1
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
2
|
Pal C. Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2025; 25:216-247. [PMID: 39495464 DOI: 10.1007/s12012-024-09941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Doxorubicin (Dox) is a commonly used chemotherapy drug effective against a range of cancers, but its clinical application is greatly limited by dose-dependent and cumulative cardiotoxicity. Mitochondrial dysfunction is recognized as a key factor in Dox-induced cardiotoxicity, leading to oxidative stress, disrupted calcium balance, and activation of apoptotic pathways. Recent research has emphasized the potential of small molecules that specifically target mitochondria to alleviate these harmful effects. This review provides a comprehensive analysis of small molecules that offer cardioprotection by preserving mitochondrial function in the context of doxorubicin-induced cardiotoxicity (DIC). The mechanisms of action include the reduction of reactive oxygen species (ROS) production, stabilization of mitochondrial membrane potential, enhancement of mitochondrial biogenesis, and modulation of key signaling pathways involved in cell survival and apoptosis. By targeting mitochondria, these small molecules present a promising therapeutic strategy to prevent or reduce the cardiotoxic effects associated with Dox treatment. This review not only discusses the mechanistic actions of these agents but also emphasizes their potential in improving cardiovascular outcomes for cancer patients. Gaining insight into these mechanisms can help in creating more effective strategies to safeguard the heart during chemotherapy, allowing for the ongoing use of Dox with a lower risk to the patient's cardiovascular health. This review highlights the critical role of mitochondria-targeted therapies as a promising approach in addressing DIC.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
3
|
Wang Y, Wei L, Liu Y, Liu C, Hou M, Zhou L, Wang L, Li H, Qiu Y, JingMa. Biodistribution and preclinical safety profile of legubicin: A novel conjugate of doxorubicin and a legumain-cleavable peptide linker. J Appl Toxicol 2024; 44:1426-1445. [PMID: 38782376 DOI: 10.1002/jat.4622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Legubicin is a novel conjugate of doxorubicin and a legumain-cleavable peptide linker. It has been developed to ameliorate the side effects of doxorubicin. Biodistribution in tumor-bearing mice, acute tolerance, and potential systemic toxic effects in Sprague-Dawley rats and beagle dogs of legubicin were assessed. Legubicin exists mainly as a protein complex in plasma after entering the circulation. Compared with conventional doxorubicin at an equal molar dose in mice, we found higher exposure to doxorubicin in tumor (approximately 1.7-fold increase) while lower exposure in normal tissues (an ~3.26-, 3.46-, and 1.29-fold reduction in heart, kidney, and plasma, respectively) in tumor-bearing mice after intravenous injection of legubicin. The acute maximum tolerance dose (MTD) of legubicin was >16 mg/kg doxorubicin equivalent in female rats, 11 mg/kg doxorubicin equivalent in male rats (LD50 of conventional doxorubicin is 10.51 mg/kg), and >8 mg/kg doxorubicin equivalent in dogs (MTD of conventional doxorubicin is 1.5 mg/kg). Four-week repeat-dose toxicity studies of intravenous legubicin were conducted in rats (5, 10, and 25 mg/kg/dose once weekly) and dogs (3/1.5, 10/5, and 20/10 mg/kg/dose once weekly); the dose levels were reduced from the second dose due to intolerable legubicin-associated toxicity at 20 mg/kg. Major organs of toxicity included the gastrointestinal tract, lymphoid and hematopoietic organs, kidney, skin, liver, reproductive organs, and peripheral nerves, which are all associated with doxorubicin. However, cardiotoxicity was only noted at MTD dose levels. Altogether, our results confirm an improved safety profile of legubicin over conventional doxorubicin and support its clinical benefit for treating cancer.
Collapse
Affiliation(s)
- Yan Wang
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Liping Wei
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Yuan Liu
- Shanghai Affinity Bio-Pharmaceuticals Co, Ltd, Shanghai, China
| | - Cheng Liu
- Shanghai Affinity Bio-Pharmaceuticals Co, Ltd, Shanghai, China
| | - Minbo Hou
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Lu Zhou
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Le Wang
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Hua Li
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Yunliang Qiu
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - JingMa
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
4
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
5
|
Shukla A, Kumari S, Sankar M, Nair MS. Insights into the mechanism of binding of doxorubicin and a chlorin compound with 22-mer c-Myc G quadruplex. Biochim Biophys Acta Gen Subj 2023; 1867:130482. [PMID: 37821013 DOI: 10.1016/j.bbagen.2023.130482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The interaction of small molecules with G quadruplexes is in focus due to its role in molecular recognition and therapeutic drug design. Stabilization of G-quadruplex structures in the promoter regions of oncogenes by small molecule binding has been demonstrated as a potential approach for cancer therapy. METHODS In this study, electronic spectroscopy (ultraviolet-visible, fluorescence, circular dichroism), differential scanning calorimetry, and molecular modeling were employed to explore the interactions between the chemotherapy drug doxorubicin and a chlorin compound 5,10,15,20-tetraphenyl-[2,3]-[bis(carboxy)-methano]chlorin (H2TPC(DAC)), and the c-Myc 22-mer G quadruplex DNA. RESULTS Spectroscopic studies indicated external binding of the compounds with partial stacking at the end quartets. Calorimetric studies and temperature dependent circular dichroism data displayed increased melting temperatures of G quadruplex structure on binding with the compounds. Circular dichroism spectra indicated that the G quadruplex structure is intact upon ligand binding. Both the compounds showed binding affinities of the order of 106 M-1. Fluorescence lifetime studies revealed static quenching as major mechanism for fluorescence quenching. Polymerase chain reaction stop assay hinted that binding of both ligands under study could inhibit the amplification of the DNA sequence. CONCLUSION Results show that doxorubicin and H2TPC(DAC) bind to the 22-mer c-Myc quadruplex structure with good affinity and induce stability. SIGNIFICANCE Doxorubicin and H2TPC(DAC) have demonstrated their affinity towards c-Myc G quadruplex DNA, stabilizing it and inhibiting expression and polymerization. The results can be of practical use in designing new analogs for the two compounds, which can become potent anti-cancer agents targeting the c-Myc GQ structure.
Collapse
Affiliation(s)
- Aishwarya Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Soni Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
6
|
Zhou DP, Deng LC, Feng X, Xu HJ, Tian Y, Yang WW, Zeng PP, Zou LH, Yan XH, Zhu XY, Shu DH, Guo Q, Huang XY, Bellusci S, Lou Z, Li XK, Zhang JS. FGF10 mitigates doxorubicin-induced myocardial toxicity in mice via activation of FGFR2b/PHLDA1/AKT axis. Acta Pharmacol Sin 2023; 44:2004-2018. [PMID: 37225844 PMCID: PMC10545682 DOI: 10.1038/s41401-023-01101-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.
