1
|
Zhu J, Wan Y, Xu H, Wu Y, Hu B, Jin H. The role of endogenous tissue-type plasminogen activator in neuronal survival after ischemic stroke: friend or foe? Cell Mol Life Sci 2019; 76:1489-1506. [PMID: 30656378 PMCID: PMC11105644 DOI: 10.1007/s00018-019-03005-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
Endogenous protease tissue-type plasminogen activator (tPA) has highly efficient fibrinolytic activity and its recombinant variants alteplase and tenecteplase are established as highly effective thrombolytic drugs for ischemic stroke. Endogenous tPA is constituted of five functional domains through which it interacts with a variety of substrates, binding proteins and receptors, thus having enzymatic and cytokine-like effects to act on all cell types of the brain. In the past 2 decades, numerous studies have explored the clinical relevance of endogenous tPA in neurological diseases, especially in ischemic stroke. tPA is released from many cells within the brain parenchyma exposed to ischemia conditions in vitro and in vivo, which is believed to control neuronal fate. Some studies proved that tPA could induce blood-brain barrier disruption, neural excitotoxicity and inflammation, while others indicated that tPA also has anti-excitotoxic, neurotrophic and anti-apoptotic effects on neurons. Therefore, more work is needed to elucidate how tPA mediates such opposing functions that may amplify tPA from a therapeutic means into a key therapeutic target in endogenous neuroprotection after stroke. In this review, we summarize the biological characteristics and pleiotropic functions of tPA in the brain. Then we focus on possible hypotheses about why and how endogenous tPA mediates ischemic neuronal death and survival. Finally, we analyze how endogenous tPA affects neuron fate in ischemic stroke in a comprehensive view.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hexiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yulang Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
2
|
IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma. Sci Rep 2016; 6:27012. [PMID: 27255663 PMCID: PMC4891740 DOI: 10.1038/srep27012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma.
Collapse
|
3
|
Lee TW, Tsang VWK, Birch NP. Physiological and pathological roles of tissue plasminogen activator and its inhibitor neuroserpin in the nervous system. Front Cell Neurosci 2015; 9:396. [PMID: 26528129 PMCID: PMC4602146 DOI: 10.3389/fncel.2015.00396] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/22/2015] [Indexed: 12/03/2022] Open
Abstract
Although its roles in the vascular space are most well-known, tissue plasminogen activator (tPA) is widely expressed in the developing and adult nervous system, where its activity is believed to be regulated by neuroserpin, a predominantly brain-specific member of the serpin family of protease inhibitors. In the normal physiological state, tPA has been shown to play roles in the development and plasticity of the nervous system. Ischemic damage, however, may lead to excess tPA activity in the brain and this is believed to contribute to neurodegeneration. In this article, we briefly review the physiological and pathological roles of tPA in the nervous system, which includes neuronal migration, axonal growth, synaptic plasticity, neuroprotection and neurodegeneration, as well as a contribution to neurological disease. We summarize tPA's multiple mechanisms of action and also highlight the contributions of the inhibitor neuroserpin to these processes.
Collapse
Affiliation(s)
- Tet Woo Lee
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - Vicky W K Tsang
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand ; Brain Research New Zealand, Rangahau Roro Aotearoa Auckland, New Zealand
| |
Collapse
|
4
|
Robinson SD, Lee TW, Christie DL, Birch NP. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons. Front Cell Neurosci 2015; 9:404. [PMID: 26500501 PMCID: PMC4598481 DOI: 10.3389/fncel.2015.00404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.
Collapse
Affiliation(s)
- Samuel D Robinson
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - Tet Woo Lee
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - David L Christie
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand ; Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand ; Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland Auckland, New Zealand
| |
Collapse
|
5
|
Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons. Mol Neurobiol 2015; 53:5000-12. [PMID: 26377106 DOI: 10.1007/s12035-015-9432-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Although the extracellular serine protease tissue plasminogen activator (tPA) is involved in pathophysiological processes such as learning and memory, anxiety, epilepsy, stroke, and Alzheimer's disease, information about its regional, cellular, and subcellular distribution in vivo is lacking. In the present study, we observed, in healthy mice and rats, the presence of tPA in endothelial cells, oligodendrocytes, mastocytes, and ependymocytes, but not in pericytes, microglial cells, and astrocytes. Moreover, blockage of the axo-dendritic transport unmasked tPA expression in neurons of cortical and hippocampal areas. Interestingly, combined electrophysiological recordings, single-cell reverse transcription polymerase chain reaction (RT-PCR), and immunohistological analyses revealed that the presence of tPA is restricted to subsets of excitatory pyramidal glutamatergic neurons. We further evidenced that tPA is stored in synaptobrevin-2-positive glutamatergic synaptic vesicles. Based on all these data, we propose the existence of tPA-ergic neurons in the mature brain.
Collapse
|
6
|
Tissue plasminogen activator contributes to alterations of neuronal migration and activity-dependent responses in fragile X mice. J Neurosci 2014; 34:1916-23. [PMID: 24478370 DOI: 10.1523/jneurosci.3753-13.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited neurodevelopmental disorder with intellectual disability. Here, we show that the expression of tissue plasminogen activator (tPA) is increased in glial cells differentiated from neural progenitors of Fmr1 knock-out mice, a mouse model for FXS, and that tPA is involved in the altered migration and differentiation of these progenitors lacking FMR1 protein (FMRP). When tPA function is blocked with an antibody, enhanced migration of doublecortin-immunoreactive neurons in 1 d differentiated FMRP-deficient neurospheres is normalized. In time-lapse imaging, blocking the tPA function promotes early glial differentiation and reduces the velocity of nuclear movement of FMRP-deficient radial glia. In addition, we show that enhanced intracellular Ca(2+) responses to depolarization with potassium are prevented by the treatment with the tPA-neutralizing antibody in FMRP-deficient cells during early neural progenitor differentiation. Alterations of the tPA expression in the embryonic, postnatal, and adult brain of Fmr1 knock-out mice suggest an important role for tPA in the abnormal neuronal differentiation and plasticity in FXS. Altogether, the results indicate that tPA may prove to be an interesting potential target for pharmacological intervention in FXS.
