1
|
Khan S, Haider MF. A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson's Disease: An Updated Patent and Clinical Trials. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:181-195. [PMID: 39400019 DOI: 10.2174/0118715273323074241001071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.
Collapse
Affiliation(s)
- Sara Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
2
|
Thirumalai D, Subramani D, Kim J, Rajarathinam T, Yoon JH, Paik HJ, Lee J, Chang SC. Conductive PEDOT:PSS copolymer electrode coatings for selective detection of dopamine in ex vivo mouse brain slices. Talanta 2024; 267:125252. [PMID: 37774451 DOI: 10.1016/j.talanta.2023.125252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
A novel voltammetric sensor was developed to selectively determine dopamine (DA) concentration in the presence of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC). This sensor utilizes a modified pencil graphite electrode (PGE) coated with a newly synthesized poly (3,4-ethylene dioxythiophene) (PEDOT):poly (styrene sulfonate-co-2-(3-(6-Methyl-4-oxo-1,4-dihydropyrimidin-2-yl) ureido) ethyl methacrylate) (P(SS-co-UPyMA)) composite. The PEDOT:P(SS-co-UPyMA) (PPU) composite was characterized using nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. The PPU-coated PGE was characterized using electrochemical techniques, including cyclic and differential pulse voltammetry. Compared to uncoated, PPU-coated PGE demonstrated improved sensitivity and selectivity for DA. The sensor exhibited a dynamic linear range of 0.1-300 μM for DA, with a detection limit of 44.4 nM (S/N = 3). Additionally, the PPU-coated PGE showed high reproducibility and storage stability for four weeks. To demonstrate its practical applicability, the PPU-coated PGE sensor was used for ex vivo brain slice samples from control and Parkinson's disease model mice.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- BIT Convergence-based Innovative Drug Development Targeting Meta-inflammation, Pusan National University, Busan, 46241, Republic of Korea
| | - Devaraju Subramani
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea; Polymer Composites Lab, Department of Chemistry, School of Applied Science and Technology, Vignan's Foundation for Science, Technology, and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| | - Jaehoon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Centre, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jaewon Lee
- BIT Convergence-based Innovative Drug Development Targeting Meta-inflammation, Pusan National University, Busan, 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Haider A, Elghazawy NH, Dawoud A, Gebhard C, Wichmann T, Sippl W, Hoener M, Arenas E, Liang SH. Translational molecular imaging and drug development in Parkinson's disease. Mol Neurodegener 2023; 18:11. [PMID: 36759912 PMCID: PMC9912681 DOI: 10.1186/s13024-023-00600-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects elderly people and constitutes a major source of disability worldwide. Notably, the neuropathological hallmarks of PD include nigrostriatal loss and the formation of intracellular inclusion bodies containing misfolded α-synuclein protein aggregates. Cardinal motor symptoms, which include tremor, rigidity and bradykinesia, can effectively be managed with dopaminergic therapy for years following symptom onset. Nonetheless, patients ultimately develop symptoms that no longer fully respond to dopaminergic treatment. Attempts to discover disease-modifying agents have increasingly been supported by translational molecular imaging concepts, targeting the most prominent pathological hallmark of PD, α-synuclein accumulation, as well as other molecular pathways that contribute to the pathophysiology of PD. Indeed, molecular imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can be leveraged to study parkinsonism not only in animal models but also in living patients. For instance, mitochondrial dysfunction can be assessed with probes that target the mitochondrial complex I (MC-I), while nigrostriatal degeneration is typically evaluated with probes designed to non-invasively quantify dopaminergic nerve loss. In addition to dopaminergic imaging, serotonin transporter and N-methyl-D-aspartate (NMDA) receptor probes are increasingly used as research tools to better understand the complexity of neurotransmitter dysregulation in PD. Non-invasive quantification of neuroinflammatory processes is mainly conducted by targeting the translocator protein 18 kDa (TSPO) on activated microglia using established imaging agents. Despite the overwhelming involvement of the brain and brainstem, the pathophysiology of PD is not restricted to the central nervous system (CNS). In fact, PD also affects various peripheral organs such as the heart and gastrointestinal tract - primarily via autonomic dysfunction. As such, research into peripheral biomarkers has taken advantage of cardiac autonomic denervation in PD, allowing the differential diagnosis between PD and multiple system atrophy with probes that visualize sympathetic nerve terminals in the myocardium. Further, α-synuclein has recently gained attention as a potential peripheral biomarker in PD. This review discusses breakthrough discoveries that have led to the contemporary molecular concepts of PD pathophysiology and how they can be harnessed to develop effective imaging probes and therapeutic agents. Further, we will shed light on potential future trends, thereby focusing on potential novel diagnostic tracers and disease-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| | - Nehal H Elghazawy
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Thomas Wichmann
- Department of Neurology/School of Medicine, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Marius Hoener
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Ernest Arenas
- Karolinska Institutet, MBB, Molecular Neurobiology, Stockholm, Sweden
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Mouton-Liger F, Rosazza T, Sepulveda-Diaz J, Ieang A, Hassoun SM, Claire E, Mangone G, Brice A, Michel PP, Corvol JC, Corti O. Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop. Glia 2018; 66:1736-1751. [PMID: 29665074 PMCID: PMC6190839 DOI: 10.1002/glia.23337] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
Neuroinflammation and mitochondrial dysfunction, key mechanisms in the
pathogenesis of Parkinson's disease (PD), are usually explored independently.
Loss‐of‐function mutations of PARK2 and PARK6,
encoding the E3 ubiquitin protein ligase Parkin and the mitochondrial
serine/threonine kinase PINK1, account for a large proportion of cases of autosomal
recessive early‐onset PD. PINK1 and Parkin regulate mitochondrial quality control and
have been linked to the modulation of innate immunity pathways. We report here an
exacerbation of NLRP3 inflammasome activation by specific inducers in microglia and
bone marrow‐derived macrophages from Park2−/− and Pink1−/− mice. The caspase 1‐dependent release of IL‐1β and IL‐18 was, therefore,
enhanced in Park2−/− and Pink1−/− cells. This defect was confirmed in blood‐derived macrophages from patients
with PARK2 mutations and was reversed by MCC950, which specifically
inhibits NLRP3 inflammasome complex formation. Enhanced NLRP3 signaling in
Parkin‐deficient cells was accompanied by a lack of induction of A20, a well‐known
negative regulator of the NF‐κB pathway recently shown to attenuate NLRP3
inflammasome activity. We also found an inverse correlation between A20 abundance and
IL‐1β release, in human macrophages challenged with NLRP3 inflammasome inducers.
Overall, our observations suggest that the A20/NLRP3‐inflammasome axis participates
in the pathogenesis of PARK2‐linked PD, paving the way for the
exploration of its potential as a biomarker and treatment target.
Collapse
Affiliation(s)
- François Mouton-Liger
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Thibault Rosazza
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Julia Sepulveda-Diaz
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Amélie Ieang
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Sidi-Mohamed Hassoun
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Emilie Claire
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Graziella Mangone
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France.,AP-HP, Hôpital de la Pitié Salpêtrière, Clinical Investigation Center of Neurology (CIC-1422), Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Jean-Christophe Corvol
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France.,AP-HP, Hôpital de la Pitié Salpêtrière, Clinical Investigation Center of Neurology (CIC-1422), Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
| | - Olga Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| |
Collapse
|
5
|
Khatoon SS, Rehman M, Rahman A. The Role of Natural Products in Alzheimer's and Parkinson's Disease. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64058-1.00003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Nataraj J, Manivasagam T, Justin Thenmozhi A, Essa MM. Neurotrophic Effect of Asiatic acid, a Triterpene of Centella asiatica Against Chronic 1-Methyl 4-Phenyl 1, 2, 3, 6-Tetrahydropyridine Hydrochloride/Probenecid Mouse Model of Parkinson's disease: The Role of MAPK, PI3K-Akt-GSK3β and mTOR Signalling Pathways. Neurochem Res 2017; 42:1354-1365. [PMID: 28181071 DOI: 10.1007/s11064-017-2183-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Regulation of various signalling (Ras-MAPK, PI3K and AKT) pathways by augmented activity of neurotrophic factors (NTFs) could prevent or halt the progress of dopaminergic loss in Parkinson's disease (PD). Various in vitro and in vivo experimental studies indicated anti-parkinsonic potential of asiatic acid (AA), a pentacyclic triterpene obtained from Centella asiatica. So the present study is designed to determine the neurotrophic effect of AA against 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride/probenecid (MPTP/p) neurotoxicity in mice model of PD. AA treatment for 5 weeks significantly attenuated MPTP/p induced motor abnormalities, dopamine depletion and diminished expressions NTFs and tyrosine kinase receptors (TrKB). We further, revealed that AA treatment significantly inhibited the MPTP/p-induced phosphorylation of MAPK/P38 related proteins such as JNK and ERK. Moreover, AA treatment increased the phosphorylation of PI3K, Akt, GSK-3β and mTOR, suggesting that AA activated PI3K/Akt/mTOR signalling pathway, which might be the cause of neuroprotection offered by AA. The present findings provided more elaborate in vivo evidences to support the neuroprotective effect of AA on dopaminergic neurons of chronic Parkinson's disease mouse model and the potential of AA to be developed as a possible new therapeutic target to treat PD.