Collapse
Affiliation(s)
- De-Pu Zhou
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lian-Cheng Deng
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao Feng
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Hui-Jing Xu
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ye Tian
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei-Wei Yang
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ping-Ping Zeng
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Li-Hui Zou
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi-Hua Yan
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xia-Yan Zhu
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan-Hua Shu
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Guo
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao-Ying Huang
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Saverio Bellusci
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiao-Kun Li
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jin-San Zhang
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Wigner P, Dziedzic A, Synowiec E, Miller E, Bijak M, Saluk-Bijak J. Variation of genes encoding nitric oxide synthases and antioxidant enzymes as potential risks of multiple sclerosis development: a preliminary study. Sci Rep 2022; 12:10603. [PMID: 35732787 PMCID: PMC9217808 DOI: 10.1038/s41598-022-14795-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by a variable clinical course and diverse pathophysiology, including nitrative and oxidative stresses as well as inflammation. We aimed to detect the potential association between five selected single-nucleotide polymorphisms (SNPs) in genes encoding nitric oxide synthetases as well as antioxidant enzymes and the development of MS in a Polish population. Genomic DNA was isolated from peripheral blood collected from 142 MS patients and 140 controls. Using Taq-Man® probes, we genotyped the following SNPs: rs1879417 in NOS1, and rs2297518 in NOS2 as well as rs4880 in SOD2, rs7943316 in CAT, rs713041 in GPX4. In the case of rs2297518, the C/C genotype and C allele SNP were associated with an enhanced occurrence of MS, while the C/T, T/T genotypes, and T allele of the same polymorphism reduced this risk. Moreover, the C/C homozygote and C allele of the rs4880 SNP reduced MS risk, while the T allele increased the risk. In addition, the A/T heterozygote of rs7943316 polymorphism was associated with an increased risk of MS occurrence. We also detected that the C/C genotype and C allele of rs713041 decreased the risk of MS, whereas the T/T genotype and T allele increased this risk. In conclusion, the results of our study suggest some links between polymorphic variability in the nitrative/oxidative stress-related genes and the risk of MS development in the Polish population.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113, Lodz, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
8
|
Investigation of interactions of doxorubicin with purine nucleobases by molecular modeling. J Mol Model 2022; 28:69. [PMID: 35218423 DOI: 10.1007/s00894-022-05031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
Doxorubicin, an anthracycline antibiotic with anti-tumor activity, is produced by the bacterium Streptomyces peucetius. The interactions between doxorubicin and genetic material and the details of the intercalation with DNA have been controversial issues. Thus, the interactions of doxorubicin with purine nucleobases were studied by quantum mechanical methods. Initially, conformer analyses of doxorubicin were performed with Spartan 08 software and 319 different conformers from 422 initial structures for doxorubicin were obtained. Geometry optimizations and frequency analyses were performed for each structure using density functional theory (DFT) at B3LYP/6-31G** level using Gaussian 09 software. The most stable 20 conformers of doxorubicin and tautomers of purine nucleobases were optimized again with ɷB97XD/6-31G** level and their interactions were also analyzed at the same level. The Discovery Studio 3.5 Visualizer was used to draw the initial and optimized structures of investigated geometries. The noncovalent interactions (NCIs) were visualized by calculating reduced density gradient (RDG) with Multiwfn program. The color-filled isosurfaces and RDG scatter maps of most stable interaction geometries were plotted by Visual Molecular Dynamics (VMD) software and Gnuplot 5.3 software, respectively. This study showed that adenine, guanine, and hypoxanthine nucleobases interact with doxorubicin by forming strong hydrogen bonds and π-π interactions. Considering the normal cellular conditions, the effect of solvent (water) on the interaction geometries were also analyzed and when compared to gas phase it was determined that the movements of the molecules were restricted and there was a minimal change between initial and optimized structures in the aqueous phase.
Collapse
|
9
|
Asadi MR, Moslehian MS, Sabaie H, Poornabi M, Ghasemi E, Hassani M, Hussen BM, Taheri M, Rezazadeh M. Stress Granules in the Anti-Cancer Medications Mechanism of Action: A Systematic Scoping Review. Front Oncol 2021; 11:797549. [PMID: 35004322 PMCID: PMC8739770 DOI: 10.3389/fonc.2021.797549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Stress granule (SG) formation is a well-known cellular mechanism for minimizing stress-related damage and increasing cell survival. In addition to playing a critical role in the stress response, SGs have emerged as critical mediators in human health. It seems logical that SGs play a key role in cancer cell formation, development, and metastasis. Recent studies have shown that many SG components contribute to the anti-cancer medications' responses through tumor-associated signaling pathways and other mechanisms. SG proteins are known for their involvement in the translation process, control of mRNA stability, and capacity to function in both the cytoplasm and nucleus. The current systematic review aimed to include all research on the impact of SGs on the mechanism of action of anti-cancer medications and was conducted using a six-stage methodological framework and the PRISMA guideline. Prior to October 2021, a systematic search of seven databases for eligible articles was performed. Following the review of the publications, the collected data were subjected to quantitative and qualitative analysis. Notably, Bortezomib, Sorafenib, Oxaliplatin, 5-fluorouracil, Cisplatin, and Doxorubicin accounted for the majority of the medications examined in the studies. Overall, this systematic scoping review attempts to demonstrate and give a complete overview of the function of SGs in the mechanism of action of anti-cancer medications by evaluating all research.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziye Poornabi
- Student Research Committee, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Elham Ghasemi
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maryam Rezazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Lebrón JA, López-López M, García-Calderón CB, V. Rosado I, Balestra FR, Huertas P, Rodik RV, Kalchenko VI, Bernal E, Moyá ML, López-Cornejo P, Ostos FJ. Multivalent Calixarene-Based Liposomes as Platforms for Gene and Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13081250. [PMID: 34452211 PMCID: PMC8398082 DOI: 10.3390/pharmaceutics13081250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
The formation of calixarene-based liposomes was investigated, and the characterization of these nanostructures was carried out using several techniques. Four amphiphilic calixarenes were used. The length of the hydrophobic chains attached to the lower rim as well as the nature of the polar group present in the upper rim of the calixarenes were varied. The lipid bilayer was formed with one calixarene and with the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, DOPE. The cytotoxicity of the liposomes for various cell lines was also studied. From the results obtained, the liposomes formed with the least cytotoxic calixarene, (TEAC12)4, were used as nanocarriers of both nucleic acids and the antineoplastic drug doxorubicin, DOX. Results showed that (TEAC12)4/DOPE/p-EGFP-C1 lipoplexes, of a given composition, can transfect the genetic material, although the transfection efficiency substantially increases in the presence of an additional amount of DOPE as coadjuvant. On the other hand, the (TEAC12)4/DOPE liposomes present a high doxorubicin encapsulation efficiency, and a slow controlled release, which could diminish the side effects of the drug.