Collapse
|
7
|
Nemoto W, Sato T, Nakagawasai O, Yaoita F, Silberring J, Tadano T, Tan-No K. Phenylmethanesulfonyl fluoride, a serine protease inhibitor, suppresses naloxone-precipitated withdrawal jumping in morphine-dependent mice. Neuropeptides 2013; 47:187-91. [PMID: 23290539 DOI: 10.1016/j.npep.2012.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/20/2012] [Accepted: 11/27/2012] [Indexed: 11/22/2022]
Abstract
We have previously shown that intracerebroventricular (i.c.v.) administration of cysteine protease inhibitors suppresses naloxone-precipitated withdrawal jumping in morphine-dependent mice, presumably through the inhibition of dynorphin degradation (see (Tan-No, K., Sato, T., Shimoda, M., Nakagawasai, O., Niijima, F., Kawamura, S., Furuta, S., Sato, T., Satoh, S., Silberring, J., Terenius, L., Tadano, T., 2010. Suppressive effects by cysteine protease inhibitors on naloxone-precipitated withdrawal jumping in morphine-dependent mice. Neuropeptides 44, 279-283)). In the present study, we examined the effect of phenylmethanesulfonyl fluoride (PMSF), a serine protease inhibitor, on naloxone-precipitated withdrawal jumping in morphine-dependent mice. The doses of morphine (mg/kg per injection) were subcutaneously given twice daily for 2 days [day 1 (30) and day 2 (60)]. On day 3, naloxone (8 mg/kg) was intraperitoneally administered 3h after the final injection of morphine (60 mg/kg), and the number of jumps was immediately recorded for 20 min. Naloxone-precipitated withdrawal jumping was significantly suppressed by i.c.v. administration of PMSF (4 nmol), given 5 min before each morphine treatment during the induction phase, with none given on the test day. The expression of tissue plasminogen activator (tPA), a serine protease that converts plasminogen to plasmin, in the prefrontal cortex was significantly increased in morphine-dependent and -withdrawal mice, as compared with saline-treated mice. Moreover, trans-4-(aminomethyl)-cyclohexanecarboxylic acid (300 pmol), an antiplasmin agent, and (Tyr(1))-thrombin receptor activating peptide 7 (0.45 and 2 nmol), an antagonist of protease activated receptor-1 (PAR-1), significantly suppressed naloxone-precipitated withdrawal jumping. The present results suggest that PMSF suppresses naloxone-precipitated withdrawal jumping in morphine-dependent mice, presumably through the inhibition of activities of tPA and plasmin belonging to the serine proteases family, which subsequently activates PAR-1.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Xue M, Del Bigio MR. Injections of blood, thrombin, and plasminogen more severely damage neonatal mouse brain than mature mouse brain. Brain Pathol 2005; 15:273-80. [PMID: 16389939 PMCID: PMC8095988 DOI: 10.1111/j.1750-3639.2005.tb00111.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mechanism of brain cell injury associated with intracerebral hemorrhage may be in part related to proteolytic enzymes in blood, some of which are also functional in the developing brain. We hypothesized that there would be an age-dependent brain response following intracerebral injection of blood, thrombin, and plasminogen. Mice at 3 ages (neonatal, 10-day-old, and young adult) received autologous blood (15, 25, and 50 microl respectively), thrombin (3, 5, and 10 units respectively), plasminogen (0.03, 0.05, and 0.1 units respectively) (the doses expected in same volume blood), or saline injection into lateral striatum. Forty-eight hours later they were perfusion fixed. Hematoxylin and eosin, lectin histochemistry, Fluoro-Jade, and TUNEL staining were used to quantify changes related to the hemorrhagic lesion. Damage volume, dying neurons, neutrophils, and microglial reaction were significantly greater following injections of blood, plasminogen, and thrombin compared to saline in all three ages of mice. Plasminogen and thrombin associated brain damage was greatest in neonatal mice and, in that group unlike the other 2, greater than the damage caused by whole blood. These results suggest that the neonatal brain is relatively more sensitive to proteolytic plasma enzymes than the mature brain.
Collapse
Affiliation(s)
- Mengzhou Xue
- Department of Pathology, University of Manitoba and Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Marc R. Del Bigio
- Department of Pathology, University of Manitoba and Manitoba Institute of Child Health, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Nagai T, Kamei H, Ito M, Hashimoto K, Takuma K, Nabeshima T, Yamada K. Modification by the tissue plasminogen activator-plasmin system of morphine-induced dopamine release and hyperlocomotion, but not anti-nociceptive effect in mice. J Neurochem 2005; 93:1272-9. [PMID: 15948318 DOI: 10.1111/j.1471-4159.2005.03117.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extracellular serine protease tissue plasminogen activator (tPA) that converts plasminogen into plasmin is abundantly expressed throughout the central nervous system. We have recently demonstrated that the tPA-plasmin system participates in the rewarding and locomotor-stimulating effects of morphine by acutely regulating morphine-induced dopamine release in the nucleus accumbens (NAc). In the present study, we examined the effects of microinjections of plasminogen activator inhibitor-1 (PAI-1), tPA or plasmin into the NAc on morphine-induced dopamine release, hyperlocomotion and anti-nociceptive effects in ICR mice. A single morphine treatment resulted in an increase in protein levels of PAI-1 in the NAc. Microinjection of PAI-1 into the NAc dose-dependently reduced morphine-induced dopamine release and hyperlocomotion. In contrast, microinjection of tPA into the NAc significantly potentiated morphine-induced dopamine release and hyperlocomotion without affecting basal levels. Furthermore, microinjection of plasmin enhanced morphine-induced dopamine release, but did not modify the hyperlocomotion induced by morphine. The intracerebroventricular injection of PAI-1, tPA and plasmin at high doses had no effect on the anti-nociceptive effects of morphine. These results suggest that the tPA-plasmin system is involved in the regulation of morphine-induced dopamine release and dopamine-dependent behaviors but not the anti-nociceptive effects of morphine.
