1
|
Cabrera Zapata LE, Cambiasso MJ, Arevalo MA. Epigenetic modifier Kdm6a/Utx controls the specification of hypothalamic neuronal subtypes in a sex-dependent manner. Front Cell Dev Biol 2022; 10:937875. [PMID: 36268511 PMCID: PMC9577230 DOI: 10.3389/fcell.2022.937875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Kdm6a is an X-chromosome-linked H3K27me2/3 demethylase that promotes chromatin accessibility and gene transcription and is critical for tissue/cell-specific differentiation. Previous results showed higher Kdm6a levels in XX than in XY hypothalamic neurons and a female-specific requirement for Kdm6a in mediating increased axogenesis before brain masculinization. Here, we explored the sex-specific role of Kdm6a in the specification of neuronal subtypes in the developing hypothalamus. Hypothalamic neuronal cultures were established from sex-segregated E14 mouse embryos and transfected with siRNAs to knockdown Kdm6a expression (Kdm6a-KD). We evaluated the effect of Kdm6a-KD on Ngn3 expression, a bHLH transcription factor regulating neuronal sub-specification in hypothalamus. Kdm6a-KD decreased Ngn3 expression in females but not in males, abolishing basal sex differences. Then, we analyzed Kdm6a-KD effect on Ascl1, Pomc, Npy, Sf1, Gad1, and Th expression by RT-qPCR. While Kdm6a-KD downregulated Ascl1 in both sexes equally, we found sex-specific effects for Pomc, Npy, and Th. Pomc and Th expressed higher in female than in male neurons, and Kdm6a-KD reduced their levels only in females, while Npy expressed higher in male than in female neurons, and Kdm6a-KD upregulated its expression only in females. Identical results were found by immunofluorescence for Pomc and Npy neuropeptides. Finally, using ChIP-qPCR, we found higher H3K27me3 levels at Ngn3, Pomc, and Npy promoters in male neurons, in line with Kdm6a higher expression and demethylase activity in females. At all three promoters, Kdm6a-KD induced an enrichment of H3K27me3 only in females. These results indicate that Kdm6a plays a sex-specific role in controlling the expression of transcription factors and neuropeptides critical for the differentiation of hypothalamic neuronal populations regulating food intake and energy homeostasis.
Collapse
Affiliation(s)
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Chen Q, Liang Z, Yue Q, Wang X, Siu SWI, Pui-Man Hoi M, Lee SMY. A Neuropeptide Y/F-like Polypeptide Derived from the Transcriptome of Turbinaria peltata Suppresses LPS-Induced Astrocytic Inflammation. JOURNAL OF NATURAL PRODUCTS 2022; 85:1569-1580. [PMID: 35694811 DOI: 10.1021/acs.jnatprod.2c00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neuropeptides are a group of neuronal signaling molecules that regulate physiological and behavioral processes in animals. Here, we used in silico mining to predict the polypeptide composition of available transcriptomic data of Turbinaria peltata. In total, 118 transcripts encoding putative peptide precursors were discovered. One neuropeptide Y/F-like peptide, named TpNPY, was identified and selected for in silico structural, in silico binding, and pharmacological studies. In our study, the anti-inflammation effect of TpNPY was evaluated using an LPS-stimulated C8-D1A astrocyte cell model. Our results demonstrated that TpNPY, at 0.75-3 μM, inhibited LPS-induced NO production and reduced the expression of iNOS in a dose-dependent manner. Furthermore, TpNPY reduced the secretion of proinflammatory cytokines. Additionally, treatment with TpNPY reduced LPS-mediated elevation of ROS production and the intracellular calcium concentration. Further investigation revealed that TpNPY downregulated the IKK/IκB/NF-κB signaling pathway and inhibited expression of the NLRP3 inflammasome. Through molecular docking and using an NPY receptor antagonist, TpNPY was shown to have the ability to interact with the NPY Y1 receptor. On the basis of these findings, we concluded that TpNPY might prevent LPS-induced injury in astrocytes through activation of the NPY-Y1R.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiufen Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shirley Weng In Siu
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Maggie Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
3
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Talbi R, Navarro VM. Novel insights into the metabolic action of Kiss1 neurons. Endocr Connect 2020; 9:R124-R133. [PMID: 32348961 PMCID: PMC7274555 DOI: 10.1530/ec-20-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
Kiss1 neurons are essential regulators of the hypothalamic-pituitary-gonadal (HPG) axis by regulating gonadotropin-releasing hormone (GnRH) release. Compelling evidence suggests that Kiss1 neurons of the arcuate nucleus (Kiss1ARC), recently identified as the hypothalamic GnRH pulse generator driving fertility, also participate in the regulation of metabolism through kisspeptinergic and glutamatergic interactions with, at least, proopiomelanocortin (POMC) and agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons, located in close apposition with Kiss1ARC. This review offers a comprehensive overview of the recent developments, mainly derived from animal models, on the role of Kiss1 neurons in the regulation of energy balance, including food intake, energy expenditure and the influence of circadian rhythms on this role. Furthermore, the possible neuroendocrine pathways underlying this effect, and the existing controversies related to the anorexigenic action of kisspeptin in the different experimental models, are also discussed.
Collapse
Affiliation(s)
- Rajae Talbi
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Victor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Correspondence should be addressed to V M Navarro:
| |
Collapse
|
5
|
Prezotto LD, Thorson JF, Borowicz PP, Peine JL, Bedenbaugh M, Hileman SM, Lents CA, Caton JS, Swanson KC. Influences of maternal nutrient restriction and arginine supplementation on visceral metabolism and hypothalamic circuitry of offspring. Domest Anim Endocrinol 2018; 65:71-79. [PMID: 30007131 DOI: 10.1016/j.domaniend.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/23/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022]
Abstract
Maternal nutrient restriction during gestation can exert long-term negative effects on offspring health and performance. Arginine supplementation may rescue some of the negative effects elicited by maternal nutrient restriction. We tested the hypothesis that maternal arginine supplementation during gestation would rescue deleterious effects of nutrient restriction on in vitro O2 consumption in the liver and jejunum and hypothalamic protein expression of proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AgRP), and neuronal nitric oxide synthase (nNOS), and the colocalization of nNOS and active phosphor-signal transducer and activator of transcription 3 (pSTAT3) in female offspring. Multiparous ewes were assigned to dietary treatment at 54 d of gestation: 100% of requirements (Con), 60% of control (Res), or Res plus rumen-protected arginine (Res-Arg; 180 mg/kg). At parturition, offspring were immediately removed from their dam and placed on a common diet. At 54 ± 4 d of age, female lambs (n = 6 per treatment) were weighed, the liver and jejunum were weighed, and samples were collected for in vitro measurement of O2 consumption. The hypothalamus was collected to determine protein expression of POMC, NPY, AgRP, and nNOS, and the colocalization of nNOS and pSTAT3 (n = 3, 4, and 4 for Con, Res, and Res-Arg, respectively). Hepatic consumption of O2 in vitro (mol/min/liver) was decreased (P = 0.04) in the Res and Res-Arg group compared with Con. Intensity of staining for NPY-containing fibers tended to decrease (P = 0.10) in Res and Res-Arg compared with Con. Number of POMC neuronal cells in the arcuate nucleus (ARC) of the hypothalamus decreased (P ≤ 0.03) in the Res group compared with Res-Arg. These observations demonstrate that maternal nutrient restriction decreases energy utilization in the liver and number of POMC cells in the ARC of offspring. Supplementation of arginine to the gestating ewe failed to influence hepatic use of energy in lambs from Res ewes. Numbers of POMC-containing cells were increased in the ARC in lambs from ewes restricted to 60% of nutritional requirements and supplemented with rumen-protected arginine, potentially influencing feeding behavior and hepatic energy metabolism.
Collapse
Affiliation(s)
- Ligia D Prezotto
- Department of Animal Sciences, North Dakota State University, Hultz Hall 166, Dept. 7630, PO Box 6050, Fargo 58108, USA; Northern Agricultural Research Center, Montana State University, 3710 Assinniboine Road, Havre 59501, USA
| | - Jennifer F Thorson
- Northern Agricultural Research Center, Montana State University, 3710 Assinniboine Road, Havre 59501, USA; USDA, ARS, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center 68933, USA
| | - Pawel P Borowicz
- Department of Animal Sciences, North Dakota State University, Hultz Hall 166, Dept. 7630, PO Box 6050, Fargo 58108, USA
| | - Jena L Peine
- Department of Animal Sciences, North Dakota State University, Hultz Hall 166, Dept. 7630, PO Box 6050, Fargo 58108, USA
| | - Michelle Bedenbaugh
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Stanley M Hileman
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center 68933, USA
| | - Joel S Caton
- Department of Animal Sciences, North Dakota State University, Hultz Hall 166, Dept. 7630, PO Box 6050, Fargo 58108, USA
| | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Hultz Hall 166, Dept. 7630, PO Box 6050, Fargo 58108, USA.
| |
Collapse
|
6
|
Abstract
A multi-dimensional strategy to tackle the global obesity epidemic requires an in-depth understanding of the mechanisms that underlie this complex condition. Much of the current mechanistic knowledge has arisen from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. These experimental models mimic certain aspects of the human condition and its root causes, particularly the over-consumption of calories and unbalanced diets. As with human obesity, obesity in rodents is the result of complex gene–environment interactions. Here, we review the traditional monogenic models of obesity, their contemporary optogenetic and chemogenetic successors, and the use of dietary manipulations and meal-feeding regimes to recapitulate the complexity of human obesity. We critically appraise the strengths and weaknesses of these different models to explore the underlying mechanisms, including the neural circuits that drive behaviours such as appetite control. We also discuss the use of these models for testing and screening anti-obesity drugs, beneficial bio-actives, and nutritional strategies, with the goal of ultimately translating these findings for the treatment of human obesity. Summary: We review genetic models of obesity, their optogenetic and chemogenetic successors, and the use of dietary manipulations and meal-feeding regimes.
