1
|
Mandge D, Manchanda R. A biophysically detailed computational model of urinary bladder small DRG neuron soma. PLoS Comput Biol 2018; 14:e1006293. [PMID: 30020934 PMCID: PMC6066259 DOI: 10.1371/journal.pcbi.1006293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/30/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Bladder small DRG neurons, which are putative nociceptors pivotal to urinary bladder function, express more than a dozen different ionic membrane mechanisms: ion channels, pumps and exchangers. Small-conductance Ca2+-activated K+ (SKCa) channels which were earlier thought to be gated solely by intracellular Ca2+ concentration ([Ca]i) have recently been shown to exhibit inward rectification with respect to membrane potential. The effect of SKCa inward rectification on the excitability of these neurons is unknown. Furthermore, studies on the role of KCa channels in repetitive firing and their contributions to different types of afterhyperpolarization (AHP) in these neurons are lacking. In order to study these phenomena, we first constructed and validated a biophysically detailed single compartment model of bladder small DRG neuron soma constrained by physiological data. The model includes twenty-two major known membrane mechanisms along with intracellular Ca2+ dynamics comprising Ca2+ diffusion, cytoplasmic buffering, and endoplasmic reticulum (ER) and mitochondrial mechanisms. Using modelling studies, we show that inward rectification of SKCa is an important parameter regulating neuronal repetitive firing and that its absence reduces action potential (AP) firing frequency. We also show that SKCa is more potent in reducing AP spiking than the large-conductance KCa channel (BKCa) in these neurons. Moreover, BKCa was found to contribute to the fast AHP (fAHP) and SKCa to the medium-duration (mAHP) and slow AHP (sAHP). We also report that the slow inactivating A-type K+ channel (slow KA) current in these neurons is composed of 2 components: an initial fast inactivating (time constant ∼ 25-100 ms) and a slow inactivating (time constant ∼ 200-800 ms) current. We discuss the implications of our findings, and how our detailed model can help further our understanding of the role of C-fibre afferents in the physiology of urinary bladder as well as in certain disorders.
Collapse
Affiliation(s)
- Darshan Mandge
- Computational Neurophysiology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Rohit Manchanda
- Computational Neurophysiology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
2
|
Duan JH, Hodgdon KE, Hingtgen CM, Nicol GD. N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice. Neuroscience 2014; 270:192-202. [PMID: 24755485 PMCID: PMC4075288 DOI: 10.1016/j.neuroscience.2014.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 02/07/2023]
Abstract
Major aspects of neuronal function are regulated by Ca(2+) including neurotransmitter release, excitability, developmental plasticity, and gene expression. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited both greater excitability and evoked release of neuropeptides compared to wildtype mice. Furthermore, augmented voltage-dependent sodium currents but not potassium currents contribute to the enhanced excitability. To determine the mechanisms giving rise to the enhanced release of substance P and calcitonin gene-related peptide in the Nf1+/- sensory neurons, the potential differences in the total voltage-dependent calcium current (ICa) as well as the contributions of individual Ca(2+) channel subtypes were assessed. Whole-cell patch-clamp recordings from small-diameter capsaicin-sensitive sensory neurons demonstrated that the average peak ICa densities were not different between the two genotypes. However, by using selective blockers of channel subtypes, the current density of N-type (Cav2.2) ICa was significantly larger in Nf1+/- neurons compared to wildtype neurons. In contrast, there were no significant differences in L-, P/Q- and R-type currents between the two genotypes. Quantitative real-time polymerase chain reaction measurements made from the isolated but intact dorsal root ganglia indicated that N-type (Cav2.2) and P/Q-type (Cav2.1) Ca(2+) channels exhibited the highest mRNA expression levels although there were no significant differences in the levels of mRNA expression between the genotypes. These results suggest that the augmented N-type (Cav2.2) ICa observed in the Nf1+/- sensory neurons does not result from genomic differences but may reflect post-translational or some other non-genomic modifications. Thus, our results demonstrate that sensory neurons from Nf1+/- mice, exhibit increased N-type ICa and likely account for the increased release of substance P and calcitonin gene-related peptide that occurs in Nf1+/- sensory neurons.
Collapse
Affiliation(s)
- J-H Duan
- Department of Pharmacology & Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - K E Hodgdon
- Department of Pharmacology & Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - C M Hingtgen
- Department of Pharmacology & Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - G D Nicol
- Department of Pharmacology & Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Kamp MA, Dibué M, Schneider T, Steiger HJ, Hänggi D. Calcium and potassium channels in experimental subarachnoid hemorrhage and transient global ischemia. Stroke Res Treat 2012; 2012:382146. [PMID: 23251831 PMCID: PMC3518967 DOI: 10.1155/2012/382146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/27/2012] [Indexed: 11/23/2022] Open
Abstract
Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed.
