons in guinea-pig distal colon. Flat sheet preparations of gut were set up in vitro and conventional extracellular recordings made from colonic nerve trunks. The nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) (1mM), was locally pressure ejected onto individual myenteric ganglia. In a few ganglia, DMPP promptly evoked firing in colonic nerves. Biotinamide filling of colonic nerves revealed that DMPP-responsive sites corresponded to viscerofugal nerve cell bodies. This provides a robust means to positively identify viscerofugal neuron firing. Of 15 single units identified in this way, none responded to locally-applied capsaicin (1 μM). Probing with von Frey hairs at DMPP-responsive sites reliably evoked firing in all identified viscerofugal neurons (18/18 units tested; 0.8-5 mN). Circumferential stretch of the preparation increased firing in all 14/14 units (1-5 g, p<0.05). Both stretch and von Frey hair responses persisted in Ca(2+)-free solution (6 mM Mg(2+), 1mM EDTA), indicating that viscerofugal neurons are directly mechanosensitive. To investigate their adequate stimulus, circular muscle tension and length were independently modulated (BAY K8644, 1 μM and 10 μM, respectively). Increases in intramural tension without changes in length did not affect firing. However, contraction-evoked shortening, under constant load, significantly decreased firing (p<0.001). In conclusion, viscerofugal neuron action potentials contribute to recordings from colonic nerve trunks, in vitro. They provide a significant primary afferent output from the colon, encoding circumferential length, largely independent of muscle tension. All viscerofugal neurons are directly mechanosensitive, although they have been reported to receive synaptic inputs. In short, viscerofugal neurons combine interneuronal function with length-sensitive mechanosensitivity.
Collapse
|
42
|
Foong JPP, Nguyen TV, Furness JB, Bornstein JC, Young HM. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol 2012; 590:2375-90. [PMID: 22371477 DOI: 10.1113/jphysiol.2011.225938] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organized motility patterns in the gut depend on circuitry within the enteric nervous system (ENS), but little is known about the development of electrophysiological properties and synapses within the ENS. We examined the electrophysiology and morphology of myenteric neurons in the mouse duodenum at three developmental stages: postnatal day (P)0, P10–11, and adult. Like adults, two main classes of neurons could be identified at P0 and P10–11 based on morphology: neurons with multiple long processes that projected circumferentially (Dogiel type II morphology) and neurons with a single long process. However, postnatal Dogiel type II neurons differed in several electrophysiological properties from adult Dogiel type II neurons. P0 and P10–11 Dogiel type II neurons exhibited very prominent Ca(2+)-mediated after depolarizing potentials (ADPs) following action potentials compared to adult neurons. Adult Dogiel type II neurons are characterized by the presence of a prolonged after hyperpolarizing potential (AHP), but AHPs were very rarely observed at P0. The projection lengths of the long processes of Dogiel type II neurons were mature by P10–11. Uniaxonal neurons in adults typically have fast excitatory postsynaptic potentials (fEPSPs, ‘S-type' electrophysiology) mainly mediated by nicotinic receptors. Nicotinic-fEPSPs were also recorded from neurons with a single long process at P0 and P10–11. However, these neurons underwent major developmental changes in morphology, from predominantly filamentous neurites at birth to lamellar dendrites in mature mice. Unlike Dogiel type II neurons, the projection lengths of neurons with a single long process matured after P10–11. Slow EPSPs were rarely observed in P0/P10–11 neurons. This work shows that, although functional synapses are present and two classes of neurons can be distinguished electrophysiologically and morphologically at P0, major changes in electrophysiological properties and morphology occur during the postnatal development of the ENS.