Collapse
Affiliation(s)
- Perry Barrett
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Julian G Mercer
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter J Morgan
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
7
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1141] [Impact Index Per Article: 142.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
El-Haddad MA, Desai M, Gayle D, Ross MG. In Utero Development of Fetal Thirst and Appetite: Potential for Programming. ACTA ACUST UNITED AC 2016; 11:123-30. [PMID: 15051031 DOI: 10.1016/j.jsgi.2003.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thirst and appetite-mediated ingestive behavior develop and are likely programmed in utero, thus preparing for newborn and adult ingestive behavior. Fetal swallowing activity is markedly different from that of the adult, as spontaneous fetal swallowing occurs at a markedly (six-fold) higher rate compared with spontaneous adult drinking activity. This high rate of fetal swallowing is critical for the regulation of amniotic fluid volume and the development of the fetal gastrointestinal tract. Disordered fetal swallowing has been associated with both a decrease (oligohydramnios) and increase (polyhydramnios) in amniotic fluid volume. Both conditions are associated with a significant increase in perinatal morbidity and mortality, and limited treatment modalities are currently available. The mechanisms underlying the high rate of human fetal swallowing are regulated, in part, by tonic activity of central angiotensin II, glutamate N-methyl-D-aspartate receptors, and neuronal nitric oxide synthase. Fetal hypertonicity-mediated dipsogenesis is likely programmed in utero, as offspring of water-restricted ewes demonstrate a programmed syndrome of plasma hypertonicity, with significant hematologic and cardiovascular alterations. Similar to dipsogenic mechanisms, peripheral and central fetal orexic mechanisms also develop in utero, as demonstrated by increased fetal swallowing after both oral sucrose infusion and central injection of neuropeptide Y. The role of leptin in regulating fetal ingestive behavior is interesting because, contrary to actions in adults, leptin does not suppress fetal ingestive behavior. Teleologically, this may be of value during the newborn period, as unopposed appetite stimulatory mechanisms may facilitate rapid fetal and newborn weight gain. An adverse intrauterine environment, with altered fetal orexic factors during the critical developmental period of fetal life, may alter the normal setpoints of appetitive behavior and potentially lead to programming of adulthood hyperphagia and obesity. Further research is needed to delineate the mechanistic relationship between the intrauterine environment and the development of the setpoints of adult appetite and thirst.
Collapse
Affiliation(s)
- M A El-Haddad
- Perinatal Research Laboratories, Harbor/UCLA Medical Center, UCLA School of Medicine, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
9
|
Talbi R, Klosen P, Laran-Chich MP, El Ouezzani S, Simonneaux V. Coordinated seasonal regulation of metabolic and reproductive hypothalamic peptides in the desert jerboa. J Comp Neurol 2016; 524:3717-3728. [PMID: 27113425 DOI: 10.1002/cne.24026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/03/2016] [Accepted: 04/20/2016] [Indexed: 11/12/2022]
Abstract
Jerboa (Jaculus orientalis) is a semi-desert rodent displaying strong seasonal variations in biological functions in order to survive harsh conditions. When environmental conditions become unfavorable in early autumn, it shuts down its reproductive axis, increases its body weight, and finally hibernates. In spring, the jerboa displays opposite regulations, with a reactivation of reproduction and reduction in body weight. This study investigated how genes coding for different hypothalamic peptides involved in the central control of reproduction (Rfrp and Kiss1) and energy homeostasis (Pomc, Npy, and Somatostatin) are regulated according to seasons in male jerboas captured in the wild in spring or autumn. Remarkably, a coordinated increase in the mRNA level of Rfrp in the dorso/ventromedial hypothalamus and Kiss1, Pomc, and Somatostatin in the arcuate nucleus was observed in jerboas captured in spring as compared to autumn animals. Only Npy gene expression in the arcuate nucleus displayed no significant variations between the two seasons. These variations appear in line with the jerboa's seasonal physiology, since the spring increase in Rfrp and Kiss1 expression might be related to sexual reactivation, while the spring increase in genes encoding anorexigenic peptides, POMC, and somatostatin may account for the reduced body weight reported at this time of the year. J. Comp. Neurol. 524:3717-3728, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajae Talbi
- Institute of Cellular and Integrative Neurosciences, Department of Neurobiology of Rhythms, CNRS UPR 3212, University of Strasbourg, Strasbourg, France.,Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University of Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco
| | - Paul Klosen
- Institute of Cellular and Integrative Neurosciences, Department of Neurobiology of Rhythms, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Marie-Pierre Laran-Chich
- Institute of Cellular and Integrative Neurosciences, Department of Neurobiology of Rhythms, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Seloua El Ouezzani
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University of Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences, Department of Neurobiology of Rhythms, CNRS UPR 3212, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
10
|
Hypothalamic Non-AgRP, Non-POMC GABAergic Neurons Are Required for Postweaning Feeding and NPY Hyperphagia. J Neurosci 2015. [PMID: 26203139 DOI: 10.1523/jneurosci.1110-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. Significance statement: Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and NPY-mediated hyperphagia.
Collapse
|
11
|
Dalmolin C, Almeida DV, Figueiredo MA, Marins LF. Food intake and appetite control in a GH-transgenic zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1131-1141. [PMID: 25990920 DOI: 10.1007/s10695-015-0074-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
The biological actions of growth hormone (GH) are pleiotropic, including growth promotion, energy mobilization, gonadal development, appetite, and social behavior. The regulatory network for GH is complex and includes many central and peripheral endocrine factors as well as that from the environment. It is known that GH transgenesis results in increased growth, food intake, and consequent metabolic rates in fishes. However, the manner in which GH transgenesis alters the energetic metabolism in fishes has not been well explored. In order to elucidate these consequences, we examined the effect of GH overexpression on appetite control mechanisms in a transgenic zebrafish (Danio rerio) model. To this, we analyzed feeding behavior and the expression of the main appetite-related genes in two different feeding periods (fed and fasting) in non-transgenic (NT) and transgenic (T) zebrafish as well as glycaemic parameters of them. Our initial results have shown that NT males and females present the same feeding behavior and expression of main appetite-controlling genes; therefore, the data of both sexes were properly grouped. Following grouped data analyses, we compared the same parameters in NT and T animals. Feeding behavior results have shown that T animals eat significantly more and faster than NT siblings. Gene expression results pointed out that gastrointestinal (GT) cholecystokinin has a substantial contribution to the communication between peripheral and central control of food intake. Brain genes expression analyses revealed that T animals have a down-regulation of two strong and opposite peptides related to food intake: the anorexigenic proopiomelanocortin (pomc) and the orexigenic neuropeptide Y (npy). The down-regulation of pomc in T when compared with NT is an expected result, since the decrease in an anorexigenic factor might keep the transgenic fish hungry. The down-regulation of npy seemed to be contradictory at first, but if we consider the GH's capacity to elevate blood glucose, and that NPY is able to respond to humoral factors like glucose, this down-regulation makes sense. In fact, our last experiment showed that transgenics presented elevated blood glucose levels, confirming that npy might responded to this humoral factor. In conclusion, we have shown that GT responds to feeding status without interference of transgenesis, whereas brain responds to GH transgenesis without any effect of treatment. It is clear that transgenic zebrafish eat more and faster, and it seems that it occurs due to pomc down-regulation, since npy might be under regulation of the humoral factor glucose.
Collapse
Affiliation(s)
- Camila Dalmolin
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Daniela Volcan Almeida
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Marcio Azevedo Figueiredo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
12
|
Pandit R, Luijendijk MCM, Vanderschuren LJMJ, la Fleur SE, Adan RAH. Limbic substrates of the effects of neuropeptide Y on intake of and motivation for palatable food. Obesity (Silver Spring) 2014; 22:1216-9. [PMID: 24500791 DOI: 10.1002/oby.20718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Neuropeptide Y (NPY), given centrally augments food intake and the motivation to work for palatable food. Here, the brain regions were identified through which NPY increases food intake and motivation. METHODS NPY was infused into three brain regions implicated in food intake and motivation: the lateral hypothalamus (LH), nucleus accumbens shell (NAc), and ventral tegmental area (VTA). Motivation for sucrose was assessed using a progressive-ratio schedule of reinforcement in which the effort to obtain successive rewards increased incrementally. To disentangle the effects of NPY on motivation for palatable food from food consumption, free-feeding experiments were performed in which animals had ad libitum access to sucrose pellets. RESULTS Infusion of NPY into either VTA or NAc increased the motivation to respond for sucrose, whereas infusion of NPY in either NAc or LH increased sucrose consumption. In addition, the effect of intra-VTA NPY on motivation for food was attenuated after pretreatment with the dopamine receptor antagonist alpha-flupenthixol. CONCLUSIONS Specific limbic substrates through which NPY influences consumption of and motivation for palatable food were identified by these data. The motivational effects of NPY are exerted through the VTA, its consummatory effects through the LH, and the NAc is involved in both.
Collapse
Affiliation(s)
- Rahul Pandit
- Department of Translational Neuroscience Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Pandit R, la Fleur SE, Adan RAH. The role of melanocortins and Neuropeptide Y in food reward. Eur J Pharmacol 2013; 719:208-214. [PMID: 23872406 DOI: 10.1016/j.ejphar.2013.04.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
The Neuropeptide Y and the melanocortin peptides are two well-described hypothalamic feeding peptides regulating energy balance. Predominantly expressed within the arcuate nucleus, these neurons project to different brain areas and modulate various aspects of feeding. Hedonic feeding, where one overindulges in palatable food consumption beyond one's nutritional necessities, is one such aspect regulated by NPY/melanocortin signaling. Research suggests that NPY/melanocortin regulate hedonic aspects of feeding through its projections to the brain reward circuitry (ventral tegmental area, lateral hypothalamus, nucleus accumbens etc.), however, exact target areas have not yet been identified. The current work explores literature to provide a mechanistic explanation for the effects of these peptides on food reward.