Collapse
Affiliation(s)
- Marcel A. Kamp
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
| | - Maxine Dibué
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Piekarz AD, Due MR, Khanna M, Wang B, Ripsch MS, Wang R, Meroueh SO, Vasko MR, White FA, Khanna R. CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy. Mol Pain 2012; 8:54. [PMID: 22828369 PMCID: PMC3502107 DOI: 10.1186/1744-8069-8-54] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background The ubiquity of protein-protein interactions in biological signaling offers ample opportunities for therapeutic intervention. We previously identified a peptide, designated CBD3, that suppressed inflammatory and neuropathic behavioral hypersensitivity in rodents by inhibiting the ability of collapsin response mediator protein 2 (CRMP-2) to bind to N-type voltage-activated calcium channels (CaV2.2) [Brittain et al. Nature Medicine 17:822–829 (2011)]. Results and discussion Here, we utilized SPOTScan analysis to identify an optimized variation of the CBD3 peptide (CBD3A6K) that bound with greater affinity to Ca2+ channels. Molecular dynamics simulations demonstrated that the CBD3A6K peptide was more stable and less prone to the unfolding observed with the parent CBD3 peptide. This mutant peptide, conjugated to the cell penetrating motif of the HIV transduction domain protein TAT, exhibited greater anti-nociception in a rodent model of AIDS therapy-induced peripheral neuropathy when compared to the parent TAT-CBD3 peptide. Remarkably, intraperitoneal administration of TAT-CBD3A6K produced none of the minor side effects (i.e. tail kinking, body contortion) observed with the parent peptide. Interestingly, excitability of dissociated small diameter sensory neurons isolated from rats was also reduced by TAT-CBD3A6K peptide suggesting that suppression of excitability may be due to inhibition of T- and R-type Ca2+ channels. TAT-CBD3A6K had no effect on depolarization-evoked calcitonin gene related peptide (CGRP) release compared to vehicle control. Conclusions Collectively, these results establish TAT-CBD3A6K as a peptide therapeutic with greater efficacy in an AIDS therapy-induced model of peripheral neuropathy than its parent peptide, TAT-CBD3. Structural modifications of the CBD3 scaffold peptide may result in peptides with selectivity against a particular subset of voltage-gated calcium channels resulting in a multipharmacology of action on the target.
Collapse
Affiliation(s)
- Andrew D Piekarz
- Department of Pharmacology and Toxicology, 950 West Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Inoue T, Bryant BP. Multiple cation channels mediate increases in intracellular calcium induced by the volatile irritant, trans-2-pentenal in rat trigeminal neurons. Cell Mol Neurobiol 2010; 30:35-41. [PMID: 19568926 PMCID: PMC11498409 DOI: 10.1007/s10571-009-9428-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
Trans-2-Pentenal (pentenal), an alpha,beta-unsaturated aldehyde, induces increases in [Ca(2+)](i) in cultured neonatal rat trigeminal ganglion (TG) neurons. Since all pentenal-sensitive neurons responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC) and neurons from TRPA1 knockouts failed to respond to pentenal, TRPA1 appears to be sole initial transduction site for pentenal-evoked trigeminal response, as reported for the structurally related irritant, acrolein. Furthermore, because the neuronal sensitivity to pentenal is strictly dependent upon the presence of extracellular Na(+)/Ca(2+), as we showed previously, we investigated which types of voltage-gated sodium/calcium channels (VGSCs/VGCCs) are involved in pentenal-induced [Ca(2+)](i) increases as a downstream mechanisms. The application of tetrodotoxin (TTX) significantly suppressed the pentenal-induced increase in [Ca(2+)](i) in a portion of TG neurons, suggesting that TTX-sensitive (TTXs) VGSCs contribute to the pentenal response in those neurons. Diltiazem and omega-agatoxin IVA, antagonists of L- and P/Q-type VGCCs, respectively, both caused significant reductions of the pentenal-induced responses. omega-Conotoxin GVIA, on the other hand, caused only a small decrease in the size of pentenal-induced [Ca(2+)](i) rise. These indicate that both L- and P/Q-type VGCCs are involved in the increase in [Ca(2+)](i) produced by pentenal, while N-type calcium channels play only a minor role. This study demonstrates that TTXs VGSCs, L- and P/Q-type VGCCs play a significant role in the pentenal-induced trigeminal neuronal responses as downstream mechanisms following TRPA1 activation.