Collapse
Affiliation(s)
- Jaime Pei Pei Foong
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
43
|
Spencer NJ, Nicholas SJ, Robinson L, Kyloh M, Flack N, Brookes SJ, Zagorodnyuk VP, Keating DJ. Mechanisms underlying distension-evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells? Am J Physiol Gastrointest Liver Physiol 2011; 301:G519-27. [PMID: 21700904 DOI: 10.1152/ajpgi.00101.2011] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanisms underlying distension-evoked peristalsis in the colon are incompletely understood. It is well known that, following colonic distension, 5-hydroxytryptamine (5-HT) is released from enterochromaffin (EC) cells in the intestinal mucosa. It is also known that exogenous 5-HT can stimulate peristalsis. These observations have led some investigators to propose that endogenous 5-HT release from EC cells might be involved in the initiation of colonic peristalsis, following distension. However, because no direct evidence exists to support this hypothesis, the aim of this study was to determine directly whether release of 5-HT from EC cells was required for distension-evoked colonic peristalsis. Real-time amperometric recordings of 5-HT release and video imaging of colonic wall movements were performed on isolated segments of guinea pig distal colon, during distension-evoked peristalsis. Amperometric recordings revealed basal and transient release of 5-HT from EC cells before and during the initiation of peristalsis, respectively. However, removal of mucosa (and submucosal plexus) abolished 5-HT release but did not inhibit the initiation of peristalsis nor prevent the propagation of fecal pellets or intraluminal fluid. Maintained colonic distension by fecal pellets induced repetitive peristaltic waves, whose intrinsic frequency was also unaffected by removal of the submucosal plexus and mucosa, although their propagation velocities were slower. In conclusion, the mechanoreceptors and sensory neurons activated by radial distension to initiate peristalsis lie in the myenteric plexus and/or muscularis externa, and their activation does not require the submucosal plexus, release of 5-HT from EC cells, nor the presence of the mucosa. The propagation of peristalsis and propulsion of liquid or solid content along the colon is entrained by activity within the myenteric plexus and/or muscularis externa and does not require sensory feedback from the mucosa, nor neural inputs arising from submucosal ganglia.
Collapse
Affiliation(s)
- Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chronic constipation: lessons from animal studies. Best Pract Res Clin Gastroenterol 2011; 25:59-71. [PMID: 21382579 DOI: 10.1016/j.bpg.2010.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 11/23/2010] [Accepted: 12/15/2010] [Indexed: 01/31/2023]
Abstract
Chronic constipation is a highly debilitating condition, affecting a significant proportion of the community. The burden to the health care system and impact on individual patients quality of life is immense. Unfortunately, the aetiology underlying chronic constipation is poorly understood and animal models are being used increasingly to investigate possible intrinsic neurogenic and myogenic mechanisms leading to relevant colonic sensori-motor dysfunction. Recently, major advances have been made in our understanding of the mechanisms that underlie propagating contractions along the large intestine, such as peristalsis and colonic migrating motor complexes in laboratory animals, particularly in guinea-pigs and mice. The first recordings of cyclical propagating contractions along the isolated whole human colon have now also been made. This review will highlight some of these advances and how impairments to these motility patterns may contribute to delayed colonic transit, known to exist in a proportion of patients with chronic constipation.
Collapse
|
45
|
Immunohistochemical characteristics of submucosal Dogiel type II neurons in rat colon. Cell Tissue Res 2010; 340:257-65. [PMID: 20336467 DOI: 10.1007/s00441-010-0954-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/23/2010] [Indexed: 12/12/2022]
Abstract
Secretory and motility reflexes are evoked by physiological stimuli in the isolated rat distal colon, which is therefore expected to contain intrinsic primary afferent (sensory) neurons. Dogiel type II neurons (putative intrinsic primary afferent neurons) exhibit several long processes emerging from large oval or round cell bodies. This study has examined the immunohistochemical characteristics of type II neurons in the submucosal plexus of rat distal colons by using whole-mount preparations. Neuronal cell bodies positive for both substance P (SP) and calretinin have been observed in colchicine-treated rats. Neurofilament 200 immunostaining has confirmed the type II morphology of SP-positive neurons. Moreover, all submucosal type II neurons identified by neurofilament 200 immunoreactivity are positive for calretinin. Calcitonin gene-related peptide (CGRP)-positive neurons in the submucosal plexus are distinct from type II neurons because they are negative for calretinin and have smaller cell bodies than the SP-positive submucosal type II neurons. Most (73%) of the submucosal neurons including type II neurons exhibit immunoreactivity for the neurokinin-1 receptor (NK1R), a receptor for SP, on the surface of cell bodies. Immunoreactivity for the EP3 receptor (EP3R), a receptor for prostaglandin E2, has been detected in 51% of submucosal neurons including type II neurons. Thus, submucosal type II neurons in the rat distal colon are immunopositive for SP/calretinin but immunonegative for CGRP. SP released from submucosal type II neurons probably acts via NK1Rs on type II and non-type II submucosal neurons to mediate intrinsic reflexes. EP3R-positive submucosal type II neurons may be potential targets of prostaglandin E2.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The enteric nervous system integrates secretion and motility into homeostatic patterns of behavior susceptible to disorder. Progress in understanding mechanosensory detection in these processes, disordered enteric nervous system integration in diarrhea and constipation and pharmacotherapy is summarized. RECENT FINDINGS Most neurons in the enteric nervous system discharge in response to distortion. Drugs acting directly to open chloride conductance channels in the mucosal epithelium are therapeutic options for constipation. SUMMARY Mechanoreception is required for negative feedback control. At issue is identification of the neurons that fulfil the requirement for mechanoreception. Understanding secretomotor neurons is basic to understanding neurogenic secretory diarrhea and constipation and therapeutic strategies. A strategy for treatment of chronic constipation is development of agents that act directly to open Cl channels, which thereby increases the liquidity of the luminal contents. Lubiprostone, a recently Food and Drug Administration-approved drug, increases intraluminal liquidity by opening Cl channels. The future for the drug is clouded by controversy over whether its action is directly at one or the other of chloride channel type 2 (ClC-2) or cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels or both and whether action reflects involvement of G protein-coupled prostaglandin receptors expressed by mucosal epithelial cells.