Collapse
Affiliation(s)
- Taku Nagai
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Pothakos K, Tsirka SAS. Extracellular proteases: biological and behavioral roles in the mammalian central nervous system. Curr Top Dev Biol 2005; 66:161-88. [PMID: 15825268 DOI: 10.1016/s0070-2153(05)66005-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Extracellular proteases and their inhibitors have been implicated in both physiological and pathological states in the central nervous system (CNS). Given the presence of several classes of proteases, it is believed that each enzyme may undertake distinct biological roles. Some are indispensible for neuronal migration, neurite outgrowth and pathfinding, and synaptic plasticity. Others are required for neuronal death and tumor growth and invasion. Furthermore, studies from transgenic animals lacking or overexpressing one or more of the proteases have suggested that functional compensations and redundance among different members do exist. Normally, protease activity is tightly regulated by specific inhibitors to prevent disastrous proteolysis. Various insults can disrupt the fine control of proteolysis and caise pathological changes. Novel strategies have been attempted to maintain or restore protease-inhibitors homeostasis, thus minimizing damages to the CNS. They may provide us with effective therapeutic tools for fighting certain neurological disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-8651, USA
| | | | | |
Collapse
|
11
|
Horwood JM, Ripley TL, Stephens DN. Evidence for disrupted NMDA receptor function in tissue plasminogen activator knockout mice. Behav Brain Res 2004; 150:127-38. [PMID: 15033286 DOI: 10.1016/s0166-4328(03)00248-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 07/04/2003] [Accepted: 07/07/2003] [Indexed: 11/28/2022]
Abstract
Tissue plasminogen activator (tPA), a serine protease immediate-early gene product expressed in brain areas important in learning and memory, has been shown to cleave the NR1 subunit of the NMDA receptor leading to a potentiated Ca(2+) influx. Mice lacking tPA (tPA-/- mice) have disrupted late phase-LTP in the hippocampus, possibly as a consequence of reduced Ca(2+) flux through NMDA receptors. In the present experiments, we investigated whether the NMDA antagonist dizocilpine might alter performance in tPA-/- mice in behavioural tasks shown to be sensitive to hippocampal lesions. tPA-/- mice and wild-type controls (WT) showed similar rates of acquisition and performance of a spatial working memory task (eight-arm radial maze). Dizocilpine (0.03-0.3 mg/kg, i.p.), given acutely, disrupted performance by increasing the number of errors equally across both genotypes. At asymptotic performance of a differential reinforcement of low response rate operant task (DRL), acute dizocilpine (0.03-0.3 mg/kg) impaired performance, but no differences between genotypes were observed. However, dizocilpine (0.1 mg/kg), given repeatedly during acquisition of a signalled-DRL15" task, retarded acquisition in tPA-/- but not WT mice. This treatment regime had no effect on locomotor activity in either genotype. tPA-/- mice showed no spatial learning deficits, but were more sensitive to dizocilpine during acquisition (though not expression) of a DRL task. This supports a role for tPA in modification of the NMDA receptor, although absence of tPA does not have consequences for all forms of NMDA-dependent mediated learning.
Collapse
Affiliation(s)
- Jennifer M Horwood
- Laboratory of Experimental Psychology, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | |
Collapse
|
12
|
Abstract
BACKGROUND Plasminogen-deficient mice exhibit behavioral differences in response to stress, including a markedly reduced acoustic startle reflex response compared with wild-type (WT) littermates. The acoustic startle reflex activates the hypothalamic-pituitary axis and is modulated by these hormones. OBJECTIVES The purpose of this study was to investigate whether plasminogen plays a role in the processing of hormones in the hypothalamic-pituitary axis. METHODS In this study the concentration of plasma, pituitary, and brain hypothalamic-pituitary axis hormones and precursor processing was examined in WT and plasminogen deficient (Plg-/-) mice before and after acoustic startle reflex testing. RESULTS Plasma adrenocorticotropic hormone (ACTH), beta-endorphin and alpha-melanocyte stimulating hormone were elevated after acoustic startle reflex testing in both WT and (Plg-/-) mice. However, in the Plg-/- mice, beta-endorphin values were 43, 35, and 45% lower in the plasma, pituitary, and whole brain, respectively, compared with the WT mice. Plasmin readily degraded precursor peptides, the 23-kDa precursor, beta-lipotropin, and ACTH, when presented as purified proteins or as the secretory products of mouse pituitary cells (AtT-20). The precursor peptide, 23 kDa, for beta-endorphin and alpha-melanocyte stimulating hormone was reduced in the pituitaries from the Plg-/- mice, and the mRNA for Plg was found in pituitaries from WT mice. Infusion of beta-endorphin and alpha-melanocyte stimulating hormone into the brain of Plg-/- mice increased acoustic startle reflex. CONCLUSIONS The results of this study show that plasmin is involved in the processing of hormones derived from the pro-opiomelanocortin precursor in the intermediate pituitary. A deficiency of plasminogen reduces processing of beta-endorphin and alpha-melanocyte stimulating hormone, and interferes with normal brain function.
Collapse
Affiliation(s)
- N Wang
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
13
|
Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y, Hashimoto K, Noda Y, Nitta A, Nabeshima T. The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci U S A 2004; 101:3650-5. [PMID: 14988509 PMCID: PMC373517 DOI: 10.1073/pnas.0306587101] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease that catalyzes the conversion of plasminogen (plg) to plasmin, which in turn functions to degrade extracellular matrix proteins in the central nervous system. The tPA-plasmin system plays a role in synaptic plasticity and remodeling. Here we show that this protease system participates in the rewarding effects of morphine by acutely regulating morphine-induced dopamine release in the nucleus accumbens (NAcc). A single morphine treatment induced tPA mRNA and protein expression in a naloxone-sensitive manner, which was associated with an increase in the enzyme activity in the NAcc. The acute effect of morphine in inducing tPA expression was diminished after repeated administration. Morphine-induced conditioned place preference and hyperlocomotion were significantly reduced in tPA(-/-) and plg(-/-) mice, being accompanied by a loss of morphine-induced dopamine release in the NAcc. The defect of morphine-induced dopamine release and hyperlocomotion in tPA(-/-) mice was reversed by microinjections of either exogenous tPA or plasmin into the NAcc. Our findings demonstrate a previously undescribed function of the tPA-plasmin system in regulating dopamine release, which is involved in the rewarding effects of morphine.
