1
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
2
|
Lagergård T, Bölin I, Lindholm L. On the evolution of the sexually transmitted bacteria Haemophilus ducreyi and Klebsiella granulomatis. Ann N Y Acad Sci 2012; 1230:E1-E10. [PMID: 22239475 DOI: 10.1111/j.1749-6632.2011.06193.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemophilus ducreyi and Klebsiella (Calymmatobacterium) granulomatis are sexually transmitted bacteria that cause characteristic, persisting ulceration on external genitals called chancroid and granuloma inguinale, respectively. Those ulcers are endemic in developing countries or exist, as does granuloma inguinale, only in some geographic "hot spots."H. ducreyi is placed in the genus Haemophilus (family Pasteurellacae); however, this phylogenetic position is not obvious. The multiple ways in which the bacterium may be adapted to its econiche through specialized nutrient acquisitions; defenses against the immune system; and virulence factors that increase attachment, fitness, and persistence within genital tissue are discussed below. The analysis of K. granulomatis phylogeny demonstrated a high degree of identity with other Klebsiella species, and the name K. granulomatis comb. nov. was proposed. Because of the difficulty in growing this bacterium on artificial media, its characteristics have not been sufficiently defined. More studies are needed to understand bacterial genetics related to the pathogenesis and evolution of K. granulomatis.
Collapse
Affiliation(s)
- Teresa Lagergård
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
3
|
Lundqvist A, Fernandez-Rodrigues J, Ahlman K, Lagergård T. Detoxified Haemophilus ducreyi cytolethal distending toxin and induction of toxin specific antibodies in the genital tract. Vaccine 2010; 28:5768-73. [PMID: 20609397 DOI: 10.1016/j.vaccine.2010.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/10/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Haemophilus ducreyi causes genital ulceration (chancroid), a sexually transmitted infection and still an important factor which contributes to the spread of HIV in developing countries. The bacterium produces a cytolethal distending toxin (HdCDT) causing cell cycle arrest and apoptosis/necrosis of human cells and contributes to the aggravation of ulcers. The aim of the study was to induce toxin-neutralizing antibodies in the genital tract of mice. Repeated subcutaneous (sc) immunisations with 5-10microg active HdCDT induced low levels of serum anti-HdCDT IgG without neutralizing capacity. High levels of specific IgG1 antibodies in serum and genital tract were generated after sc immunisations with 10microg formaldehyde detoxified HdCDT toxoid alone and the addition of aluminium salts or RIBI (based on the lipid A moiety) as adjuvant further increased the level of serum antibodies. A high correlation was found between elevated levels of anti-HdCDT IgG in sera, the level of neutralizing activity and the antibody level in genital tract (r=0.8). Thus, induction of high antibody levels specific to HdCDT in the genital tissue can be achieved by parenteral immunisation with the toxoid. The HdCDT toxoid can be considered as a candidate component in vaccine against chancroid.
Collapse
Affiliation(s)
- Annika Lundqvist
- Institute of Biomedicine, Department of Microbiology and Immunology and MIVAC Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
4
|
Afonina G, Leduc I, Nepluev I, Jeter C, Routh P, Almond G, Orndorff PE, Hobbs M, Elkins C. Immunization with the Haemophilus ducreyi hemoglobin receptor HgbA protects against infection in the swine model of chancroid. Infect Immun 2006; 74:2224-32. [PMID: 16552053 PMCID: PMC1418891 DOI: 10.1128/iai.74.4.2224-2232.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The etiologic agent of chancroid is Haemophilus ducreyi. To fulfill its obligate requirement for heme, H. ducreyi uses two TonB-dependent receptors: the hemoglobin receptor (HgbA) and a receptor for free heme (TdhA). Expression of HgbA is necessary for H. ducreyi to survive and initiate disease in a human model of chancroid. In this study, we used a swine model of H. ducreyi infection to demonstrate that an experimental HgbA vaccine efficiently prevents chancroid, as determined by several parameters. Histological sections of immunized animals lacked typical microscopic features of chancroid. All inoculated sites from mock-immunized pigs yielded viable H. ducreyi cells, whereas no viable H. ducreyi cells were recovered from inoculated sites of HgbA-immunized pigs. Antibodies from sera of HgbA-immunized animals bound to and initiated antibody-dependent bactericidal activity against homologous H. ducreyi strain 35000HP and heterologous strain CIP542 ATCC; however, an isogenic hgbA mutant of 35000HP was not killed, proving specificity. Anti-HgbA immunoglobulin G blocked hemoglobin binding to the HgbA receptor, suggesting a novel mechanism of protection through the limitation of heme/iron acquisition by H. ducreyi. Such a vaccine strategy might be applied to other bacterial pathogens with strict heme/iron requirements. Taken together, these data suggest continuing the development of an HgbA subunit vaccine to prevent chancroid.
Collapse
Affiliation(s)
- Galyna Afonina
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wising C, Mölne L, Jonsson IM, Ahlman K, Lagergård T. The cytolethal distending toxin of Haemophilus ducreyi aggravates dermal lesions in a rabbit model of chancroid. Microbes Infect 2005; 7:867-74. [PMID: 15876546 DOI: 10.1016/j.micinf.2005.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 01/28/2005] [Accepted: 02/01/2005] [Indexed: 11/26/2022]
Abstract
Haemophilus ducreyi, the etiologic agent of the sexually transmitted disease chancroid, produces a cytolethal distending toxin (HdCDT) that inhibits cultured cell proliferation, leading to cell death. A rabbit model of dermal infection was used to investigate the roles of H. ducreyi bacteria and HdCDT in the development, clinical appearance, and persistence of infection. A non-toxin producing H. ducreyi strain, and for comparison purposes a non-capsulated Haemophilus influenzae strain, were inoculated intradermally, with and without co-administration of purified HdCDT. Co-administration of HdCDT resulted in significant aggravation of H. ducreyi-induced inflammatory lesions, and development of ulcers in rabbit skin. Less pronounced inflammatory lesions and lack of epithelial eruption were observed after inoculation with H. influenzae. Histopathological sections of the H. ducreyi-induced lesions, in both the presence and absence of HdCDT, showed dense infiltrates of the same type inflammatory cells, with the exception of a prominent endothelial cell proliferation noted in sections from lesions caused by H. ducreyi and toxin. Signs of chronic inflammation with involvement of T cells, macrophages, eosinophils, and granuloma formation were observed after H. ducreyi inoculation both with and without toxin. In conclusion, H. ducreyi causes a pronounced, chronic inflammation with involvement of T cells and macrophages, and in combination with HdCDT production of ulcers in the rabbit model. These pathogenic mechanisms may promote the development and persistence of chancroid ulcers.