Collapse
Affiliation(s)
- Takashi Inoue
- Tobacco Science Research Center, Japan Tobacco Inc., Yokohama, Kanagawa, 227-8512, Japan.
| | | |
Collapse
|
6
|
Fukumoto N, Obama Y, Kitamura N, Niimi K, Takahashi E, Itakura C, Shibuya I. Hypoalgesic behaviors of P/Q-type voltage-gated Ca2+ channel mutant mouse, rolling mouse Nagoya. Neuroscience 2009; 160:165-73. [PMID: 19248821 DOI: 10.1016/j.neuroscience.2009.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 02/13/2009] [Accepted: 02/15/2009] [Indexed: 10/21/2022]
Abstract
Rolling mouse Nagoya (tg(rol)) is a spontaneously occurring P/Q-type voltage-gated Ca2+ channel (VGCC) mutant mouse. A P/Q-type VGCC with the tg(rol) mutation has lower voltage sensitivity of activation, and mice with a homozygous genotype (tg(rol)/tg(rol)) but not with a heterozygous genotype (tg(rol)/+) show impaired motor coordination of the hind limbs. To investigate the roles of P/Q-type VGCC in pain sensing mechanisms, behavioral responses of adult tg(rol) mice to thermal, mechanical and chemical nociceptive stimuli were examined by the plantar, tail-flick, von Frey and formalin tests. The latency of the withdrawal response to thermal stimuli in the plantar or tail-flick tests was significantly longer in tg(rol)/tg(rol) mice than in tg(rol)/+ and wild-type (+/+) mice, and in tg(rol)/+ mice than in +/+ mice. The withdrawal response to mechanical stimuli in the von Frey test was lower in tg(rol)/tg(rol) mice than in +/+ mice. Although the licking time during the first 5 min after the formalin injection was similar among all of the three genotypes, that during 5-60 min was significantly shorter in tg(rol)/tg(rol) mice than in tg(rol)/+ and +/+ mice, and in tg(rol)/+ mice than in +/+ mice. Artificial inflammation induced by injection of complete Freund's adjuvant (CFA) into a hind paw significantly enhanced the withdrawal response recorded in the plantar and von Frey tests regardless of the mouse genotype. The CFA-enhanced response in the tg(rol)/tg(rol) mice was similar to the response in +/+ mice without the CFA injection. These results suggest that tg(rol) mutant mice show hypoalgesic responses caused by a lower sensitivity to nociceptive thermal, mechanical and chemical stimuli. It is concluded that the P/Q-type VGCC has a pro-nociceptive role and that the tg(rol) mutant mouse may be a useful tool to investigate the role of the P/Q-type VGCC in pain sensing mechanisms.
Collapse
Affiliation(s)
- N Fukumoto
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, 101, South 4th, Koyama, Tottori 6808553, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Viéro C, Méchaly I, Aptel H, Puech S, Valmier J, Bancel F, Dayanithi G. Rapid inhibition of Ca2+ influx by neurosteroids in murine embryonic sensory neurones. Cell Calcium 2006; 40:383-91. [PMID: 16769113 DOI: 10.1016/j.ceca.2006.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/09/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
The non-genomic role of neuroactive steroids on [Ca2+]i transients induced by GABA receptor activation was investigated in cultured dorsal root ganglia (DRG) neurones at embryonic stage E13. [Ca2+]i measurements were performed with Fura-2 fast fluorescence microfluorimetry. Application of the GABAA receptor agonist muscimol (Musci) evoked an increase in [Ca2+]i, confirming the excitatory effect of GABA at this embryonic stage. The muscimol-induced [Ca2+]i response was inhibited by progesterone (Proges) and its primary metabolite allopregnanolone (Allo) in a rapid, reversible and dose-dependent manner. These calcium transients were suppressed in the absence of external Ca2+ or in the presence of Ni2+ + Cd2+ suggesting an involvement of voltage-activated Ca2+ channels. In contrast, none of these steroids affected the resting [Ca2+]i nor exhibited any inhibitory effect on 50 mM KCl-induced [Ca2+]i increases. In view of the well-established potentiation of GABAA receptor by direct binding of neurosteroids, the inhibitory effects described in this study seem to involve distinct mechanisms. This new inhibitory effect of progesterone is observed at low and physiological concentrations, is rapid and independent of RU38486, an antagonist of the classic progesterone receptor, probably involving a membrane receptor. Using RT-PCR, we demonstrated the expression of progesterone receptor membrane component 1 (Pgrmc1), encoding 25-Dx, a membrane-associated progesterone binding protein in DRG neurones at different stages of development. In conclusion, we describe for the first time a rapid effect of progestins on embryonic DRG neurones involving an antagonistic effect of progesterone and allopregnanolone on GABAA receptors.