Collapse
Affiliation(s)
- Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Motor learning is thought to involve modulation of synaptic inputs in the cerebellar cortex, including granule neuron/Purkinje neuron contacts. During a complex motor task requiring mice to walk across irregularly spaced pegs, cerebellar granule neurons show a rapid and transient induction of mRNA for the extracellular protease tissue plasminogen activator (tPA). This induction of tPA mRNA is cerebellar specific, is not seen in the cerebella of exercised or stressed animals, and is distinct from simple performance phenomena. Knock-out mice lacking the tPA gene show a significant reduction in both rate and extent of learning. Furthermore, blocking tPA activity during training dramatically impaired motor learning. Thus, tPA plays an important role in motor learning, in which tPA may facilitate remodeling of the active synaptic zone.
Collapse
|
15
|
Centonze D, Napolitano M, Saulle E, Gubellini P, Picconi B, Martorana A, Pisani A, Gulino A, Bernardi G, Calabresi P. Tissue plasminogen activator is required for corticostriatal long-term potentiation. Eur J Neurosci 2002; 16:713-21. [PMID: 12270047 DOI: 10.1046/j.1460-9568.2002.02106.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several experimental data indicate that tissue plasminogen activator (tPA) is involved in memory formation and synaptic plasticity in different brain areas. In the attempt to highlight the role of this serine protease in striatal neuron activity, mice lacking tPA have been used for electrophysiological, immunohistochemical and Western blot experiments. Disruption of tPA gene prevented corticostriatal long-term potentiation, an NMDA-dependent form of synaptic plasticity requiring the stimulation of both dopamine and acetylcholine receptors. Spontaneous and evoked glutamatergic transmission was intact in the striatum of tPA-deficient mice, as was the nigrostriatal dopamine innervation and the expression of dopamine D1 receptors. Conversely, the sensitivity of striatal cholinergic interneurons to dopamine D1 receptor stimulation was lost in these mutants, suggesting that tPA facilitates long-term potentiation (LTP) induction in the striatum by favouring the D1 receptor-mediated excitation of acetylcholine-producing interneurons. The demonstration that tPA ablation interferes with the induction of corticostriatal LTP and with the dopamine receptor-mediated control of cholinergic interneurons might help to explain the altered striatum-dependent learning deficits observed in tPA-deficient mice and provides new insights into the molecular mechanisms underlying synaptic plasticity in the striatum.
Collapse
Affiliation(s)
- Diego Centonze
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xue M, Del Bigio MR. Acute tissue damage after injections of thrombin and plasmin into rat striatum. Stroke 2001; 32:2164-9. [PMID: 11546912 DOI: 10.1161/hs0901.095408] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Extravasation of blood is associated with intracerebral hemorrhage and head trauma. The mechanism of brain cell injury associated with hemorrhage differs from that due to pure ischemia. The purpose of this study was to investigate the acute changes after intracerebral injections of proteins that are involved in blood clotting and clot lysis. METHODS Sixty-eight adult rats were subjected to stereotaxic intrastriatal injections of normal saline (5 microL), low- (2.5 U/5 microL) and high-dose (25 U/5 microL) thrombin, low- (0.1 microgram/5 microL) and high-dose (1 microgram/5 microL) tissue plasminogen activator, low- (0.05 U/5 microL) and high-dose (0.5 U/5 microL) plasminogen, and low- (0.335 U/5 microL) and high-dose (3.35 U/5 microL) plasmin. Forty-eight hours later rats were perfusion fixed. Brain damage area, eosinophilic neurons, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-positive cells, infiltrating neutrophils, CD8a immunoreactive leukocytes, and reactive microglia were quantified. RESULTS Damage area in striatum, dying cells, inflammatory cells, and microglial reaction were significantly greater after the high-dose plasminogen, plasmin, and thrombin injections. Tissue plasminogen activator injections were associated with mild inflammation. CONCLUSIONS These results suggested that thrombin and plasmin are harmful to brain cells in vivo. Although the doses required to cause damage are relatively great in consideration of the plasma content of these proteins, their pathological effect might be enhanced through synergism with other mechanisms.
Collapse
Affiliation(s)
- M Xue
- Department of Pathology, Manitoba Institute of Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
17
|
Hoover-Plow J, Skomorovska-Prokvolit O, Welsh S. Selective behaviors altered in plasminogen-deficient mice are reconstituted with intracerebroventricular injection of plasminogen. Brain Res 2001; 898:256-64. [PMID: 11306011 DOI: 10.1016/s0006-8993(01)02191-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vitro studies demonstrate a role for the plasminogen (Plg) system in neurological function and recently in vivo studies show a role of the Plg system in neurodegeneration after the injection of an excitotoxic agent. Differences in the development of neurological function, however, have not been demonstrated in the Plg-deficient (Plg-/-) mice compared to wild-type (WT) mice. The role of Plg system in neurological function may relate to remodeling which occurs in response to various environmental challenges. In this study, behaviors (open field, grooming, hind-leg gait, water maze, and acoustic startle reflex) were tested in the Plg-deficient and WT mice at 6-8 weeks of age. Grooming, a response to the stress of an open field or fur moistening, was increased in the Plg-/--deficient mice compared to WT mice, and the acoustic startle reflex (ASR) was markedly decreased in the Plg-/- mice. The reduced ASR in Plg-/- mice occurred in mice with a mixed C57BL:129 background or in mice with a C57BL background. Plg was required for the ASR, since a deficiency of the Plg activators, urokinase (uPA) or tissue Plg activator (tPA), did not cause a reduction in the ASR compared to their WT control. Infusion of Plg directly into the brain was effective in restoring the ASR in the Plg-/- mice, but had no effect on the ASR of WT mice. Peripheral bolus injections of Plg or infusion into the jugular vein were ineffective in restoring the ASR in the Plg-/- mice. These results indicate that Plg is required for the appropriate response to the environmental challenge of a sudden loud sound, and that the response can be restored in Plg-/- mice by directly infusing Plg into the brain.