Collapse
Affiliation(s)
- R Pandit
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | - S E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - R A H Adan
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
14
|
Alam T, Kenny DA, Sweeney T, Buckley F, Prendiville R, McGee M, Waters SM. Expression of genes involved in energy homeostasis in the duodenum and liver of Holstein-Friesian and Jersey cows and their F1 hybrid. Physiol Genomics 2012; 44:198-209. [DOI: 10.1152/physiolgenomics.00102.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Differences in feed intake and production efficiency in lactating Holstein-Friesian (HF), Jersey (JE), and JE × HF (F1) dairy cows have been reported. The liver-gut axis is important in the regulation of energy homeostasis, appetite behaviour, and production efficiency. The objectives of this study were to determine: 1) the effect of dairy cow genotype on the expression profiles of genes involved in energy homeostasis in duodenal and hepatic tissue, and 2) the association between the expression of these genes across both tissues and with economically important production efficiency traits. The expression of 27 candidate genes involved in energy homeostasis, feed intake, and energy storage was measured by qPCR. Duodenal expression of the pro-opiomelanocortin ( POMC), glucagon-like peptide 1 receptor ( GLP1R), and insulin-like growth factor 1 ( IGF1) genes was highest in HF. In contrast, hepatic expression of the leptin receptor ( LEPR), insulin-like growth factor 1 receptor ( IGF1R), protein kinase, AMP-activated, beta 1 ( AMPKB1), and POMC genes was highest in the F1 cross. In the duodenum, positive correlations were observed between mRNA expression of anorectic peptides ( POMC and GLP1R), whereas a negative correlation was detected between orexigenic (ghrelin) and anorectic (peptide YY) gene expression. A negative correlation was observed between duodenal POMC gene expression and both residual feed intake and milk production efficiency traits, while GLP1R gene expression was negatively correlated with milk production efficiency traits. A heterotic effect was observed in hepatic expression of AMKPB1, IGF1R, LEPR, POMC in the F1 genotype, possibly mediating improved feed efficiency in cross-bred cows. In conclusion, key genes involved in energy homeostasis and appetite behaviour are differentially expressed due to cow genotype in a tissue-dependent fashion. POMC and GLP1R are potential candidate genes for the identification of single nucleotide polymorphisms regulating energetic efficiency in the dairy cow, which may be incorporated into future breeding programmes.
Collapse
Affiliation(s)
- Tanweer Alam
- Cell and Molecular Biology Laboratory, Veterinary Science Centre, University College Dublin, Dublin
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath
| | - Torres Sweeney
- Cell and Molecular Biology Laboratory, Veterinary Science Centre, University College Dublin, Dublin
| | - Frank Buckley
- Teagasc, Moorepark Dairy Production Research Centre, Fermoy, Co. Cork; and
| | - Robert Prendiville
- Teagasc, Moorepark Dairy Production Research Centre, Fermoy, Co. Cork; and
| | - Mark McGee
- Livestock Systems Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Sinead M. Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath
| |
Collapse
|
15
|
Analysis of multiple polymorphisms in the bovine neuropeptide Y5 receptor gene and structural modelling of the encoded protein. Mol Biol Rep 2011; 39:4411-21. [PMID: 21947839 DOI: 10.1007/s11033-011-1229-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 09/13/2011] [Indexed: 01/15/2023]
Abstract
The neuropeptide Y 5 receptor (NPY5R) plays an important role in the regulation of appetite and feeding behaviour in mammals by modulating the effect of the neurotransmitter neuropeptide Y. As single nucleotide polymorphism (SNP) variation in the bovine NPY5R gene is likely to influence the expression and/or function of this gene, the objectives of this study were to identify SNPs in the bovine NPY5R gene and to predict their functional role in the expression and physico-chemical characteristics of the protein product. Nineteen novel SNPs were identified in a 2.1 kb genomic region of the NPY5R gene in a total of 419 beef cattle from 13 Bos taurus breeds and eight Bos indicus animals. Four of these SNPs were non-synonymous (Met → Ile, Leu → Phe, Pro → Leu, Arg → Stop codon), while 10 were synonymous. Of particular interest was one non-synonymous SNP (c.1090C>T) that introduced a stop codon in the third intracellular loop of the NPY5R molecule. This stop codon is predicted to create a truncated NPY5R molecule with different physico-chemical properties compared to the native NPY5R protein. A further four SNPs were located in the 5' untranslated region (UTR) and one in the 3'UTR. Two of the 5'UTR SNPs affected putative transcription factor binding sites (GATA binding factor and snRNA-activating protein complex). In conclusion, regulatory and functional SNPs were identified in the bovine NPY5R gene. These include SNPs which potentially modify transcription factor binding sites as well as SNPs that cause amino acid changes and premature termination of the NPY5R protein. Such polymorphisms are likely to play vital physiological roles in the neuropeptide Y mediated appetite, feed intake and energy homeostasis in cattle.
Collapse
|
16
|
Wiater MF, Mukherjee S, Li AJ, Dinh TT, Rooney EM, Simasko SM, Ritter S. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1569-83. [PMID: 21880863 DOI: 10.1152/ajpregu.00168.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sleep and feeding rhythms are highly coordinated across the circadian cycle, but the brain sites responsible for this coordination are unknown. We examined the role of neuropeptide Y (NPY) receptor-expressing neurons in the mediobasal hypothalamus (MBH) in this process by injecting the targeted toxin, NPY-saporin (NPY-SAP), into the arcuate nucleus (Arc). NPY-SAP-lesioned rats were initially hyperphagic, became obese, exhibited sustained disruption of circadian feeding patterns, and had abnormal circadian distribution of sleep-wake patterns. Total amounts of rapid eye movement sleep (REMS) and non-REMS (NREMS) were not altered by NPY-SAP lesions, but a peak amount of REMS was permanently displaced to the dark period, and circadian variation in NREMS was eliminated. The phase reversal of REMS to the dark period by the lesion suggests that REMS timing is independently linked to the function of MBH NPY receptor-expressing neurons and is not dependent on NREMS pattern, which was altered but not phase reversed by the lesion. Sleep-wake patterns were altered in controls by restricting feeding to the light period, but were not altered in NPY-SAP rats by restricting feeding to either the light or dark period, indicating that disturbed sleep-wake patterns in lesioned rats were not secondary to changes in food intake. Sleep abnormalities persisted even after hyperphagia abated during the static phase of the lesion. Results suggest that the MBH is required for the essential task of integrating sleep-wake and feeding rhythms, a function that allows animals to accommodate changeable patterns of food availability. NPY receptor-expressing neurons are key components of this integrative function.
Collapse
Affiliation(s)
- M F Wiater
- Programs in Neuroscience, Dept. of Veterinary and Comparative Anatomy, Physiology and Pharmacology, Washington State Univ., Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Dhanoa DS. Review: Cardiovascular & Renal Nouropeptide Y: a promising therapeutic target. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.5.391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Köhnke MD. Approach to the genetics of alcoholism: A review based on pathophysiology. Biochem Pharmacol 2008; 75:160-77. [PMID: 17669369 DOI: 10.1016/j.bcp.2007.06.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 12/22/2022]
Abstract
Alcohol dependence is a common disorder with a heterogenous etiology. The results of family, twin and adoption studies on alcoholism are reviewed. These studies have revealed a heritability of alcoholism of over 50%. After evaluating the results, it was epidemiologically stated that alcoholism is heterogenous complex disorder with a multiple genetic background. Modern molecular genetic techniques allow examining specific genes involved in the pathophysiology of complex diseases such as alcoholism. Strategies for gene identification are introduced to the reader, including family-based and association studies. The susceptibility genes that are in the focus of this article have been chosen because they are known to encode for underlying mechanisms that are linked to the pathophysiology of alcoholism or that are important for the pharmacotherapeutic approaches in the treatment of alcohol dependence. Postulated candidate genes of the metabolism of alcohol and of the involved neurotransmitter systems are introduced. Genetic studies on alcoholism examining the metabolism of alcohol and the dopaminergic, GABAergic, glutamatergic, opioid, cholinergic and serotonergic neurotransmitter systems as well as the neuropeptide Y are presented. The results are critically discussed followed by a discussion of possible consequences.
Collapse
Affiliation(s)
- Michael D Köhnke
- Friedrich-Petersen-Klinik Rostock, Semmelweisstrasse 2, 18059 Rostock, Germany.
| |
Collapse
|
19
|
Simerly RB. Hypothalamic substrates of metabolic imprinting. Physiol Behav 2007; 94:79-89. [PMID: 18262209 DOI: 10.1016/j.physbeh.2007.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/15/2007] [Indexed: 11/18/2022]
Abstract
The mammalian brain develops according to intrinsic genetic programs that are influenced by a variety of environmental factors. Developing neural circuits take shape in two major environments: one in utero and a second during postnatal life. Although an abundance of epidemiological and experimental evidence indicates that nutritional variables during perinatal life have a lasting effect on metabolic phenotype, the underlying mechanisms remain unclear. Peripheral hormones are widely regarded as effective signals that reflect the state of peripheral environments and can directly influence the development of a variety of functional neural systems. Recent findings suggest that the adipocyte-derived hormone leptin may play an important role in directing formation of hypothalamic neural pathways that control body weight. The arcuate nucleus of the hypothalamus (ARH) is a key site for the regulatory actions of leptin in adults, and this same hormone is required for the normal development of ARH projections to other parts of the hypothalamus. In this review, the neurobiological role of leptin is considered within the context of hypothalamic development and the possibility that variations in both prenatal and postnatal nutritional environments may impact development of neural circuits that control energy metabolism through an indirect action on leptin secretion, or signaling, during key developmental critical periods.
Collapse
Affiliation(s)
- Richard B Simerly
- The Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Tiesjema B, la Fleur SE, Luijendijk MCM, Brans MAD, Lin EJD, During MJ, Adan RA. Viral mediated neuropeptide Y expression in the rat paraventricular nucleus results in obesity. Obesity (Silver Spring) 2007; 15:2424-35. [PMID: 17925468 DOI: 10.1038/oby.2007.288] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. RESEARCH METHODS AND PROCEDURES Recombinant adeno-associated viral particles containing NPY (rAAV-NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti-related protein (AgRP), and pro-opiomelanocortin in the arcuate nucleus were studied. RESULTS Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. DISCUSSION These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.