Collapse
Affiliation(s)
- José Antonio Lebrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain;
| | - Clara B. García-Calderón
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (C.B.G.-C.); (I.V.R.)
| | - Ivan V. Rosado
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (C.B.G.-C.); (I.V.R.)
| | - Fernando R. Balestra
- Department of Genetics, Faculty of Biology, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (F.R.B.); (P.H.)
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville-CSIC-University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain
| | - Pablo Huertas
- Department of Genetics, Faculty of Biology, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (F.R.B.); (P.H.)
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville-CSIC-University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain
| | - Roman V. Rodik
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska Str. 5, 02660 Kiev, Ukraine; (R.V.R.); (V.I.K.)
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska Str. 5, 02660 Kiev, Ukraine; (R.V.R.); (V.I.K.)
| | - Eva Bernal
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
| | - María Luisa Moyá
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
- Correspondence: (M.L.M.); (P.L.-C.); (F.J.O.); Tel.: +34-954-557-175 (M.L.M.)
| | - Pilar López-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
- Correspondence: (M.L.M.); (P.L.-C.); (F.J.O.); Tel.: +34-954-557-175 (M.L.M.)
| | - Francisco J. Ostos
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
- Correspondence: (M.L.M.); (P.L.-C.); (F.J.O.); Tel.: +34-954-557-175 (M.L.M.)
| |
Collapse
|
11
|
Antibody-directed metal-organic framework nanoparticles for targeted drug delivery. Acta Biomater 2020; 103:223-236. [PMID: 31843718 DOI: 10.1016/j.actbio.2019.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Nanosized metal-organic frameworks (nMOFs) have shown great promise as high-capacity carriers for a variety of applications. For biomedicine, numerous nMOFs have been proposed that can transport virtually any molecular drug, can finely tune their payload release profile, etc. However, perspectives of their applications for the targeted drug delivery remain relatively unclear. So far, only a few works have reported specific cell targeting by nMOFs exclusively through small ligands such as folic acid or RGD peptides. Here we show feasibility of targeted drug delivery to specific cancer cells in vitro with nMOFs functionalized with such universal tool as an antibody. We demonstrate ca. 120 nm magnetic core/MOFs shell nanoagents loaded with doxorubicin/daunorubicin and coupled with an antibody though a hydrophilic carbohydrate interface. We show that carboxymethyl-dextran coating of nMOFs allows extensive loading of the drug molecules (up to 15.7 mg/g), offers their sustained release in physiological media and preserves antibody specificity. Reliable performance of the agents is illustrated with trastuzumab-guided selective targeting and killing of HER2/neu-positive breast cancer cells in vitro. The approach expands the scope of nMOF applications and can serve as a platform for the development of potent theranostic nanoagents. STATEMENT OF SIGNIFICANCE: The unique combination of exceptional drug capacity and controlled release, biodegradability and low toxicity makes nanosized metal-organic frameworks (nMOFs) nearly ideal drug vehicles for various biomedical applications. Unfortunately, the prospective of nMOF applications for the targeted drug delivery is still unclear since only a few examples have been reported for nMOF cell targeting, exclusively for small ligands. In this work, we fill the important gap and demonstrate nanoagent that can specifically kill target cancer cells via drug delivery based on recognition of HER2/neu cell surface receptors by such universal and specific tool as antibodies. The proposed approach is universal and can be adapted for specific biomedical tasks using antibodies of any specificity and nMOFs of a various composition.
Collapse
|
12
|
Al-malky HS, Al Harthi SE, Osman AMM. Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance. J Oncol Pharm Pract 2019; 26:434-444. [DOI: 10.1177/1078155219877931] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BackgroundDoxorubicin is one of the most commonly prescribed and time-tested anticancer drugs. Although being considered as a first line drug in different types of cancers, the two main obstacles to doxorubicin therapy are drug-induced cardiotoxicity and drug resistance.MethodThe study utilizes systemic reviews on publications of previous studies obtained from scholarly journal databases including PubMed, Medline, Ebsco Host, Google Scholar, and Cochrane. The study utilizes secondary information obtained from health organizations using filters and keywords to sustain information relevancy. The study utilizes information retrieved from studies captured in the peer-reviewed journals on “doxorubicin-induced cardiotoxicity” and “doxorubicin resistance.”Discussion and resultsThe exact mechanisms of cardiotoxicity are not known; various hypotheses are studied. Doxorubicin can lead to free radical generation in various ways. The commonly proposed underlying mechanisms promoting doxorubicin resistance are the expression of multidrug resistance proteins as well as other causes.ConclusionIn this review, we have described the major obstacles to doxorubicin therapy, doxorubicin-induced cardiotoxicity as well as the mechanisms of cancer drug resistance and in following the treatment failures.
Collapse
Affiliation(s)
- Hamdan S Al-malky
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer E Al Harthi
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdel-Moneim M Osman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Sinha BK, Perera L, Cannon RE. Reversal of drug resistance by JS-K and nitric oxide in ABCB1- and ABCG2-expressing multi-drug resistant human tumor cells. Biomed Pharmacother 2019; 120:109468. [PMID: 31605952 DOI: 10.1016/j.biopha.2019.109468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 11/26/2022] Open
Abstract
Development of resistance to chemotherapy drugs is a significant problem in treating human malignancies in the clinic. Overexpression of ABC transporter proteins, including P-170 glycoprotein (P-gp), and breast cancer resistance protein (BCRP, ABCG2) have been implicated in this multi-drug resistance (MDR). These ABC transporters are ATP-dependent efflux proteins. We have recently shown that nitric oxide (NO) inhibits the ATPase activities of P-gp, resulting in a significant enhancement of drug accumulation and the reversal of multi-drug resistance in NCI/ADR-RES cells, a P-gp-overexpressing human MDR cell line. In this study, we used [O2-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)-piperazin-1 yl]-diazene-1-ium-1-2-diolate] (JS-K), a tumor-specific NO-donor to study the reversal of drug resistance in both P-gp- and BCRP-overexpressing human tumor cells. We report here that while JS-K was extremely effective in reversing adriamycin resistance in the P-gp-overexpressing tumor cells (NCI/ADR-RES); it was significantly resistant to BCRP-overexpressing (MCF-7/MX) tumor cells, suggesting that JS-K may be a substrate for BCRP. Using another NO-donor (DETNO), we show that NO directly inhibits the ATP activities of BCRP, inducing significant increases in the accumulations of both Hoechst 33342 dye and topotecan, substrates for BCRP. Furthermore, NO treatment significantly reversed topotecan and mitoxantrone resistance to MCF-7/MX tumor cells. Molecular docking studies indicated that while DETNO and JS-K bind to ATP binding site in both ABC proteins, binding score was significantly reduced, compared to the ATP binding. Our results indicate that appropriately designed NO donors may find success in reversing multidrug resistance in the clinic.