Collapse
Affiliation(s)
- Cédric Viéro
- INSERM U 583, Institut des Neurosciences de Montpellier, Hôpital St Eloi, BP 74103, 80 rue Augustin Fliche, F-34091 Montpellier, Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhou C, Ye HH, Wang SQ, Chai Z. Interleukin-1beta regulation of N-type Ca2+ channels in cortical neurons. Neurosci Lett 2006; 403:181-5. [PMID: 16709441 DOI: 10.1016/j.neulet.2006.04.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/11/2006] [Accepted: 04/25/2006] [Indexed: 11/17/2022]
Abstract
Interleukin-1beta (IL-1beta) has been found to play an important role in various diseases in the central nervous system (CNS) and exhibit neuroprotective effects in some conditions. The transmitter release in brain is controlled by voltage-gated Ca(2+) channels (VGCCs), predominantly N-type Ca(2+) channels (NCCs). Although both IL-1beta and NCCs are implicated regulating excitotoxicity and Ca(2+) homeostasis, it is not known whether IL-1beta modulates NCCs directly. In present study, we examined the effects of IL-1beta treatment (10 ng/ml, 24 h) on NCCs in cultured cortical neurons using patch-clamp recording and immunoblot assay. Our results showed that IL-1beta decreased NCC currents by approximately 50%, which made up 40% of the whole-cell Ca(2+) current demonstrated by omega-conotoxin-GVIA, and also significantly downregulated the expression of NCC protein. The residual Ca(2+) currents except L-type Ca(2+) channel currents and NCC currents were not affected by IL-1beta. Our finding, IL-1beta inhibits the activity of NCC via suppressing NCC protein expression provides new insight into the neuroprotective role of IL-1beta in CNS.
Collapse
Affiliation(s)
- Chen Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
9
|
Zhou C, Tai C, Ye HH, Ren X, Chen JG, Wang SQ, Chai Z. Interleukin-1beta downregulates the L-type Ca2+ channel activity by depressing the expression of channel protein in cortical neurons. J Cell Physiol 2006; 206:799-806. [PMID: 16222709 DOI: 10.1002/jcp.20518] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interleukin-1beta (IL-1beta), a proinflammatory cytokine, has been involved in various diseases of the central nervous system (CNS). Due to the diverse, "contradictory" effects of IL-1beta on neurons during insults to the brain, the mechanisms underlying these effects have not been elucidated. Calcium influx through the L-type Ca2+ channels (LCCs) is believed to play a critical role in the cascade of biochemical events leading to neuron death in these pathophysiological conditions. So far, the mechanism of the interaction of IL-1beta and LCCs in the initiation and progression of these diseases is unclear. In this study, we investigate systemically the effects of IL-1beta on the LCCs current, which are believed to be implicated in the cascade of biochemical events leading to neuron death in neuropathological conditions. Using patch clamp, we observe that IL-1beta treatment (10 ng/ml, 24 h) suppresses LCC currents by approximately 38%, which made up half of the whole-cell Ca2+ current determined by nifedipine. IL-1beta does not alter the characteristics of single LCC including current amplitude, open probability, and conductance, but decreases the number of the functioning channel by 40%. Moreover, immunoblot assay exhibits that IL-1beta reduces the expression of LCC proteins by 38 approximately 42% in both whole neuron and plasma membrane fraction, and demonstrates that IL-1beta downregulates the LCC activity via the reduction of LCC density. According to early research pretreatments longer than 12 h may play a crucial role in the neuroprotective effects of IL-1beta, our findings may establish an explanation for the protective effects of this interleukin on neurons in the late stage of injury, and could raise a new issue to clinical treatment for insults to brain.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Physiology and Biophysics, State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Beekwilder JP, Winkelman DLB, van Kempen GTH, van den Berg RJ, Ypey DL. The Block of Total and N-Type Calcium Conductance in Mouse Sensory Neurons by the Local Anesthetic n-Butyl-p-Aminobenzoate. Anesth Analg 2005; 100:1674-1679. [PMID: 15920194 DOI: 10.1213/01.ane.0000151162.07211.dd] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To contribute to the understanding of the mechanism underlying selective analgesia by epidural application of suspensions of the local anesthetic butamben (n-butyl-p-aminobenzoate; BAB), we investigated the effect of dissolved BAB on calcium channels in sensory neurons. Small-diameter dorsal root ganglion neurons from newborn mice were used to measure whole-cell barium or calcium currents through calcium channels upon voltage-clamp stimulation. BAB suppressed the voltage-step-evoked barium current of these cells in a concentration-dependent manner with a 50% inhibitory concentration of 207 +/- 14 microM (n = 40). A similar concentration dependency was found for the pharmacologically isolated N-type component of the whole-cell barium current. The time constants of inactivation and deactivation of the N-type current became smaller in the presence of BAB, thus suggesting that kinetic changes are involved in the inhibition of this current. BAB caused a similar inhibition of the total calcium current and its N-type component when these currents were evoked by command potentials with the shape of an action potential. This inhibition of calcium currents by BAB should be considered in the search for the mechanism of selective analgesia by epidural suspensions of this local anesthetic.