Collapse
Affiliation(s)
- Birgitte Tiesjema
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Fox MT, Reynolds GW, Scott I, Simcock DC, Simpson HV. Vagal and splanchnic afferent nerves are not essential for anorexia associated with abomasal parasitism in sheep. Vet Parasitol 2006; 135:287-95. [PMID: 16309842 DOI: 10.1016/j.vetpar.2005.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 10/11/2005] [Indexed: 11/25/2022]
Abstract
Heavy burdens of the abomasal nematode, Ostertagia (Telodorsagia) circumcincta, in growing lambs result in a reduction in liveweight gain due largely to a drop in voluntary feed intake. The present study investigated: (1) the role of subdiaphragmatic vagal and non-vagal visceral afferent nerves in mediating a reduction in voluntary feed intake, using subdiaphragmatic vagal deafferentation (vagotomy) either alone or in combination with coeliac-superior mesenteric ganglionectomy (vagotomy and sympathectomy); and (2) the association between appetite, abomasal pH, selected blood values (amidated gastrin (G-17-amide), glycine-extended gastrin (G-17-Gly), pepsinogen and leptin) and worm burden, in sheep experimentally infected with 100,000 O. circumcincta infective larvae per os. Neither vagotomy alone nor vagotomy and sympathectomy in combination adversely affected the establishment or course of development of the parasite burden, when compared with a control group subject to sham surgery. Furthermore, neither surgical procedure prevented the drop in appetite seen 5-10 days post-infection, although combined vagotomy and sympathectomy did reduce voluntary feed intake prior to the start of the study. Ostertagia infection resulted in a significant increase in abomasal pH in all three groups, which was accompanied by an increase in blood G-17-amide and in G-17-Gly, the latter reported for the first time in parasitized ruminants. There were no significant differences in blood leptin, also reported for the first time in parasitized sheep, either between groups or in comparison with pre-infection levels, though weak negative correlations were established between blood leptin and appetite from day 5 to the end of the study in all three groups and a positive correlation with blood G-17-amide in the control group over the same period. These data suggest that neither intact subdiaphragmatic vagal afferent nerves or coeliac-superior mesenteric ganglion fibres, nor changes in circulating gastrin and leptin concentrations play a major role in mediating the hypophagic effects of O. circumcincta in parasitized sheep.
Collapse
Affiliation(s)
- M T Fox
- Department of Veterinary Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 OUT, UK.
| | | | | | | | | |
Collapse
|
22
|
Hwang BH, Suzuki R, Lumeng L, Li TK, McBride WJ. Innate differences in neuropeptide Y (NPY) mRNA expression in discrete brain regions between alcohol-preferring (P) and -nonpreferring (NP) rats: a significantly low level of NPY mRNA in dentate gyrus of the hippocampus and absence of NPY mRNA in the medial habenular nucleus of P rats. Neuropeptides 2004; 38:359-68. [PMID: 15567472 DOI: 10.1016/j.npep.2004.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Revised: 09/09/2004] [Accepted: 09/14/2004] [Indexed: 01/08/2023]
Abstract
The neuropeptide Y (NPY) gene in rat chromosome 4 has been shown to play an important role in alcohol-seeking behavior. NPY knockout mice drink more alcohol than wild-type mice, implicating a link between NPY deficiency and high alcohol intake. This is supported by recent studies showing that intracerebroventricular injections of NPY reduce alcohol intake in both alcohol-preferring (P) and high alcohol-drinking rats. However, it is unknown which anatomical NPY systems are involved in alcohol preference. This study was designed to investigate whether there are innate differences in NPY mRNA in cerebral cortical areas, dentate gyrus (DG) of the hippocampus and medial habenular nucleus (MHb) between P and alcohol-nonpreferring (NP) rats, as these discrete brain regions are rich in NPY mRNA. [(33)P]-labeled 28-mer oligodeoxynucleotide probe was applied for the in situ hybridization study to detect the NPY mRNA, measured using quantitative autoradiography. This study revealed an absence of NPY mRNA in the MHb of P rats. We found that NPY mRNA was significantly lower in the DG of P rats than NP rats. This innate difference of NPY mRNA expression in the DG between P and NP rats is region specific. For example, in most of the cerebral cortical areas examined, an innate difference was not seen. Our study suggests that lower NPY gene expression in the DG and MHb of P rats may be factors contributing to some of the phenotypic differences observed between the P and NP lines of rats.
Collapse
Affiliation(s)
- Bang H Hwang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
23
|
Ikeda K, Ikeda K, Iritani S, Ueno H, Niizato K. Distribution of neuropeptide Y interneurons in the dorsal prefrontal cortex of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:379-83. [PMID: 14751436 DOI: 10.1016/j.pnpbp.2003.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The distribution of neuropeptide Y (NPY) containing neurons was investigated in the dorsal prefrontal region in the brains of the schizophrenic patients and compared to those of normal control. Proportional comparison of NPY neurons in four compartments, upper cortical layers, lower cortical layers, subcortical white matter and deep white matter, demonstrated differential distribution between schizophrenic brains and controls. The proportion of NPY neurons in the upper cortical layers was low in disorganized form and subsequently in paranoid form in comparison to controls. The proportion of NPY neurons in the deep white matter was, conversely, high in the disorganized form and subsequently in the paranoid form. These results indicate that there may be a gamma-aminobutyric acid (GABA)-ergic deficit in schizophrenic patients, especially, in the disorganized form. These results also support the hypothesis of neurodevelopmental dysfunction of schizophrenia.
Collapse
Affiliation(s)
- Kenji Ikeda
- Department of Schizophrenia Research, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya, Tokyo 156-8585, Japan.
| | | | | | | | | |
Collapse
|
24
|
El-Haddad MA, Ismail Y, Guerra C, Day L, Ross MG. Neuropeptide Y administered into cerebral ventricles stimulates sucrose ingestion in the near-term ovine fetus. Am J Obstet Gynecol 2003; 189:949-52. [PMID: 14586332 DOI: 10.1067/s0002-9378(03)00840-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In adults, nutrient intake is controlled by opposing actions of appetite stimulants (eg, neuropeptide Y [NPY]) and suppressors (eg, leptin). Because NPY may exert a preferential role in mediating adult carbohydrate intake, we sought to determine the effect of central NPY on near-term fetal carbohydrate ingestion. STUDY DESIGN Five pregnant ewes and fetuses were prepared with fetal vascular, sublingual, and intracerebroventricular catheters, electrocorticogram, and esophageal electromyogram electrodes and studied at 131+/-2 days' gestation. After a 2-hour baseline period, 10% sucrose was infused sublingually for the duration of the study. At 4 hours' time, NPY was injected into the fetal cerebral ventricles and fetal swallowing monitored for an additional 6 hours. RESULTS During the basal period, mean (+/-SEM) swallowing averaged 0.8+/-0.1 swallows per minute. Fetal swallowing increased significantly in response to sublingual sucrose (1.3+/-0.1 swallows/min, P=.001), and further significantly increased at 4 to 6 hours after NPY injection into the cerebral ventricles (1.8+/-0.3, P=.001). CONCLUSION These results indicate central NPY stimulation of fetal ingestion beyond that resulting from sublingual 10% sucrose. The in utero development of NPY-induced ingestive behavior may be in preparation for high neonatal caloric intake.
Collapse
Affiliation(s)
- Mostafa A El-Haddad
- Perinatal Research Laboratories, Harbor/UCLA Medical Center, University of California, Los Angeles School of Medicine, Torrance 90502, USA.
| | | | | | | | | |
Collapse
|
25
|
Sainsbury A, Baldock PA, Schwarzer C, Ueno N, Enriquez RF, Couzens M, Inui A, Herzog H, Gardiner EM. Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol Cell Biol 2003; 23:5225-33. [PMID: 12861009 PMCID: PMC165708 DOI: 10.1128/mcb.23.15.5225-5233.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuropeptide Y regulates numerous physiological processes via at least five different Y receptors, but the specific roles of each receptor are still unclear. We previously demonstrated that Y2 receptor knockout results in a lean phenotype, increased cancellous bone volume, and an increase in plasma pancreatic polypeptide (PP), a ligand for Y4 receptors. PP-overexpressing mice are also known to have a lean phenotype. Deletion of the Y4 receptor also produced a lean phenotype and increased plasma PP levels. We therefore hypothesized that part of the Y2 phenotype results from increased PP action on Y4 receptors and tested this in PP transgenic Y4(-/-) and Y2(-/-) Y4(-/-) double knockout mice. Bone mass was not altered in Y4 knockout mice. Surprisingly, despite significant hyperphagia, Y2(-/-) Y4(-/-) mice retained a markedly lean phenotype, with reduced body weight, white adipose tissue mass, leptinemia, and insulinemia. Furthermore, bone volume was also increased threefold in Y2(-/-) Y4(-/-) mice, and this was associated with enhanced osteoblastic activity. These changes were more pronounced than those observed in Y2(-/-) mice, suggesting synergy between Y2 and Y4 receptor pathways. The lack of bone changes in PP transgenic mice suggests that PP alone is not responsible for the bone mass increases but might play a major role in the lean phenotype. However, a synergistic interaction between Y2 and Y4 pathways seems to regulate bone volume and adiposity and could have important implications for possible interventions in obesity and for anabolic treatment of osteoporotic bone loss.