Collapse
Affiliation(s)
- Birandra K Sinha
- Laboratory of Immunity, Inflammation, Disease Laboratory, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ronald E Cannon
- Laboratory of Toxicology and Toxicokinetic, National Cancer Institute at National Institute of Environmental Health Sciences, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. Eur J Med Chem 2019; 176:268-291. [PMID: 31103904 DOI: 10.1016/j.ejmech.2019.05.027] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/21/2023]
Abstract
Cancer is a prominent cause of death globally. Currently, many drugs that are in clinical practice are having a high prevalence of side effect and multidrug resistance. Risk of tumors acquiring resistance to chemotherapy (multidrug resistance) remains a significant hurdle to the successful treatment of various types of cancer. Membrane-embedded drug transporters, generally overexpressed in cancer, are the leading cause among multiple mechanisms of multidrug resistance (MDR). P-glycoprotein (P-gp) also MDR1/ABCB1, multidrug resistance associated protein 1 (MRP1/ABCC1), MRP2 and breast cancer resistance protein (BCRP/ABCG2) are considered to be a prime factor for induction of MDR. To date, several chemical substances have been tested in a number of clinical trials for their MDR modulatory activity which are not having devoid of any side effects that necessitates to find newer and safer way to tackle the current problem of multidrug resistance in cancer. The present study systematically discusses the various classes of natural products i.e flavonoids, alkaloids, terpenoids, coumarins (from plants, marine, and microorganisms) as potential MDR modulators and/or as a source of promising lead compounds. Recently a bisbenzyl isoquinoline alkaloid namely tetrandrine, isolated from Chinese herb Stephania tetrandra (Han-Fang-Chi) is in clinical trials for its MDR reversal activity.
Collapse
Affiliation(s)
- Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Mansa Road, Bathinda, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Mansa Road, Bathinda, 151001, India.
| |
Collapse
|
15
|
Chou CK, Huang HW, Yang CF, Dahms HU, Liang SS, Wang TN, Kuo PL, Hsi E, Tsai EM, Chiu CC. Reduced camptothecin sensitivity of estrogen receptor-positive human breast cancer cells following exposure to di(2-ethylhexyl)phthalate (DEHP) is associated with DNA methylation changes. ENVIRONMENTAL TOXICOLOGY 2019; 34:401-414. [PMID: 30720231 DOI: 10.1002/tox.22694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) has been considered as an estrogen receptor alpha (ERα) agonist due to its ability to interact with ERα and promote the cell proliferation of ERα-positive breast cancer cells. The impact of DEHP on the chemical therapy in breast cancer is little known. Two breast cancer cell lines, MCF-7 (ERα-dependent) and MDA-MB-231 (ERα-independent) were examined. We found that DEHP impaired the effectiveness of camptothecin (CPT) and alleviated the CPT-induced formation of reactive oxygen species in ERα-positive MCF-7 cells, but not in ERα-negative MDA-MB-231 cells. DEHP also significantly protected MCF-7 cells against the genotoxicity of CPT. Genome-wide DNA methylation profiling revealed that after 48 hours of exposure to 100 μM DEHP, MCF-7 cells exhibited a significant change in their DNA methylation pattern, including hypermethylation of 700 genes and hypomethylation of 221 genes. The impaired therapeutic response to CPT in DEHP-exposed MCF-7 cells is probably mediated by epigenetic changes, especially through Wnt/β-catenin signaling. A zebrafish xenograft model confirmed the disruptive effect of DEHP on CPT-induced anti-growth of MCF-7 cells. In summary, DEHP exposure induces acquired CPT-resistance in breast cancer cells and epigenetic changes associated with Wnt/β-catenin signaling activation are probably depending on an ER-positive status.
Collapse
Affiliation(s)
- Chon-Kit Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Feng Yang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Nai Wang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Translational Research Center, Cancer Center and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6121328. [PMID: 30647812 PMCID: PMC6311846 DOI: 10.1155/2018/6121328] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used metal nanoparticles in health care industries, particularly due to its unique physical, chemical, optical, and biological properties. It is used as an antibacterial, antiviral, antifungal, and anticancer agent. Camptothecin (CPT) and its derivatives function as inhibitors of topoisomerase and as potent anticancer agents against a variety of cancers. Nevertheless, the combined actions of CPT and AgNPs in apoptosis in human cervical cancer cells (HeLa) have not been elucidated. Hence, we investigated the synergistic combinatorial effect of CPT and AgNPs in human cervical cancer cells. We synthesized AgNPs using sinigrin as a reducing and stabilizing agent. The synthesized AgNPs were characterized using various analytical techniques. The anticancer effects of a combined treatment with CPT and AgNPs were evaluated using a series of cellular and biochemical assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. The findings from this study revealed that the combination of CPT and AgNPs treatment significantly inhibited cell viability and proliferation of HeLa cells. Moreover, the combination effect significantly increases the levels of oxidative stress markers and decreases antioxidative stress markers compared to single treatment. Further, the combined treatment upregulate various proapoptotic gene expression and downregulate antiapoptotic gene expression. Interestingly, the combined treatment modulates various cellular signaling molecules involved in cell survival, cytotoxicity, and apoptosis. Overall, these results suggest that CPT and AgNPs cause cell death by inducing the mitochondrial membrane permeability change and activation of caspase 9, 6, and 3. The synergistic cytotoxicity and apoptosis effect seems to be associated with increased ROS formation and depletion of antioxidant. Certainly, a combination of CPT and AgNPs could provide a beneficial effect in the treatment of cervical cancer compared with monotherapy.
Collapse
|
17
|
Sinha BK, Bortner CD, Mason RP, Cannon RE. Nitric oxide reverses drug resistance by inhibiting ATPase activity of p-glycoprotein in human multi-drug resistant cancer cells. Biochim Biophys Acta Gen Subj 2018; 1862:2806-2814. [PMID: 30251669 PMCID: PMC6195836 DOI: 10.1016/j.bbagen.2018.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/14/2018] [Accepted: 08/30/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Development of resistance to chemotherapy drugs is a significant problem in treating human malignancies in the clinic. Overexpression of drug efflux proteins, including P-170 glycoprotein (P-gp), an ATP-dependent efflux protein, is one of the main mechanisms responsible for multi-drug resistance (MDR). Because our previous studies have shown that nitric oxide (˙NO) or its related species inhibit the ATPase activities of topoisomerase II, we hypothesized that ˙NO should also inhibit the ATPase activity of P-gp and increase drug accumulation in MDR cells, causing a reversal of drug resistance. RESULTS Cytotoxicity and cellular accumulation studies showed that ˙NO significantly inhibited the ATPase activity of P-gp in isolated membranes and in NCI/ADR-RES tumor cells, causing an increase in drug accumulation and reversals of adriamycin and taxol resistance in the MDR cells. While ˙NO had no effects on topoisomerase II-induced, adriamycin-dependent DNA cleavage complex formation, it significantly inhibited adriamycin-induced DNA double-strand breaks. Electron spin resonance studies showed an increase in adriamycin-dependent hydroxyl radical formation in the presence of an NO-donor. CONCLUSIONS The reversal of drug resistance is due to inhibition of the ATPase activity by ˙NO, resulting in enhancement of the drug accumulation in the MDR cells. Furthermore, DNA damage was not responsible for this reversal of adriamycin resistance. However, formation of adriamycin-dependent toxic free radical species and subsequent cellular damage may be responsible for the increased cytotoxicity of adriamycin by ˙NO in NCI/ADR-RES cells. GENERAL SIGNIFICANCE Appropriately designed NO donors would be ideal for the treatment of P-gp-overexpressing tumors in the clinic.