Collapse
Affiliation(s)
- Catharina Wising
- Department of Medical Microbiology and Immunology, The Sahlgrenska Academy, Göteborg University, Box 435, 405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
6
|
Wising C, Svensson LA, Ahmed HJ, Sundaeus V, Ahlman K, Jonsson IM, Mölne L, Lagergård T. Toxicity and immunogenicity of purified Haemophilus ducreyi cytolethal distending toxin in a rabbit model. Microb Pathog 2002; 33:49-62. [PMID: 12202104 DOI: 10.1006/mpat.2002.0516] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytolethal distending toxin of Haemophilus ducreyi (HdCDT) is a three-component toxin that induces the arrest of the mammalian cell cycle in the G2 phase. All of the individual gene products, CdtA, CdtB and CdtC, are required for toxic activity on cultured mammalian cells. The CdtB component alone exerts nuclease activity. The individual HdCDT components were purified by affinity chromatography or ion-exchange chromatography followed by gel-filtration. HdCDT was reconstituted and purified by the immobilization of a GST-CdtB fusion on a GSTrap column and the subsequent addition of cell sonicates from Escherichia coli recombinants that produced CdtA and CdtC. The purified HdCDT preparation contained all three CDT proteins, as detected by immuno-blotting, and had high cytotoxic activity (10(6)CPU/ml). Immunization of rabbits with the HdCDT complex and with the individual CdtA, CdtB and CdtC proteins elicited high titres of antibodies, as detected by ELISA. All of the immune sera had toxin-neutralizing activities. The pathological effects of the HdCDT complex were investigated in rabbits, since the proliferation of two rabbit cell lines, SIRC and RK-13, was inhibited by HdCDT. Intradermal injection of HdCDT (1, 10, 50 and 100microg protein) into naive rabbits resulted in dose-dependent skin reactions (erythema) about 24h after injection. Similar effects were not observed when the individual HdCDT proteins were injected. HdCDT injection into immune rabbits resulted in dose-dependent skin responses that were characterized by both erythema and oedema. Histological evaluation of the 24-h lesions in naive rabbits that were injected with HdCDT, revealed moderate levels of inflammatory cells, which were mainly granulocytes and macrophages, and dilatation of blood vessels. The skin reactions in HdCDT-injected immunized rabbits showed pronounced vascular changes and extensive infiltration of inflammatory cells, including eosinophils. All of the pathological changes healed after 3 days. In conclusion, purified HdCDT holotoxin is a complex of all three CDT proteins and all three components induce neutralizing antibodies when injected in rabbits. HdCDT causes dose-dependent pathologic skin reactions in both naive and immune rabbits, which is characterized by increased inflammatory responsiveness after each immunization.
Collapse
Affiliation(s)
- Catharina Wising
- Department of Medical Microbiology and Immunology, University of Göteborg, S-413 46, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tullius MV, Phillips NJ, Scheffler NK, Samuels NM, Munson Jr RS, Hansen EJ, Stevens-Riley M, Campagnari AA, Gibson BW. The lbgAB gene cluster of Haemophilus ducreyi encodes a beta-1,4-galactosyltransferase and an alpha-1,6-DD-heptosyltransferase involved in lipooligosaccharide biosynthesis. Infect Immun 2002; 70:2853-61. [PMID: 12010972 PMCID: PMC128009 DOI: 10.1128/iai.70.6.2853-2861.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
All Haemophilus ducreyi strains examined contain a lipooligosaccharide (LOS) consisting of a single but variable branch oligosaccharide that emanates off the first heptose (Hep-I) of a conserved Hep(3)-phosphorylated 3-deoxy-D-manno-octulosonic acid-lipid A core. In a previous report, identification of tandem genes, lbgA and lbgB, that are involved in LOS biosynthesis was described (Stevens et al., Infect. Immun. 65:651-660, 1997). In a separate study, the same gene cluster was identified and the lbgB (losB) gene was found to be required for transfer of the second sugar, D-glycero-D-manno-heptose (DD-Hep), of the major branch structure (Gibson et al., J. Bacteriol. 179:5062-5071, 1997). In this study, we identified the function of the neighboring upstream gene, lbgA, and found that it is necessary for addition of the third sugar in the dominant oligosaccharide branch, a galactose-linked beta1-->4, to the DD-Hep. LOS from an lbgA mutant and an lbgAB double mutant were isolated and were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, carbohydrate analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy. The results showed that the mutant strains synthesize truncated LOS glycoforms that terminate after addition of the first glucose (lbgAB) or the disaccharide DD-Hepalpha1-->6Glcbeta1 (lbgA) that is attached to the heptose core. Both mutants show a significant reduction in the ability to adhere to human keratinocytes. Although minor differences were observed after two-dimensional gel electrophoresis of total proteins from the wild-type and mutant strains, the expression levels of the vast majority of proteins were unchanged, suggesting that the differences in adherence and invasion are due to differences in LOS. These studies add to the mounting evidence for a role of full-length LOS structures in the pathophysiology of H. ducreyi infection.
Collapse
Affiliation(s)
- Michael V Tullius
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ahmed HJ, Johansson C, Svensson LA, Ahlman K, Verdrengh M, Lagergård T. In vitro and in vivo interactions of Haemophilus ducreyi with host phagocytes. Infect Immun 2002; 70:899-908. [PMID: 11796625 PMCID: PMC127673 DOI: 10.1128/iai.70.2.899-908.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the phagocytosis of Haemophilus ducreyi both in vitro and in vivo. Human granulocyte and monocyte phagocytosis of opsonized and nonopsonized, fluorescence-labeled H. ducreyi was assessed by flow cytometry. Both Escherichia coli and noncapsulated H. influenzae were included as controls. The maximal percentage of granulocytes taken up by H. ducreyi was 35% after 90 min. In contrast, 95% of H. influenzae bacteria were phagocytosed by granulocytes after 30 min. These results indicated that H. ducreyi phagocytosis was slow and inefficient. Bacterial opsonization by using specific antibodies increased the percentage of granulocytes phagocytosing H. ducreyi from 24 to 49%. The nonphagocytosed bacteria were completely resistant to phagocytosis even when reexposed to granulocytes, indicating that the H. ducreyi culture comprised a mixture of phenotypes. The intracellular survival of H. ducreyi in granulocytes, in monocytes/macrophages, and in a monocyte cell line (THP-1) was quantified after application of gentamicin treatment to kill extracellular bacteria. H. ducreyi survival within phagocytes was poor; approximately 11 and <0.1% of the added bacteria survived intracellularly after 2 and 20 h of incubation, respectively, while no intracellular H. influenzae bacteria were recovered after 2 h of incubation with phagocytes. The role of phagocytes in the development of skin lesions due to H. ducreyi was also studied in vivo. Mice that were depleted of granulocytes and/or monocytes and SCID mice, which lacked T and B cells, were injected intradermally with approximately 10(6) CFU of H. ducreyi. Within 4 days of inoculation, the granulocyte-depleted mice developed lesions that persisted throughout the experimental period. This result reinforces the importance of granulocytes in the early innate defense against H. ducreyi infection. In conclusion, H. ducreyi is insufficiently phagocytosed to achieve complete eradication of the bacteria. Indeed, H. ducreyi has the ability to survive intracellularly for short periods within phagocytic cells in vitro. Since granulocytes play a major role in the innate defense against H. ducreyi infection in vivo, bacterial resistance to phagocytosis probably plays a crucial role in the pathogenesis of chancroid.
Collapse
Affiliation(s)
- Hinda J Ahmed
- Department of Medical Microbiology and Immunology, University of Göteborg, S-413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Frisk A, Lebens M, Johansson C, Ahmed H, Svensson L, Ahlman K, Lagergård T. The role of different protein components from the Haemophilus ducreyi cytolethal distending toxin in the generation of cell toxicity. Microb Pathog 2001; 30:313-24. [PMID: 11399138 DOI: 10.1006/mpat.2000.0436] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytolethal distending toxin of Haemophilus ducreyi (HdCDT) is a multicomponent toxin, encoded by an operon consisting of three genes, cdtABC. To investigate the role of the individual products in generation of toxicity, recombinant plasmids were constructed allowing expression of each of the genes individually or in different combinations in Escherichia coli and Vibrio cholerae. Expression of all three genes (cdtABC) was necessary to generate toxicity on cells, and no activity was obtained using combinations in which only one or two of the genes were expressed. Of the individual gene products, the CdtA was shown to exist in two forms with an MW of 23 and 17 kDa, respectively. The CdtB protein alone resulted in DNase activity. CdtC purified from both toxic and non-toxic extracts (from strains expressing cdtCAB and cdtC, respectively) had a molecular weight of about 20 kDa and reacted with a CdtC-specific monoclonal antibody. However, the protein isoelectric point (pI) of CdtC from toxic preparations was about 1.5 pH units more basic than from non-toxic ones. Both forms were immunogenic giving rise to toxin-neutralizing antibodies. Toxicity was reconstructed by combining non-toxic cell sonicates from E. coli, expressing CdtA, CdtB and CdtC proteins individually. Only combinations including all three products gave toxicity, indicating that all are actively involved in the generation of toxic activity on cells. The reconstruction resulted in a 1.5 pH unit shift in the PI of CdtC, making it identical to that of the protein isolated from bacteria expressing cdtABC. The results showed that the CdtB component produces DNase activity, but cell toxicity depends on the involvement of the other two components of CDT and is associated with absorption of all three proteins by HEp-2 cells.