Collapse
Affiliation(s)
- Amanda Sainsbury
- Neurobiology Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang XF, Han M, Storlien LH. The level of NPY receptor mRNA expression in diet-induced obese and resistant mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 115:21-8. [PMID: 12824051 DOI: 10.1016/s0169-328x(03)00174-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Some mice become obese whereas others remain lean when raised on a high-energy diet. This study examined the levels of neuropeptide Y (NPY), and of Y1, Y2, Y5 and leptin receptor mRNA expression in the hypothalamic arcuate nucleus (Arc) of chronic high-energy diet-induced obese (DIO) and resistant (DR) mice. Forty mice were divided into two groups and fed either a high-fat (HF: 40% of calories from fat, 20% of calories from saturated fat; n=34) or low-fat (LF: 10% of calories from fat, 1% from saturated fat; n=6) diet. After 22 weeks of feeding, visceral fat accumulation was 69% higher in DIO mice compared with DR mice, and the former showed a moderate level of glucose intolerance. In DIO mice, the levels of NPY and leptin receptor mRNA expressions were significantly higher than in LF mice (+32 and +14%, P<0.001 and 0.05 respectively), indicating central leptin resistance, whereas the DR and LF groups did not differ. The level of Y2 receptor mRNA expression was similar between the DIO and LF groups but, importantly, was reduced approximately 20% in DR mice (P<0.005). The level of Y5 receptor mRNA was 36% lower in DR mice than DIO mice (P<0.05). The differences between DIO and DR mice identified by this study may assist in a better understanding of genetic predisposition to an increased fat deposition induced by a chronic high-fat diet. A low level of Y2 and Y5 receptor mRNA expression may contribute to the prevention of chronic high-energy diet-induced obesity in DR mice.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Molecular Neurobiology Laboratory, Department of Biomedical Science, University of Wollongong, Northfield Avenue, Wollongong NSW2522, Australia.
| | | | | |
Collapse
|
27
|
Fiore M, Amendola T, Triaca V, Tirassa P, Alleva E, Aloe L. Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: possible implication for brain progenitor cells' activation. Eur J Neurosci 2003; 17:1455-64. [PMID: 12713648 DOI: 10.1046/j.1460-9568.2003.02573.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The condition of dominance or submission following agonistic encounters in the adult male mouse is known to differentially affect brain nerve growth factor, a neurotrophin playing a role in brain remodeling, in the fine tuning of behaviour and in the regulation of the basal forebrain cholinergic neurons. During development and adult life nerve growth factor regulates brain expression of neurotransmitters and the stimulation of progenitor cells (stem cells) which, under different external stimuli, may differentiate into neuronal and/or glial cells promoting the recovery of the injured brain. However, little information is available for the aged brain. Thus in the present study we investigated the effect of the social status ('dominance' vs. 'submission') in the aged mouse on the presence of nerve growth factor, brain-derived neurotrophic factor, choline acetyltransferase, neuropeptide Y and progenitor cells of selected brain regions. We found that aged dominant mice showed increased brain-derived neurotrophic factor in the subventricular zone and hippocampus and increased choline acetyltransferase in the septum and basal nuclei, which were associated with increased presence of progenitor cells in the subventricular zone. Conversely, in aged subordinate mice the data showed a marked brain increase in nerve growth factor in the subventricular zone and hippocampus, choline acetyltransferase in the septum and basal nuclei and neuropeptide Y in the hippocampus and parietal cortex. The possible functional implications of these findings are discussed.
Collapse
Affiliation(s)
- Marco Fiore
- Istituto di Neurobiologia e Medicina Molecolare, CNR, viale Marx, 43/15, 00137 Rome, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Katner SN, Slawecki CJ, Ehlers CL. Neuropeptide Y administration into the amygdala does not affect ethanol consumption. Alcohol 2002; 28:29-38. [PMID: 12377358 DOI: 10.1016/s0741-8329(02)00235-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Evidence seems to indicate that the anxiolytic effects of centrally administered neuropeptide Y (NPY) are mediated by the central nucleus of the amygdala. Because findings seem to indicate that ethanol may be self-administered partially for its anxiolytic effects, it was hypothesized that NPY, microinjected into the central nucleus of the amygdala, would decrease ethanol intake. In this study, we examined the effects of NPY, administered into the central nucleus of the amygdala, on ethanol, sucrose, and food consumption, as well as the concomitant effects of NPY on cortical electroencephalographic activity. Wistar rats were implanted with cortical recording electrodes and cannulae above the central amygdaloid nuclei, after use of a sucrose-substitution procedure, to establish ethanol self-administration. Neuropeptide Y (0-250 pmol/0.5 micro l) was infused into the amygdala before drinking sessions, when 10% ethanol (10 E), 2% sucrose (2S), or food was available. Consumption, locomotor activity, and cortical electroencephalographic activity were then monitored concurrently. Neuropeptide Y had no effect on the intake of 10 E, 2S, or food, nor on the cortical electroencephalographic or locomotor activity. However, as reported previously, distinct changes in the electroencephalogram were associated with consumption of ethanol and sucrose. Cortical power in the 6-8 Hz frequency range was significantly increased during the beginning of the sucrose and ethanol sessions, with greater increases observed during the sucrose session. Overall, these findings support the suggestion that NPY administration into the central nucleus of the amygdala does not alter consumption of 10 E, 2S, or food, nor the cortical electroencephalographic or locomotor activity.
Collapse
Affiliation(s)
- Simon N Katner
- The Scripps Research Institute, Department of Neuropharmacology, CVN-14, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
29
|
Nandi J, Meguid MM, Inui A, Xu Y, Makarenko IG, Tada T, Chen C. Central mechanisms involved with catabolism. Curr Opin Clin Nutr Metab Care 2002; 5:407-18. [PMID: 12107377 DOI: 10.1097/00075197-200207000-00010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Catabolism conjures up an end-metabolic process in which muscle and fat tissue are broken down into their constituent parts to provide nutrients for the body, secondary to a noxious stimulus that prevents the organism from adequately nourishing itself. However, catabolism is a primary event, initiated in the brain in response to perceived or real stresses or noxious stimuli, which has a secondary effect of inhibiting food intake and consequently the break down of skeletal muscle and adipose tissues to provide nutrients for the body to survive. RECENT FINDINGS This is achieved via a cascade of neurohormonal monoaminergic and peptidergic mediators in the central nervous system, invoking the cortex, the limbic system and the hypothalamus. Among the most detailed mediators studied are corticotropin-releasing factor and serotonin which, via the hypothalamic-pituitary-adrenal axis and the sympathetic and parasympathetic nervous system, stimulate catecholamines and cortisol and inhibit anabolic hormones, insulin, leptin, ghrelin, including neuropeptide Y and other neuropeptides, among them the paracrine-acting cytokines. Simultaneously, there occurs stimulation of the counter-regulatory hormones cortisol, glucagon and the melanocortin family of neuropeptides. SUMMARY The net effect is anorexia, with the inhibition of food intake, body weight loss, delayed gastric emptying and functions, the stimulation of gluconeogenesis, glycogenolysis and ketogenesis as sources of metabolic fuel, which if unabated leads ultimately to cachexia. The use of antagonists and the removal of stress or noxious stimuli experimentally test different pathways of this dynamic metabolic picture. Several studies have demonstrated important progress towards our understanding of the central mechanisms involved in anorexia and weight loss, which we summarize in this review.
Collapse
Affiliation(s)
- Jyotirmoy Nandi
- Department of Medicine, Gastroenterology Division, University Hospital, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Koutcherov Y, Mai JK, Ashwell KWS, Paxinos G. Organization of human hypothalamus in fetal development. J Comp Neurol 2002; 446:301-24. [PMID: 11954031 DOI: 10.1002/cne.10175] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The organization of the human hypothalamus was studied in 33 brains aged from 9 weeks of gestation (w.g.) to newborn, using immunohistochemistry for parvalbumin, calbindin, calretinin, neuropeptide Y, neurophysin, growth-associated protein (GAP)-43, synaptophysin, and the glycoconjugate 3-fucosyl- N-acetyl-lactosamine. Developmental stages are described in relation to obstetric trimesters. The first trimester (morphogenetic periods 9-10 w.g. and 11-14 w.g.) is characterized by differentiating structures of the lateral hypothalamic zone, which give rise to the lateral hypothalamus (LH) and posterior hypothalamus. The PeF differentiates at 18 w.g. from LH neurons, which remain anchored in the perifornical position, whereas most of the LH cells are displaced laterally. A transient supramamillary nucleus was apparent at 14 w.g. but not after 16 w.g. As the ventromedial nucleus differentiated at 13-16 w.g., three principal parts, the ventrolateral part, the dorsomedial part, and the shell, were revealed by distribution of calbindin, calretinin, and GAP43 immunoreactivity. The second trimester (morphogenetic periods 15-17 w.g., 18-23 w.g., and 24-33 w.g.) is characterized by differentiation of the hypothalamic core, in which calbindin- positive neurons revealed the medial preoptic nucleus at 16 w.g. abutted laterally by the intermediate nucleus. The dorsomedial nucleus was clearly defined at 10 w.g. and consisted of compact and diffuse parts, an organization that was lost after 15 w.g. Differentiation of the medial mamillary body into lateral and medial was seen at 13-16 w.g. Late second trimester was marked by differentiation of periventricular zone structures, including suprachiasmatic, arcuate, and paraventricular nuclei. The subnuclear differentiation of these nuclei extends into the third trimester. The use of chemoarchitecture in the human fetus permitted the identification of interspecies nuclei homologies, which otherwise remain concealed in the cytoarchitecture.
Collapse
Affiliation(s)
- Yuri Koutcherov
- Prince of Wales Medical Research Institute, Sydney, New South Wales 2031, Australia.
| | | | | | | |
Collapse
|
31
|
Fox MT, Uche UE, Vaillant C, Ganabadi S, Calam J. Effects of Ostertagia ostertagi and omeprazole treatment on feed intake and gastrin-related responses in the calf. Vet Parasitol 2002; 105:285-301. [PMID: 11983304 DOI: 10.1016/s0304-4017(02)00026-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infection with the bovine abomasal nematode, Ostertagia ostertagi, results in a loss of acid-secreting parietal cells and an increase in gastric pH. The effects of an experimental infection with Ostertagia and/or daily treatment with omeprazole (OMP) at 2mgkg(-1) bodyweight for four consecutive days (experiment days 24-27, inclusive) on voluntary feed intake, blood and tissue gastrin concentrations, abomasal G-cell numbers, gastric pH, and blood cholecystokinin (CCK) and pepsinogen concentrations were investigated in the calf. Ostertagia-infected calves demonstrated a significant drop in feed intake between days 24 and 27 post-infection (38%; P<0.001) and in G-cell numbers (42%; P<0.05) and significant increases in abomasal pH (P<0.001), fundic mucosal weight (99%; P<0.01), and blood gastrin (P<0.05) and pepsinogen (P<0.0001). OMP treatment of worm-free animals resulted in a significant drop in intake between days 24 and 27 (30%; P<0.001) and in G-cell numbers (17%; P<0.05) and significant increases in abomasal pH (P<0.01) and blood gastrin (P<0.001). OMP treatment of Ostertagia-infected animals with an existing hypergastrinaemia had no effect on feed intake, abomasal pH, blood gastrin or pepsinogen or abomasal G-cell numbers. Blood CCK concentrations were also unaffected by either Ostertagia infection or OMP treatment. These data suggest that: (a) the depression in feed intake associated with OMP in worm-free calves was not due to a side effect of drug treatment; (b) inappetance in Ostertagia-infected animals is closely associated with the parasite-induced hypergastrinaemia; and (c) the elevation in abomasal pH was a major factor responsible for the elevated blood gastrin concentrations seen in parasitised and OMP-treated animals.