Collapse
Affiliation(s)
- J Hoover-Plow
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44196, USA.
| | | | | |
Collapse
|
18
|
Scarisbrick IA, Isackson PJ, Ciric B, Windebank AJ, Rodriguez M. MSP, a trypsin-like serine protease, is abundantly expressed in the human nervous system. J Comp Neurol 2001. [DOI: 10.1002/1096-9861(20010312)431:3<347::aid-cne1075>3.0.co;2-k] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Abstract
Neuroserpin, a recently identified inhibitor of tissue-type plasminogen activator (tPA), is primarily localized to neurons within the central nervous system, where it is thought to regulate tPA activity. In the present study neuroserpin expression and its potential therapeutic benefits were examined in a rat model of stroke. Neuroserpin expression increased in neurons surrounding the ischemic core (ischemic penumbra) within 6 hours of occlusion of the middle cerebral artery and remained elevated during the first week after the ischemic insult. Injection of neuroserpin directly into the brain immediately after infarct reduced stroke volume by 64% at 72 hours compared with control animals. In untreated animals both tPA and urokinase-type plasminogen activator (uPA) activity was significantly increased within the region of infarct by 6 hours after reperfusion. Activity of tPA then decreased to control levels by 72 hours, whereas uPA activity continued to rise and was dramatically increased by 72 hours. Both tPA and uPA activity were significantly reduced in neuroserpin-treated animals. Immunohistochemical staining of basement membrane laminin with a monoclonal antibody directed toward a cryptic epitope suggested that proteolysis of the basement membrane occurred as early as 10 minutes after reperfusion and that intracerebral administration of neuroserpin significantly reduced this proteolysis. Neuroserpin also decreased apoptotic cell counts in the ischemic penumbra by more than 50%. Thus, neuroserpin may be a naturally occurring neuroprotective proteinase inhibitor, whose therapeutic administration decreases stroke volume most likely by inhibiting proteinase activity and subsequent apoptosis associated with focal cerebral ischemia/reperfusion.
Collapse
|
20
|
Abstract
Abstract
Neuroserpin, a recently identified inhibitor of tissue-type plasminogen activator (tPA), is primarily localized to neurons within the central nervous system, where it is thought to regulate tPA activity. In the present study neuroserpin expression and its potential therapeutic benefits were examined in a rat model of stroke. Neuroserpin expression increased in neurons surrounding the ischemic core (ischemic penumbra) within 6 hours of occlusion of the middle cerebral artery and remained elevated during the first week after the ischemic insult. Injection of neuroserpin directly into the brain immediately after infarct reduced stroke volume by 64% at 72 hours compared with control animals. In untreated animals both tPA and urokinase-type plasminogen activator (uPA) activity was significantly increased within the region of infarct by 6 hours after reperfusion. Activity of tPA then decreased to control levels by 72 hours, whereas uPA activity continued to rise and was dramatically increased by 72 hours. Both tPA and uPA activity were significantly reduced in neuroserpin-treated animals. Immunohistochemical staining of basement membrane laminin with a monoclonal antibody directed toward a cryptic epitope suggested that proteolysis of the basement membrane occurred as early as 10 minutes after reperfusion and that intracerebral administration of neuroserpin significantly reduced this proteolysis. Neuroserpin also decreased apoptotic cell counts in the ischemic penumbra by more than 50%. Thus, neuroserpin may be a naturally occurring neuroprotective proteinase inhibitor, whose therapeutic administration decreases stroke volume most likely by inhibiting proteinase activity and subsequent apoptosis associated with focal cerebral ischemia/reperfusion.
Collapse
|
21
|
Abstract
The low-density lipoprotein (LDL) receptor-related protein (LRP) is a multifunctional endocytic receptor that is expressed abundantly in neurons of the CNS. Both LRP and several of its ligands, including tissue plasminogen activator (tPA), apolipoprotein E/lipoproteins, alpha(2)-macroglobulin, and the beta-amyloid precursor protein, have been implicated in various neuronal functions and in the pathogenesis of Alzheimer's disease. It has been reported that induction of tPA expression may contribute to activity-dependent synaptic plasticity in the hippocampus and cerebellum. In addition, long-term potentiation (LTP) is significantly decreased in mice lacking tPA. Here we demonstrate that tPA receptor LRP is abundantly expressed in hippocampal neurons and participates in hippocampal LTP. Perfusion of hippocampal slices with receptor-associated protein (RAP), an antagonist for ligand interactions with LRP, significantly reduced late-phase LTP (L-LTP). In addition, RAP also blocked the enhancing effect of synaptic potentiation by exogenous tPA in hippocampal slices prepared from tPA knock-out mice. Metabolic labeling and ligand binding analyses showed that both tPA and LRP are synthesized by hippocampal neurons and that LRP is the major cell surface receptor that binds tPA. Finally, we found that tPA binding to LRP in hippocampal neurons enhances the activity of cyclic AMP-dependent protein kinase, a key molecule that is known to be involved in L-LTP. Taken together, our results demonstrate that interactions between tPA and cell surface LRP are important for hippocampal L-LTP.