Collapse
Affiliation(s)
- Jagatheesan Nataraj
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, 608002, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, 608002, India.
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, 608002, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Food and Brain Research Foundation, Chennai, Tamil Nadu, 600094, India
| |
Collapse
|
7
|
Canet-Aviles R, Lomax GP, Feigal EG, Priest C. Proceedings: cell therapies for Parkinson's disease from discovery to clinic. Stem Cells Transl Med 2014; 3:979-91. [PMID: 25150264 DOI: 10.5966/sctm.2014-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In March 2013, the California Institute for Regenerative Medicine, in collaboration with the NIH Center for Regenerative Medicine, held a 2-day workshop on cell therapies for Parkinson's disease (PD), with the goals of reviewing the state of stem cell research for the treatment of PD and discussing and refining the approach and the appropriate patient populations in which to plan and conduct new clinical trials using stem cell-based therapies for PD. Workshop participants identified priorities for research, development, and funding; discussed existing resources and initiatives; and outlined a path to the clinic for a stem cell-based therapy for PD. A consensus emerged among participants that the development of cell replacement therapies for PD using stem cell-derived products could potentially offer substantial benefits to patients. As with all stem cell-based therapeutic approaches, however, there are many issues yet to be resolved regarding the safety, efficacy, and methodology of transplanting cell therapies into patients. Workshop participants agreed that designing an effective stem cell-based therapy for PD will require further research and development in several key areas. This paper summarizes the meeting.
Collapse
Affiliation(s)
- Rosa Canet-Aviles
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Geoffrey P Lomax
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Ellen G Feigal
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Catherine Priest
- California Institute for Regenerative Medicine, San Francisco, California, USA
| |
Collapse
|
8
|
Espinosa-Oliva AM, de Pablos RM, Santiago M. In vivo effect of apomorphine and haloperidol on MPP neurotoxicity. Pharmacology 2014; 93:101-7. [PMID: 24556705 DOI: 10.1159/000358257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022]
Abstract
The involvement of dopaminergic (DAergic) receptor drugs in the neuroprotection against the neurotoxic action of 1-methyl-4-phenylpyridinium (MPP(+)) in the DAergic terminals in striatum was studied using an intracerebral microdialysis technique. Twenty-four hours after surgery (day 1), apomorphine and haloperidol, alone or with 1 mmol/l of MPP(+) perfusion through the microdialysis probe, were systemically administered. Forty-eight hours after surgery (day 2), 1 mmol/l of MPP(+) was perfused for 15 min in all groups of animals and the output of dopamine was measured. The amount of dopamine was directly proportional to the remaining striatal DAergic terminals. The results show that: (1) subcutaneous administration of apomorphine before MPP(+) perfusion prevented MPP(+)-induced neurotoxicity, and (2) intraperitoneal administration of haloperidol before MPP(+) perfusion did not prevent MPP(+)-induced neurotoxicity.
Collapse
Affiliation(s)
- Ana María Espinosa-Oliva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
9
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
10
|
Ahmadimoghaddam D, Zemankova L, Nachtigal P, Dolezelova E, Neumanova Z, Cerveny L, Ceckova M, Kacerovský M, Micuda S, Staud F. Organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter in the placenta and fetal tissues: expression profile and fetus protective role at different stages of gestation. Biol Reprod 2013; 88:55. [PMID: 23303678 DOI: 10.1095/biolreprod.112.105064] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In our previous study, we described synchronized activity of organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter in the passage of organic cations across the rat placenta and the role of these transporters in fetal defense; in this study, we hypothesized that changes in placental levels of OCT3 and MATE1 throughout gestation might affect the fetal protection and detoxification. Using quantitative RT-PCR, Western blot analysis, and immunohistochemistry, we were able to detect Oct3/OCT3 and Mate1/MATE1 expression in the rat placenta as early as on Gestation Day (gd) 12 with increasing tendency toward the end of pregnancy. Comparing first versus third trimester human placenta, we observed stable expression of OCT1 and decreasing expression of OCT2 and OCT3 isoforms. Contrary to the current literature, we were able to detect also MATE1/MATE2 isoforms in the human placenta, however, with considerable inter- and intraindividual variability. Using infusion of 1-methyl-4-phenylpyridinium (MPP(+)), a substrate of OCT and MATE transporters, into pregnant dams, we investigated the protective function of the placenta against organic cations at different gds. The highest amount of MPP(+) reached the fetus on gd 12 while from gd 15 onward, maternal-to-fetal transport of MPP(+) decreased significantly. We conclude that increased expression of placental OCT3 and MATE1 along with general maturation of the placental tissues results in significantly lower transport of MPP(+) from mother to fetus. In contrast, decreasing expression of OCT3 and MATE1 in human placenta indicates these transporters may play a role in fetal protection preferentially at earlier stages of gestation.
Collapse
Affiliation(s)
- Davoud Ahmadimoghaddam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dranka BP, Zielonka J, Kanthasamy AG, Kalyanaraman B. Alterations in bioenergetic function induced by Parkinson's disease mimetic compounds: lack of correlation with superoxide generation. J Neurochem 2012; 122:941-51. [PMID: 22708893 DOI: 10.1111/j.1471-4159.2012.07836.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vitro and in vivo models of Parkinson's disease (PD) suggest that increased oxidant production leads to mitochondrial dysfunction in dopaminergic neurons and subsequent cell death. However, it remains unclear if cell death in these models is caused by inhibition of mitochondrial function or oxidant production. The objective of this study was to determine the relationship between mitochondrial dysfunction and oxidant production in response to multiple PD neurotoxicant mimetics. MPP(+) caused a dose-dependent decrease in the basal oxygen consumption rate in dopaminergic N27 cells, indicating a loss of mitochondrial function. In parallel, we found that MPP(+) only modestly increased oxidation of hydroethidine as a diagnostic marker of superoxide production in these cells. Similar results were found using rotenone as a mitochondrial inhibitor, or 6-hydroxydopamine (6-OHDA) as a mechanistically distinct PD neurotoxicant, but not with exposure to paraquat. In addition, the extracellular acidification rate, used as a marker of glycolysis, was stimulated to compensate for oxygen consumption rate inhibition after exposure to MPP(+), rotenone, or 6-OHDA, but not paraquat. Together these data indicate that MPP(+), rotenone, and 6-OHDA dramatically shift bioenergetic function away from the mitochondria and towards glycolysis in N27 cells.
Collapse
Affiliation(s)
- Brian P Dranka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|
12
|
N-acetyl-cysteine in the treatment of Parkinson's disease. What are we waiting for? Med Hypotheses 2012; 79:8-12. [PMID: 22546753 DOI: 10.1016/j.mehy.2012.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 11/23/2022]
Abstract
Parkinson's disease is an age-related neurodegenerative disorder that is ameliorated with levodopa. However, long-term use of this drug is limited by motor complications, postural instability and dementia resulting in the progression of the disease. Insights into the organization of the basal ganglia and knowledge of the mechanisms responsible for cell death in Parkinson's disease has permitted the development of putative neuro-protective drugs that might slow the disease progression. Although no drug has yet been established to alter the rate of disease progression, recent publications have confirmed previous results and hypotheses about the probable role of thiolic antioxidants on Parkinson's disease, demonstrating a significant reduction of dopaminergic neuronal degeneration in α-synuclein over expressing mice treated with oral N-acetyl-cysteine. This thiolic antioxidant is a modified form of the natural amino acid cysteine, which is the precursor of the most potent intracellular antioxidant glutathione. Besides, increasing evidence has been accumulated in the last 10years about the beneficial effects of this thiolic antioxidant in experimental and pathologic states of the nervous system, including against neurotoxic substances. The present paper put forward the existing rationale evidence for the use of N-acetyl-cysteine alone or in combination with levodopa in the clinical management of this neurodegenerative disorder.