Collapse
Affiliation(s)
- M T Fox
- Department of Veterinary Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 OUT, UK.
| | | | | | | | | |
Collapse
|
32
|
Cole AC, Shay NF, O'Brien S, Beverly JL. Zinc-deficient rats are insensitive to glucoprivation caused by 2-deoxy-D-glucose. Nutr Neurosci 2002; 5:59-64. [PMID: 11929199 DOI: 10.1080/10284150290007092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Three-choice macronutrient intake studies indicate that zinc-deficient (Zn-) rats selectively decrease intake of carbohydrate. Because glucoprivic stimuli increase food intake and selection for carbohydrate, the ability of Zn- rats to respond to glucoprivation induced by 2-deoxy-D-glucose (2-DG) was tested. Rats were fed a Zn-adequate (Zn+) or Zn- diet. In part 1, rats were challenged with 0, 250, or 400 mg 2-DG/kg BW (i.p.) after zinc deficiency was established. In part 2, rats received saline or 2-DG while zinc deficiency was being induced and then after deficiency was established. Food intake was increased after injection of 2-DG to Zn+ rats; however, food intake was not higher after 2-DG administration to Zn- rats. A dose-response test for 2-DG further confirmed these results. In part 2, it was found that Zn- rats lose the response to 2-DG administration when zinc deficiency-induced anorexia begins, after 3 days of consuming a zinc-deficient diet. It appears that the ability to sense blood glucose concentrations may be impaired during zinc deficiency, and this impairment could be a part of the anorexia that develops during zinc deficiency in the rat.
Collapse
Affiliation(s)
- A C Cole
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | | | |
Collapse
|
33
|
Chaillou E, Baumont R, Chilliard Y, Tillet Y. Several subpopulations of neuropeptide Y- containing neurons exist in the infundibular nucleus of sheep: An immunohistochemical study of animals on different diets. J Comp Neurol 2002. [DOI: 10.1002/cne.10121] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Raposinho PD, Pierroz DD, Broqua P, White RB, Pedrazzini T, Aubert ML. Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism. Mol Cell Endocrinol 2001; 185:195-204. [PMID: 11738809 DOI: 10.1016/s0303-7207(01)00620-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuropeptide Y (NPY) is involved in the central regulation of appetite, sexual behavior, and reproductive function. We have previously shown that chronic infusion of NPY into the lateral ventricle of normal rats produced an obesity syndrome characterized by hyperphagia, hyperinsulinism and collapse of reproductive function. We further demonstrated that acute inhibition of LH secretion in castrated rats was preferentially mediated by the NPY receptor subtype 5 (Y(5)). In the present study, the effects of chronic, central infusion of NPY, or the mixed Y2-Y5 agonist PYY(3-36), were evaluated both in normal male C57BL/6J mice and Sprague-Dawley rats. After a 7-day infusion to male mice, both NPY and PYY(3-36) at 5 nmol per day, induced marked hyperphagia leading to significant increases in body and fat pad weights. Furthermore, both compounds markedly reduced several markers of the reproductive axis. In the rat study, PYY(3-36) was more active than NPY to inhibit the pituitary-testicular axis, confirming the importance of the Y5 subtype for such effects. In the mouse, chronic NPY infusion induced a sustained increase in corticosterone and insulin secretion. Plasma leptin levels were also markedly increased possibly explaining the observed reduction in gene expression for hypothalamic NPY. Gene expression for hypothalamic POMC was reduced in the NPY- or PYY(3-36)-infused mice, suggesting that NPY exacerbated food intake by both acting through its own receptor(s), and reducing the satiety signal driven by the POMC-derived alpha-MSH. The present study in the mouse suggests in analogy with available rat data, that constant exposure to elevated NPY in the hypothalamic area unabatedly enhances food intake leading to an obesity syndrome including increased adiposity, insulin resistance, hypercorticism, and hypogonadism, reminiscent of the phenotype of the ob/ob mouse, that displays elevated hypothalamic NPY secondary to lack of leptin negative feedback action.
Collapse
Affiliation(s)
- P D Raposinho
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University of Geneva School of Medicine, 1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Ott ES, Shay NF. Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytes. Exp Biol Med (Maywood) 2001; 226:841-6. [PMID: 11568307 DOI: 10.1177/153537020122600906] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study was conducted to measure ob mRNA abundance in the zinc-deficient (ZD) rats and the secretion of leptin from adipose tissue obtained from ZD, zinc-adequate (ZA), and pair-fed (PF) rats. It was found that ob mRNA abundance was greatest (P < 0.05) in adipose tissue obtained from ZA and PF rats. Ob mRNA abundance was similar in PF and ZD rats. To study leptin secretion from adipose tissue in a cell culture model, a method was developed to use excised epididymal adipose tissue from ZD, ZA, and PF rats. Tissue was incubated in Opti-modified Eagle's medium (MEM) cell culture medium in which concentrations of zinc and insulin were manipulated. It was observed that leptin secretion was higher (P < 0.05) in adipose tissue obtained from ZA than ZD and PF rats. Secretion of leptin was higher in adipose tissue of PF than ZD rats (P < 0.05). Surprisingly, media zinc content in this ex vivo model tended to suppress secretion of leptin. This suppression seems to be zinc specific and might be caused by the sequestration of insulin in the culture medium. Our results indicate that the reduction in serum leptin observed in ZD rats is likely caused by not only a reduction in body fat, but also by a decrease in leptin synthesis and secretion per gram of adipose tissue. Taking these results into account along with a prior study (1), it is possible that even a marginal zinc deficiency could affect leptin secretion and serum leptin concentrations. Impaired leptin secretion caused by zinc deficiency might be one factor contributing to hypogonadism observed in zinc deficiency.
Collapse
Affiliation(s)
- E S Ott
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
36
|
Uzsoki B, Fekete Á, Pétervári E, Balaskó M, Székely M. Enhanced responsiveness to central prostaglandin E or neuropeptide Y in cold-adapted rats. J Therm Biol 2001. [DOI: 10.1016/s0306-4565(01)00067-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
El Ouezzani S, Lafon P, Tramu G, Magoul R. Neuropeptide Y gene expression in the jerboa arcuate nucleus: modulation by food deprivation and relationship with hibernation. Neurosci Lett 2001; 305:21-4. [PMID: 11356298 DOI: 10.1016/s0304-3940(01)01803-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY) was investigated in the arcuate nucleus (ARC) of jerboas under three different states of energy balance. (1) normally feeding animals, (2) hibernating animals and finally (3) animals food deprived for 5 days. The hibernating and food deprived jerboas exhibited a significant increase (130%; P < 0.05 and 210%; P < 0.01, respectively) of mRNA expression as compared with controls. This elevated NPY mRNA expression supports the hypothesis that NPY may be implicated in abnormal feeding behaviour associated with eating deprivation. The stimulation of NPY gene expression in hibernating jerboas may be related to food deprivation and / or cold exposure since NPY is known to be an hypothermiant factor. It is thus envisaged that NPY within neurons of the ARC plays an integrative role in the control of energy metabolism.
Collapse
Affiliation(s)
- S El Ouezzani
- Université Sidi Mohamed Ben Abdellah, Faculté des Sciences Dhar Mehrez -Fès, Laboratoire de Physiologie Animale, B.P.1796, Fès-Atlas, Morocco.
| | | | | | | |
Collapse
|
38
|
Ichimaru T, Mori Y, Okamura H. A possible role of neuropeptide Y as a mediator of undernutrition to the hypothalamic gonadotropin-releasing hormone pulse generator in goats. Endocrinology 2001; 142:2489-98. [PMID: 11356698 DOI: 10.1210/endo.142.6.8002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand central mechanisms for nutritional infertility, the activity of the GnRH pulse generator was directly assessed in ovariectomized (OVX) goats under several experimental conditions by recording characteristic increases in the multiple-unit activity (volleys). When estradiol (E(2))-treated animals were fasted for 4-5 days, the activity of the GnRH pulse generator was gradually suppressed, and the volley interval at the end of fasting was significantly prolonged, compared with that during the feeding period (67.4 vs. 49.3 min, n = 5, P < 0.01). On the other hand, such a significant effect on the pulse generator was not observed in OVX goats. In the second experiment, the animals received a bolus intracerebroventricular injection of several doses (0, 2, 5, and 20 microg/400 microl) of neuropeptide Y (NPY). Exogenous NPY dose-dependently inhibited the pulse generator activity. At the highest dosage, the 1st posttreatment volley interval was significantly longer than that of the pretreatment (112.4 vs. 32.6 min, n = 5, P < 0.01) in OVX goats. The suppressive effect of NPY was similarly observed in OVX+E(2) goats. Further, when NPY was infused (10 microg/200 microl.h for 6 h) into OVX goats, the activity of the GnRH pulse generator was almost completely inhibited during the infusion period. Hypothalamic sites responding to fasting were immunohistochemically evaluated using an antibody for Fos in castrated goats. Fos-immunoreactive neurons were found in areas adjacent to the third ventricle. Double-labeling immunohistochemistry revealed that a subpopulation of NPY neurons in the arcuate nucleus was activated in response to fasting. These results demonstrate that: 1) the activity of the GnRH pulse generator is suppressed by fasting in the presence of E(2); 2) exogenous NPY inhibits the activity of the GnRH pulse generator regardless of the presence of E(2); and 3) several hypothalamic neurons or regions, including those containing NPY in the arcuate nucleus, are activated by fasting. Collectively, these observations suggest that NPY acts as a mediator of undernutrition to the GnRH pulse generator.