Collapse
Affiliation(s)
- A Frisk
- Department of Medical Microbiology and Immunology, Göteborg University, SE-40530 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
10
|
Mosimann SC, Gilbert M, Dombroswki D, To R, Wakarchuk W, Strynadka NC. Structure of a sialic acid-activating synthetase, CMP-acylneuraminate synthetase in the presence and absence of CDP. J Biol Chem 2001; 276:8190-6. [PMID: 11113120 DOI: 10.1074/jbc.m007235200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray crystallographic structure of selenomethionyl cytosine-5'-monophosphate-acylneuraminate synthetase (CMP-NeuAc synthetase) from Neisseria meningitidis has been determined at 2.0-A resolution using multiple-wavelength anomalous dispersion phasing, and a second structure, in the presence of the substrate analogue CDP, has been determined at 2.2-A resolution by molecular replacement. This work identifies the active site residues for this class of enzyme for the first time. The detailed interactions between the enzyme and CDP within the mononucleotide-binding pocket are directly observed, and the acylneuraminate-binding pocket has also been identified. A model of acylneuraminate bound to CMP-NeuAc synthetase has been constructed and provides a structural basis for understanding the mechanism of production of "activated" sialic acids. Sialic acids are key saccharide components on the surface of mammalian cells and can be virulence factors in a variety of bacterial species (e.g. Neisseria, Haemophilus, group B streptococci, etc.). As such, the identification of the bacterial CMP-NeuAc synthetase active site can serve as a starting point for rational drug design strategies.
Collapse
Affiliation(s)
- S C Mosimann
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Throm RE, Spinola SM. Transcription of candidate virulence genes of Haemophilus ducreyi during infection of human volunteers. Infect Immun 2001; 69:1483-7. [PMID: 11179316 PMCID: PMC98045 DOI: 10.1128/iai.69.3.1483-1487.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi expresses several putative virulence factors in vitro. Isogenic mutant-to-parent comparisons have been performed in a human model of experimental infection to examine whether specific gene products are involved in pathogenesis. Several mutants (momp, ftpA, losB, lst, cdtC, and hhdB) were as virulent as the parent in the human model, suggesting that their gene products did not play a major role in pustule formation. However, we could not exclude the possibility that the gene of interest was not expressed during the initial stages of infection. Biopsies of pustules obtained from volunteers infected with H. ducreyi were subjected to reverse transcription-PCR. Transcripts corresponding to momp, ftpA, losB, lst, cdtB, and hhdA were expressed in vivo. In addition, transcripts for other putative virulence determinants such as ompA2, tdhA, lspA1, and lspA2 were detected in the biopsies. These results indicate that although several candidate virulence determinants are expressed during experimental infection, they do not have a major role in the initial stages of pathogenesis.
Collapse
Affiliation(s)
- R E Throm
- Department of Microbiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
12
|
Svensson LA, Tarkowski A, Thelestam M, Lagergård T. The impact of Haemophilus ducreyi cytolethal distending toxin on cells involved in immune response. Microb Pathog 2001; 30:157-66. [PMID: 11273741 DOI: 10.1006/mpat.2000.0422] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Haemophilus ducreyi cytolethal distending toxin (HdCDT) induces cell cycle arrest and thereby inhibits cell proliferation of many cultured mammalian cell-lines. We investigated the effect of HdCDT on circulating human hematopoietic cells, including T- and B-cells, monocytes and polymorphonuclear cells (PMN). Lymphocytes were stimulated with T- and B-cell specific mitogens, whereas monocytes and PMN with endotoxin. HdCDT inhibited the mitogen-induced proliferation of T-cells in a dose-dependent manner as assayed by [(3)H]-thymidine incorporation and MTT assays. Similarly to T-cells, HdCDT also inhibited the proliferation of B-cells and consequently the immunoglobulin production, measured by ELISPOT and ELISA assays. In contrast, the HdCDT did not affect monocytes or PMN, as measured by MTT assay. The TNF-alpha production by monocytes and the phagocytic ability of PMN were neither affected. The monocytic cell line THP-1 was, however, sensitive to the toxin, seen as a reduction of proliferation and viability after exposure to HdCDT. In conclusion, exposure to HdCDT significantly affects the proliferation and other biological activities of stimulated human T- and B-cells, while circulating monocytes and PMN are not sensitive to HdCDT. The sensitivity of cells of the acquired immune system to HdCDT may hamper specific host response to H. ducreyi and contribute to persistence of chancroid lesions.
Collapse
Affiliation(s)
- L A Svensson
- Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, S-413 46, Sweden
| | | | | | | |
Collapse
|
13
|
Sun S, Schilling B, Tarantino L, Tullius MV, Gibson BW, Munson RS. Cloning and characterization of the lipooligosaccharide galactosyltransferase II gene of Haemophilus ducreyi. J Bacteriol 2000; 182:2292-8. [PMID: 10735874 PMCID: PMC111280 DOI: 10.1128/jb.182.8.2292-2298.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi is the etiologic agent of chancroid, a genital ulcer disease. The lipooligosaccharide (LOS) is considered to be a major virulence determinant and has been implicated in the adherence of H. ducreyi to keratinocytes. Strain A77, an isolate from the Paris collection, is serum sensitive, poorly adherent to fibroblasts, and deficient in microcolony formation. Structural analysis indicates that the LOS of strain A77 lacks the galactose residue found in the N-acetyllactosamine portion of the strain 35000HP LOS as well as the sialic acid substitution. From an H. ducreyi 35000HP genomic DNA library, a clone complementing the defect in A77 was identified by immunologic screening with monoclonal antibody (MAb) 3F11, a MAb which recognizes the N-acetyllactosamine portion of strain 35000HP LOS. The clone contained a 4-kb insert that was sequenced. One open reading frame which encodes a protein with a molecular weight of 33,400 was identified. This protein has homology to glycosyltransferases of Haemophilus influenzae, Haemophilus somnus, Neisseria species, and Pasteurella haemolytica. The putative H. ducreyi glycosyltransferase gene was insertionally inactivated, and an isogenic mutant of strain 35000HP was constructed. The most complex LOS glycoform produced by the mutant has a mobility on sodium dodecyl sulfate-polyacrylamide gel identical to that of the LOS of strain A77 and lacks the 3F11-binding epitope. Structural studies confirm that the most complex glycoform of the LOS isolated from the mutant lacks the galactose residue found in the N-acetyllactosamine portion of the strain 35000HP LOS. Although previously published data suggested that the serum-sensitive phenotype of A77 was due to the LOS mutation, we observed that the complemented A77 strain retained its serum-sensitive phenotype and that the galactosyltransferase mutant retained its serum-resistant phenotype. Thus, the serum sensitivity of strain A77 cannot be attributed to the galactosyltransferase mutation in strain A77.