Collapse
|
13
|
Synchronized Activity of Organic Cation Transporter 3 (Oct3/Slc22a3) and Multidrug and Toxin Extrusion 1 (Mate1/Slc47a1) Transporter in Transplacental Passage of MPP+ in Rat. Toxicol Sci 2012; 128:471-81. [DOI: 10.1093/toxsci/kfs160] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
14
|
The effect of folate status on the uptake of physiologically relevant compounds by Caco-2 cells. Eur J Pharmacol 2010; 640:29-37. [DOI: 10.1016/j.ejphar.2010.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/19/2010] [Accepted: 04/23/2010] [Indexed: 12/25/2022]
|
15
|
Ju MS, Kim HG, Choi JG, Ryu JH, Hur J, Kim YJ, Oh MS. Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson's disease models. Food Chem Toxicol 2010; 48:2037-44. [PMID: 20457209 DOI: 10.1016/j.fct.2010.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/21/2010] [Accepted: 05/03/2010] [Indexed: 11/30/2022]
Abstract
Cassiae semen, a commonly consumed tea and medicinal food, has been shown to have multiple therapeutic actions related to the prevention of dementia and ischemia. In this study, we investigated the effects of extract of Cassiae semen (COE) against neurotoxicities in in vitro and in vivo Parkinson's disease (PD) models. In PC12 cells, COE attenuated the cell damage induced by 100 microM 6-hydroxydopamine (6-OHDA) stress in MTT assay, and it inhibited the overproduction of reactive oxygen species, glutathione depletion, mitochondrial membrane depolarization and caspase-3 activation at 0.1-10 microg/ml. In addition, COE showed radical scavenging activity in the DPPH and ABTS assays. In mesencephalic dopaminergic (DA) culture, COE protected DA cells against 10 microM 6-OHDA- and 10 microM 1-methyl-4-phenylpyridine-induced toxicities at 0.1-1 microg/ml. We also evaluated the effect of COE in a mouse PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In the pole test, COE (50mg/kg, 15 days)+MPTP (30 mg/kg, 5 days)-treated group had decreased T-turn and T-LA which were longer in MPTP group. Moreover, COE significantly protected DA neuronal degeneration induced by MPTP in the substantia nigra and striatum of these mice. These results demonstrate that COE can prevent DA neurons against the toxicities involved in PD.
Collapse
Affiliation(s)
- Mi Sun Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, #1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Effect of polyphenols on the intestinal and placental transport of some bioactive compounds. Nutr Res Rev 2010; 23:47-64. [DOI: 10.1017/s0954422410000053] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyphenols are a group of widely distributed phytochemicals present in most foods of vegetable origin. A growing number of biological effects have been attributed to these molecules in the past few years and only recently has their interference with the transport capacity of epithelial barriers received attention. This review will present data obtained concerning the effect of polyphenols upon the transport of some compounds (organic cations, glucose and the vitamins thiamin and folic acid) at the intestinal and placental barriers. Important conclusions can be drawn: (i) different classes of polyphenols affect transport of these bioactive compounds at the intestinal epithelia and the placenta; (ii) different compounds belonging to the same phenolic family often possess opposite effects upon transport of a given molecule; (iii) the acute and chronic/short-term and long-term exposures to polyphenols do not produce parallel results and, therefore, care should be taken when extrapolating results; (iv) the effect of polyphenolics in combination may be very different from the expected ones taking into account the effect of each of these compounds alone, and so care should be taken when speculating on the effect of a drink based on the effect of one component only; (v) care should be taken in drawing conclusions for alcoholic beverages from results obtained with ethanol alone. Although most of the data reviewed in the present paper refer to in vitro experiments with cell-culture systems, these studies raise a concern about possible changes in the bioavailability of substrates upon concomitant ingestion of polyphenols.
Collapse
|
17
|
Keating E, Gonçalves P, Costa F, Campos I, Pinho MJ, Azevedo I, Martel F. Comparison of the transport characteristics of bioactive substances in IUGR and normal placentas. Pediatr Res 2009; 66:495-500. [PMID: 19668108 DOI: 10.1203/pdr.0b013e3181b9b4a3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Knowing that IUGR is associated with altered placental transport, we aimed to characterize the placental transport of folic acid (FA), thiamine (THIAM), serotonin (5-HT), and 1-methyl-4-phenylpyridinium (MPP+) in IUGR. For this, we compared the transport characteristics of (3)H-FA, (3)H-THIAM, (3)H-5-HT, and (3)H-MPP+ in primary cultured human cytotrophoblasts isolated from IUGR and normal placentas (GRTB and NTB cells, respectively) and quantified mRNA expression of several placental transporters, by real-time RT-PCR. Our results show that GRTB cells take up (3)H-FA more efficiently (higher k(in) and A(max) values) and have higher transport capacity (higher V(max) values) for (3)H-FA, (3)H-5-HT, and (3)H-MPP+, when compared with NTB cells. In addition, GRTB cells take up (3)H-THIAM with higher affinity and (3)H-MPP+ with lower affinity than NTB cells. Finally, IUGR placentas have a generalized increase in mRNA expression of FA, THIAM, 5-HT, and MPP+ transporters, when compared with normal placentas, suggesting that the increase in transport capacity may be due to increased expression of placental transporters. These results point to an effect of "compensation for the weakness" of the IUGR placenta and pose the placenta as an active mediator of the communication between maternal and fetal environments.
Collapse
Affiliation(s)
- Elisa Keating
- Department of Biochemistry (U38/FCT), Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
18
|
Functions and effects of creatine in the central nervous system. Brain Res Bull 2008; 76:329-43. [DOI: 10.1016/j.brainresbull.2008.02.035] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/15/2008] [Accepted: 02/25/2008] [Indexed: 12/12/2022]
|
19
|
Affiliation(s)
- Lawrence M. Sayre
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - George Perry
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Mark A. Smith
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
20
|
Santiago M, Matarredona ER, Machado A, Cano J. Acute perfusion of BMAA in the rat's striatum by in vivo microdialysis. Toxicol Lett 2006; 167:34-9. [PMID: 16979309 DOI: 10.1016/j.toxlet.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/18/2006] [Indexed: 11/27/2022]
Abstract
The present study is concerned with the hypothetical toxicity of beta-N-methylamino-L-alanine (BMAA), a compound that has been hypothesized to produce amyotrophic lateral sclerosis/Parkinson-dementia complex. We have used the microdialysis technique to perfused different concentrations of BMAA in the rat's striatum 24h after the implantation of a microdialysis probe (day 1). BMAA perfusion produced a dose-response increase in the extracellular output of dopamine. Forty-eight hours after implantation of the probe (day 2), we have perfused MPP+ 1 mM to check the integrity of the dopaminergic terminals present around the cannula. Only the highest concentration of BMAA studied, 50mM, produced a clear decrease in the extracellular output of dopamine after MPP+ perfusion. However, this decrease was very similar, even smaller, to that obtained in a previous study carried out by us with MPP+ 1 mM, a dose much lower than that used for BMAA. Our model to study toxicity in the striatal dopaminergic terminal did not show that acute perfusion of BMAA at high doses produces a clear damage to the dopaminergic terminals.
Collapse
Affiliation(s)
- M Santiago
- Departamento de Bioquímica, Facultad de Farmacia, Sevilla, Spain.
| | | | | | | |
Collapse
|
21
|
Kim MK, Shim CK. The transport of organic cations in the small intestine: current knowledge and emerging concepts. Arch Pharm Res 2006; 29:605-16. [PMID: 16903083 DOI: 10.1007/bf02969273] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A wide variety of drugs and endogenous bioactive amines are organic cations (OCs). Approximately 40% of all conventional drugs on the market are OCs. Thus, the transport of xenobiotics or endogenous OCs in the body has been a subject of considerable interest, since the discovery and cloning of a family of OC transporters, referred to as organic cation transporter (OCTs), and a new subfamily of OCTs, OCTNs, leading to the functional characterization of these transporters in various systems including oocytes and some cell lines. Organic cation transporters are critical in drug absorption, targeting, and disposition of a drug. In this review, the recent advances in the characterization of organic cation transporters and their distribution in the small intestine are discussed. The results of the in vitro transport studies of various OCs in the small intestine using techniques such as isolated brush-border membrane vesicles, Ussing chamber systems and Caco-2 cells are discussed, and in vivo knock-out animal studies are summarized. Such information is essential for predicting pharmacokinetics and pharmacodynamics and in the design and development of new cationic drugs. An understanding of the mechanisms that control the intestinal transport of OCs will clearly aid achieving desirable clinical outcomes.
