1
|
Olsen ASB, Færgeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol 2018; 7:rsob.170069. [PMID: 28566300 PMCID: PMC5451547 DOI: 10.1098/rsob.170069] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are highly enriched in the nervous system where they are pivotal constituents of the plasma membranes and are important for proper brain development and functions. Sphingolipids are not merely structural elements, but are also recognized as regulators of cellular events by their ability to form microdomains in the plasma membrane. The significance of such compartmentalization spans broadly from being involved in differentiation of neurons and synaptic transmission to neuronal–glial interactions and myelin stability. Thus, perturbations of the sphingolipid metabolism can lead to rearrangements in the plasma membrane, which has been linked to the development of various neurological diseases. Studying microdomains and their functions has for a long time been synonymous with studying the role of cholesterol. However, it is becoming increasingly clear that microdomains are very heterogeneous, which among others can be ascribed to the vast number of sphingolipids. In this review, we discuss the importance of microdomains with emphasis on sphingolipids in brain development and function as well as how disruption of the sphingolipid metabolism (and hence microdomains) contributes to the pathogenesis of several neurological diseases.
Collapse
Affiliation(s)
- Anne S B Olsen
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
2
|
John S, Sivakumar KC, Mishra R. Extracellular Proton Concentrations Impacts LN229 Glioblastoma Tumor Cell Fate via Differential Modulation of Surface Lipids. Front Oncol 2017; 7:20. [PMID: 28299282 PMCID: PMC5331044 DOI: 10.3389/fonc.2017.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer with marginal survival rates. GBM extracellular acidosis can profoundly impact its cell fate heterogeneities and progression. However, the molecules and mechanisms that enable GBM tumor cells acid adaptation and consequent cell fate competencies are weakly understood. Since extracellular proton concentrations (pHe) directly intercept the tumor cell plasma membrane, surface lipids must play a crucial role in pHe-dependent tumor cell fate dynamics. Hence, a more detailed insight into the finely tuned pH-dependent modulation of surface lipids is required to generate strategies that can inhibit or surpass tumor cell acid adaptation, thereby forcing the eradication of heterogeneous oncogenic niches, without affecting the normal cells. Results By using image-based single cell analysis and physicochemical techniques, we made a small-scale survey of the effects of pH ranges (physiological: pHe 7.4, low: 6.2, and very low: 3.4) on LN229 glioblastoma cell line surface remodeling and analyzed the consequent cell fate heterogeneities with relevant molecular targets and behavioral assays. Through this basic study, we uncovered that the extracellular proton concentration (1) modulates surface cholesterol-driven cell fate dynamics and (2) induces ‘differential clustering’ of surface resident GM3 glycosphingolipid which together coordinates the proliferation, migration, survival, and death reprogramming via distinct effects on the tumor cell biomechanical homeostasis. A novel synergy of anti-GM3 antibody and cyclophilin A inhibitor was found to mimic the very low pHe-mediated GM3 supraclustered conformation that elevated the surface rigidity and mechano-remodeled the tumor cell into a differentiated phenotype which eventually succumbed to the anoikis type of cell death, thereby eradicating the tumorigenic niches. Conclusion and significance This work presents an initial insight into the physicochemical capacities of extracellular protons in the generation of glioblastoma tumor cell heterogeneities and cell death via the crucial interplay of surface lipids and their conformational changes. Hence, monitoring of proton–cholesterol–GM3 correlations in vivo through diagnostic imaging and in vitro in clinical samples may assist better tumor staging and prognosis. The emerged insights have further led to the translation of a ‘pH-dependent mechanisms of oncogenesis control’ into the surface targeted anti-GBM therapeutics.
Collapse
Affiliation(s)
- Sebastian John
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - K C Sivakumar
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - Rashmi Mishra
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| |
Collapse
|
3
|
Palmano K, Rowan A, Guillermo R, Guan J, McJarrow P. The role of gangliosides in neurodevelopment. Nutrients 2015; 7:3891-913. [PMID: 26007338 PMCID: PMC4446785 DOI: 10.3390/nu7053891] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway.