Collapse
Affiliation(s)
- S Sun
- Children's Research Institute, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43205-2696, USA
| | | | | | | | | | | |
Collapse
|
14
|
Gelfanova V, Hansen EJ, Spinola SM. Cytolethal distending toxin of Haemophilus ducreyi induces apoptotic death of Jurkat T cells. Infect Immun 1999; 67:6394-402. [PMID: 10569755 PMCID: PMC97047 DOI: 10.1128/iai.67.12.6394-6402.1999] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immune response to Haemophilus ducreyi is mediated in part by T cells infiltrating the site of infection. In this study, we show that H. ducreyi antigen preparations inhibited the proliferation of peripheral blood mononuclear cells and primary human T-cell lines. H. ducreyi also inhibited Jurkat T-cell proliferation and induced apoptosis of Jurkat T cells, confirmed through the detection of DNA degradation and membrane unpacking. The cytotoxic product(s) was present in cell-free culture supernatant and whole-cell preparations of H. ducreyi and was heat labile. H. ducreyi produces two known heat-labile toxins, a hemolysin and a cytolethal distending toxin (CDT). Whole cells and supernatants prepared from a hemolysin-deficient mutant had the same inhibitory and apoptotic effects on Jurkat T cells as did its isogenic parent. Preparations made from an H. ducreyi cdtC mutant were less toxic and induced less apoptosis than the parent. The toxic activity of the cdtC mutant was restored by complementation in trans. CdtC-neutralizing antibodies also inhibited H. ducreyi-induced toxicity and apoptosis. The data suggest that CDT may interfere with T-cell responses to H. ducreyi by induction of apoptosis.
Collapse
Affiliation(s)
- V Gelfanova
- Departments of Medicine, Indiana University, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
15
|
Zaretzky FR, Kawula TH. Examination of early interactions between Haemophilus ducreyi and host cells by using cocultured HaCaT keratinocytes and foreskin fibroblasts. Infect Immun 1999; 67:5352-60. [PMID: 10496916 PMCID: PMC96891 DOI: 10.1128/iai.67.10.5352-5360.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi is the etiologic agent of chancroid, a sexually transmitted genital ulcer disease. Keratinocytes are likely the first cell type encountered by H. ducreyi upon infection of human skin; thus, the interaction between H. ducreyi and keratinocytes is probably important for the ability of H. ducreyi to establish infection. We have used the HaCaT keratinocyte cell line grown in monolayers and in cocultures with HS27 fibroblasts to investigate H. ducreyi interactions with keratinocytes and the host-cell response to H. ducreyi infection. Using quantitative adherence and gentamicin protection assays, we determined that approximately 13% of H. ducreyi adhered to HaCaT cell monolayers, while only a small proportion (0.0052%) was intracellular. By transmission electron microscopy, we observed numerous H. ducreyi organisms adherent to but rarely within HaCaT cells cocultured with fibroblasts. Both live H. ducreyi and purified H. ducreyi lipooligosaccharide (LOS) induced significant interleukin 8 (IL-8) expression from HaCaT cell-HS27 cell cocultures. However, the level of IL-8 expression in response to LOS alone was not as pronounced. H. ducreyi LOS was a more potent inducer of IL-8 from cocultures than Escherichia coli lipopolysaccharide (LPS) at the same concentration, suggesting a unique effect of H. ducreyi LOS on cocultures. Neither live H. ducreyi nor purified H. ducreyi LOS or E. coli LPS induced tumor necrosis factor alpha expression from cocultures. H. ducreyi induced drastically different cytokine profiles from cocultures than from HS27 or HaCaT cells cultured separately. IL-8 expression by skin cells in response to H. ducreyi infection in vivo may be responsible for the massive influx of polymorphonuclear leukocytes and other inflammatory cells to the site of infection. This influx of inflammatory cells may be partly responsible for the tissue destruction characteristic of chancroid.
Collapse
Affiliation(s)
- F R Zaretzky
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
16
|
Stevens MK, Latimer JL, Lumbley SR, Ward CK, Cope LD, Lagergard T, Hansen EJ. Characterization of a Haemophilus ducreyi mutant deficient in expression of cytolethal distending toxin. Infect Immun 1999; 67:3900-8. [PMID: 10417154 PMCID: PMC96670 DOI: 10.1128/iai.67.8.3900-3908.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi expresses a soluble cytolethal distending toxin (CDT) that kills HeLa, HEp-2, and other human epithelial cells in vitro. H. ducreyi CDT activity is encoded by a three-gene cluster (cdtABC), and antibody to the cdtC gene product can neutralize CDT activity in vitro (L. D. Cope, S. R. Lumbley, J. L. Latimer, J. Klesney-Tait, M. K. Stevens, L. S. Johnson, M. Purven, R. S. Munson, Jr., T. Lagergard, J. D. Radolf, and E. J. Hansen, Proc. Natl. Acad. Sci. USA 94:4056-4061, 1997). Culture supernatant fluid from a recombinant Escherichia coli strain containing the H. ducreyi cdtABC gene cluster readily killed both HeLa cells and HaCaT keratinocytes and had a modest inhibitory effect on the growth of human foreskin fibroblasts. Insertional inactivation of the cdtC gene in this recombinant E. coli strain eliminated the ability of this strain to kill HeLa cells and HaCaT keratinocytes. This mutated H. ducreyi cdtABC gene cluster was used to construct an isogenic H. ducreyi cdtC mutant. Monoclonal antibodies against the H. ducreyi CdtA, CdtB, and CdtC proteins were used to characterize protein expression by this cdtC mutant. Culture supernatant fluid from this H. ducreyi cdtC mutant did not detectably affect any of the human cells used in this study. The presence of the wild-type H. ducreyi cdtC gene in trans in this H. ducreyi mutant restored its ability to express a CDT that killed both HeLa cells and HaCaT keratinocytes. The isogenic H. ducreyi cdtC mutant was shown to be as virulent as its wild-type parent strain in the temperature-dependent rabbit model for experimental chancroid. Lack of expression of the H. ducreyi CdtC protein also did not affect the ability of this H. ducreyi mutant to survive in the skin of rabbits.
Collapse
Affiliation(s)
- M K Stevens
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9048, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Tullius MV, Vann WF, Gibson BW. Covalent modification of Lys19 in the CTP binding site of cytidine 5'-monophosphate N-acetylneuraminic acid synthetase. Protein Sci 1999; 8:666-75. [PMID: 10091669 PMCID: PMC2144288 DOI: 10.1110/ps.8.3.666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Periodate oxidized CTP (oCTP) was used to investigate the importance of lysine residues in the CTP binding site of the cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase (EC 2.7.7.43) from Haemophilus ducreyi. The reaction of oCTP with the enzyme follows pseudo-first-order saturation kinetics, giving a maximum rate of inactivation of 0.6 min(-1) and a K(I) of 6.0 mM at pH 7.1. Mass spectrometric analysis of the modified enzyme provided data that was consistent with beta-elimination of triphosphate after the reaction of oCTP with the enzyme. A fully reduced enzyme-oCTP conjugate, retaining the triphosphate moiety, was obtained by inclusion of NaBH3CN in the reaction solution. The beta-elimination product of oCTP reacted several times more rapidly with the enzyme compared to equivalent concentrations of oCTP. This compound also formed a stable reduced morpholino adduct with CMP-NeuAc synthetase when the reaction was conducted in the presence of NaBH3CN, and was found to be a useful lysine modifying reagent. The substrate CTP was capable of protecting the enzyme to a large degree from inactivation by oCTP and its beta-elimination product. Lys19, a residue conserved in CMP-NeuAc synthetases, was identified as being labeled with the beta-elimination product of oCTP.