Collapse
Affiliation(s)
- Moon Kyoung Kim
- Laboratory of Transporters Targeted Drug Design, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | | |
Collapse
|
22
|
Gasser PJ, Lowry CA, Orchinik M. Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J Neurosci 2006; 26:8758-66. [PMID: 16928864 PMCID: PMC6674371 DOI: 10.1523/jneurosci.0570-06.2006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/06/2006] [Accepted: 07/18/2006] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoid hormones act within the brain to alter physiological and behavioral responses to stress-related stimuli. Previous studies indicated that acute stressors can increase serotonin [5-hydroxytryptamine (5-HT)] concentrations in the dorsomedial hypothalamus (DMH), a midline hypothalamic structure involved in the integration of physiological and behavioral responses to stress. The current study tests the hypothesis that rapid, stress-induced accumulation of 5-HT is attributable to the inhibition of 5-HT transport via organic cation transporters (OCTs). OCTs are a family of high-capacity, bidirectional, multispecific transporters of organic cations (including 5-HT, dopamine, and norepinephrine) only recently described in brain. In peripheral tissues, organic cation transport via some OCTs is inhibited by corticosterone. We examined the expression and function of OCTs in the periventricular medial hypothalamus of male Sprague Dawley rats using reverse-transcriptase (RT)-PCR, immunohistochemistry, and in vitro transport assays. RT-PCR revealed expression of OCT3 mRNA, but not OCT1 or OCT2 mRNA, in the medial hypothalamus. OCT3-like immunoreactivity was observed in ependymal and glial-like cells in the DMH. Acutely prepared minces of rat medial hypothalamic tissue accumulated the OCT substrates [3H]-histamine and [3H]-N-methyl-4-phenylpyridinium ([3H]-MPP+). Consistent with the pharmacological profile of OCT3, corticosterone, 5-HT, estradiol, and the OCT inhibitor decynium22 dose-dependently inhibited histamine accumulation. Corticosterone and decynium22 also inhibited efflux of [3H]-MPP+ from hypothalamic minces. These data support the hypothesis that corticosterone-induced inhibition of OCT3 mediates stress-induced accumulation of 5-HT in the DMH and suggest that corticosterone may acutely modulate physiological and behavioral responses to stressors by altering serotonergic neurotransmission in this brain region.
Collapse
Affiliation(s)
- Paul J Gasser
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA.
| | | | | |
Collapse
|
23
|
Yang YJ, Wang QM, Hu LF, Sun XL, Ding JH, Hu G. Iptakalim alleviated the increase of extracellular dopamine and glutamate induced by 1-methyl-4-phenylpyridinium ion in rat striatum. Neurosci Lett 2006; 404:187-90. [PMID: 16781057 DOI: 10.1016/j.neulet.2006.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/16/2006] [Accepted: 05/22/2006] [Indexed: 01/12/2023]
Abstract
The present study examined the effect of iptakalim (Ipt), a novel ATP-sensitive potassium (K(ATP)) channel opener (KCO), on 1-methyl-4-phenylpyridinium ion (MPP(+))-induced dopamine (DA) and glutamate efflux in extracellular fluid of rat striatum, using microdialysis technique. Rats were implanted guide cannula in the striatum and artificial cerebrospinal fluid was infused through a microdialysis probe to detect the level of DA and glutamate in the striatum. MPP(+) significantly enhanced the extracellular levels of DA and its metabolites, DOPAC and HVA, as well as glutamate. Application of Ipt (1, 10, 100 microM) concentration-dependently suppressed DA and its metabolites efflux induced by MPP(+). Concomitantly, Ipt reduced the increase of extracellular glutamate induced by MPP(+). These results suggest that Ipt can regulate DA and glutamate efflux induced by MPP(+) in rat striatum.
Collapse
Affiliation(s)
- Yan-Jing Yang
- Laboratory of Neuropharmacology, Department of Anatomy, Histology & Pharmacology, Nanjing Medical University, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
24
|
Faria A, Mateus N, de Freitas V, Calhau C. Modulation of MPP+uptake by procyanidins in Caco-2 cells: Involvement of oxidation/reduction reactions. FEBS Lett 2005; 580:155-60. [PMID: 16364314 DOI: 10.1016/j.febslet.2005.11.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 11/15/2005] [Accepted: 11/27/2005] [Indexed: 11/26/2022]
Abstract
It is becoming increasingly evident that the absorption of certain nutrients and drugs and their effects are largely influenced by the concomitant ingestion of other substances. As various xeno- and endobiotics belong to the class of organic cations, the aim of this work was to study the modulation of the intestinal apical uptake of organic cations by diet procyanidins. Five procyanidin fractions with different structural complexity were obtained after fractionation of a grape seed extract. The effect of these compounds on 1-methyl-4-phenylpyridinium (MPP+) uptake was evaluated in Caco-2 cells. Apical uptake of 3H-MPP+ by Caco-2 cells was increased by a 60 min exposure to 600 microg ml(-1) of procyanidin fractions, that increase being positively related with procyanidins structural complexity. It was verified that 3H-MPP+ uptake increased with preincubation time. It was speculated that procyanidins were oxidized during preincubation, this change could interfered with transport activity. Tested oxidizing agents showed that the redox state of the transporter could affect its activity. Additionally, trans-stimulation experiments showed that catechin and fraction I (the simpler fraction) can use the same transporter as MPP+. The results are compatible with the hypothesis of these compounds being competitive inhibitors of MPP+ transport. In conclusion, procyanidins are capable to modulate MPP+ apical uptake in Caco-2 cells, this transport being most probably modulated through oxidation-reduction phenomena. Interactions between these compounds and drugs present in the diet may affect their absorption and bioavailability. Both the concentration and complexity of the procyanidin compounds should be taken into account in medical practice.
Collapse
Affiliation(s)
- Ana Faria
- Department of Biochemistry (U38-FCT), Faculty of Medicine of the University of Porto, Al. Prof. Hernani Monteiro, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
25
|
Monteiro R, Calhau C, Martel F, Faria A, Mateus N, Azevedo I. Modulation of MPP+ uptake by tea and some of its components in Caco-2 cells. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:147-52. [PMID: 16193318 DOI: 10.1007/s00210-005-0012-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 08/30/2005] [Indexed: 11/29/2022]
Abstract
The entry of most xeno/endobiotics into the organism is limited by their intestinal absorption. The interference of certain foods with the therapeutic efficacy of drugs or with chemical toxicity is becoming evident and growing attention is being given to these subjects. The aim of this work was to study the effect of green tea (GT) and black tea (BT), as well as some of their components, on the transport of organic cation molecules. For this purpose, 3H-MPP+ (radiolabeled 1-methyl-4-phenylpyridinium) was used as a model organic cation and Caco-2 cells were used as an intestinal epithelial model. Our results showed that both GT and BT significantly increased 3H-MPP+ absorption in these cells. Additionally, we studied the effect of epigallocatechin-3-gallate (EGCG), myricetin, caffeine, and theophylline. Whereas EGCG (2 mM) increased, myricetin (50 microM) and caffeine (1 mM) decreased, and theophylline (1 mM) had no effect on the uptake of 3H-MPP+ into Caco-2 cells. When GT was supplemented with caffeine or theophylline, we observed a partial loss of its effect. When BT was supplemented with EGCG, its ability to increase 3H-MPP+ uptake was much more pronounced than that observed with BT alone. In conclusion, this study showed that GT and BT might interfere with the absorption of the model organic cation MPP+ by the intestinal epithelium. Since important compounds are organic cations, the consequences of this interference may have an impact on human health. Although this constitutes only preliminary work and further studies are needed, tea should be included in the growing list of foodstuffs that have the potential to be involved in food-drug interactions.
Collapse
Affiliation(s)
- R Monteiro
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
26
|
Monteiro R, Calhau C, Martel F, Guedes de Pinho P, Azevedo I. Intestinal uptake of MPP+ is differently affected by red and white wine. Life Sci 2005; 76:2483-96. [PMID: 15763079 DOI: 10.1016/j.lfs.2004.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 12/22/2004] [Indexed: 11/30/2022]
Abstract
It is becoming increasingly evident that ingested products, such as wine, may have profound effects on the therapeutic efficacy of certain drugs. As various xeno- and endobiotics are organic cations, the purpose of our study was to examine the modulation of organic cations intestinal apical uptake by red (RW) and white wine (WW). For this purpose, we used RW, WW, the same alcohol-free wines, phenolic compounds and ethanol. The uptake of the organic cation 1-methyl-4-phenylpyridinium (MPP+) was evaluated in Caco-2 cells, an intestinal epithelial cell model. RW and alcohol-free RW increased 3H-MPP+ apical uptake, although the effect of alcohol-free RW was less pronounced. On the other hand, WW and alcohol-free WW decreased the organic cation uptake but the effect of alcohol-free WW was more pronounced. Our results show that the total content in phenolic compounds was 7 times higher, and the dialysis index was about 4 times higher in RW compared to WW. Ethanol, in the same concentration found in wine, caused a significant decrease in 3H-MPP+ apical uptake. The solution containing high molecular weight compounds from dialyzed RW increased 3H-MPP+ apical uptake. In conclusion, the results suggest that RW may increase and WW may reduce the intestinal absorption of organic cations present in the diet, such as drugs or vitamins (e.g. thiamine and riboflavin). As ethanol alone decreased the uptake of MPP+, and alcohol-free RW and WW had a lower potency than intact wine upon the transport, the presence of ethanol is probably important for the solubilisation/bioavailability of the components endowed with the transport modulating activity.