Collapse
Affiliation(s)
| | - Angela Rowan
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| | - Rozey Guillermo
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Jian Guan
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Paul McJarrow
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| |
Collapse
|
4
|
Moussavou G, Kwak DH, Lim MU, Kim JS, Kim SU, Chang KT, Choo YK. Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep 2014; 46:527-32. [PMID: 24152915 PMCID: PMC4133840 DOI: 10.5483/bmbrep.2013.46.11.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 01/06/2023] Open
Abstract
Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs. [BMB Reports 2013; 46(11): 527-532]
Collapse
Affiliation(s)
- Ghislain Moussavou
- Department of Biological Science, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Taverna E, Götz M, Huttner WB. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol 2014; 30:465-502. [PMID: 25000993 DOI: 10.1146/annurev-cellbio-101011-155801] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural stem and progenitor cells have a central role in the development and evolution of the mammalian neocortex. In this review, we first provide a set of criteria to classify the various types of cortical stem and progenitor cells. We then discuss the issue of cell polarity, as well as specific subcellular features of these cells that are relevant for their modes of division and daughter cell fate. In addition, cortical stem and progenitor cell behavior is placed into a tissue context, with consideration of extracellular signals and cell-cell interactions. Finally, the differences across species regarding cortical stem and progenitor cells are dissected to gain insight into key developmental and evolutionary mechanisms underlying neocortex expansion.
Collapse
Affiliation(s)
- Elena Taverna
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany;
| | | | | |
Collapse
|
6
|
Serb AF, Sisu E, Vukelić Z, Zamfir AD. Profiling and sequencing of gangliosides from human caudate nucleus by chip-nanoelectrospray mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1561-1570. [PMID: 23280744 DOI: 10.1002/jms.3116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 05/27/2023]
Abstract
Gangliosides (GGs), sialic acid-containing glycosphingolipids are involved in many brain functions at the cell and molecular level. Compositional and structural elucidation of GGs in mixtures extracted from human brain is essential for correlating their profile with the specialized function of each brain area in health and disease. As a part of our ongoing study on GG expression and structure in different healthy and diseased brain regions, in this work, a preliminary investigation of GGs in a specimen of human caudate nucleus (CN) was carried out using an advanced mass spectrometry (MS) technique. By chip-nanoelectrospray MS performed on a NanoMate robot coupled to a high capacity ion trap instrument, 81 GG components were detected in human CN in only 1.5 min of signal acquisition. Although the native GG mixture from CN was found dominated by mono-, di- and trisialylated GGs with a slight dominance of disialylated forms (GD), four tetrasialylated structures (GQ) and two pentasialylated (GP) species were also identified. Additionally, species with unusually long fatty acid chains, exceeding 30 carbon atoms in their ceramide (Cer) composition, and several glycoforms modified by fucosyl (Fuc), O-acetyl (O-Ac) and/or lactonization were discovered. By tandem MS (MS(2) ) using collision-induced dissociation, two atypical mono and disialylated species with long-chain fatty acids in their Cer could be confirmed and structurally characterized. These results may be a starting point for new GG-based approaches in the study of CN functions and ethiopathogenesis of CN-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Alina F Serb
- Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. 2A, Timisoara, Romania
| | | | | | | |
Collapse
|
7
|
McJarrow P, Schnell N, Jumpsen J, Clandinin T. Influence of dietary gangliosides on neonatal brain development. Nutr Rev 2009; 67:451-63. [DOI: 10.1111/j.1753-4887.2009.00211.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Liour SS, Kraemer SA, Dinkins MB, Su CY, Yanagisawa M, Yu RK. Further characterization of embryonic stem cell-derived radial glial cells. Glia 2006; 53:43-56. [PMID: 16158417 DOI: 10.1002/glia.20257] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, we showed that radial glia-like (RG) cells differentiated from embryonic stem (ES) cells after retinoic acid induction (Liour and Yu, 2003: Glia 42:109-117). In the present study, we demonstrate that the production of RG cells from ES cells is independent of the neural differentiation protocol used. These ES cell-derived RG (ES-RG) cells are similar in morphology to RG cells in vivo and express several characteristic RG cell markers. The processes of these ES-RG cells are organized into radial arrays similar to the RG scaffold in developing CNS. Expression of Pax6, along with other circumstantial data, suggests that at least some of these ES-RG cells are neural progenitors. The progression of neurogenesis into gliogenesis during the in vitro neural differentiation of ES cells recapitulates the in vivo developmental process. The identification of two cell surface markers, SSEA-1 and GM1, on both the native embryonic RG cells and ES-RG cells, may facilitate purification of radial glial cells for future studies and cell therapy. Overall, our study suggests that differentiation of radial glial cells is a common pathway during the neural differentiation of ES cells.