Collapse
Affiliation(s)
- Jeroen P Beekwilder
- Department of Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Vigues S, Gastaldi M, Massacrier A, Cau P, Valmier J. The alpha(1A) subunits of rat brain calcium channels are developmentally regulated by alternative RNA splicing. Neuroscience 2002; 113:509-17. [PMID: 12150771 DOI: 10.1016/s0306-4522(02)00213-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcium influx through voltage-gated calcium channels governs important aspects of CNS development. Multiple alternative splicings of the pore-forming alpha(1) subunits have been evidenced in adult brain but little information about their expression during ontogenesis is presently available. The aim of this study was to focus on the expression of three rat voltage-gated calcium channel alpha(1A) splice variants (alpha(1A-a), alpha(1A-b) and alpha(1A-EFe)) during brain ontogenesis in vivo. Using a reverse transcription-polymerase chain reaction strategy, we found that the three isoforms have different timings of development throughout the brain: alpha(1A-b) is expressed from embryonic to the adult stage, alpha(1A--EFe) is restricted to the embryonic period whereas alpha(1A-a) is expressed only postnatally. In situ hybridization indicated that alpha(1A-a) and alpha(1A-b) isoforms develop with different regional and cellular patterns. In hippocampus and cerebellum, alpha(1A-b) represented the predominant isoform at all developmental stages. Taken together, these data reveal that alternative RNA splicing may modulate the alpha(1A) calcium channel properties during development.
Collapse
Affiliation(s)
- S Vigues
- Inserm U-432, Université Montpellier II, Place Eugene Bataillon, 34095 Cedex 5, Montpellier, France
| | | | | | | | | |
Collapse
|
12
|
Murakami M, Fleischmann B, De Felipe C, Freichel M, Trost C, Ludwig A, Wissenbach U, Schwegler H, Hofmann F, Hescheler J, Flockerzi V, Cavalié A. Pain perception in mice lacking the beta3 subunit of voltage-activated calcium channels. J Biol Chem 2002; 277:40342-51. [PMID: 12161429 DOI: 10.1074/jbc.m203425200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of voltage-activated calcium channels in pain processing has been suggested by the spinal antinociceptive action of blockers of N- and P/Q-type calcium channels as well as by gene targeting of the alpha1B subunit (N-type). The accessory beta3 subunits of calcium channels are preferentially associated with the alpha1B subunit in neurones. Here we show that deletion of the beta3 subunit by gene targeting affects strongly the pain processing of mutant mice. We pinpoint this defect in the pain-related behavior and ascending pain pathways of the spinal cord in vivo and at the level of calcium channel currents and proteins in single dorsal root ganglion neurones in vitro. The pain induced by chemical inflammation is preferentially damped by deletion of beta3 subunits, whereas responses to acute thermal and mechanical harmful stimuli are reduced moderately or not at all, respectively. The defect results in a weak wind-up of spinal cord activity during intense afferent nerve stimulation. The molecular mechanism responsible for the phenotype was traced to low expression of N-type calcium channels (alpha1B) and functional alterations of calcium channel currents in neurones projecting to the spinal cord.
Collapse
Affiliation(s)
- Manabu Murakami
- Pharmakologie und Toxikologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Grigaliunas A, Bradley RM, MacCallum DK, Mistretta CM. Distinctive neurophysiological properties of embryonic trigeminal and geniculate neurons in culture. J Neurophysiol 2002; 88:2058-74. [PMID: 12364528 DOI: 10.1152/jn.2002.88.4.2058] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurons in trigeminal and geniculate ganglia extend neurites that share contiguous target tissue fields in the fungiform papillae and taste buds of the mammalian tongue and thereby have principal roles in lingual somatosensation and gustation. Although functional differentiation of these neurons is central to formation of lingual sensory circuits, there is little known about electrophysiological properties of developing trigeminal and geniculate ganglia or the extrinsic factors that might regulate neural development. We used whole cell recordings from embryonic day 16 rat ganglia, maintained in culture as explants for 3-10 days with neurotrophin support to characterize basic properties of trigeminal and geniculate neurons over time in vitro and in comparison to each other. Each ganglion was cultured with the neurotrophin that supports maximal neuron survival and that would be encountered by growing neurites at highest concentration in target fields. Resting membrane potential and time constant did not alter over days in culture, whereas membrane resistance decreased and capacitance increased in association with small increases in trigeminal and geniculate soma size. Small gradual differences in action potential properties were observed for both ganglion types, including an increase in threshold current to elicit an action potential and a decrease in duration and increase in rise and fall slopes so that action potentials became shorter and sharper with time in culture. Using a period of 5-8 days in culture when neural properties are generally stable, we compared trigeminal and geniculate ganglia and revealed major differences between these embryonic ganglia in passive membrane and action potential characteristics. Geniculate neurons had lower resting membrane potential and higher input resistance and smaller, shorter, and sharper action potentials with lower thresholds than trigeminal neurons. Whereas all trigeminal neurons produced a single action potential at threshold depolarization, 35% of geniculate neurons fired repetitively. Furthermore, all trigeminal neurons produced TTX-resistant action potentials, but geniculate action potentials were abolished in the presence of low concentrations of TTX. Both trigeminal and geniculate neurons had inflections on the falling phase of the action potential that were reduced in the presence of various pharmacological blockers of calcium channel activation. Use of nifedipine, omega-conotoxin-MVIIA and GVIA, and omega-agatoxin-TK indicated that currents through L-, N-, and P/Q- type calcium channels participate in the action potential inflection in embryonic trigeminal and geniculate neurons. The data on passive membrane, action potential, and ion channel characteristics demonstrate clear differences between trigeminal and geniculate ganglion neurons at an embryonic stage when target tissues are innervated but receptor organs have not developed or are still immature. Therefore these electrophysiological distinctions between embryonic ganglia are present before neural activity from differentiated receptive fields can influence functional phenotype.