Collapse
Affiliation(s)
| | - Carl D Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | - Ronald E Cannon
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
18
|
Srivithya V, Roun H, Sekhar Babu M, Jae Hyung P, Sung Ha P. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules. NANOTECHNOLOGY 2018; 29:095602. [PMID: 29271356 DOI: 10.1088/1361-6528/aaa3cb] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to its predictable self-assembly and structural stability, structural DNA nanotechnology is considered one of the main interdisciplinary subjects encompassing conventional nanotechnology and biotechnology. Here we have fabricated the mucin aptamer (MUC1)-conjugated DNA nano-ring intercalated with doxorubicin (DNRA-DOX) as potential therapeutics for breast cancer. DNRA-DOX exhibited significantly higher cytotoxicity to the MCF-7 breast cancer cells than the controls, including DOX alone and the aptamer deficient DNA nano-ring (DNR) with doxorubicin. Interactions between DOX and DNRA were studied using spectrophotometric measurements. Dose-dependent cytotoxicity was performed to prove that both DNR and DNRA were non-toxic to the cells. The drug release profile showed a controlled release of DOX at normal physiological pH 7.4, with approximately 61% released, but when exposed to lysosomal of pH 5.5, the corresponding 95% was released within 48 h. Owing to the presence of the aptamer, DNRA-DOX was effectively taken up by the cancer cells, as confirmed by confocal microscopy, implying that it has potential for use in targeted drug delivery.
Collapse
Affiliation(s)
- Vellampatti Srivithya
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), and Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Wigner P, Czarny P, Synowiec E, Bijak M, Białek K, Talarowska M, Galecki P, Szemraj J, Sliwinski T. Variation of genes involved in oxidative and nitrosative stresses in depression. Eur Psychiatry 2018; 48:38-48. [PMID: 29331597 DOI: 10.1016/j.eurpsy.2017.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022] Open
Abstract
The dominating hypothesis among numerous hypotheses explaining the pathogenesis of depressive disorders (DD) is the one involving oxidative and nitrosative stress. In this study, we examined the association between single-nucleotide polymorphisms of the genes encoding SOD2 (superoxide dismutase 2), CAT (catalase), GPx4 (glutathione peroxidase 4), NOS1 (nitric oxide synthase 1), NOS2 (nitric oxide synthase 2), and the development of depressive disorders. Our study was carried out on the DNA isolated from peripheral blood collected from 281 depressed patients and 229 controls. Using TaqMan probes, we genotyped the following six polymorphisms: c.47T>C (p.Val16Ala) (rs4880) in SOD2, c.-89A>T (rs7943316) in CAT, c.660T>C (rs713041) in GPx4, c.-420-34221G>A (rs1879417) in NOS1, c.1823C>T (p.Ser608Leu) (rs2297518), and c.-227G>C (rs10459953) in NOS2. We found that the T/T genotype of the c.47T>C polymorphism was linked with an increased risk of depression. Moreover, the T/T genotype and T allele of c.660T>C increased the risk of DD occurrence, while the heterozygote and C allele decreased this risk. On the other hand, we discovered that the A/A genotype of c.-89A>T SNP was associated with a reduced risk of DD, while the A/T genotype increased this risk. We did not find any correlation between the genotypes/alleles of c.-420-34221G>A, c.1823C>T, and c.-227G>C, and the occurrence of DD. In addition, gene-gene and haplotype analyses revealed that combined genotypes and haplotypes were connected with the disease. Moreover, we found that sex influenced the impact of some SNPs on the risk of depression. Concluding, the studied polymorphisms of SOD2, CAT and GPx4 may modulate the risk of depression. These results support the hypothesis that oxidative and nitrosative stresses are involved in the pathogenesis of depressive disorders.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Michał Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Białek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
20
|
Helmy SA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Chloroquine upregulates TRAIL/TRAILR2 expression and potentiates doxorubicin anti-tumor activity in thioacetamide-induced hepatocellular carcinoma model. Chem Biol Interact 2018; 279:84-94. [PMID: 29133031 DOI: 10.1016/j.cbi.2017.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
Impaired apoptosis and systemic toxicity of chemotherapeutic drugs make cancer treatment suboptimal. Thus, there is urgency for drug repurposing which facilitates discovery of safe and effective combination therapy. This study aimed to evaluate chloroquine's (CQ) ability to trigger TRAIL/TRAILR2 apoptotic pathway in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) either alone or in combination with doxorubicin (DOX). Moreover, its ability to attenuate DOX-induced cardiotoxicity was investigated. TAA was injected in male Sprague Dawely rats (200 mg/kg; ip; 2 times/week) for 16 weeks. After the 16th week, rats were further divided into different groups (n = 10) and treated for 7 weeks. CQ group (received CQ 25 mg/kg/day; orally), DOX group (received DOX 1 mg/kg; ip; 2 times/week) and CQ/DOX group. Liver function biomarkers, AFP, hepatic levels of MDA and GSH, serum CK-MB and LDH enzymes activity were measured. Quantitative, Real-Time PCR was used to measure TRAIL, TRAILR2, caspase-8, caspase-9, caspase-3, BCL-2 and TGF-β1 genes expression levels. Necroinflammation and fibrosis were scored by histopathological examination. CQ improved liver functions, reduced AFP level and attenuated HCC progression. CQ induced apoptosis via upregulation of TRAIL/TRAILR2, caspase-8, caspase-3 and caspase-8 genes and downregulation of BCL-2 gene. Moreover, CQ/DOX showed marked decrease in hepatic MDA level, serum CK-MB, LDH enzymes activity, as well as marked increase in hepatic GSH level. In conclusion, this work assess the in vivo efficacy of CQ/DOX combination therapy in this HCC model that not only has enhanced anti-tumor activity but it also protects against DOX-induced cardiotoxicity. Nevertheless, more studies should be performed to illustrate the molecular mechanism of CQ's cardioprotective effect.