Collapse
Affiliation(s)
- Sean S Liour
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Fujimoto Y, Izumoto S, Suzuki T, Kinoshita M, Kagawa N, Wada K, Hashimoto N, Maruno M, Nakatsuji Y, Yoshimine T. Ganglioside GM3 inhibits proliferation and invasion of glioma. J Neurooncol 2005; 71:99-106. [PMID: 15690123 DOI: 10.1007/s11060-004-9602-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
GM3, the simplest ganglioside, modulates cell adhesion, proliferation and differentiation in the central nervous system and exogenously added GM3 regulates cell-cell and cell-extracellular matrix adhesion and induces apoptosis. To assess the anti-tumor action of exogenous GM3, we examined its effect on the proliferation and invasion of glioma cells. Its inhibitory effect on cell proliferation was demonstrated in vitro by 3-(4,5-dimethyl-2-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay and in vitro in rats with meningeal gliomatosis whose survival was significantly prolonged by the intrathecal injection of GM3. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay revealed that GM3 induced glioma cell apoptosis in vitro and in vitro. In rat brain slice cultures, GM3 suppressed the invasion of glioma cells; this effect manifested earlier than the inhibition of cell proliferation and before apoptosis induction. Our results suggest exogenous GM3 as a potential therapeutic agent in patients with glioma requiring adjuvant therapy.
Collapse
Affiliation(s)
- Yasunori Fujimoto
- Department of Neurosurgery, Osaka University Medical School, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liour SS, Dinkins MB, Su CY, Yu RK. Spatiotemporal expression of GM1 in murine medial pallial neural progenitor cells. J Comp Neurol 2005; 491:330-8. [PMID: 16175551 DOI: 10.1002/cne.20696] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of gangliosides is developmentally regulated in the central nervous system. The expression of GM1 in the neural progenitor cells of the telencephalonic ventricular zone (VZ) has been reported in several studies. However, information on the spatial and temporal regulation of GM1 expression in the VZ is still lacking. In this study, we characterized the expression of GM1 in the developing mouse telencephalon. At E13, GM1 is expressed in neuronal cells as well as in the VZ. The initial expression of GM1 in the VZ is restricted to regions close to the medial pallium. Fluorescence-activated cell sorting (FACS) analysis and characterization of E14 GM1-positive cells showed that they contain progenitor cells that proliferate in response to epidermal growth factor (EGF) and/or basic fibroblast growth factor (bFGF) stimulation. The results obtained from quantitative gene expression analysis of region-specific genes (Emx1, Lhx2, Ngn1, Ngn2, Pax6, Dlx2, Gsh2, Mash1, and Nkx2.1), using real-time polymerase chain reaction indicate that FACS of GM1-expressing cells in the fetal forebrain enriches for the medial pallial neural progenitor cells.