Collapse
Affiliation(s)
- R Monteiro
- Department of Biochemistry, Faculty of Medicine (U-38, FCT), 4200-319 Porto, Portugal.
| | | | | | | | | |
Collapse
|
27
|
Le Prell CG, Halsey K, Hughes LF, Dolan DF, Bledsoe SC. Disruption of lateral olivocochlear neurons via a dopaminergic neurotoxin depresses sound-evoked auditory nerve activity. J Assoc Res Otolaryngol 2005; 6:48-62. [PMID: 15735934 PMCID: PMC2504639 DOI: 10.1007/s10162-004-5009-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 10/29/2004] [Indexed: 11/30/2022] Open
Abstract
We applied the dopaminergic (DA) neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the guinea pig cochlear perilymph. Immunolabeling of lateral olivocochlear (LOC) neurons using antibodies against synaptophysin was reduced after the MPTP treatment. In contrast, labeling of the medial olivocochlear innervation remained intact. As after brainstem lesions of the lateral superior olive (LSO), the site of origin of the LOC neurons, the main effect of disrupting LOC innervation of the cochlea via MPTP was a depression of the amplitude of the compound action potential (CAP). CAP amplitude depression was similar to that produced by LSO lesions. Latency of the N1 component of the CAP, and distortion product otoacoustic emission amplitude and adaptation were unchanged by the MPTP treatment. This technique for selectively lesioning descending LOC efferents provides a new opportunity for examining LOC modulation of afferent activity and behavioral measures of perception.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Action Potentials
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Animals
- Cochlear Nerve/physiology
- Cochlear Nucleus/pathology
- Cochlear Nucleus/physiology
- Denervation
- Dopamine/physiology
- Dopamine Agents/pharmacology
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Female
- Guinea Pigs
- Immunohistochemistry
- Male
- Neurotoxins/pharmacology
- Olivary Nucleus/pathology
- Olivary Nucleus/physiology
- Otoacoustic Emissions, Spontaneous/drug effects
- Otoacoustic Emissions, Spontaneous/physiology
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Neuronal death associated with Parkinson's disease is commonly believed to be caused by oxygen- and nitrogen-derived free radical species. Some years ago, however, we showed that peroxidase from the midbrain of dogs is able to kill various cell types, including neuroblastoma cells (M. B. Grisham et al., J. Neurochem. 48: 876-882: 1987). We postulated that a nigral peroxidase may play a significant role in the degeneration of dopaminergic neurons in Parkinson's disease. To further establish proof of principle, we recently performed a series of experiments using horseradish peroxidase and lactoperoxidase. We showed that the cytotoxic activity of lactoperoxidase is fully inhibited by physiological concentrations of dopamine, reduced glutathione, and L-cysteine, as well as by micromolar concentrations of apomorphine, desferal, aspirin, and uric acid. l-Methyl-4-phenyl-1,2-dihydropyridine (MPDP) and l-methyl-4-phenylpyridinium (MPP+) augment the cytotoxic activity, whereas l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, deprenyl, and pargyline had minimal or no effect. We also showed that horseradish peroxidase catalyzes the oxidation of MPDP to MPP+. Thus, contrary to the generally accepted theory that the in vivo oxidation of MPDP occurs spontaneously, this reaction may be catalyzed by a brain peroxidase. These observations lend further support to the suggestion that a brain peroxidase may play an important role in the metabolic events associated with Parkinson's disease.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|
29
|
Lin AMY, Yang CH, Ueng YF, Luh TY, Liu TY, Lay YP, Ho LT. Differential effects of carboxyfullerene on MPP+/MPTP-induced neurotoxicity. Neurochem Int 2004; 44:99-105. [PMID: 12971912 DOI: 10.1016/s0197-0186(03)00113-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of carboxyfullerene on a well-known neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenyl-pyridinium (MPP+) were investigated. In chloral hydrate-anesthetized rats, cytosolic cytochrome c was elevated in the infused substantia nigra 4 h after an intranigral infusion of MPP+. Five days after local application of MPP+, lipid peroxidation (LP) was elevated in the infused substantia nigra. Furthermore, dopamine content and tyrosine hydroxylase (TH)-positive axons were reduced in the ipsilateral striatum. Concomitant intranigral infusion of carboxyfullerene abolished the elevation in cytochrome c and oxidative injuries induced by MPP+. In contrast, systemic application of carboxyfullerene did not prevent neurotoxicity induced by intraperitoneal injection of MPTP. In mice, systemic administration of MPTP induced a dose-dependent depletion in striatal dopamine content. Simultaneous injection of carboxyfullerene (10 mg/kg) actually potentiated MPTP-induced reduction in striatal dopamine content. Furthermore, systemic administration of carboxyfullerene (30 mg/kg) caused death in the MPTP-treated mice. An increase in the striatal MPP+ level and reduction in hepatic P450 level were observed in the carboxyfullerene co-treated mice. These data showed that systemic application of carboxyfullerene appears to potentiate MPTP-induced neurotoxicity while local carboxyfullerene has been suggested as a neuroprotective agent. Furthermore, an increase in striatal MPP+ level may contribute to the potentiation by carboxyfullerene of MPTP-induced neurotoxicity.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/antagonists & inhibitors
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Apoptosis/drug effects
- Axons/enzymology
- Axons/metabolism
- Blotting, Western
- Carboxylic Acids/pharmacology
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome c Group/metabolism
- Cytosol/drug effects
- Cytosol/metabolism
- Dopamine/metabolism
- Dopamine Agents/toxicity
- Electrochemistry
- Fullerenes
- Lipid Peroxidation/drug effects
- Liver/drug effects
- Liver/enzymology
- Male
- Mice
- Microinjections
- Neostriatum/cytology
- Neostriatum/enzymology
- Neostriatum/metabolism
- Oxidative Stress/physiology
- Pyridinium Compounds/administration & dosage
- Pyridinium Compounds/antagonists & inhibitors
- Pyridinium Compounds/toxicity
- Rats
- Rats, Sprague-Dawley
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Anya M Y Lin
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Calhau C, Martel F, Hipólito-Reis C, Azevedo I. Modulation of uptake of organic cationic drugs in cultured human colon adenocarcinoma Caco-2 cells by an ecto-alkaline phosphatase activity. J Cell Biochem 2003; 87:408-16. [PMID: 12397600 DOI: 10.1002/jcb.10306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alkaline phosphatase (ALP) refers to a group of nonspecific phosphomonoesterases located primarily in cell plasma membrane. It has been described in different cell lines that ecto-ALP is directly or indirectly involved in the modulation of organic cation transport. We aimed to investigate, in Caco-2 cells, a putative modulation of 1-methyl-4-phenylpyridinium (MPP(+)) apical uptake by an ecto-ALP activity. Ecto-ALP activity and (3)H-MPP(+) uptake were evaluated in intact Caco-2 cells (human colon adenocarcinoma cell line), in the absence and presence of a series of drugs. The activity of membrane-bound ecto-ALP expressed on the apical surface of Caco-2 cells was studied at physiological pH using p-nitrophenylphosphate as substrate. The results showed that Caco-2 cells express ALP activity, characterized by an ecto-oriented active site functional at physiological pH. Genistein (250 micro M), 3-isobutyl-1-methylxanthine (1 mM), verapamil (100 micro M), and ascorbic acid (1 mM) significantly increased ecto-ALP activity and decreased (3)H-MPP(+) apical transport in this cell line. Orthovanadate (100 micro M) showed no effect on (3)H-MPP(+) transport and on ecto-ALP activity. On the other hand, okadaic acid (310 nM) and all trans-retinoic acid (1 micro M) significantly increased (3)H-MPP(+) uptake and inhibited ecto-ALP activity. There is a negative correlation between the effect of drugs upon ecto-ALP activity and (3)H-MPP(+) apical transport (r = -0.9; P = 0.0014). We suggest that apical uptake of organic cations in Caco-2 cells is affected by phosphorylation/dephosphorylation mechanisms, and that ecto-ALP activity may be involved in this process.