Collapse
|
22
|
Presence of tissue plasminogen activator (t-PA) in the adventitial sympathetic nerves that innervate small arteries: morphologic evidence for a neural fibrinolysis. ACTA ACUST UNITED AC 2000. [DOI: 10.1054/fipr.2000.0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Ahn MY, Zhang ZG, Tsang W, Chopp M. Endogenous plasminogen activator expression after embolic focal cerebral ischemia in mice. Brain Res 1999; 837:169-76. [PMID: 10433999 DOI: 10.1016/s0006-8993(99)01645-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) play important roles in fibrinolysis, cell migration, tissue destruction, angiogenesis and tissue remodeling. u-PA and t-PA activity in tissue are tightly regulated by plasminogen activator inhibitor-1 (PAI-1). However, little is known of the activity of endogenous plasminogen activators (PAs) and PAI-1 in ischemic brain. To evaluate whether cerebral ischemic injury induces endogenous PAs and PAI-1, we measured PA activity from brain homogenates, and examined the expression of t-PA mRNA, u-PA mRNA and PAI-1 mRNA from brain homogenates in C57BL/6J mice (n=45) weighing 29-35 g in which the middle cerebral artery (MCA) was occluded by a fibrin-rich clot. Brain homogenates were prepared for direct casein zymography from control non-ischemic mice (n=4) and mice at 2 h (n=5), 4 h (n=5), and 24 h (n=4) after MCA occlusion (MCAO). Also, u-PA and t-PA knockout mice at 4 h (n=2, each) after MCAO were used as a negative control for direct casein zymography. Frozen sections for in situ zymography were obtained from control mice (n=2) and mice at 2 h, 4 h, and 24 h (n=2, per time point) after clot occlusion. Brain homogenates were prepared for reverse transcriptase-polymerase chain reaction (RT-PCR) to examine t-PA mRNA, u-PA mRNA and PAI-1 mRNA expression from control non-ischemic mice (n=4) and mice at 2 h (n=5), 4 h (n=5), and 24 h (n=5) after MCAO. By direct casein zymography, u-PA activity increased at 4 h (P<0.05), and 24 h (P<0.05) after stroke in the ischemic hemisphere compared with the non-ischemic mice. Activity of t-PA in ischemic brain was not significantly different from the control group. As measured by in situ zymography, PA activity, most likely u-PA, was present in the ischemic hemisphere. By RT-PCR, expression of PAI-1 mRNA, but not u-PA mRNA and t-PA mRNA, increased 3-, 15- and 25-folds in the ischemic hemisphere at 2 h, 4 h and 24 h after stroke, respectively, compared with control mice. This study demonstrates that PAI-1 mRNA and u-PA activity increase in mouse brain after stroke.
Collapse
Affiliation(s)
- M Y Ahn
- Department of Neurology, Soonchunhyang University Hospital, Seoul, South Korea
| | | | | | | |
Collapse
|
24
|
Del Bigio MR, Hosain S, Altumbabic M. Localization of urokinase-type plasminogen activator, its receptor, and inhibitors in mouse forebrain during postnatal development. Int J Dev Neurosci 1999; 17:387-99. [PMID: 10479073 DOI: 10.1016/s0736-5748(99)00031-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Proteolytic enzymes are postulated to play a role in cell migration and synapse organization during brain development. Among these, urokinase-type plasminogen activator (uPA) has been studied in neoplastic and cultured brain cells extensively. We hypothesized that uPA, its receptor, and its inhibitors would be expressed in immature glial and neuronal cells in postnatal mouse forebrain. Immature cortical neurons were immunoreactive for uPA, its receptor, and its substrate plasminogen peaking at the end of postnatal week two, consistent with the postulated role in synaptogenesis. Immunoreactivity for uPA receptor was also observed on astroglial cells in vitro. Neither it nor uPA were convincingly detected in subventricular zone precursor cells, immature white matter or pre-labeled immature cells that had been transplanted into brain. Plasminogen activator inhibitor type 1 immunoreactivity was observed on endothelia up to 12 days age, and type 2 was observed to surround immature cells. We conclude, based on the spatial and temporal distribution of immunoreactivity, that uPA and its receptor may be relatively more important for synaptogenesis, remodeling, and reactive processes than for cell migration in developing mouse brain.
Collapse
Affiliation(s)
- M R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Canada.
| | | | | |
Collapse
|
25
|
Indyk J, Chen ZL, Strickland S. Proteases and degradation of extracellular matrix in neurodegeneration. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0268-9499(99)90081-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Del Bigio MR, Tchélingérian JL, Jacque CM. Expression of extracellular matrix degrading enzymes during migration of xenografted brain cells. Neuropathol Appl Neurobiol 1999; 25:54-62. [PMID: 10194776 DOI: 10.1046/j.1365-2990.1999.00158.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteolytic enzymes, postulated to create an avenue for cell migration by digestion of host extracellular matrix molecules, have been implicated in neoplastic glial cell migration. A similar process is likely to occur in the developing brain. Fetal rabbit brain fragments transplanted into the striatum of the neonatal Shiverer mouse give rise to cells which migrate from the graft site and differentiate into astrocytes and oligodendrocytes. Proteinase expression by transplanted brain cells was studied using immunohistochemistry and in situ hybridization. Immature donor cells expressed the mRNAs for matrix metalloproteinases (MMP) 1 (collagenase) and 3 (stromelysin). Northern blot analysis of rabbit brain showed that MMP-1 in particular is expressed in the immature rabbit cerebrum and down-regulated during maturation. Immature donor cells exhibited immunoreactivity for urokinase plasminogen activator. However, immunoreactivity was also present in maturing neurons. Donor and host astroglia in the vicinity of grafts were immunoreactive for MMP-2 and tissue-type plasminogen activator. This expression may represent a reactive phenomenon, not specifically related to cell migration, by mature astrocytes. Based upon our findings, MMP-1 appears to be a candidate for involvement in migration of immature brain cells in the cerebrum.