Collapse
|
47
|
Keating DJ, Spencer NJ. Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology 2010; 138:659-70 670.e1-2. [PMID: 19782081 DOI: 10.1053/j.gastro.2009.09.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/04/2009] [Accepted: 09/16/2009] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The pacemaker mechanism that underlies the cyclic generation of colonic migrating motor complexes (CMMCs) is unknown, although studies have suggested that release of 5-hydroxytryptamine (5-HT) from enterochromaffin cells in the mucosa is essential. However, no recordings of 5-HT release from the colon have been made to support these suggestions. METHODS We used real-time amperometry to record 5-HT release directly from the mucosa in mouse isolated colon to determine whether 5-HT release from enterochromaffin cells was required for CMMC generation. RESULTS We found that 5-HT was released from mucosal enterochromaffin cells during many, but not all, CMMC contractions. However, spontaneous CMMCs still were recorded even after removal of the mucosa, and submucosa and submucosal plexus when all release of 5-HT had been abolished. CMMC pacemaker frequency was slower in the absence of the mucosa, an effect reversed by focal application of exogenous 5-HT onto the myenteric plexus. Despite the absence of the mucosa and all detectable release of 5-HT, ondansetron significantly reduced CMMC frequency, suggesting that 5-HT(3) receptor blockade slows the CMMC pacemaker via a mechanism independent of 5-HT release from enterochromaffin cells. CONCLUSIONS Our results show that 5-HT can be released dynamically during CMMCs. However, the intrinsic pacemaker and pattern generator underlying CMMC generation lies within the myenteric plexus and/or muscularis externa and does not require any release of 5-HT from enterochromaffin cells. Endogenous release of 5-HT from enterochromaffin cells plays a modulatory role, not an essential role, in CMMC generation.
Collapse
Affiliation(s)
- Damien J Keating
- Department of Human Physiology, Flinders University, School of Medicine, South Australia, Australia
| | | |
Collapse
|
48
|
Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol 2009; 133:177-88. [PMID: 19946698 DOI: 10.1007/s00418-009-0659-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2009] [Indexed: 12/13/2022]
Abstract
Expression of P2X(4) and P2X(6) receptor subunits in the gastrointestinal tract of the rat was studied with double-labeling fluorescence immunohistochemistry. The results showed that P2X(6) receptors were expressed widely in the submucosal and myenteric plexuses. In the myenteric plexus, P2X(6) receptors were expressed mainly in large size neurons which resembled Dogiel type II neurons. These P2X(6) receptor-immunoreactive (ir) neurons also expressed calbindin 28K, calretinin and neuronal nuclei (NeuN), proteins that are markers of intrinsic sensory neurons. In the submucosal plexus, all the calbindin 28K, calretinin and NeuN-ir cells were immunoreactive for P2X(6) receptors. P2X(6) receptors do not form homomultimers, but rather heteromultimers with either P2X(2) or P2X(4) receptors. P2X(4) receptors were not expressed in neurons, but were expressed in macrophages of the rat gastrointestinal tract. These data indicate that P2X(6) receptors are mainly expressed on intrinsic sensory neurons and that ATP, via P2X(6) receptors probably in heteromeric combination with P2X(2) receptors, may be involved in regulating the physiological functions of these neurons.