Collapse
Affiliation(s)
- M V Tullius
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
18
|
Bozue JA, Tullius MV, Wang J, Gibson BW, Munson RS. Haemophilus ducreyi produces a novel sialyltransferase. Identification of the sialyltransferase gene and construction of mutants deficient in the production of the sialic acid-containing glycoform of the lipooligosaccharide. J Biol Chem 1999; 274:4106-14. [PMID: 9933604 DOI: 10.1074/jbc.274.7.4106] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Haemophilus ducreyi, the cause of the sexually transmitted disease chancroid produces a lipooligosaccharide (LOS) containing a terminal sialyl N-acetyllactosamine trisaccharide. Previously, we reported the identification and characterization of the N-acetylneuraminic acid cytidylsynthetase gene (neuA). Forty-nine base pairs downstream of the synthetase gene is an open reading frame (ORF) encoding a protein with a predicted molecular weight of 34,646. This protein has weak homology to the polysialyltransferase of Escherichia coli K92. Downstream of this ORF is the gene encoding the H. ducreyi homologue of the Salmonella typhimurium rmlB gene. Mutations were constructed in the neuA gene and the gene encoding the second ORF by insertion of an Omega kanamycin cassette, and isogenic strains were constructed. LOS was isolated from each strain and characterized by SDS-polyacrylamide gel electrophoresis, carbohydrate, and mass spectrometric analysis. LOS isolated from strains containing a mutation in neuA or in the second ORF, designated lst, lacked the sialic acid-containing glycoform. Complementation studies were performed. The neuA gene and the lst gene were each cloned into the shuttle vector pLS88 after polymerase chain reaction amplification. Complementation of the mutation in the lst gene was observed, but we were unable to complement the neuA mutation. Since it is possible that transcription of the neuA gene and the lst gene were coupled, we constructed a nonpolar mutation in the neuA gene. In this construct, the neuA mutation was complemented, suggesting transcriptional coupling of the neuA gene and the lst gene. Sialyltransferase activity was detected by incorporation of 14C-labeled NeuAc from CMP-NeuAc into trichloroacetic acid-precipitable material when the lst gene was overexpressed in the nonpolar neuA mutant. We conclude that the lst gene encodes the H. ducreyi sialyltransferase. Since the lst gene product has little, if any, structural relationship to other sialyltransferases, this protein represents a new class of sialyltransferase.
Collapse
Affiliation(s)
- J A Bozue
- Children's Hospital Research Foundation, Ohio State University, Columbus, Ohio 43205-2696, USA
| | | | | | | | | |
Collapse
|
19
|
Cortes-Bratti X, Chaves-Olarte E, Lagergård T, Thelestam M. The cytolethal distending toxin from the chancroid bacterium Haemophilus ducreyi induces cell-cycle arrest in the G2 phase. J Clin Invest 1999; 103:107-15. [PMID: 9884340 PMCID: PMC407857 DOI: 10.1172/jci3831] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 11/13/1998] [Indexed: 11/17/2022] Open
Abstract
The potent cytolethal distending toxin produced by Haemophilus ducreyi is a putative virulence factor in the pathogenesis of chancroid. We studied its action on eukaryotic cells, with the long-term goal of understanding the pathophysiology of the disease. Intoxication of cultured human epithelial-like cells, human keratinocytes, and hamster fibroblasts was irreversible, and appeared as a gradual distention of three- to fivefold the size of control cells. Organized actin assemblies appeared concomitantly with cell enlargement, promoted by a mechanism that probably does not involve small GTPases of the Rho protein family. Intoxicated cells did not proliferate. Similar to cells treated with other cytolethal distending toxins, these cells accumulated in the G2 phase of the cell cycle, demonstrating an increased level of the tyrosine phosphorylated (inactive) form of the cyclin-dependent kinase p34(cdc2). DNA synthesis was not affected until several hours after this increase, suggesting that the toxin acts directly on some kinase/phosphatase in the signaling network controlling the p34(cdc2) activity. We propose that this toxin has an important role both in the generation of chancroid ulcers and in their slow healing. The toxin may also be an interesting new tool for molecular studies of the eukaryotic cell- cycle machinery.
Collapse
Affiliation(s)
- X Cortes-Bratti
- Microbiology and Tumorbiology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Frisk A, Ahmed HJ, Van Dyck E, Lagergård T. Antibodies specific to surface antigens are not effective in complement-mediated killing of Haemophilus ducreyi. Microb Pathog 1998; 25:67-75. [PMID: 9712686 DOI: 10.1006/mpat.1998.0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bactericidal activity of serum is an important primary host defence against gram-negative bacteria. Little is known regarding such antibodies that are specific to outer membrane (OM) antigens as pili and lipooligosaccharides (LOS) in the bactericidal killing of Haemophilus ducreyi. Presence of serum antibodies with specificity to a 430 kDa protein (polymer of the 24 kDa protein, named fine-tangled pili) and LOS in serum from chancroid patients and healthy individuals were investigated by ELISA. Using a bactericidal assay, we investigated the role of human and rabbit antibodies with the aforementioned specificity. Accessibility of LOS and of OM antigens, as well as the deposition of components of the complement (C) system on the surface of the bacteria, was further investigated by whole-cell ELISA and immunoelectron microscopy. Immunoglobulin G (IgG) antibodies specific to the 430 kDa polymer and to LOS were demonstrated in the majority of sera from chancroid patients and healthy individuals. However, sera from chancroid patients did not significantly enhance the C-mediated killing of H. ducreyi compared with normal human serum (NHS). Similar results were demonstrated using rabbit sera to whole bacteria, specific to the 430 kDa protein and LOS of H. ducreyi. However, using the same assay noncapsulatedH. influenzae was totally killed, as were H. influenzae type b in presence of specific antibodies. This suggests a limited effectiveness of antibodies specific to surface antigens in C-mediated killing of H. ducreyi. LOS was detectable on the surface of H. ducreyi with a specific monoclonal antibody in white-cell ELISA. However, a significant enhancement of LOS detection was demonstrated on washed bacteria. OM antigens of 26, 40, 45 kDa and the major outer membrane protein (MOMP) of 43 kDa were not detectable on the surface of nonwashed and washed bacteria by specific monoclonal antibodies, indicating a lack of accessibility of these antigens on the bacterial surface. However, the C6 to C9 components of C were detected on the bacterial surface, suggesting capacity of forming the membrane attack complex. Altogether, these findings imply that antibodies specific to surface antigens, such as the 430 kDa protein and LOS, are not capable of enhancing killing of bacteria. The demonstrated relative resistance is probably due not to a lack of deposition of the membrane attack complex components, but rather to a blocking of LOS accessibility and OM proteins as potential targets of bactericidal antibodies and C action.
Collapse
Affiliation(s)
- A Frisk
- Department of Medical Microbiology and Immunology, University of Gothenburg, Guldhedsgatan 10, S-413 46 Gothenburg, Sweden
| | | | | | | |
Collapse
|
21
|
Bozue JA, Tarantino L, Munson RS. Facile construction of mutations in Haemophilus ducreyi using lacZ as a counter-selectable marker. FEMS Microbiol Lett 1998; 164:269-73. [PMID: 9682476 DOI: 10.1111/j.1574-6968.1998.tb13097.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Haemophilus ducreyi is a Gram-negative bacterium which is the causative agent of chancroid, an ulcerative sexually transmitted disease. In order to understand the pathogenesis of H. ducreyi disease, studies designed to identify potential virulence determinants and construct mutants deficient in the elaboration of these determinants have been undertaken in several laboratories. At the present time, construction of isogenic mutants is accomplished by electroporation of linearized DNA containing insertionally inactivated H. ducreyi genes followed by selection for the resistance marker encoded on the inactivated gene. In our experience, certain mutants are difficult to construct using this procedure. In the construction of strains containing lacZ as a reporter gene, we observed that the growth of lacZ expressing H. ducreyi was inhibited in the presence of X-gal. We have exploited this observation to develop a new strategy for the construction of isogenic H. ducreyi mutants.