Collapse
Affiliation(s)
- Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
21
|
Ostos FJ, Lebrón JA, Moyá ML, López-López M, Sánchez A, Clavero A, García-Calderón CB, Rosado IV, López-Cornejo P. P-Sulfocalix[6]arene as Nanocarrier for Controlled Delivery of Doxorubicin. Chem Asian J 2017; 12:679-689. [PMID: 28112869 DOI: 10.1002/asia.201601713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/22/2017] [Indexed: 01/02/2023]
Abstract
Given the high toxicity of the anthracycline antibiotic doxorubicin (DOX), it is relevant to search for nanocarriers that decrease the side effects of the drug and are able to transport it towards a therapeutic target Here, the encapsulation of DOX by p-sulfocalix[6]arene (calix) has been studied. The interaction of DOX with the macrocycle, as well as with DNA, has been investigated and the equilibrium constant for each binding process estimated. The results showed that the binding constant of DOX to DNA, KDNA , is three orders of magnitude higher than that to calix, Kcalix . The ability of calixarenes to encapsulate DOX molecules, as well as the capability of the DOX molecules included into the inner cavity of the macrocycle to bind with DNA have been examined. Cytotoxicity measurements were done in different cancer and normal cell lines to probe the decrease in the toxicity of the encapsulated DOX. The low toxicity of calixarenes has also been demonstrated for different cell lines.
Collapse
Affiliation(s)
- Francisco J Ostos
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González n° 1, Seville, 41012, Spain
| | - José A Lebrón
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González n° 1, Seville, 41012, Spain
| | - Maria L Moyá
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González n° 1, Seville, 41012, Spain
| | - Manuel López-López
- Departamento de Ingeniería Química, Química FísicayCiencias de los Materiales, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus 'El Carmen", E-21071, Huelva, Spain
| | - Antonio Sánchez
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González n° 1, Seville, 41012, Spain
| | - Amparo Clavero
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González n° 1, Seville, 41012, Spain
| | - Clara B García-Calderón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Pilar López-Cornejo
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González n° 1, Seville, 41012, Spain
| |
Collapse
|
22
|
Scalabrin M, Quintieri L, Palumbo M, Riccardi Sirtori F, Gatto B. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA. Chem Res Toxicol 2017; 30:614-624. [PMID: 28068470 DOI: 10.1021/acs.chemrestox.6b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Luigi Quintieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Federico Riccardi Sirtori
- Oncology-Chemical Core Technologies Department, Nerviano Medical Sciences , viale Pasteur 10, Nerviano, 20014 Milano, Italy
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| |
Collapse
|
23
|
Sinha BK. Nitric oxide: Friend or Foe in Cancer Chemotherapy and Drug Resistance: A Perspective. ACTA ACUST UNITED AC 2016; 8:244-251. [PMID: 31844487 DOI: 10.4172/1948-5956.1000421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A successful treatment of cancers in the clinic has been difficult to achieve because of the emergence of drug resistant tumor cells. While various approaches have been tried to overcome multi-drug resistance, it has remained a major road block in achieving complete success in the clinic. Extensive research has identified various mechanisms, including overexpression of P-glycoprotein 170, modifications in activating or detoxification enzymes (phase I and II enzymes), and mutation and/or decreases in target enzymes in cancer cells. However, nitric oxide and/or nitric oxide-related species have not been considered an important player in cancer treatment and or drug resistance. Here, we examine the significance of nitric oxide in the treatment and resistance mechanisms of various anticancer drugs. Furthermore, we describe the significance of recently reported effects of nitric oxide on topoisomerases and the development of resistance to topoisomerase-poisons in tumor cells.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
24
|
Kumar A, Ehrenshaft M, Tokar EJ, Mason RP, Sinha BK. Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:1519-27. [PMID: 27095671 PMCID: PMC4909546 DOI: 10.1016/j.bbagen.2016.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. METHODS Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. RESULTS Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. CONCLUSION Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. GENERAL SIGNIFICANCE As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Immunity, Inflammation and Disease Laboratory, NIH, Research Triangle Park, North Carolina, USA
| | - Marilyn Ehrenshaft
- Immunity, Inflammation and Disease Laboratory, NIH, Research Triangle Park, North Carolina, USA
| | - Erik J Tokar
- National Toxicology Program National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, NIH, Research Triangle Park, North Carolina, USA
| | - Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, NIH, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
25
|
Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:274-9. [PMID: 26971631 DOI: 10.1016/j.jphotobiol.2016.02.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/13/2016] [Indexed: 01/08/2023]
Abstract
In this review, we have compared the results of multiple spectroscopic studies and molecular modeling of anticancer drug doxorubicin (DOX) bindings to DNA and tRNA. DOX was intercalated into DNA duplex, while tRNA binding is via major and minor grooves. DOX-DNA intercalation is close to A-7, C-5, *C-19 (H-bonding with DOX NH2 group), G-6, T-8 and T-18 with the free binding energy of -4.99kcal/mol. DOX-tRNA groove bindings are near A-29, A-31, A-38, C-25, C-27, C-28, *G-30 (H-bonding) and U-41 with the free binding energy of -4.44kcal/mol. Drug intercalation induced a partial B to A-DNA transition, while tRNA remained in A-family structure. The structural differences observed between DOX bindings to DNA and tRNA can be the main reasons for drug antitumor activity. The results of in vitro MTT assay on SKC01 colon carcinoma are consistent with the observed DNA structural changes. Future research should be focused on finding suitable nanocarriers for delivery of DOX in vivo in order to exploit the full capacity of this very important anticancer drug.