Collapse
Affiliation(s)
- Sean S Liour
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
11
|
Nakatsuji Y, Miller RH. Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp Neurol 2001; 168:290-9. [PMID: 11259117 DOI: 10.1006/exnr.2000.7602] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Control of cell proliferation and cell survival is critical during development of the vertebrate central nervous system (CNS). Much of the cell death seen during early stages of CNS development occurs through apoptosis; however, the factors that induce this early apoptosis are not clearly understood. Gangliosides, sialylated glycosphingolipids, are expressed in the CNS and have been proposed to regulate cell growth and differentiation. Here we show that the simple ganglioside GM3 selectively inhibits the proliferation of and induces apoptosis of actively dividing astrocyte precursors and other neural progenitors. The inhibition of astrocyte precursor proliferation by GM3 appears to be mediated in part by the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1). During neonatal development there is extensive cell proliferation and little apoptosis in the ventricular and subventricular zones of the CNS. This proliferation was dramatically inhibited and the degree of apoptosis dramatically increased following intraventricular administration of GM3. These data suggest that GM3, a simple ganglioside, may regulate cell proliferation and death in the CNS and as such may have potential for brain tumor therapy.
Collapse
Affiliation(s)
- Y Nakatsuji
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
12
|
Noll EN, Lin J, Nakatsuji Y, Miller RH, Black PM. GM3 as a novel growth regulator for human gliomas. Exp Neurol 2001; 168:300-9. [PMID: 11259118 DOI: 10.1006/exnr.2000.7603] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The simple ganglioside GM3 inhibits proliferation and induces apoptosis in proliferating immature rodent CNS cells. To determine whether GM3 influenced the expansion of human neural tumors the effects of GM3 treatment on primary human brain tumors were assayed. Here we demonstrate that GM3 treatment dramatically reduces cell numbers in primary cultures of high-grade human glioblastoma multiforme (GBM) tumors and the rat 9L cell gliosarcoma cell line. By contrast, GM3 treatment had little effect on cell number in cultures of normal human brain. A single injection of GM3 3 days after intracranial implantation of 9L tumor cells in a murine xenograft model system resulted in a significant increase in the symptom-free survival period of host animals. The effects of GM3 were not restricted to GBMs and 9L cells. Cultures of high-grade ependymomas, mixed gliomas, astrocytomas, oligodendrogliomas, and gangliogliomas were all susceptible to GM3 treatment. These results suggest that GM3 may have considerable value as a selectively toxic chemotherapeutic agent for human high-grade gliomas.
Collapse
Affiliation(s)
- E N Noll
- The Neurosurgical Laboratories of Brigham and Women's Hospital, The Children's Hospital, The Dana Farber Cancer Institute, 75 Francis Street, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
13
|
Bobryshev YV, Lord RS, Golovanova NK, Gracheva EV, Zvezdina ND, Sadovskaya VL, Prokazova NV. Incorporation and localisation of ganglioside GM3 in human intimal atherosclerotic lesions. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1361:287-94. [PMID: 9375803 DOI: 10.1016/s0925-4439(97)00044-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunohistochemical examination showed that sections of intimal atherosclerotic plaques contained cells and cell clusters as well as areas of extracellular matrix specifically stained with antibodies against ganglioside GM3. No immunohistochemical staining was observed in areas bordering the plaques where there was no histological evidence of atherosclerosis. To determine whether the ganglioside GM3 deposits in the intimal plaques derived directly from plasma or were synthesised by intimal cells. intimal plaque and plasma LDL were assayed for ganglioside GM3 fatty acid composition. This assay showed that more than 50% of the fatty acids of GM3 isolated from both atherosclerotic and normal intima are either minor fatty acids or those absent from LDL GM3. We conclude that the GM3 deposits present in intimal plaque arise in intimal cells and do not derive from plasma LDL.
Collapse
Affiliation(s)
- Y V Bobryshev
- Surgical Professorial Unit, St Vincent's Hospital, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|