Collapse
Affiliation(s)
- C Calhau
- Department of Biochemistry, Faculty of Medicine (U38-FCT), University of Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
31
|
Martel F, Keating E. Uptake of 1-methyl-4-phenylpyridinium (MPP+) by the JAR human placental choriocarcinoma cell line: comparison with 5-hydroxytryptamine. Placenta 2003; 24:361-9. [PMID: 12657510 DOI: 10.1053/plac.2002.0917] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this work was to characterize the uptake of 1-methyl-4-phenylpyridinium (MPP(+)) in the JAR human choriocarcinoma cell line. As JAR cells, as well as the placenta, express the neuronal serotonin transporter (SERT), a comparison between the uptake of (3)H-MPP(+) and (3)H-serotonin ((3)H-5HT) was made. Specific uptake of (3)H-MPP(+) (0.2 microM ) was temperature-, Na(+)- and potential-dependent. 5HT and MPP(+) reduced (3)H-MPP(+) specific uptake (for 5HT, its IC(50) was found to be 4 microM ). The SERT inhibitors desipramine and fluoxetine also inhibited (3)H-MPP(+) specific uptake (with IC(50)s of 189 and 0.92 microM, respectively). The inhibitors of the extraneuronal monoamine transporter (EMT) and of the organic cation transporter type 2 (OCT2), corticosterone and decynium22, had no effect on (3)H-MPP(+) specific uptake, but cyanine863 concentration-dependently reduced it (with an IC(50) of 23 microM ). Specific uptake of (3)H-5HT (0.2 microM ) by JAR cells was temperature-, Na(+)- and potential-dependent. 5HT, MPP(+), desipramine and fluoxetine concentration-dependently inhibited (3)H-5HT specific uptake (with IC(50)s of 1.9 microM, 50 microM, 0.17 microM and 0.046 microM, respectively). Corticosterone showed no effect, but decynium22 and cyanine863 significantly reduced(3) H-5HT specific uptake. For cyanine863, its IC(50) was found to be 11 microM. In conclusion, the results suggest that: (1) uptake of (3)H-5HT by JAR cells occurs exclusively through SERT; (2) uptake of(3) H-MPP(+) by JAR cells involves SERT and also another transporter; (3) neither EMT nor OCT2 are functionally present in JAR cells.
Collapse
Affiliation(s)
- F Martel
- Department of Biochemistry (U38-FCT), Faculty of Medicine, 4200-319, Porto, Portugal
| | | |
Collapse
|
32
|
Browne SE, Beal MF. Toxin-induced mitochondrial dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:243-79. [PMID: 12512343 DOI: 10.1016/s0074-7742(02)53010-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Susan E Browne
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
33
|
Kristufek D, Rudorfer W, Pifl C, Huck S. Organic cation transporter mRNA and function in the rat superior cervical ganglion. J Physiol 2002; 543:117-34. [PMID: 12181285 PMCID: PMC2290488 DOI: 10.1113/jphysiol.2002.021170] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reuptake of extracellular noradrenaline (NA) into superior cervical ganglion (SCG) neurones is mediated by means of the noradrenaline transporter (NAT, uptake 1). We now demonstrate by single-cell RT-PCR that mRNA of the organic cation transporter 3 (OCT3, uptake 2) occurs in rat SCG neurones as well. Furthermore, our RT-PCR analyses reveal the presence of mRNA for novel organic cation transporters 1 and 2 (OCTN1 and OCTN2), but not for OCT1 or OCT2 in the ganglion. Making use of the NAT as a powerful, neurone-specific transporter system, we loaded[3H]-N-methyl-4-phenylpyridinium ([3H]-MPP+) into cultured rat SCG neurones. The ensuing radioactive outflow from these cultures was enhanced by desipramine and reserpine, but reduced (in the presence of desipramine) by the OCT3 inhibitors cyanine 863, oestradiol and corticosterone. In contrast, cyanine 863 enhanced the radioactive outflow from cultures preloaded with [3H]-NA. Two observations suggest that a depletion of storage vesicles by cyanine 863 accounts for the latter phenomenon: first, the primary radioactive product isolated from supernatants of cultures loaded with [3H]-NA was the metabolite [3H]-DHPG; and second, inhibition of MAO significantly reduced the radioactive outflow in response to cyanine 863. The outflow of [3H]-MPP+ was significantly enhanced by MPP+, guanidine, choline and amantadine as potential substrates for OCT-related transmembrane transporters. However, desipramine at a low concentration essentially blocked the radioactive outflow induced by all of these substances with the exception of MPP+, indicating the NAT and not an OCT as their primary site of action. The MPP+-induced release of [3H]-MPP+ was fully prevented by a combined application of desipramine and cyanine 863. No trans-stimulation of [3H]-MPP+ outflow was observed by the OCTN1 and OCTN2 substrate carnitine at 100 microM. Our observations indicate an OCT-mediated transmembrane transport of [3H]-MPP+. Amongst the three OCTs expressed in the SCG, OCT3 best fits the profile of substrates and antagonists that cause trans-stimulation and trans-inhibition, respectively, of [3H]-MPP+ release.
Collapse
Affiliation(s)
- Doris Kristufek
- Brain Research Institute, University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
34
|
Martel F, Keating E, Calhau C, Azevedo I. Uptake of (3)H-1-methyl-4-phenylpyridinium ((3)H-MPP(+)) by human intestinal Caco-2 cells is regulated by phosphorylation/dephosphorylation mechanisms. Biochem Pharmacol 2002; 63:1565-73. [PMID: 11996899 DOI: 10.1016/s0006-2952(02)00888-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several transmembrane transporters of organic compounds are regulated by phosphorylation/dephosphorylation mechanisms. The aim of this study was to investigate the possible regulation of the intestinal uptake of organic cations by these mechanisms. The intestinal apical uptake of 1-methyl-4-phenylpyridinium (MPP(+)) was studied by incubating Caco-2 cells at 37 degrees for 5 min with 200 nM (3)H-MPP(+). Uptake of (3)H-MPP(+) by Caco-2 cells was not affected by activators of protein kinase G, and was not affected or slightly reduced (by 15-20%) by activators of protein kinase A or protein kinase C. Uptake of (3)H-MPP(+) by Caco-2 cells was reduced in a concentration-dependent manner by non-selective phosphodiesterase inhibitors (3-isobutyl-1-methylxanthine (IBMX), caffeine, teophylline). The IC(50) of IBMX was found to be 119 microM (102-138; n=9). Uptake of (3)H-MPP(+) by Caco-2 cells was not affected by inhibition of protein tyrosine kinase, but it was concentration-dependently reduced in the presence of inhibitors of mitogen-activated protein kinase. Uptake of (3)H-MPP(+) by Caco-2 cells was strongly reduced by Ca(2+)/calmodulin-mediated pathway inhibitors, but it was not dependent on extracellular Ca(2+). Our results suggest that the intestinal apical uptake of MPP(+) is regulated by phosphorylation/dephosphorylation mechanisms, being most probably active in the dephosphorylated state. Moreover, uptake of (3)H-MPP(+) by Caco-2 cells and by the extraneuronal monoamine transporter (EMT) are regulated in a very similar manner, suggesting an important participation of EMT in the intestinal uptake of this compound.
Collapse
Affiliation(s)
- Fátima Martel
- Department of Biochemistry, Faculty of Medicine, 4200-319 Porto, Portugal.
| | | | | | | |
Collapse
|
35
|
Andersen JK, Kumar J, Srinivas B, Kaur D, Hsu M, Rajagopalan S. The hunt for a cure for Parkinson's disease. ACTA ACUST UNITED AC 2001; 2001:re1. [PMID: 14602952 DOI: 10.1126/sageke.2001.1.re1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several exciting new scientific advances have been made in the past decade toward both understanding the causes of and finding a cure for Parkinson's disease. Heartened by an acceleration in research findings in the past several years, the government has recently called for an infusion of funds from both the National Institutes of Health and private foundations into this burgeoning area of biomedical research. Most currently available conventional treatments for the disease only temporarily delay symptom presentation while doing nothing to halt disease progression. However, the rapidly accelerating pace of research in this field has left researchers hopeful that Parkinson's will be the first major age-related neurodegenerative disease for which we have a viable cure. In this article, advances in various areas of Parkinson's disease research are reviewed.
Collapse
Affiliation(s)
- J K Andersen
- Buck Institute for Age Research, Novato, CA 94945, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Santiago M, Machado A, Cano J. Validity of a quantitative technique to study striatal dopaminergic neurodegeneration by in vivo microdialysis. J Neurosci Methods 2001; 108:181-7. [PMID: 11478977 DOI: 10.1016/s0165-0270(01)00390-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of a technique that allows the direct quantitative study of the damage produced by a toxin on a specific neurotransmitter system is very important. For that, we have used the microdialysis technique to validate a method to study the specific drug's toxicity on dopaminergic (DAergic) striatal terminals. We perfused different MPP(+) and 6-hydroxydopamine (6-OHDA) concentrations, with different toxicity for DAergic terminals, 24 h after the implantation of the microdialysis probe (day 1). One day later (day 2), MPP(+) was perfused through the microdialysis probe and DA extracellular output measured. We hypothesize that the amount of extracellular dopamine (DA) obtained on day 2 is directly proportional to the neurotoxic damage produced on day 1. To corroborate this hypothesis tyrosine hydroxylase (TH) immunohistochemistry was also carried out on day 2. There was a clear correlation index between the amount of DA measured after MPP(+) perfusion and the lack of TH immunoreactivity measured as the radius of the area showing decrease in TH immunoreactivity around the cannula. These results show the possibility to measure DAergic remaining terminals after a toxic drug exposure by in vivo MPP(+) perfusion. The possibility to extend this neurotoxic study to another neurotransmitter systems is suggested.