Collapse
|
26
|
Sinha BK, Mason RP. IS METABOLIC ACTIVATION OF TOPOISOMERASE II POISONS IMPORTANT IN THE MECHANISM OF CYTOTOXICITY? ACTA ACUST UNITED AC 2015; 6. [PMID: 31171989 DOI: 10.4172/2157-7609.1000186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The antitumor drugs doxorubicin and etoposide, a phodophyllotoxin derivative, are clinically active for the treatment of human malignancies. Because of their extreme effectiveness in the clinic, their modes of actions have been the subject of intense research for over several decades both in the laboratory and in the clinic. It has been found that both doxorubicin and etoposide (VP-16) act on topoisomerase II, induce DNA cleavage, and form double-strand breaks, causing tumor cell death. However, both of these drugs also undergo extensive metabolism in tumor cells and in vivo to various reactive intermediates that bind covalently to cellular DNA and proteins. Moreover, both drugs are metabolized to reactive free radicals that induce lipid peroxidation and DNA damage. However, the role of drug activation in the mechanism of cytotoxicity remains poorly defined. In this review, we critically evaluate the significance of metabolic activation of doxorubicin and etoposide in the mechanism of tumor cytotoxicity.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institutes of Environmental Health Sciences, NIH, Research Triangle, Park, North Carolina, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institutes of Environmental Health Sciences, NIH, Research Triangle, Park, North Carolina, USA
| |
Collapse
|
27
|
Yao F, Duan J, Wang Y, Zhang Y, Guo Y, Guo H, Kang X. Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions. Anal Chem 2014; 87:338-42. [DOI: 10.1021/ac503926g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fujun Yao
- Key Laboratory
of Synthetic
and Natural Functional Molecular Chemistry, College of Chemistry and
Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Jing Duan
- Key Laboratory
of Synthetic
and Natural Functional Molecular Chemistry, College of Chemistry and
Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Ying Wang
- Key Laboratory
of Synthetic
and Natural Functional Molecular Chemistry, College of Chemistry and
Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yue Zhang
- Key Laboratory
of Synthetic
and Natural Functional Molecular Chemistry, College of Chemistry and
Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yanli Guo
- Key Laboratory
of Synthetic
and Natural Functional Molecular Chemistry, College of Chemistry and
Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Huilin Guo
- Key Laboratory
of Synthetic
and Natural Functional Molecular Chemistry, College of Chemistry and
Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Xiaofeng Kang
- Key Laboratory
of Synthetic
and Natural Functional Molecular Chemistry, College of Chemistry and
Materials Science, Northwest University, Xi’an 710069, P. R. China
| |
Collapse
|
28
|
Konno S, Chu K, Feuer N, Phillips J, Choudhury M. Potent Anticancer Effects of Bioactive Mushroom Extracts (Phellinus linteus) on a Variety of Human Cancer Cells. J Clin Med Res 2014; 7:76-82. [PMID: 25436023 PMCID: PMC4245057 DOI: 10.14740/jocmr1996w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 12/03/2022] Open
Abstract
Background Although several therapeutic options are currently available for patients with various cancers, the outcomes are often disappointing and a more effective modality needs to be promptly established. We have been exploring an alternative approach using natural agents and two bioactive mushroom extracts isolated from Phellinus linteus (PL), namely PL-ES and PL-I-ES, were of our interest. As anticancer effects of similar extracts have been reported in several cancers, we investigated whether PL-ES and PL-I-ES might have such anticancer activities on a variety of human cancer cells in vitro. Methods Ten different types of human cancer cell lines, including three metastatic prostate, bladder, kidney, lung, breast, stomach, liver, and brain cancer cells, were employed and tested with PL-ES or PL-I-ES. Cell growth/viability, exertion of oxidative stress, and induction of apoptosis were assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay, lipid peroxidation (LPO) assay, and specific enzymatic assay, respectively. Results PL-ES (100 µg/mL) exhibited potent anticancer activity, resulting in a significant (40-80%) growth reduction in all 10 cancer cells at 72 hours. PL-I-ES (100 µg/mL) was effective on only four cancer cells but its higher concentration at 250 µg/mL led to a significant (25-90%) growth reduction in seven cancer cells. LPO assays indicated that such a significant growth reduction by PL-ES (100 µg/mL) or PL-I-ES (100 or 250 µg/mL) could result from cell death due to a cytotoxic effect of oxidative stress (through free radicals). Moreover, enzymatic assays for caspase-3 (Csp-3) and caspase-9 (Csp-9), the pro-apoptotic regulators, showed that both enzymes were significantly activated by PL-ES or PL-I-ES, indicating that cell death due to oxidative stress was more likely associated with apoptosis. Conclusions The present study shows that both PL-ES and PL-I-ES indeed have anticancer effects on a variety of cancer cells, although PL-ES appears to be more potent than PL-I-ES. Such an anticancer effect is presumably attributed to oxidative stress, which will ultimately lead to apoptosis. Therefore, these two bioactive mushroom extracts may have clinical implications in a more effective therapeutic option for a variety of human malignancies.
Collapse
Affiliation(s)
- Sensuke Konno
- Department of Urology, New York Medical College, Valhalla, New York, USA
| | - Kevin Chu
- Department of Urology, New York Medical College, Valhalla, New York, USA
| | - Nicholas Feuer
- Department of Urology, New York Medical College, Valhalla, New York, USA
| | - John Phillips
- Department of Urology, New York Medical College, Valhalla, New York, USA
| | - Muhammad Choudhury
- Department of Urology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
29
|
Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents – An in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 136:81-90. [DOI: 10.1016/j.jphotobiol.2014.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/21/2022]
|
30
|
Agudelo D, Bourassa P, Bérubé G, Tajmir-Riahi HA. Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: Structural features and biological implications. Int J Biol Macromol 2014; 66:144-50. [DOI: 10.1016/j.ijbiomac.2014.02.028] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/15/2022]
|
31
|
Tan X, Chen X, Huang T, Luo W, He D, Lin X, Song L, Wu X. Mechanism of bFGF-binding Peptide Reversing Adriamycin Resistance in Human Gastric Cancer Cells. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9402-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Nieciecka D, Królikowska A, Joniec A, Krysinski P. Partitioning of doxorubicin into Langmuir and Langmuir–Blodgett biomimetic mixed monolayers: Electrochemical and spectroscopic studies. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Nieciecka D, Joniec A, Blanchard GJ, Krysinski P. Interactions of doxorubicin with organized interfacial assemblies. 1. Electrochemical characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14560-14569. [PMID: 24175734 DOI: 10.1021/la403765w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Doxorubicin is an anthracycline that has found wide use as a chemotherapeutic agent, with the primary target of its action being nuclear DNA. Despite the large body of knowledge on this family of compounds, the mechanism of doxorubicin penetration through the cellular or nuclear membrane remains understood to a limited extent. The plasma membrane acts as a barrier to the permeation of polar molecules, and this effect is mainly due to the hydrophobicity of membrane interior. The partitioning of DOX molecules into the lipid bilayer must thus be the basis for its passive transport across the biological membrane and therefore a key area of research activity lies in understanding how the structure of the anthracycline influences its interactions with amphiphilic interfaces. We have studied interactions between doxorubicin and Langmuir/Langmuir-Blodgett monomolecular films of octadecylamine (C18NH2), dihexadecylphosphate (DHP) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and DMPC bilayer films (Langmuir-Schaeffer) on a polycrystalline gold surface using ellipsometry, cyclic voltammetry, electrochemical impedance spectroscopy, and quartz crystal microbalance measurements. For all biomimetic films there is a substantial interaction between doxorubicin and the interface, and the extent of this interaction depends on the hydrophobic/hydrophilic properties of the film formed and its organization.
Collapse
Affiliation(s)
- Dorota Nieciecka
- Faculty of Chemistry, University of Warsaw , 02-093 Warsaw, Pasteur 1, Poland
| | | | | | | |
Collapse
|
34
|
Minko T, Rodriguez-Rodriguez L, Pozharov V. Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv Drug Deliv Rev 2013; 65:1880-95. [PMID: 24120655 DOI: 10.1016/j.addr.2013.09.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022]
Abstract
The efficacy of chemotherapy is substantially limited by the resistance of cancer cells to anticancer drugs that fluctuates significantly in different patients. Under identical chemotherapeutic protocols, some patients may receive relatively ineffective doses of anticancer agents while other individuals obtain excessive amounts of drugs that induce severe adverse side effects on healthy tissues. The current review is focused on an individualized selection of drugs and targets to suppress multidrug resistance. Such selection is based on the molecular characteristics of a tumor from an individual patient that can potentially improve the treatment outcome and bring us closer to an era of personalized medicine.