Collapse
Affiliation(s)
- Arturas Grigaliunas
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | |
Collapse
|
14
|
Benquet P, Frere S, Pichon Y, Tiaho F. Properties and development of calcium currents in embryonic cockroach neurons. Neurosci Lett 2000; 294:49-52. [PMID: 11044584 DOI: 10.1016/s0304-3940(00)01549-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In freshly dissociated neurons from embryonic cockroach (Periplaneta americana L.) brains, voltage-dependent calcium currents appear early in development (E14). Their intensity increases progressively during embryonic life until eclosion (E35). Their time course and voltage dependency are characteristic of high voltage activated (HVA) currents although a 10 mV shift of the I/V curve towards more negative potentials was observed between E18 and E23. Their sensitivity to omega-AgaTx-IVA and omega-CgTx-GVIA and insensitivity to both amiloride and isradipine indicate that the corresponding channels are of the P/Q and N types. These channels, as well as a small proportion of toxin-resistant (R) channels (about 20%), are blocked by mibefradil and verapamil. The physiological significance of these currents and their modifications during embryonic life is discussed.
Collapse
Affiliation(s)
- P Benquet
- Equipe Canaux et Récepteurs Membranaires, UMR 6026, Campus de Beaulieu, Bât. 13, 35042 Cedex, Rennes, France
| | | | | | | |
Collapse
|
15
|
Properties of Q-type calcium channels in neostriatal and cortical neurons are correlated with beta subunit expression. J Neurosci 1999. [PMID: 10460233 DOI: 10.1523/jneurosci.19-17-07268.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In brain neurons, P- and Q-type Ca(2+) channels both appear to include a class A alpha1 subunit. In spite of this similarity, these channels differ pharmacologically and biophysically, particularly in inactivation kinetics. The molecular basis for this difference is unclear. In heterologous systems, alternative splicing and ancillary beta subunits have been shown to alter biophysical properties of channels containing a class A alpha1 subunit. To test the hypothesis that similar mechanisms are at work in native systems, P- and Q-type currents were characterized in acutely isolated rat neostriatal, medium spiny neurons and cortical pyramidal neurons using whole-cell voltage-clamp techniques. Cells were subsequently aspirated and subjected to single-cell RT-PCR (scRT-PCR) analysis of calcium channel alpha(1) and beta (beta(1-4)) subunit expression. In both cortical and neostriatal neurons, P- and Q-type currents were found in cells expressing class A alpha(1) subunit mRNA. Although P-type currents in cortical and neostriatal neurons were similar, Q-type currents differed significantly in inactivation kinetics. Notably, Q-type currents in neostriatal neurons were similar to P-type currents in inactivation rate. The variation in Q-type channel biophysics was correlated with beta subunit expression. Neostriatal neurons expressed significantly higher levels of beta(2a) mRNA and lower levels of beta(1b) mRNA than cortical neurons. These findings are consistent with the association of beta(2a) and beta(1b) subunits with slow and fast inactivation, respectively. Analysis of alpha(1A) splice variants in the linker between domains I and II failed to provide an alternative explanation for the differences in inactivation rates. These findings are consistent with the hypothesis that the biophysical properties of Q-type channels are governed by beta subunit isoforms and are separable from toxin sensitivity.