Collapse
Affiliation(s)
- T Ichimaru
- Department of Physiology, National Institute of Animal Industry, Ministry of Agriculture, Forestry and Fisheries, Inashiki, Ibaraki 305, Japan
| | | | | |
Collapse
|
39
|
El Ouezzani S, Lafon P, Tramu G, Magoul R. Neuropeptide Y gene expression in the jerboa arcuate nucleus: modulation by food deprivation and relationship with hibernation. Neurosci Lett 2001; 305:127-30. [PMID: 11376900 DOI: 10.1016/s0304-3940(01)01825-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY) was investigated in the arcuate nucleus (ARC) of jerboas under three different states of energy balance. (1) normally feeding animals, (2) hibernating animals and finally (3) animals food deprived for 5 days. The hibernating and food deprived jerboas exhibited a significant increase (130%; P<0.05 and 210%; P<0.01, respectively) of mRNA expression as compared with controls. This elevated NPY mRNA expression supports the hypothesis that NPY may be implicated in abnormal feeding behaviour associated with eating deprivation. The stimulation of NPY gene expression in hibernating jerboas may be related to food deprivation and / or cold exposure since NPY is known to be a hypothermiant factor. It is thus envisaged that NPY within neurons of the ARC plays an integrative role in the control of energy metabolism.
Collapse
Affiliation(s)
- S El Ouezzani
- Université Sidi Mohamed Ben Abdellah, Faculté des Sciences Dhar Mehrez-Fès, Laboratoire de Physiologie Animale, B.P.1796, Fès-Atlas, Morocco
| | | | | | | |
Collapse
|
40
|
Mercer JG, Speakman JR. Hypothalamic neuropeptide mechanisms for regulating energy balance: from rodent models to human obesity. Neurosci Biobehav Rev 2001; 25:101-16. [PMID: 11323077 DOI: 10.1016/s0149-7634(00)00053-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In small rodents there is compelling evidence of a lipostatic system of body mass regulation in which peripheral signals of energy storage are decoded in the hypothalamus. The ability of small mammals to defend an appropriate mass against imposed energy imbalance has implicated hypothalamic neuroendocrine systems in body mass regulation. The effect of the neuropeptide systems involved in this regulation is primarily compensatory. However, small mammals can also effect changes in the level of body mass that they will defend, as exemplified by seasonal species. Regulatory control over fat mass may be relatively loose in humans; the sizes of long-term storage depots may not themselves be regulated, but rather may be a consequence of temporal variations in the matching of supply and demand. Whether food intake is regulated to match energy demand, or to match demand and to regulate storage, it is clear that physiological defects or genetic variation in hypothalamic and peripheral feedback systems will have profound implications for fat storage. Study of mechanisms implicated in energy homeostasis in laboratory rodents is likely to continue to identify targets for pharmacological manipulation in the management of human obesity.
Collapse
Affiliation(s)
- J G Mercer
- Rowett Research Institute, Aberdeen Centre for Energy Regulation and Obesity (ACERO), Bucksburn, AB21 9SB, Aberdeen, UK.
| | | |
Collapse
|
41
|
Raposinho PD, Castillo E, d'Alleves V, Broqua P, Pralong FP, Aubert ML. Chronic blockade of the melanocortin 4 receptor subtype leads to obesity independently of neuropeptide Y action, with no adverse effects on the gonadotropic and somatotropic axes. Endocrinology 2000; 141:4419-27. [PMID: 11108250 DOI: 10.1210/endo.141.12.7842] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) is a powerful orexigenic factor, and alphaMSH is a melanocortin (MC) peptide that induces satiety by activating the MC4 receptor subtype. Genetic models with disruption of MC4 receptor signaling are associated with obesity. In the present study, a 7-day intracerebroventricular infusion to male rats of either the MC receptor antagonist SHU9119 or porcine NPY (10 nmol/day) was shown to strongly stimulate food and water intake and to markedly increase fat pad mass. Very high plasma leptin levels were found in NPY-treated rats (27.1 +/- 1.8 ng/ml compared with 9.9 +/- 0.9 ng/ml in SHU9119-treated animals and 2.1 +/- 0.2 ng/ml in controls). As expected, NPY infusion induced hypogonadism, characterized by an impressive decrease in seminal vesicle and prostate weights. No such effects were seen with the SHU9119 infusion. Similarly, whereas the somatotropic axis of NPY-treated rats was fully inhibited, this axis was normally activated in the obese SHU9119-treated rats. Chronic infusion of SHU9119 strikingly reduced hypothalamic gene expression for NPY (65.2 +/- 3.6% of controls), whereas gene expression for POMC was increased (170 +/- 19%). NPY infusion decreased hypothalamic gene expression for both POMC and NPY (70 +/- 9% and 75.4 +/- 9.5%, respectively). In summary, blockade of the MC4 receptor subtype by SHU9119 was able to generate an obesity syndrome with no apparent side-effects on the reproductive and somatotropic axes. In this situation, it is unlikely that hyperphagia was driven by increased NPY release, because hypothalamic NPY gene expression was markedly reduced, suggesting that hyperphagia mainly resulted from loss of the satiety signal driven by MC peptides. NPY infusion produced hypogonadism and hyposomatotropism in the face of markedly elevated plasma leptin levels and an important reduction in hypothalamic POMC synthesis. In this situation NPY probably acted both by exacerbating food intake through Y receptors and by reducing the satiety signal driven by MC peptides.
Collapse
Affiliation(s)
- P D Raposinho
- Department of Pediatrics, University of Geneva School of Medicine, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Cerdá-Reverter JM, Anglade I, Martínez-Rodríguez G, Mazurais D, Muñoz-Cueto JA, Carrillo M, Kah O, Zanuy S. Characterization of neuropeptide Y expression in the brain of a perciform fish, the sea bass (Dicentrarchus labrax). J Chem Neuroanat 2000; 19:197-210. [PMID: 11036237 DOI: 10.1016/s0891-0618(00)00063-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The distribution of neuropeptide Y (NPY) gene expression was mapped in the brain of the sea bass (Dicentrarchus labrax) by in situ hybridization with 35S-UTP labeled cRNA probes. Gene expression was mainly detected within the forebrain, although NPY mRNA transcripts were also localized in the tectum and tegmentum mesencephali and posterior brain. New NPY-expressing nuclei were found in the dorsal and ventral telencephalon, preoptic area, tuberal hypothalamus, synencephalon, tegmentum mesencephali and posterior brain. The profuse NPY gene expression within the main neuroendocrine areas of the teleost fish further supports a physiological role in the control of the pituitary secretion. In addition, NPY gene was expressed within the primary visual, olfactory and gustatory circuits of teleost which, subsequently, project to hypothalamic feeding center in teleost fish. Our results extend the NPY-expressing areas known in teleost species.
Collapse
Affiliation(s)
- J M Cerdá-Reverter
- Department of Reproductive Physiology of Fish, Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, Ribera de Cabanes, 12595, Castellón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Slawecki CJ, Betancourt M, Walpole T, Ehlers CL. Increases in sucrose consumption, but not ethanol consumption, following ICV NPY administration. Pharmacol Biochem Behav 2000; 66:591-4. [PMID: 10899375 DOI: 10.1016/s0091-3057(00)00215-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuropeptide Y (NPY) is a centrally acting neuromodulator that influences both consummatory behaviors and anxiety. NPY's effects on feeding are primarily regulated through Y5 receptors in hypothalamic sites, whereas NPY-induced anxiolysis appears to be mediated by Y1 receptors in the amygdala. Recently, NPY has been postulated to play a role in the regulation of ethanol consumption. The present study assessed the influence of intracerebroventricular (ICV) administration of NPY on the consumption of 10% ethanol or 2% sucrose in rats. Male Wistar rats were trained to self-administer 10% ethanol using the sucrose-substitution procedure and then implanted with an intracerebroventricular (ICV) cannula. The effects of NPY (0-15 microg) on ethanol consumption and sucrose consumption were then examined. ICV NPY infusion had no significant effects on the consumption of 10% ethanol, however, NPY significantly increased the consumption of 2% sucrose, [F(1, 11) = 6.18, p = 0.03]. These data suggest that ethanol intake and sucrose intake are differentially regulated by NPY. It is hypothesized that ICV infusion of NPY may be affecting both Y1 and Y5 receptors producing increased consummatory drive and anxiolysis, two factors that have opposing effects on subsequent ethanol consumption. Therefore, additional studies including site specific injection of NPY will be necessary to provide further insight into the role of NPY on ethanol consumption.
Collapse
Affiliation(s)
- C J Slawecki
- The Scripps Research Institute, Department of Neuropharmacology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
44
|
Abstract
The discovery of leptin has enhanced understanding of the interrelationship between adipose energy stores and neuronal circuits in the brain involved in energy balance and regulation of the neuroendocrine axis. Leptin levels are dependent on the status of fat stores as well as changes in energy balance as a result of fasting and overfeeding. Although leptin was initially thought to serve mainly as an anti-satiety hormone, recent studies have shown that it mediates the adaptation to fasting. Furthermore, leptin has been implicated in the regulation of the reproductive, thyroid, growth hormone, and adrenal axes, independent of its role in energy balance. Although it is widely known that leptin acts on hypothalamic neuronal targets to regulate energy balance and neuroendocrine function, the specific neuronal populations mediating leptin action on feeding behavior and autonomic and neuroendocrine function are not well understood. In this review, we have discussed how leptin engages arcuate hypothalamic neurons expressing putative orexigenic peptides, e.g., neuropeptide Y and agouti-regulated peptide, and anorexigenic peptides, e.g., pro-opiomelanocortin (precursor of alpha-melanocyte-stimulating hormone) and cocaine- and amphetamine-regulated transcript. We show that leptin's effects on energy balance and the neuroendocrine axis are mediated by projections to other hypothalamic nuclei, e.g., paraventricular, lateral, and perifornical areas, as well as other sites in the brainstem, spinal cord, and cortical and subcortical regions.