Collapse
Affiliation(s)
- M Santiago
- Departamento de Bioquímica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | |
Collapse
|
37
|
Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP. Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 2001; 21:4188-96. [PMID: 11390648 PMCID: PMC87080 DOI: 10.1128/mcb.21.13.4188-4196.2001] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two uptake systems that control the extracellular concentrations of released monoamine neurotransmitters such as noradrenaline and adrenaline have been described. Uptake-1 is present at presynaptic nerve endings, whereas uptake-2 is extraneuronal and has been identified in myocardium and vascular and nonvascular smooth muscle cells. The gene encoding the uptake-2 transporter has recently been identified in humans (EMT), rats (OCT3), and mice (Orct3/Slc22a3). To generate an in vivo model for uptake-2, we have inactivated the mouse Orct3 gene. Homozygous mutant mice are viable and fertile with no obvious physiological defect and also show no significant imbalance of noradrenaline or dopamine. However, Orct3-null mice show an impaired uptake-2 activity as measured by accumulation of intravenously administered [(3)H]MPP(+) (1-methyl-4-phenylpyridinium). A 72% reduction in MPP(+) levels was measured in hearts of both male and female Orct3 mutant mice. No significant differences between wild-type and mutant mice were found in any other adult organ or in plasma. When [(3)H]MPP(+) was injected into pregnant females, a threefold-reduced MPP(+) accumulation was observed in homozygous mutant embryos but not in their placentas or amniotic fluid. These data show that Orct3 is the principal component for uptake-2 function in the adult heart and identify the placenta as a novel site of action of uptake-2 that acts at the fetoplacental interface.
Collapse
Affiliation(s)
- R Zwart
- Department of Molecular Genetics (H5), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Martel F, Keating E, Azevedo I. Effect of P-glycoprotein modulators on the human extraneuronal monoamine transporter. Eur J Pharmacol 2001; 422:31-7. [PMID: 11430910 DOI: 10.1016/s0014-2999(01)01055-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this work was to investigate the effect of P-glycoprotein modulators on human extraneuronal monoamine transporter (EMT)-mediated transport. The experiments were performed using a cell line from human embryonic kidney (HEK293 cells) stably transfected with pcDNA3hEMT (293(hEMT)), or with pcDNA3 alone (293(control)). Of the P-glycoprotein modulators tested, rhodamine123, verapamil and daunomycin concentration-dependently inhibited EMT-mediated uptake of [3H]1-methyl-4-phenylpyridinium ([3H]MPP(+)). The corresponding IC(50)'s were found to be 3.6, 37 and 130 microM, respectively. By contrast, vinblastine, digitoxin and cyclosporine A were devoid of effect. The endogenous organic cation tyramine, but not choline, inhibited EMT-mediated transport (IC(50) of 468 microM). Moreover, L-arginine and L-histidine (up to 1 mM) did not affect [3H]MPP(+) uptake. Finally, MPP(+) and tyramine trans-stimulated [3H]MPP(+) uptake, but rhodamine123 had no effect, and verapamil and daunomycin trans-inhibited [3H]MPP(+) uptake. In conclusion, this study shows that several cationic modulators of P-glycoprotein inhibit EMT-mediated transport. As a consequence, the interaction of P-glycoprotein modulators with EMT must be taken into account, and the consequences of this interaction must not be forgotten when using such drugs in vivo.
Collapse
Affiliation(s)
- F Martel
- Department of Biochemistry, Faculty of Medicine, 4200-319 Porto, Portugal.
| | | | | |
Collapse
|
39
|
Barzilai A, Melamed E, Shirvan A. Is there a rationale for neuroprotection against dopamine toxicity in Parkinson's disease? Cell Mol Neurobiol 2001; 21:215-35. [PMID: 11569535 PMCID: PMC11533828 DOI: 10.1023/a:1010991020245] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Parkinson's disease is a progressive neurological disease caused by rather selective degeneration of the dopaminergic neurons in the substantia nigra. Though subject to intensive research, the etiology of this nigral loss is still undetermined and treatment is basically symptomatic. The current major hypothesis is that nigral neuronal death in PD is due to excessive oxidative stress generated by auto and enzymatic oxidation of the endogenous neurotransmitter dopamine (DA), the formation of neuromelanin (NM) and the presence of a high concentration of iron. In this review article although we concisely describe the effects of NM and iron on neuronal survival, we mainly focus on the molecular mechanisms of DA-induced apoptosis. DA exerts its toxic effects through its oxidative metabolites either in vitro or in vivo The oxidative metabolites then activate a very intricate web of signals, which culminate in cell death. The signal transduction pathways and genes, which are associated with DA toxicity are described in detail.
Collapse
Affiliation(s)
- A Barzilai
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| | | | | |
Collapse
|
40
|
Abstract
MPTP is known to cause PD symptoms in primates and in rodents. In order to exert its neurotoxicity MPTP must be converted by monoamine oxidase B into MPP(+) which is the true toxic agent. MPP(+) is taken up by the dopaminergic neurons of the substantia nigra in which it induces cell death. The present work reviews and discusses papers in which specific methods were used to determine whether cell death induced by MPTP/MPP(+) should be considered as apoptosis or necrosis. These two cell death modes may be distinguished using morphological and biochemical criteria. The effect of MPTP/MPP(+) was studied in vitro and in vivo. The results show that no univocal answer is possible. The most widespread interpretation is that MPTP/MPP(+) causes apoptosis when its neurotoxic effect is only sligh and necrosis when it is stronger. Similar considerations may be made also concerning the type of cell death occurring in the dopaminergic neurons in the substantia nigra of PD patients.
Collapse
Affiliation(s)
- A Nicotra
- Dipartimento di Biologia Animale e dell'Uomo, Università di Roma I, Viale dell' Università 32, 00185,., Rome, Italy
| | | |
Collapse
|
41
|
Parrado J, Absi E, Ayala A, Castaño A, Cano J, Machado A. The endogenous amine 1-methyl-1,2,3,4- tetrahydroisoquinoline prevents the inhibition of complex I of the respiratory chain produced by MPP(+). J Neurochem 2000; 75:65-71. [PMID: 10854248 DOI: 10.1046/j.1471-4159.2000.0750065.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endogenous monoamine 1-methyl-1,2,3,4-tetrahydroisoquinoline has been shown to prevent the neurotoxic effect of MPP(+) and other endogenous neurotoxins, which produce a parkinsonian-like syndrome in humans. We have tested its potential protective effect in vivo by measuring the protection of 1-methyl-1,2,3,4-tetrahydroisoquinoline in the neurotoxicity elicited by MPP(+) in rat striatum by tyrosine hydroxylase immunocytochemistry. Because we know that cellular damage caused by MPP(+) is primarily the result of mitochondrial respiratory inhibition at the complex I level, we have extended the study further to understand this protective mechanism. We found that the inhibitory effect on the mitochondrial respiration rate induced by MPP(+) in isolated rat liver mitochondria and striatal synaptosomes was prevented by addition of 1-methyl-1,2,3,4-tetrahydroisoquinoline. This compound has no antioxidant capacity; therefore, this property is not involved in its protective effect. Thus, we postulate that the preventive effect that 1-methyl-1,2,3,4-tetrahydroisoquinoline has on mitochondrial inhibition for MPP(+) could be due to a "shielding effect," protecting the energetic machinery, thus preventing energetic failure. These results suggest that this endogenous amine may protect against the effect of several parkinsonism-inducing compounds that are associated with progressive impairment of the mitochondrial function.
Collapse
Affiliation(s)
- J Parrado
- Departamento de Bioquimica, Bromatologia y Toxicologia, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Martel F, Ribeiro L, Calhau C, Azevedo I. Inhibition by levamisole of the organic cation transporter rOCT1 in cultured rat hepatocytes. Pharmacol Res 1999; 40:275-9. [PMID: 10479473 DOI: 10.1006/phrs.1999.0506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levamisole is known to be subject to hepatic removal and metabolism and to biliary excretion. The aim of our work was to study the mechanism involved in the removal of this compound by the liver. For this purpose, we studied the influence of levamisole on the uptake and efflux of the model organic cation 1-methyl-4-phenylpyridinium (MPP(+)) by primary cultured rat hepatocytes. Levamisole (500 microm) was found to produce a strong inhibition (to 31+/-2% of control) of [(3)H]MPP(+)uptake. Moreover, efflux of [(3)H]MPP(+)was also potently reduced by levamisole (500 microm). Our results show that levamisole interferes with an hepatic organic cation transporter which accepts MPP(+)as a substrate. This mechanism most probably corresponds to rOCT1, and it might be responsible for the hepatic removal of levamisole from the blood circulation.