Collapse
|
16
|
Chambard JM, Chabbert C, Sans A, Desmadryl G. Developmental changes in low and high voltage-activated calcium currents in acutely isolated mouse vestibular neurons. J Physiol 1999; 518:141-9. [PMID: 10373696 PMCID: PMC2269410 DOI: 10.1111/j.1469-7793.1999.0141r.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. The development of low voltage-activated (LVA) and high voltage-activated (HVA) calcium currents was studied in neurons acutely dissociated from mouse vestibular ganglia at embryonic stages (E)14, 15, 17 and birth using the whole-cell patch-clamp technique. 2. LVA current was present in almost all neurons tested at stages E14 to E17, although at birth this current was restricted to a few neurons. Two populations of neurons were characterized based on the amplitude of the LVA current. In the first population, LVA current densities decreased between E17 and birth by which time this current tended to disappear in most neurons. A second population of neurons with high density LVA current appeared at E17, and in this group the mean density increased during development. 3. Among HVA currents, the dihydropyridine-sensitive L-type current remained constant between E15 and birth. Over the same period, the density of N- and Q-type currents continuously increased as shown using omega-conotoxin-GVIA (N-type), and high concentrations of omega-agatoxin-IVA (Q-type). The P-type current, sensitive to low concentrations of omega-agatoxin-IVA, transiently increased between E15 and E17, and then both current density and its proportion of the global current decreased. 4. Our results reveal large modifications in the expression of voltage-dependent calcium channels during embryonic development of primary vestibular neurons. The changes in the expression of LVA current and the transient augmentation of P-type HVA current occur during a period characterized by massive neuronal growth and by the beginning of synaptogenesis. These results suggest a specific role of these currents in the ontogenesis of vestibular primary afferents.
Collapse
Affiliation(s)
- J M Chambard
- INSERM U432 Neurobiologie et Developpement du Systeme Vestibulaire, UM2, cp 089 place E. Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
17
|
Desmadryl G, Hilaire C, Vigues S, Diochot S, Valmier J. Developmental regulation of T-, N- and L-type calcium currents in mouse embryonic sensory neurones. Eur J Neurosci 1998; 10:545-52. [PMID: 9749717 DOI: 10.1046/j.1460-9568.1998.00055.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the development of a low (T-type) and two high voltage-activated (N- and L-type) calcium channel currents in large diameter dorsal root ganglion neurones acutely isolated from embryonic mice using the whole-cell patch-clamp technique. The low and high voltage-activated barium currents (LVA and HVA) were identified by their distinct threshold of activation and their sensitivity to pharmacological agents, dihydropyridines and omega-conotoxin-GVIA, at embryonic day 13 (E13), E15 and E17-18, respectively, before, during and after synaptogenesis. The amplitude and density of LVA currents, measured during a -40 mV pulse from a holding potential of -100 mV, increased significantly between E13 and E15, and remained constant between E15 and E17-18. The density of global HVA current, elicited by 0 mV pulse, increased between E13 and E15/E17-18. The density of the N-type current studied by the application of omega-conotoxin-GVIA (1 microM) increased significantly between E13 and E15/E17-18. The use of the dihydropyridine nitrendipine (1 microM) revealed that the density of L-type current remained constant at each stage of development. Nevertheless, application of dihydropyridine Bay K 8644 (3 microM) demonstrated a significant slowing of the deactivation tail current between embryonic days 13 and 15, which may reflect a qualitative maturation of this class of calcium channel current. The temporal relationship between the changes in calcium channel pattern and the period of target innervation suggests possible roles of T-, N- and L-type currents during developmental key events such as natural neurone death and onset of synapse formation.
Collapse
Affiliation(s)
- G Desmadryl
- INSERM U432 Neurobiologie et Développement du Système Vestibulaire, Montpellier, France
| | | | | | | | | |
Collapse
|
18
|
Hilaire C, Diochot S, Desmadryl G, Richard S, Valmier J. Toxin-resistant calcium currents in embryonic mouse sensory neurons. Neuroscience 1997; 80:267-76. [PMID: 9252237 DOI: 10.1016/s0306-4522(97)00101-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We characterized toxin-insensitive calcium currents expressed by acutely dissociated embryonic dorsal root ganglion neurons. In the presence of 3 microM omega-conotoxin-GVIA, 3 microM nitrendipine and either 500 nM omega-agatoxin-IVA or 500 nM omega-conotoxin-MVIIC to inhibit N-, L- and P/Q-type currents, respectively, all neurons expressed two residual currents: a T-type and another which we referred to as toxin-resistant current. The toxin-resistant current (i) consisted of an inactivating and a sustained components, (ii) had a threshold of activation and a steady-state inactivation comprised between that of the T-type current and that of the other high-voltage-activated currents, (iii) had the same permeability for barium and calcium used as charge carriers, (iv) was highly sensitive to both cadmium and nickel; and (v) was insensitive to 500 microM amiloride which abolished the T-type at this concentration. The properties of the toxin-resistant current are very similar to those of the currents expressed in oocytes following injection of alpha(1E) subunits which we demonstrated to be present in these neurons. Therefore a component of the toxin-resistant current calcium channels in sensory neurons may be closely related to those calcium channels formed by alpha(1E) subunits.