Collapse
Affiliation(s)
- M R Del Bigio
- Department of Pathology, University of Manitoba, Canada
| | | | | |
Collapse
|
27
|
Karikó K, Harris VA, Rangel Y, Duvall ME, Welsh FA. Effect of cortical spreading depression on the levels of mRNA coding for putative neuroprotective proteins in rat brain. J Cereb Blood Flow Metab 1998; 18:1308-15. [PMID: 9850143 DOI: 10.1097/00004647-199812000-00005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have demonstrated that cortical spreading depression (CSD) induces neuronal tolerance to a subsequent episode of ischemia. The objective of the present investigation was to determine whether CSD alters levels of mRNA coding for putative neuroprotective proteins. Unilateral CSD was evoked in male Wistar rats by applying 2 mol/L KCl over the frontal cortex for 2 hours. After recovery for 0, 2, or 24 hours, levels of several mRNA coding for neuroprotective proteins were measured bilaterally in parietal cortex using Northern blot analysis. Levels of c-fos mRNA and brain-derived neurotrophic factor (BDNF) mRNA were markedly elevated at 0 and 2 hours, but not 24 hours after CSD. Tissue plasminogen activator (tPA) mRNA levels were also significantly increased at 0 and 2 hours, but not 24 hours after CSD. Levels of the 72-kDa heat-shock protein (hsp72) mRNA were not significantly increased by CSD, except for a small elevation (20%) at 2 hours recovery. Levels of the 73-kDa heat-shock cognate (hsc73) mRNA were slightly, but significantly, increased at 2 and 24 hours of recovery. Finally, levels of mRNA for protease nexin-1 and glutamine synthetase were not significantly altered by CSD at any time studied. The current results support the hypothesis that neuronal tolerance to ischemia after CSD may be mediated by increased expression of FOS, BDNF, or tPA, but not by increased expression of hsp72, hsc73, nexin-1, or glutamine synthetase.
Collapse
Affiliation(s)
- K Karikó
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | |
Collapse
|
28
|
Davies BJ, Pickard BS, Steel M, Morris RG, Lathe R. Serine proteases in rodent hippocampus. J Biol Chem 1998; 273:23004-11. [PMID: 9722524 DOI: 10.1074/jbc.273.36.23004] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain serine proteases are implicated in developmental processes, synaptic plasticity, and in disorders including Alzheimer's disease. The spectrum of the major enzymes expressed in brain has not been established previously. We now present a systematic study of the serine proteases expressed in adult rat and mouse hippocampus. Using a combination of techniques including polymerase chain reaction amplification and Northern blotting we show that tissue-type plasminogen activator (t-PA) is the major species represented. Unexpectedly, the next most abundant species were RNK-Met-1, a lymphocyte protease not reported previously in brain, and two new family members, BSP1 (brain serine protease 1) and BSP2. We report full-length sequences of the two new proteases; homologies indicate that these are of tryptic specificity. Although BSP2 is expressed in several brain regions, BSP1 expression is strikingly restricted to hippocampus. Other enzymes represented, but at lower levels, included elastase IV, proteinase 3, complement C2, chymotrypsin B, chymotrypsin-like protein, and Hageman factor. Although thrombin and urokinase-type plasminogen activator were not detected in the primary screen, low level expression was confirmed using specific polymerase chain reaction primers. In contrast, and despite robust expression of t-PA, the usual t-PA substrate plasminogen was not expressed at detectable levels.
Collapse
Affiliation(s)
- B J Davies
- Center for Genome Research, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Murase SI, Hayashi Y. Concomitant expression of genes encoding integrin ?v?5 heterodimer and vitronectin in growing parallel fibers of postnatal rat cerebellum: A possible role as mediators of parallel fiber elongation. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980727)397:2<199::aid-cne4>3.0.co;2-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Hastings GA, Coleman TA, Haudenschild CC, Stefansson S, Smith EP, Barthlow R, Cherry S, Sandkvist M, Lawrence DA. Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. J Biol Chem 1997; 272:33062-7. [PMID: 9407089 DOI: 10.1074/jbc.272.52.33062] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A cDNA clone for the serine proteinase inhibitor (serpin), neuroserpin, was isolated from a human whole brain cDNA library, and recombinant protein was expressed in insect cells. The purified protein is an efficient inhibitor of tissue type plasminogen activator (tPA), having an apparent second-order rate constant of 6. 2 x 10(5) M-1 s-1 for the two-chain form. However, unlike other known plasminogen activator inhibitors, neuroserpin is a more effective inactivator of tPA than of urokinase-type plasminogen activator. Neuroserpin also effectively inhibited trypsin and nerve growth factor-gamma but reacted only slowly with plasmin and thrombin. Northern blot analysis showed a 1.8 kilobase messenger RNA expressed predominantly in adult human brain and spinal cord, and immunohistochemical studies of normal mouse tissue detected strong staining primarily in neuronal cells with occasionally positive microglial cells. Staining was most prominent in the ependymal cells of the choroid plexus, Purkinje cells of the cerebellum, select neurons of the hypothalamus and hippocampus, and in the myelinated axons of the commissura. Expression of tPA within these regions is reported to be high and has previously been correlated with both motor learning and neuronal survival. Taken together, these data suggest that neuroserpin is likely to be a critical regulator of tPA activity in the central nervous system, and as such may play an important role in neuronal plasticity and/or maintenance.
Collapse
Affiliation(s)
- G A Hastings
- Department of Protein Therapeutics, Human Genome Sciences Inc., Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse. J Neurosci 1997. [PMID: 9364046 DOI: 10.1523/jneurosci.17-23-08984.1997] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroserpin is a serine protease inhibitor of the serpin family that has been identified as an axonally secreted glycoprotein in neuronal cultures of chicken dorsal root ganglia. To obtain an indication for possible functions of neuroserpin, we analyzed its expression in the developing and the adult CNS of the mouse. In the adult CNS, neuroserpin was most strongly expressed in the neocortex, the hippocampal formation, the olfactory bulb, and the amygdala. In contrast, most thalamic nuclei, the caudate putamen, and the cerebellar granule cells were devoid of neuroserpin mRNA. During embryonic development, neuroserpin mRNA was not detectable in neuroepithelia, but it was expressed in the differentiating fields of most CNS regions concurrent with their appearance. In the cerebellum, the granule cells and a subgroup of Purkinje cells were neuroserpin-positive during postnatal development. As a further step toward the elucidation of neuroserpin function, we performed a study to identify potential target proteases. In vitro, neuroserpin formed SDS-stable complexes and inhibited the amidolytic activity of tissue plasminogen activator, urokinase, and plasmin. In contrast, no complex formation with or inhibition of thrombin was found. Expression pattern and inhibitory specificity implicate neuroserpin as a candidate regulator of plasminogen activators, which have been suggested to participate in the modulation or reorganization of synaptic connections in the adult. During development, neuroserpin may attenuate extracellular proteolysis related to processes such as neuronal migration, axogenesis, or the formation of mature synaptic connections.