Collapse
Affiliation(s)
- J A Bozue
- Children's Hospital Research Foundation, Columbus, OH 43205, USA
| | | | | |
Collapse
|
22
|
Hobbs MM, Paul TR, Wyrick PB, Kawula TH. Haemophilus ducreyi infection causes basal keratinocyte cytotoxicity and elicits a unique cytokine induction pattern in an In vitro human skin model. Infect Immun 1998; 66:2914-21. [PMID: 9596767 PMCID: PMC108289 DOI: 10.1128/iai.66.6.2914-2921.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1998] [Accepted: 03/17/1998] [Indexed: 02/07/2023] Open
Abstract
Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. Predominantly a cutaneous pathogen, H. ducreyi is present in chancroid ulcers that are characterized by extensive neutrophil accumulation in intraepidermal lesions accompanied by a mononuclear infiltrate in the dermis. We used an in vitro human skin model composed of foreskin fibroblasts and keratinocytes to examine host skin cell interactions with H. ducreyi 35000. Bacteria replicated and persisted in artificial skin for at least 14 days. We observed H. ducreyi inside suprabasal keratinocytes using transmission electron microscopy. Although no bacteria were seen in the basal keratinocyte region, these cells were disrupted in infected cocultures. H. ducreyi infection stimulated increased secretion of interleukin-6 (IL-6) and IL-8 by skin cells. Conversely, tumor necrosis factor alpha and IL-1alpha levels were not elevated. IL-8 produced in response to H. ducreyi infection may be involved in recruiting polymorphonuclear leukocytes and other inflammatory cells, thereby contributing to the tissue necrosis and ulcer formation characteristic of chancroid.
Collapse
Affiliation(s)
- M M Hobbs
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
23
|
FRISK ANDERS, LAGERGÅRD TERESA. Characterization of mechanisms involved in adherence ofHaemophilus ducreyito eukaryotic cells. APMIS 1998. [DOI: 10.1111/j.1699-0463.1998.tb01382.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
San Mateo LR, Hobbs MM, Kawula TH. Periplasmic copper-zinc superoxide dismutase protects Haemophilus ducreyi from exogenous superoxide. Mol Microbiol 1998; 27:391-404. [PMID: 9484894 DOI: 10.1046/j.1365-2958.1998.00687.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Haemophilus ducreyi causes chancroid, a sexually transmitted genital ulcer disease implicated in increased heterosexual transmission of HIV. As part of an effort to identify H. ducreyi gene products involved in virulence and pathogenesis, we created random TnphoA insertion mutations in an H. ducreyi 35000 library cloned in Escherichia coli. Inserts encoding exported or secreted PhoA fusion proteins were characterized by DNA sequencing. One such clone encoded a Cu-Zn superoxide dismutase (SOD) enzyme. The Cu-Zn SOD was periplasmic in H. ducreyi and accounted for most of the detectable SOD activity in whole-cell lysates of H. ducreyi grown in vitro. To investigate the function of the Cu-Zn SOD, we created a Cu-Zn SOD-deficient H. ducreyi strain by inserting a cat cassette into the sodC gene. The wild-type and Cu-Zn SOD null mutant strains were equally resistant to excess cytoplasmic superoxide induced by paraquat, demonstrating that the Cu-Zn SOD did not function in the detoxification of cytoplasmic superoxide. However, the Cu-Zn SOD null strain was significantly more susceptible to killing by extracellular superoxide than the wild type. This result suggests that the H. ducreyi Cu-Zn SOD may play a role in bacterial defence against oxidative killing by host immune cells during infection.
Collapse
Affiliation(s)
- L R San Mateo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | |
Collapse
|
25
|
Gibson BW, Campagnari AA, Melaugh W, Phillips NJ, Apicella MA, Grass S, Wang J, Palmer KL, Munson RS. Characterization of a transposon Tn916-generated mutant of Haemophilus ducreyi 35000 defective in lipooligosaccharide biosynthesis. J Bacteriol 1997; 179:5062-71. [PMID: 9260947 PMCID: PMC179363 DOI: 10.1128/jb.179.16.5062-5071.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To define the role of the surface lipooligosaccharide (LOS) of Haemophilus ducreyi in the pathogenesis of chancroid, Tn916 mutants of H. ducreyi 35000 defective in expression of the murine monoclonal antibody (MAb) 3F11 epitope on H. ducreyi LOS were identified by immunologic screening. One mutant, designated 1381, has an LOS which lacks the MAb 3F11 epitope and migrates with an increased mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene disrupted by the Tn916 element in strain 1381 was identified by cloning the sequences flanking the Tn916 element. The sequences were then used to probe a lambda DASHII genomic library. In strain 1381, Tn916 interrupts a gene which encodes an open reading frame (ORF) with an Mr of 40,246. This ORF has homology to the product of the rfaK gene of Escherichia coli. The major LOS glycoform produced by strain 1381 was analyzed by using a combination of mass spectrometry, linkage and composition analysis, and 1H nuclear magnetic resonance spectroscopy. The major LOS species was found to terminate in a single glucose attached to the heptose (L-glycero-D-manno-heptose, or Hep) trisaccharide core. In the wild-type strain 35000, glucose serves as the acceptor for the addition of the D-glycero-D-manno-heptose (or DDHep), which extends to form the mature branch of the H. ducreyi LOS. This mature oligosaccharide is in turn partially capped by the addition of sialic acid (NeuAc), i.e., NeuAc2 alpha-->3Gal beta1-->4GlcNAc beta1-->3Gal beta1-->4DDHep alpha1-->6Glc beta1 (W. Melaugh et al., Biochemistry 33:13070-13078, 1994). Since this LOS terminates prior to the addition of the branch DD-heptose, this gene is likely to encode the D-glycero-D-manno-heptosyltransferase. Strain 1381 exhibits a significant reduction in adherence to and invasion of primary human keratinocytes. This defect was complemented by the cloned heptosyltransferase gene, indicating that the terminal portion of the LOS oligosaccharide plays an important role in adherence to human keratinocytes.