Collapse
Affiliation(s)
- F Martel
- Department of Biochemistry, Faculty of Medicine, Porto, 4200, Portugal
| | | | | | | |
Collapse
|
43
|
Martel F, Ribeiro L, Calhau C, Azevedo I. Characterization of the efflux of the organic cation MPP+ in cultured rat hepatocytes. Eur J Pharmacol 1999; 379:211-8. [PMID: 10497908 DOI: 10.1016/s0014-2999(99)00501-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to characterize the efflux of organic cations from primary cultured rat hepatocytes, using 1-methyl-4-phenylpyridinium (MPP+) as a model compound. The efflux of [3H]MPP+ was temperature dependent, and pH and metabolic inhibition independent. It was either strongly reduced (verapamil, vinblastine and rhodamine123) or only moderately reduced (daunomycin) by other organic cations. The anti-P-glycoprotein antibody UIC2 (20 microg/ml) and the P-glycoprotein inhibitors vanadate and cyclosporine A had no effect on [3H]MPP+ efflux. Decynium22 and corticosterone, known inhibitors of rat Organic Cation Transporter 1 (rOCT1), markedly reduced [3H]MPP+ efflux. The uptake of [3H]MPP+ into hepatocytes, known to be mediated by rOCT1, was inhibited by verapamil and vinblastine (IC50s of 2.6 and 34.4 microM, respectively). In conclusion, [3H]MPP+ efflux from primary cultured rat hepatocytes appears to be mediated by rOCT1, a polyspecific organic cation transporter. Moreover, our results do not support the involvement of P-glycoprotein or of an organic cation/proton antiporter in the efflux of [3H]MPP+.
Collapse
Affiliation(s)
- F Martel
- Department of Biochemistry, Faculty of Medicine, Porto, Portugal
| | | | | | | |
Collapse
|
44
|
Schengrund CL, Mummert CM. Exogenous gangliosides. How do they cross the blood-brain barrier and how do they inhibit cell proliferation. Ann N Y Acad Sci 1998; 845:278-84. [PMID: 9668362 DOI: 10.1111/j.1749-6632.1998.tb09681.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gangliosides have been used to treat specific central nervous system lesions and to inhibit proliferation of neuroblastoma cells in vitro. However, the mechanisms by which they (1) cross the blood-brain barrier and (2) inhibit cell proliferation have not been clearly defined. Evidence is presented in support of the hypotheses that (1) serum albumin functions in the transport of gangliosides across the blood-brain barrier, and (2) when gangliosides inhibit cell proliferation, they do so by inhibiting the activity of DNA polymerases alpha and beta.
Collapse
Affiliation(s)
- C L Schengrund
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | |
Collapse
|
45
|
Tariq M, Khan HA, Moutaery KA, Deeb SA. Dipyridamole potentiates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinsonism in mice. Parkinsonism Relat Disord 1998; 4:43-50. [DOI: 10.1016/s1353-8020(98)00007-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Blandini F, Nappi G, Greenamyre JT. Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov Disord 1998; 13:11-5. [PMID: 9452319 DOI: 10.1002/mds.870130106] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activity of mitochondrial enzyme complex I (NADH-ubiquinone oxidoreductase) is reduced in the substantia nigra of patients with Parkinson's disease (PD). A less pronounced decrease in the activity of this enzyme has also been reported in platelets of PD patients. To obtain quantitative information on platelet complex I in PD, we studied platelet complex I in 16 PD patients and 16 age-matched controls by using a newly developed technique based on the binding of [3H]dihydrorotenone ([3H]DHR), an analog of the pesticide rotenone, to complex I. We also investigated the inhibitory effect of MPP+ (1-methyl-4-phenyl-pyridinium) on [3H]DHR specific binding to platelet complex I. PD patients and controls showed similar levels of [3H]DHR specific binding; preincubation of platelets with MPP+ caused the same degree of inhibition of [3H]DHR specific binding in the two groups. In PD patients, we observed a direct correlation between MPP+-induced inhibition of [3H]DHR specific binding and the daily intake of levodopa, which may be related to drug-induced changes in the transport of MPP+ into the platelet or in its binding to complex I. These findings demonstrate that the reported reduction in complex I activity in platelets of PD patients can not be accounted for by an abnormality at the level of the rotenone binding site (putatively the ND-1 gene product), although they do not exclude differences in complex I activity between PD patients and controls.
Collapse
Affiliation(s)
- F Blandini
- C. Mondino Neurological Institute, University of Pavia, Italy
| | | | | |
Collapse
|
47
|
Shults CW, Haas RH, Passov D, Beal MF. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann Neurol 1997; 42:261-4. [PMID: 9266740 DOI: 10.1002/ana.410420221] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The activities of complex I and complex II/III in platelet mitochondria are reduced in patients with early, untreated Parkinson's disease. Coenzyme Q10 is the electron acceptor for complex I and complex II. We found that the level of coenzyme Q10 was significantly lower in mitochondria from parkinsonian patients than in mitochondria from age- and sex-matched control subjects and that the levels of coenzyme Q10 and the activities of complex I and complex II/III were significantly correlated.
Collapse
Affiliation(s)
- C W Shults
- Neurology Service, Veterans Affairs Medical Center, San Diego, CA 92161, USA
| | | | | | | |
Collapse
|
48
|
Messaoudi M, Tricoire A, Lalonde R, Canini F, Minn A. Effects of MPTP on lever-pressing for light extinction in rats. Eur J Pharmacol 1996; 299:17-20. [PMID: 8901002 DOI: 10.1016/0014-2999(95)00803-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rats were daily treated for seven days with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) at a dose of 20 mg/kg/day, i.p. Seven days after treatment withdrawal, the rats were individually tested in a brightly lit apparatus containing two levers: an active lever allowing periods of darkness, and an inactive one. The test was performed over two consecutive days, in 20-min sessions. While control rats had a higher number of total active lever pressings than inactive lever pressings, this was not the case for MPTP-treated rats. Control rats decreased their useless active lever pressings and inactive lever pressings across the two sessions, but MPTP-treated rats did not do either. The absence of the differential effect in rats injected with MPTP may be due to a reduction in reinforcement mechanisms caused by the mild depletion of dopamine in the striatum.
Collapse
|
49
|
Inhibition of dopamine uptake into PC-12 cells by analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Parkinsonism Relat Disord 1996; 2:1-6. [DOI: 10.1016/1353-8020(95)00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/1995] [Indexed: 11/19/2022]
|
50
|
Gerlach M, Götz M, Dirr A, Kupsch A, Janetzky B, Oertel W, Sautter J, Schwarz J, Reichmann H, Riederer P. Acute MPTP treatment produces no changes in mitochondrial complex activities and indices of oxidative damage in the common marmoset ex vivo one week after exposure to the toxin. Neurochem Int 1996; 28:41-9. [PMID: 8746763 DOI: 10.1016/0197-0186(95)00063-e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to cause a Parkinsonian syndrome in man and non-human primates. Hypotheses concerning the pathogenetic mechanisms of MPTP toxicity on nigro-striatal dopaminergic neurons relate to impairment of mitochondrial function and oxidative stress. However, surprisingly few primate studies addressed these issues ex vivo. Thus, the present study assessed the enzyme activities of the respiratory chain, GSH/GSSG and ubiquinol/ubiquinone content in the MPTP primate model (common marmoset, Callithrix jacchus; 2 mg MPTP-hydrochloride/kg body wt were injected subcutaneously (s.c.) on four consecutive days; animals were sacrificed 7 days after last MPTP exposure). Activities of respiratory chain enzymes were measured in crude homogenates of the caudate nucleus, because the probable toxic metabolite of MPTP, MPP+, is transported into dopaminergic neurons via the dopamine uptake system in striatal synapses and mitochondria are concentrated in axonal terminals. Since MPP+ can damage membranes of axonal terminals of nigro-striatal neurons we measured GSH/GSSG contents in the putamen and ubiquinol/ubiquinone concentrations in the substantia nigra and putamen as indices of oxidative damage. At the time of sacrifice MPTP-induced deficits comprised severe behavioural Parkinsonian symptoms, profound depletion of striatal dopamine and its major metabolites as well as pronounced loss of nigro-striatal neurons. Despite these severe lesions, acute MPTP treatment had no effect on any of the enzymes of the respiratory chain in the caudate nucleus and indices of oxidative damage in both the substantia nigra and putamen. These results suggest that factors other than mitochondrial impairment and/or oxidative stress may be involved in MPTP neurotoxicity in primates. Alternatively, early compensatory mechanisms and/or transient effects could account for the reported results and will be discussed.
Collapse
Affiliation(s)
- M Gerlach
- Department of Clinical Neurochemistry, Julius-Maximilians-Universität, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|