Collapse
|
32
|
Abstract
Mice lacking the serine protease tissue plasminogen activator (tPA) are resistant to excitotoxin-mediated hippocampal neuronal degeneration. We have used genetic and cellular analyses to study the role of tPA in neuronal cell death. Mice deficient for the zymogen plasminogen, a known substrate for tPA, are also resistant to excitotoxins, implicating an extracellular proteolytic cascade in degeneration. The two known components of this cascade, tPA and plasminogen, are both synthesized in the mouse hippocampus. tPA mRNA and protein are present in neurons and microglia, whereas plasminogen mRNA and protein are found exclusively in neurons. tPA-deficient mice exhibit attenuated microglial activation as a reaction to neuronal injury. In contrast, the microglial response of plasminogen-deficient mice was comparable to that of wild-type mice, suggesting a tPA-mediated, plasminogen-independent pathway for activation of microglia. Infusion of inhibitors of the extracellular tPA/plasmin proteolytic cascade into the hippocampus protects neurons against excitotoxic injury, suggesting a novel strategy for intervening in neuronal degeneration.
Collapse
|
33
|
Nervous system-specific expression of a novel serine protease: regulation in the adult rat spinal cord by excitotoxic injury. J Neurosci 1997. [PMID: 9334391 DOI: 10.1523/jneurosci.17-21-08156.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A full-length cDNA clone of a previously unidentified serine protease, myelencephalon-specific protease (MSP), has been isolated by using a PCR cloning strategy and has been shown to be expressed in a nervous system and spinal cord-specific pattern. Sequence analysis demonstrated that MSP is most similar in sequence to neuropsin, trypsin, and tissue kallikrein and is predicted to have trypsin-like substrate specificity. MSP mRNA was found to be approximately 10-fold greater in the CNS of the rat and human, as compared with most peripheral tissues, and within the CNS was found to be highest by a factor of four in the medulla oblongata and spinal cord. Levels of mRNA encoding tissue plasminogen activator (tPA) also were elevated in the spinal cord but were more widespread in peripheral tissues as compared with MSP. In the adult rat lumbosacral spinal cord, in situ localization of MSP mRNA demonstrated 2-fold higher levels in the white, as compared with the gray, matter. MSP mRNA expression was shown to increase 3-fold in the white matter and 1.5-fold in the gray laminae at 72 hr after intraperitoneal injection of the AMPA/kainate glutamate receptor-specific agonist, kainic acid (KA). MSP mRNA remained elevated in the ventral gray matter, including expression associated with the motor neurons of lamina IX, at 7 d after the initial excitotoxic insult. Together, these observations indicate that MSP is in a position to play a fundamental role in normal homeostasis and in the response of the spinal cord to injury.
Collapse
|
34
|
Gschwend TP, Krueger SR, Kozlov SV, Wolfer DP, Sonderegger P. Neurotrypsin, a novel multidomain serine protease expressed in the nervous system. Mol Cell Neurosci 1997; 9:207-19. [PMID: 9245503 DOI: 10.1006/mcne.1997.0616] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have cloned a novel murine cDNA encoding a multidomain serine protease, termed neurotrypsin, which exhibits an unprecedented domain composition. The deduced amino acid sequence defines a mosaic protein of 761 amino acids consisting of a kringle domain, followed by three scavenger receptor cysteine-rich repeats, and a serine protease domain. Based on comparisons of the primary structure, the protease domain belongs to the subfamily of trypsin-like serine proteases. In situ hybridization revealed that the expression of neurotrypsin in the adult murine nervous system is confined to distinct subsets of neurons. The most prominent expression was found in the cerebral cortex, the hippocampus, and the amygdala. Le., structures engaged in the processing and storage of learned behaviors and memories. Together with the recently obtained evidence that extracellular serine proteases play a role in neural plasticity, this expression pattern suggests that the extracellular proteolytic action of neurotrypsin subserves structural reorganizations associated with learning and memory operations.
Collapse
Affiliation(s)
- T P Gschwend
- Institute of Biochemistry, University of Zürich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Mataga N, Imamura K, Shiomitsu T, Yoshimura Y, Fukamauchi K, Watanabe Y. Enhancement of mRNA expression of tissue-type plasminogen activator by L-threo-3,4-dihydroxyphenylserine in association with ocular dominance plasticity. Neurosci Lett 1996; 218:149-52. [PMID: 8945750 DOI: 10.1016/s0304-3940(96)13139-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tissue-type plasminogen activator (tPA) plays important roles in the regulation of synaptic plasticity in the hippocampus and cerebellum. We found that the expression of tPA mRNA in the visual cortex was increased significantly by the peripheral administration of L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS; 100 mg/kg, i.p.), which we had previously shown to have a promotive effect on ocular dominance (OD) plasticity. When plasminogen activator inhibitor-1 (PAI-1; 100 muM in an osmotic minipump) was infused into the kitten visual cortex, OD plasticity was suppressed; i.e. a significantly large number of binocular cells was recorded in the PAI-1 infused cortex following monocular deprivation. These results, therefore, suggest that the PA system is involved in the promotive effect of L-threo-DOPS in OD plasticity.
Collapse
Affiliation(s)
- N Mataga
- Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|