Collapse
Affiliation(s)
- B W Gibson
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ahmed HJ, Frisk A, Månsson JE, Schweda EK, Lagergård T. Structurally defined epitopes of Haemophilus ducreyi lipooligosaccharides recognized by monoclonal antibodies. Infect Immun 1997; 65:3151-8. [PMID: 9234768 PMCID: PMC175445 DOI: 10.1128/iai.65.8.3151-3158.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
By use of enzyme-linked immunosorbent assay and immunoblotting techniques, the migration patterns and binding epitopes of lipooligosaccharides (LOS) from 10 Haemophilus ducreyi strains were investigated with two monoclonal antibodies (MAbs), MAHD6 and MAHD7, raised against LOS from H. ducreyi ITM 2665. Closely related LOS, with defined structures, from Haemophilus influenzae, Bordetella pertussis, Aeromonas spp., and synthetic glycoproteins were also included in the analyses. The MAbs bound to conserved epitopes of LOS exposed on the surface of H. ducreyi. The MAb MAHD6 reacted with 8 of the 10 LOS from H. ducreyi but with none of the other Haemophilus or Bordetella spp. with structurally defined LOS. It is suggested that MAb MAHD6 binds to a LOS epitope (-DD-Hepp-1-->6-beta-D-Glcp-). This LOS epitope is not present in the hexasaccharide structure of LOS from H. ducreyi ITM 4747 (E. K. H. Schweda, A. C. Sundström, L. M. Eriksson, J. A. Jonasson, and A. A. Lindberg, J. Biol. Chem. 269:12040-12048, 1994). Because MAb MAHD6 reacts with the epitope mentioned above, it also discriminates between the two LOS structures, the hexasaccharide group and the nonasaccharide group, of H. ducreyi strains. MAb MAHD7 recognizes the common conserved inner core region of the LOS because it reacts with all H. ducreyi strains and with LOS with minor components in the inner core epitope structure. Rabbit polyclonal sera raised against the LOS from strains CCUG 4438 and CCUG 7470 were tested with the 10 LOS from the H. ducreyi strains. The antiserum to CCUG 7470 reacted with all H. ducreyi strains as did MAb MAHD7, whereas the antiserum to CCUG 4438 reacted with only its homologous strain and strain ITM 4747. Also, the LOSs of our reference strains CCUG 4438 and CCUG 7470 were structurally analyzed by use of sugar analyses and electrospray ionization-mass spectrometry. The hexasaccharide and nonasaccharide structures obtained from LOS of strains CCUG 4438 and CCUG 7470 were identical to the described LOS structures from H. ducreyi ITM 4747 and ITM 2665, respectively. In conclusion, the MAb MAHD6 recognizes an epitope present in the nonasaccharide LOS group, whereas the MAb MAHD7 recognizes a conserved epitope on LOS of H. ducreyi, which is present in all strains of H. ducreyi tested. Two major groups of oligosaccharides were distinguished by their LOS structures and the reactivity of monoclonal as well as polyclonal antibodies. The majority of H. ducreyi strains possess a nonasaccharide structure of LOS.
Collapse
Affiliation(s)
- H J Ahmed
- Department of Medical Microbiology and Immunology, University of Gotebörg, Sweden
| | | | | | | | | |
Collapse
|
27
|
Purvén M, Frisk A, Lönnroth I, Lagergard T. Purification and identification of Haemophilus ducreyi cytotoxin by use of a neutralizing monoclonal antibody. Infect Immun 1997; 65:3496-9. [PMID: 9234821 PMCID: PMC175498 DOI: 10.1128/iai.65.8.3496-3499.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Haemophilus ducreyi produces a cytotoxin responsible for the killing of cultured human epithelial cells. Cytotoxin-neutralizing antibodies were detected in the majority of sera from patients with culture-proven chancroid, and a significantly higher level of such antibodies in patients than in blood donors was noted both in areas where the disease is endemic and those where it is not. We produced neutralizing monoclonal antibodies (MAbs) in mice with a crude osmotic preparation of the cytotoxin. These antibodies, with high capacity to neutralize cytotoxicity, were used for purification and identification of the cytotoxin. Purification was performed by a two-step procedure which included Sephacryl S-200 filtration followed by immunoaffinity chromatography. The purification resulted in poor cytotoxin protein recovery and contamination with MAbs from the affinity column. The results of the gel filtration experiments and immunoblotting indicate that the active cytotoxin consists of a single, small protein with an approximate molecular mass of 20 kDa. Cytotoxins from different strains seem to have the same or similar epitopes. The cytotoxin protein was not detected in preparations from nontoxic strains. The N-terminal amino acid sequence of the 20-kDa band was E-S-N-P-D-P-T-T-Y-P-D-V-E-L-S-P-P-P. This sequence does not resemble that of any currently known bacterial protein.
Collapse
Affiliation(s)
- M Purvén
- Department of Medical Microbiology and Immunology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
28
|
Cope LD, Lumbley S, Latimer JL, Klesney-Tait J, Stevens MK, Johnson LS, Purven M, Munson RS, Lagergard T, Radolf JD, Hansen EJ. A diffusible cytotoxin of Haemophilus ducreyi. Proc Natl Acad Sci U S A 1997; 94:4056-61. [PMID: 9108104 PMCID: PMC20567 DOI: 10.1073/pnas.94.8.4056] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1996] [Accepted: 01/13/1997] [Indexed: 02/04/2023] Open
Abstract
Little is known about the virulence mechanisms employed by Haemophilus ducreyi in the production of genital ulcers. This Gram-negative bacterium previously has been shown to produce a soluble cytotoxic activity that kills HeLa and HEp-2 cells. We have now identified a cluster of three H. ducreyi genes that encode this cytotoxic activity. The predicted proteins encoded by these genes are most similar to the products of the Escherichia coli cdtABC genes that comprise the cytolethal distending toxin (CDT) of this enteric pathogen. Eleven of 12 H. ducreyi strains were shown to possess this gene cluster and culture supernatants from these strains readily killed HeLa cells. The culture supernatant from a single strain of H. ducreyi that lacked these genes was unable to kill HeLa cells. When the H. ducreyi cdtABC gene cluster was cloned into E. coli, culture supernatant from the recombinant E. coli clone killed HeLa cells. A monoclonal antibody that neutralized this soluble cytotoxic activity of H. ducreyi was shown to bind to the H. ducreyi cdtC gene product. This soluble H. ducreyi cytotoxin may play a role in the development or persistence of the ulcerative lesions characteristic of chancroid.
Collapse
Affiliation(s)
- L D Cope
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Magro CM, Crowson AN, Alfa M, Nath A, Ronald A, Ndinya-Achola JO, Nasio J. A morphological study of penile chancroid lesions in human immunodeficiency virus (HIV)-positive and -negative African men with a hypothesis concerning the role of chancroid in HIV transmission. Hum Pathol 1996; 27:1066-70. [PMID: 8892592 DOI: 10.1016/s0046-8177(96)90285-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chancroid, the most common cause of genital ulceration in Africa, is known to be associated epidemiologically with heterosexual transmission of human immunodeficiency virus (HIV). The pathophysiological mechanisms by which chancroid might facilitate the spread of HIV are obscure. To investigate the role of chancroid in HIV transmission, the authors studied the histological features of biopsies from 11 men with penile chancroid lesions including five who were serologically positive for HIV. The histomorphologic and immunophenotypic nature of the inflammatory infiltrates suggests that there is a significant role for cell-mediated immunity in the host response to Hemophilus ducreyi infection. This response may be critical to the role of chancroid in HIV transmission.
Collapse
Affiliation(s)
- C M Magro
- Department of Pathology, Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Tullius MV, Munson RS, Wang J, Gibson BW. Purification, cloning, and expression of a cytidine 5'-monophosphate N-acetylneuraminic acid synthetase from Haemophilus ducreyi. J Biol Chem 1996; 271:15373-80. [PMID: 8663048 DOI: 10.1074/jbc.271.26.15373] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An N-acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) was isolated from a Haemophilus ducreyi strain 35000 cell lysate and partially characterized. The enzyme catalyzes the reaction of CTP and NeuAc to form CMP-NeuAc, which is the nucleotide sugar donor used by sialyltransferases. Previous studies have shown that the outer membrane lipooligosaccharides of H. ducreyi contain terminal sialic acid attached to N-acetyllactosamine and that this modification is likely important to its pathogenesis. Therefore, to investigate the role of sialic acid in H. ducreyi pathogenesis, the gene encoding the CMP-NeuAc synthetase was cloned using degenerate oligonucleotide probes derived from NH2-terminal sequence data, and the nucleotide sequence was determined. The derived amino acid sequence of the CMP-NeuAc synthetase gene has homology to other CMP-NeuAc synthetases and to a lesser extent to CMP-2-keto-3-deoxy-D-manno-octulosonic acid synthetases. The gene was cloned into a T7 expression vector, the protein expressed in Escherichia coli, and purified to apparent homogeneity by anion exchange, Green 19 dye, and hydrophobic interaction chromatography. The final step yielded 20 mg of pure protein/liter of culture. The protein has a predicted molecular mass of 25440.6 Da, which was confirmed by electrospray mass spectrometry (Mexpt = 25439.9 +/- 1.4 Da). The enzyme appears to exist as a dimer by size exclusion chromatography. In contrast to other bacterial CMP-NeuAc synthetases, the H. ducreyi enzyme exhibited a different substrate specificity, being capable of also using N-glycolylneuraminic acid as a substrate.