Collapse
Affiliation(s)
- C Hilaire
- Laboratoire de médecine expérimentale, Institut de Biologie, C.N.R.S.UPR 9008, I.N.S.E.R.M. U 249, Montpellier, France
| | | | | | | | | |
Collapse
|
19
|
Desmadryl G, Chambard JM, Valmier J, Sans A. Multiple voltage-dependent calcium currents in acutely isolated mouse vestibular neurons. Neuroscience 1997; 78:511-22. [PMID: 9145806 DOI: 10.1016/s0306-4522(96)00595-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the presence of voltage-gated calcium currents in vestibular neurons acutely isolated from postnatal mice vestibular ganglions using the whole-cell patch-clamp technique. The neuronal origin of the recorded cells was confirmed by immunohistochemical detection of neurofilaments and calretinin. High and low voltage-activated calcium currents were recorded. High voltage-activated currents were present in all investigated neurons. Low voltage-activated currents were recorded in only a few large vestibular neurons. High and low voltage-activated currents were distinguished by their thresholds of activation and their ability to run-up during early recordings. Among high voltage-activated currents. L-, N- and P-type currents were identified by their sensitivity to, respectively, the dihydropyridines agonist Bay K 8644 (3 microM) and antagonist nitrendipine (3 microM), the co-conotoxin GVIA (3 microM) and the omega-agatoxin IVA at low concentration (50 nM). An inactivating current sensitive to 1 microM omega-agatoxin IVA with characteristics similar to those of the Q-type current was also recorded in vestibular neurons. When L-, N-, P-, Q-type barium currents were blocked, a residual high voltage-activated current defined by its resistance to saturating concentrations of all above blockers was detected. This residual current was completely blocked by 0.5 mM nickel and cadmium. Our results reveal that primary vestibular neurons express a variety of voltage-activated calcium currents with distinct physiological and pharmacological properties. This diversity could be related both with their functional synaptic characteristic, and with the intrinsic physiological properties of each class of vestibular afferents.
Collapse
Affiliation(s)
- G Desmadryl
- INSERM U432, Neurobiologie et Développement du Systeme Vestibulaire, Montpellier, France
| | | | | | | |
Collapse
|
20
|
Abstract
Suramin is an experimental chemotherapeutic agent and a neurotoxin which causes a dose-dependent peripheral neuropathy in vivo and inhibits dorsal root ganglion (DRG) neurite outgrowth in vitro. The mechanism of suramin-induced cyto- and neurotoxicity remains unclear. Calcium is a key signal transducer in cellular responses to a variety of physiological and pathogenic stimuli. In the present study, we have determined the role of calcium in suramin-induced neurotoxicity in dorsal root ganglion neurons in vitro. Suramin-induced inhibition of neurite outgrowth and induction of neuronal cell death were dose-related phenomena. A low level of extracellular calcium significantly reduced suramin-induced inhibition of neurite outgrowth and delayed neuronal cell death in vitro. Nimodipine (100 microM), an L-type voltage-sensitive calcium channel (VSCC) inhibitor, mimicked low calcium medium and protected neurite outgrowth in regular calcium medium supplemented with 300 microM suramin. TMB-8 (100 microM), an inhibitor of intracellular calcium release, failed to protect neurite outgrowth against the toxin. Calmidazolium (10 microM), a potent calmodulin inhibitor, and calpain inhibitor peptide (CIP, 10 microM) protected neurite outgrowth against suramin. The results support the hypothesis that the calcium signaling system is important in suramin-induced neurotoxicity. Influx of extracellular calcium is more important than release of intracellular calcium in causing cell injury in vitro.
Collapse
Affiliation(s)
- X Sun
- Department of Neurology, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
21
|
Hilaire C, Diochot S, Desmadryl G, Baldy-Moulinier M, Richard S, Valmier J. Opposite developmental regulation of P- and Q-type calcium currents during ontogenesis of large diameter mouse sensory neurons. Neuroscience 1996; 75:1219-29. [PMID: 8938755 DOI: 10.1016/0306-4522(96)00347-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Analysis of neuronal development has emphasized the importance of voltage-activated Ca2+ currents during the initial period of differentiation. We investigated non-N, non-L Ba2+ currents through Ca2+ channels in freshly dissociated large diameter embryonic mouse dorsal root ganglion neurons using the whole-cell patch-clamp technique. Two types of omega-agatoxin IVA-sensitive currents were clearly distinguished at embryonic day 13: a sustained P-type current blocked selectively at 30 nM (IC50 = 3nM) and an inactivating Q-type current blocked in the range 50-500 nM (IC50 = 120nM). The P-type Ca2+ current disappeared at day 15 whereas the Q-type Ca2+ current increased two- to three-fold during the same embryonic period. In contrast, the contribution of the non-L, non-N, omega-agatoxin IVA-resistant current (R-type) was constant during this developmental span. In conclusion, our results clearly show that P- and Q-type Ca2+ currents are differentially expressed during ontogenesis in large diameter dorsal root ganglion neurons. The developmental change, which occurs during the period of target innervation, could be related to specific key events such as natural neuron death and onset of synapse formation.
Collapse
Affiliation(s)
- C Hilaire
- Laboratoire de médecine expérimentale, Montpellier, France
| | | | | | | | | | | |
Collapse
|