Collapse
Affiliation(s)
- R S Ahima
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA.
| | | | | | | |
Collapse
|
45
|
Bray MS, Boerwinkle E, Hanis CL. Linkage analysis of candidate obesity genes among the Mexican-American population of Starr County, Texas. Genet Epidemiol 2000; 16:397-411. [PMID: 10207720 DOI: 10.1002/(sici)1098-2272(1999)16:4<397::aid-gepi6>3.0.co;2-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent advances in the molecular basis of body fat regulation have identified several genes in which genetic variation may influence obesity and related measures in human populations. Genes that have been shown to have a regulatory function in the control of body fat utilization, eating behavior, and/or metabolic rate in rodent models of obesity include leptin (LEP), leptin receptor (LEPR), neuropeptide Y (NPY), NPY Y1 receptor (NPYY1), glucagon-like peptide-1 (GLP-1), GLP-1 receptor (GLP1R), and uncoupling protein 1 (UCP1). We have typed microsatellite markers located within or near these seven candidate obesity genes in 302 non-diabetic individuals from 59 Mexican-American families from Starr County, Texas. Sib pair linkage analysis was used to examine linkage between these genes and obesity status (obese siblings only; n = 170 pairs) and several obesity-related quantitative variables (all siblings; n = 545 total sibling pairs). Significant linkage (P = 0.042) was found between obesity and NPY within the obese sibling pairs. No other candidate gene was linked to obesity status in this subsample. Consistent with the obese sib pair linkage results, NPY showed evidence of linkage to body weight (P = 0.020), abdominal circumference (P = 0.031), hip circumference (P = 0.012), diastolic blood pressure (P = 0.005), and a composite measure of body mass and size (P = 0.048) in the entire sibling sample. Other significant linkages observed were between LEP and waist/hip ratio (P = 0.010), total cholesterol (P = 0.030), and HDL cholesterol (P = 0.026) and between LEPR and fasting blood glucose (P = 0.018) and diastolic blood pressure (P = 0.003). These results support further investigation of NPY, LEP, and LEPR to identify genetic variation that may influence obesity status, glucose and lipid metabolism, and blood pressure in Mexican Americans.
Collapse
Affiliation(s)
- M S Bray
- Human Genetics Center, University of Texas-Houston Health Science Center, Graduate School of Biomedical Sciences 77225, USA
| | | | | |
Collapse
|
46
|
Morimoto I, Yamamoto S, Kai K, Fujihira T, Morita E, Eto S. Centrally administered murine-leptin stimulates the hypothalamus-pituitary- adrenal axis through arginine-vasopressin. Neuroendocrinology 2000; 71:366-74. [PMID: 10878498 DOI: 10.1159/000054557] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Starvation induces a decrease in circulating leptin levels and activation of the hypothalamus-pituitary-adrenal (HPA) axis. Leptin inhibits the HPA axis in unfed rodents or genetically leptin-deficient ob/ob mice, whereas it stimulates corticotropin-releasing hormone (CRH) gene expression in the paraventricular nucleus (PVN). However, the interactions between leptin, CRH and the HPA axis are poorly understood and are likely to be complex. We recently demonstrated that central leptin administration caused increases in plasma arginine-vasopressin (AVP) and AVP gene expression of the PVN in nonstressful rats. AVP stimulates the release of adrenocorticotropic hormone (ACTH), but it also potentiates the action of CRH on ACTH release. In this study, we investigated the effects of leptin on plasma ACTH and corticosterone levels, CRH mRNA of the PVN and proopiomelanocortin (POMC) mRNA of the pituitary in nonstrained rats. Intracerebroventricularly administered leptin caused increases in plasma ACTH and corticosterone levels in dose-dependent manners. In Northern blot analyses, the leptin injection induced significant increases in the expression of CRH mRNA in the PVN and POMC mRNA in the pituitary. The increased plasma ACTH and corticosterone levels by leptin were attenuated with intracerebroventricular pretreatment of a V(1a) receptor antagonist (OPC-21268) or a V(1a)/V(1b) receptor antagonist (dP[Tyr(Me)(2)]AVP), but not with that of a V(2) receptor antagonist (OPC-31260). The leptin-induced CRH mRNA expression in the PVN and POMC mRNA expression in the pituitary were also reduced by the pretreatment with OPC-21268 and dP[Tyr(Me)(2)]AVP. These results suggest that intracerebroventricular leptin administration activates the HPA axis by AVP receptor activation through V(1a) receptors in the PVN which in turn activates CRH neurons to drive ACTH and corticosterone secretion in concert with AVP in nonstrained rats.
Collapse
Affiliation(s)
- I Morimoto
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Cerdá-Reverter JM, Larhammar D. cNeuropeptide Y family of peptides: Structure, anatomical expression, function, and molecular evolution. Biochem Cell Biol 2000. [DOI: 10.1139/o00-004] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evolutionary relationships between neuroendocrine peptides are often difficult to resolve across divergent phyla due to independent duplication events in different lineages. Thanks to peptide purification and molecular cloning in many different species, the situation is beginning to clear for the neuropeptide Y (NPY) family, which also includes peptide YY (PYY), the tetrapod pancreatic polypeptide (PP) and the fish pancreatic peptide Y (PY). It has long been assumed that the first duplication to occur in vertebrate evolution generated NPY and PYY, as both of these are found in all gnathostomes as well as lamprey. Evidence from other gene families show that this duplication was probably a chromosome duplication event. The origin of a second PYY peptide found in lamprey remains to be explained. Our recent cloning of NPY, PYY and PY in the sea bass proves that fish PY is a separate gene product. We favour the hypothesis that PY is a duplicate of the PYY gene and that it may have occurred late in fish evolution, as PY has so far only been found in acanthomorph fishes. Thus, this duplication seems to be independent of the one that generate PP from PYY in tetrapods, although both tetrapod PP and fish PY are expressed in the pancreas. Studies in the sea bass and other fish show that PY, in contrast to PP, is expressed in the nervous system. We review the literature on the distribution and functional aspects of the various NPY-family peptides in vertebrates. Key words: neuropeptide Y, pancreatic polypeptide, fish pancreatic peptide, gene duplication.
Collapse
|
48
|
Rollo CD, Kajiura LJ, Wylie B, D'Souza S. The growth hormone axis, feeding, and central allocative regulation: lessons from giant transgenic growth hormone mice. CAN J ZOOL 1999. [DOI: 10.1139/z99-162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lifetime consumption rates of male transgenic growth hormone (GH) mice and normal controls were measured on either a 38% protein diet (HP), the standard rodent diet (STD) (23.5% protein), or the standard diet supplemented with a free choice of sucrose (CARB). On STD, daily intake of normal mice increased little at sizes greater than 20 g, but larger transgenic mice ate progressively more. Both kinds of mice showed declining daily mass-specific consumption with increasing age. Transgenic mice consistently ate 13.3% less food than normal mice on a mass-specific basis across all ages. On the self-selective CARB diet, normal mice exhibited increasing age-specific daily consumption, whereas transgenic mice exhibited a trend towards age-related decline in mass-specific feeding that proved significant on the basis of body mass. Transgenic mice ingested more sucrose than standard chow and this did not vary with age. In contrast, normal mice ate less sucrose than chow and chose a declining proportion of sucrose with age. Transgenic and normal mice showed a unitary relationship of daily intake of HP in relation to body mass, resulting in constant mass-specific feeding across all ages. Transgenic GH animals, including livestock, show numerous defects that we have attributed to relative energetic stress associated with excessive allocation to lean growth. This is exacerbated by failure to offset increased demands of growth by increasing mass-specific feeding. Results presented here document altered feeding regulation in transgenic GH mice and suggest underlying mechanisms.
Collapse
|
49
|
Tallman DL, Taylor CG. Potential interactions of zinc in the neuroendocrine-endocrine disturbances of diabetes mellitus type 2. Can J Physiol Pharmacol 1999. [DOI: 10.1139/y99-111] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An accumulation of evidence implicates leptin, insulin, glucocorticoids, proopiomelanocortin (POMC), and neuropeptide Y (NPY) interactions as being integral to metabolic control associated with neuroendocrine-endocrine functioning. Dysfunction of neuroendocrine-endocrine interactions contributes to the metabolic disturbances of diabetes mellitus type 2 (DM-2). Since Zn has a direct impact on the healthy functioning of hormonal and neuropeptide balance, it is possible that altered Zn status and metabolism in DM-2 are involved in some of the metabolic dysfunctions of DM-2.Key words: zinc, insulin, leptin, neuropeptide Y, glucocorticoids, proopiomelanocortin (POMC), diabetes, obesity.
Collapse
|
50
|
Ehlers CL, Somes C, Lumeng L, Li TK. Electrophysiological response to neuropeptide Y (NPY): in alcohol-naive preferring and non-preferring rats. Pharmacol Biochem Behav 1999; 63:291-9. [PMID: 10371659 DOI: 10.1016/s0091-3057(99)00012-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electroencephalograms (EEGs) and event-related potentials (ERPs) to auditory stimuli were recorded following intracerebroventricular administration of neuropeptide Y (saline, NPY: 1.0, 3.0 nmol) in two lines of rats that have been genetically selected for alcohol preferring (P) or non-preferring (NP) behaviors. Previous studies have demonstrated that NPY has a distinct electrophysiological profile that is similar to that of ethanol. In outbred Wistar rats, both NPY and ethanol produced highly significant decreases in the amplitude and increases in the latency of the N1 component of the ERP to all three auditory stimuli. Because the N1 has been associated with attention, these data suggest that both NPY and alcohol may diminish attentional processes. In the present study, NPY-induced decreases in N1 amplitude were also found, but only to the frequently presented tone. This suggests that both P and NP rats may have attenuated responses to NPY's effects on attention/arousal. Like outbred Wistars, P and NP rats were also found to have significant NPY-induced increases in N1 latency in the cortex and hippocampus. However, in the amygdala, while P rats evidenced increases in N1 latency and decreases in N1 amplitudes, NP rats displayed the opposite effects. Spectral analysis revealed that NPY also produced differential EEG responses in P and NP rats. In previous studies in outbred Wistar rats NPY has been found to produce slowing of delta (1-2 Hz) frequencies at the 1-nmol dose and reductions in power, particularly in the higher frequencies in the amygdala, at the 3-nmol dose. This electrophysiological profile is not unlike what is seen following alcohol and benzodiazepines and is associated with anxiolysis. P rats were found to have this general pattern of EEG responses to NPY but attenuated suggesting that they may have reduced responses to electrophysiological measures of the anxiolytic effects of NPY. In contrast, NP rats had NPY-induced EEG effects in amygdala and frontal cortex that were opposite to those seen in P rats. These opposing responses to NPY tended to produce a "normalization" of the power differences that existed between the two rat lines at baseline. Taken together with previous findings that P rats have decreased NPY concentrations in limbic and frontal cortical sites, these data suggest that differences in the regulation of NPY neurons may contribute to the expression of behavioral preference for ethanol consumption in these rat lines.
Collapse
Affiliation(s)
- C L Ehlers
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|