Collapse
Affiliation(s)
- M V Tullius
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | | | | | |
Collapse
|
31
|
Alfa MJ, DeGagne P, Totten PA. Haemophilus ducreyi hemolysin acts as a contact cytotoxin and damages human foreskin fibroblasts in cell culture. Infect Immun 1996; 64:2349-52. [PMID: 8675349 PMCID: PMC174078 DOI: 10.1128/iai.64.6.2349-2352.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, produces several factors that damage human cells. We used isogenic mutants of H. ducreyi 35000 to demonstrate that the hemolytic activity and the cytotoxic effect of H. ducreyi on human foreskin fibroblasts are due to the same toxin.
Collapse
Affiliation(s)
- M J Alfa
- Microbiology Department, St Boniface General Hospital, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
32
|
Hobbs MM, San Mateo LR, Orndorff PE, Almond G, Kawula TH. Swine model of Haemophilus ducreyi infection. Infect Immun 1995; 63:3094-100. [PMID: 7622236 PMCID: PMC173422 DOI: 10.1128/iai.63.8.3094-3100.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Haemophilus ducreyi is a strict human pathogen that causes sexually transmitted genital ulcer disease. We infected domestic swine with H. ducreyi 35000, resulting in the development of cutaneous ulcers histologically resembling human chancroid lesions. Intraepidermal lesions progressed from pustules to ulcers containing polymorphonuclear leukocytes and were accompanied by a dermal inflammatory infiltrate containing T cells and macrophages. H. ducreyi was recovered from lesions up to 17 days after inoculation, and pigs did not develop immunity to reinfection with the challenge strain. Features of the model include inoculation through abrasions in the epidermis, ambient housing temperatures for infected pigs, the ability to deliver multiple different inocula to a single host, and the availability of monoclonal antibodies against porcine immune cells permitting immunohistochemical characterization of the host immune response to H. ducreyi infection.
Collapse
Affiliation(s)
- M M Hobbs
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Haemophilus ducreyi is a fastidious gram-negative bacillus that causes the sexually transmitted infection chancroid. Chancroid is a major genital ulcerative disease in Africa, Southeast Asia, the Caribbean, and Latin America and is of increasing concern in the United States. Genital ulcerative disease and chancroid in particular have been associated with facilitating the transmission of human immunodeficiency virus. The diagnosis of chancroid based on the clinical appearance of the genital lesion or on the isolation of H. ducreyi on selective medium is relatively insensitive. However, recent advances in nonculture diagnostic tests have enhanced our ability to diagnose chancroid. There has been renewed interest in understanding the pathogenesis of H. ducreyi. In vitro and in vivo models have been developed to help identify important virulence determinants. Through the use of biochemical and molecular techniques, macromolecular components that may be important in virulence have been identified.
Collapse
Affiliation(s)
- D L Trees
- Division of Sexually Transmitted Disease, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | |
Collapse
|
34
|
Alfa MJ, Stevens MK, DeGagne P, Klesney-Tait J, Radolf JD, Hansen EJ. Use of tissue culture and animal models to identify virulence-associated traits of Haemophilus ducreyi. Infect Immun 1995; 63:1754-61. [PMID: 7729882 PMCID: PMC173220 DOI: 10.1128/iai.63.5.1754-1761.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To identify virulence-associated properties of Haemophilus ducreyi, 34 strains of this sexually transmitted pathogen were evaluated for in vitro phenotypic characteristics of potential relevance to chancroid pathogenesis and for their ability to produce lesions in the temperature-dependent animal model for chancroid. Of the 34 strains tested, all but three produced a cytopathic effect on human foreskin fibroblasts (HFF) and all but six strains formed large microcolonies on HFF monolayers. A subset of 12 selected strains underwent more extensive analyses and, when evaluated for both their cytadherence kinetics and growth in the presence of HFF monolayers, it was found that several of these strains had a very limited ability to attach to HFF cells. When the same 12 strains were tested in the temperature-dependent rabbit model, only the seven strains which were positive in all of these in vitro-based tests readily produced lesions. In contrast, the five strains that were noted to be deficient in one or more of the phenotypic characteristics scored in the in vitro systems did not produce lesions. This association between the traits measured in vitro and the ability to produce dermal lesions was significant (P = 0.0012). These results suggest that in vitro behavior may be used to predict the virulence potential of H. ducreyi strains. Moreover, the phenotypic characteristics described in this study are appropriate focal points for efforts to determine the molecular basis of the virulence of this pathogen.
Collapse
Affiliation(s)
- M J Alfa
- Department of Medical Microbiology, University of Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Palmer KL, Grass S, Munson RS. Identification of a hemolytic activity elaborated by Haemophilus ducreyi. Infect Immun 1994; 62:3041-3. [PMID: 8005696 PMCID: PMC302920 DOI: 10.1128/iai.62.7.3041-3043.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Haemophilus ducreyi is the causative agent of the sexually transmitted disease chancroid. We have identified a hemolytic activity expressed by H. ducreyi. This activity is most readily detected when horse erythrocytes are used as a target; however, low levels of activity can be detected with sheep, human, or rabbit erythrocyte targets. The activity is heat labile and protease sensitive.
Collapse
Affiliation(s)
- K L Palmer
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | | | | |
Collapse
|
37
|
Abstract
Neutralizing antibodies against cytotoxin produced by Haemophilus ducreyi bacteria were studied in rabbits by an assay employing HEp-2 cells and diluted crude cytotoxin preparations from the organism. Antisera to 12 different H. ducreyi strains were prepared by immunization of rabbits with bacterial sonicates combined with Freund's adjuvant. The antibody response during infection with H. ducreyi was studied in two groups of rabbits which were infected with five live strains by either single or multiple intradermal injections. Neutralizing antibodies in hyperimmune sera to sonicates from 12 H. ducreyi strains tested against their homologous cytotoxin preparations were present with titers ranging from 1:80 to 1:640. Similar antibody titers against heterologous cytotoxin preparations were recorded, indicating immunological similarity or identity between cytotoxins from the various H. ducreyi strains. Three strains did not produce cytotoxin, and these strains did not induce toxin-neutralizing antibodies. Hyperimmune sera to other gram-negative bacteria had no detectable neutralizing capacity, indicating species specificity of the H. ducreyi cytotoxin. Cytotoxin-neutralizing antibodies were not detectable in rabbit sera before infection with H. ducreyi. Repeated single injections with live bacteria resulted in development of low levels of neutralizing antibodies. Multiple primary injection of live bacteria of the cytotoxin-producing strain CCUG 7470 resulted in a low immune response to the cytotoxin preparation from the same strain. A booster infection resulted in the development of neutralizing antibodies in all rabbits infected with cytotoxin-producing strains. The antibody titers determined against the homologous cytotoxin preparation were similar to those recorded for two heterologous cytotoxin preparations.
Collapse
Affiliation(s)
- T Lagergård
- Department of Medical Microbiology and Immunology, University of Göteborg, Sweden
| | | |
Collapse
|