Collapse
|
49
|
Liu S, Ren W, Qu MH, Bishop GA, Wang GD, Wang XY, Xia Y, Wood JD. Differential actions of urocortins on neurons of the myenteric division of the enteric nervous system in guinea pig distal colon. Br J Pharmacol 2009; 159:222-36. [PMID: 20002096 DOI: 10.1111/j.1476-5381.2009.00516.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Urocortins (Ucns) 1, 2 and 3 are corticotropin-releasing factor (CRF)-related neuropeptides and may be involved in neural regulation of colonic motor functions. Nevertheless, details of the neural mechanism of action for Ucns have been unclear. We have, here, tested the hypothesis that Ucns act in the enteric nervous system (ENS) to influence colonic motor behaviour. EXPERIMENTAL APPROACH We used intracellular recording with 'sharp' microelectrodes, followed by intraneuronal injection of biocytin, and immunohistochemical localization of CRF(1) and CRF(2) receptors in guinea pig colonic tissue. KEY RESULTS Application of Ucn1 depolarized membrane potentials and elevated excitability in 58% of AH-type and 60% of S-type colonic myenteric neurons. In most of the neurons tested, depolarizing responses evoked by Ucn-1 were suppressed by the CRF(1) receptor antagonist NBI 27914, but were unaffected by the CRF(2) receptor antagonist antisauvagine-30. The selective CRF(2) receptor agonists, Ucn2 and Ucn3, evoked depolarizing responses in 12 and 8% of the AH-type myenteric neurons, respectively, and had no effect on S-type neurons. Antisauvagine-30, but not NBI 27914, suppressed these Ucn2- and Ucn3-evoked responses. Immunohistochemical staining identified CRF(1) as the predominant CRF receptor subtype expressed by ganglion cell somas, while CRF(2)-immunoreactive neuronal somas were sparse. Ucns did not affect excitatory synaptic transmission in the ENS. CONCLUSIONS AND IMPLICATIONS The results suggest that Ucns act as neuromodulators to influence myenteric neuronal excitability. The excitatory action of Ucn1 in myenteric neurons was primarily at CRF(1) receptors, and the excitatory action of Ucn2 and Ucn3 was at CRF(2) receptors.
Collapse
Affiliation(s)
- Sumei Liu
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mueller MH, Xue B, Glatzle J, Hahn J, Grundy D, Kreis ME. Extrinsic afferent nerve sensitivity and enteric neurotransmission in murine jejunum in vitro. Am J Physiol Gastrointest Liver Physiol 2009; 297:G655-62. [PMID: 19679823 DOI: 10.1152/ajpgi.00128.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteric and extrinsic sensory neurons respond to similar stimuli. Thus they may be activated in series or in parallel. Because signal transmission via synapses or mediator release would depend on calcium, we investigated its role for extrinsic afferent sensitivity to chemical and mechanical stimulation. Extracellular multiunit afferent recordings were made in vitro from paravascular nerve bundles supplying the mouse jejunum. Intraluminal pressure and afferent nerve responses were recorded under control conditions and under four conditions designed to interfere with enteric neurotransmission. We found that phasic intestinal contractions ceased after switching perfusion to Ca(2+)-free buffer with or without a purinergic P2 receptor antagonist, pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS) or cadmium (blocking all Ca(2+)-channels) but not following omega-conotoxin GVIA (N-type Ca(2+)-channel blocker). Luminal HCl (pH 2) and 5-HT (500 microM) evoked peak firing of 17 +/- 4 impulses per second (imp/s) (n = 10) and 21 +/- 4 imp/s (n = 13) under control conditions. These responses were reduced to 4 +/- 2 imp/s and 5 +/- 2 imp/s by cadmium (n = 7, P < 0.05), to 7 +/- 2 imp/s and 6 +/- 1 imp/s by Ca(2+)-free perfusion (n = 6, P < 0.05), and to 3 +/- 1 imp/s and 4 +/- 1 imp/s by Ca(2+)-free perfusion with PPADS (n = 6, P < 0.05). Responses were unchanged by omega-conotoxin GVIA. Mechanical ramp distension of the intestinal segment to 60 cmH(2)O was not altered by any of the experimental conditions. We concluded that HCl and 5-HT activate extrinsic afferents via a calcium-dependent mechanism, which is unlikely to involve enteric neurons carrying N-type calcium channels. Extrinsic mechanosensitivity is independent of enteric neurotransmission. It appears that cross talk from the enteric to the extrinsic nervous system does not mediate extrinsic afferent sensitivity.
Collapse
Affiliation(s)
- Mario H Mueller
- Department of Surgery and 2Walter-Brendel Institute of Surgical Research, Ludwig-Maximilian's University, Munich, Germany
| | | | | | | | | | | |
Collapse
|