Collapse
|
35
|
Solid-core and hollow magnetic nanostructures: Synthesis, surface modifications and biological applications. Bioelectrochemistry 2013; 93:2-14. [DOI: 10.1016/j.bioelechem.2012.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/30/2023]
|
36
|
Alexander B, Fishman AI, Eshghi M, Choudhury M, Konno S. Induction of cell death in renal cell carcinoma with combination of D-fraction and vitamin C. Integr Cancer Ther 2013; 12:442-8. [PMID: 23341484 DOI: 10.1177/1534735412473643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HYPOTHESIS Although several conventional therapeutic options for advanced renal cell carcinoma (RCC) are currently available, the unsatisfactory outcomes demand establishing more effective interventions. D-fraction (PDF), a bioactive proteoglucan of Maitake mushroom, demonstrates anticancer and immunomodulatory activities, which are also shown to be potentiated by vitamin C (VC). We thus hypothesized that a combination of PDF and VC (PDF + VC) could be an alternative approach to more effectively inhibit the growth of RCC. STUDY DESIGN We examined the dose-dependent effects of PDF + VC on RCC cell viability and also performed biochemical assays to explore the growth regulatory mechanism. METHODS Human RCC, ACHN cell line, was employed and exposed to varying concentrations of PDF or VC and their combinations. Cell viability at specified times was determined by MTT assay. Lipid peroxidation assay, cell cycle analysis, and Western blot analysis were also performed. RESULTS PDF or VC alone led to the significant reduction in cell viability at 72 hours with PDF >500 µg/mL and VC ≥300 µM. When various combinations of PDF and VC were tested, the combination of the ineffective concentrations of PDF (300 µg/mL) and VC (200 µM) resulted in ~90% cell death in 24 hours. Lipid peroxidation assay then indicated significantly (~2.5 fold) elevated oxidative stress with this PDF + VC. Cell cycle analysis also indicated a G1 cell cycle arrest following a 6-hour PDF + VC treatment. Western blots further revealed a downregulation of Bcl2, an upregulation of Bax, and proteolytic activation of PARP (poly[ADP-ribose] polymerase) in PDF + VC-treated cells, indicating induction of apoptosis. CONCLUSION The present study demonstrates that the combination of PDF and VC can become highly cytotoxic, inducing severe cell death in ACHN cells. This cytotoxic mechanism appears to be primarily attributed to oxidative stress, accompanied by a G1 cell cycle arrest. Such cell death induced by PDF + VC could be more likely linked to apoptosis, as indicated by the modulation of apoptosis regulators (Bcl2, Bax, and PARP). Therefore, as PDF and VC may work synergistically to induce apoptotic cell death, they may have clinical implications in an alternative, improved therapeutic modality for advanced RCC.
Collapse
|
37
|
Fukumura H, Sato M, Kezuka K, Sato I, Feng X, Okumura S, Fujita T, Yokoyama U, Eguchi H, Ishikawa Y, Saito T. Effect of ascorbic acid on reactive oxygen species production in chemotherapy and hyperthermia in prostate cancer cells. J Physiol Sci 2012; 62:251-7. [PMID: 22392350 PMCID: PMC10717908 DOI: 10.1007/s12576-012-0204-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Cellular reactive oxygen species (ROS) production is increased by both temperature and anticancer drugs. Antioxidants are known to suppress ROS production while cancer patients may take them as dietary supplement during chemotherapy and hyperthermic therapy. We examined changes in ROS production in prostate cancer cells in the presence of various anticancer drugs and antioxidants at different temperatures. ROS production was increased with temperature in cancer cells, but not in normal cells; this increase was potently inhibited by ascorbic acid. ROS production was also increased in the presence of some anticancer drugs, such as vinblastine, but not by others. Dietary antioxidant supplements, such as β-carotene, showed variable effects. Ascorbic acid potently inhibited ROS production, even in the presence of anticancer drugs, while β-carotene showed no inhibition. Accordingly, our results suggest that cancer patients should carefully choose antioxidants during their cancer chemotherapy and/or hyperthermic therapy.
Collapse
Affiliation(s)
- Hidenobu Fukumura
- Department of Orthopaedic Surgery, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Motohiko Sato
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Kyouhei Kezuka
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Itaru Sato
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Xianfeng Feng
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Haruki Eguchi
- IHI Corporation, 1, Shin-nakahara, Isogoku, Yokohama, 235-8501 Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| | - Tomoyuki Saito
- Department of Orthopaedic Surgery, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama, 236-0004 Japan
| |
Collapse
|
38
|
Huang C, Ding G, Gu C, Zhou J, Kuang M, Ji Y, He Y, Kondo T, Fan J. Decreased selenium-binding protein 1 enhances glutathione peroxidase 1 activity and downregulates HIF-1α to promote hepatocellular carcinoma invasiveness. Clin Cancer Res 2012; 18:3042-53. [PMID: 22512980 DOI: 10.1158/1078-0432.ccr-12-0183] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE We aimed to characterize the role of selenium-binding protein 1 (SBP1) in hepatocellular carcinoma (HCC) invasiveness and underlying clinical significance. EXPERIMENTAL DESIGN SBP1 expression was measured in stepwise metastatic HCC cell lines by Western blotting. The role of SBP1 in HCC was investigated using siRNA. Immunofluorescence analyses were used to detect the interaction between SBP1 and glutathione peroxidase 1 (GPX1). Nineteen fresh tumor tissues and 323 paraffin-embedded samples were used to validate in vitro findings and to detect the prognostic significance of SBP1, respectively. RESULTS Inhibition of SBP1 effectively increased cell motility, promoted cell proliferation, and inhibited apoptosis only under oxidative stress; it also greatly enhanced GPX1 activity without altering GPX1 expression and downregulated hypoxia-inducible factor-1α (HIF-1α) expression. SBP1 and GPX1 formed nuclear bodies and colocalized under oxidative stress. In freshly isolated clinical HCC tissues, decreased SBP1 was linked with increased GPX1 activity and correlated with vascular invasion. Tumor tissue microarrays indicated that SBP1 was an independent risk factor for overall survival and disease recurrence; patients with lower SBP1 expression experienced shorter overall survival periods and higher rates of disease recurrence (P < 0.001). Further analyses indicated that the predictive power of SBP1 was more significant for patients beyond the Milan criteria than patients within the Milan criteria. CONCLUSIONS Decreased expression of SBP1 could promote tumor invasiveness by increasing GPX1 activity and diminishing HIF-1α expression in HCC; SBP1 could be a novel biomarker for predicting prognosis and guiding personalized therapeutic strategies, especially in patients with advanced HCC.
Collapse
Affiliation(s)
- Cheng Huang
- Liver Cancer Institute, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sarmento-Ribeiro AB, Dourado M, Paiva A, Freitas A, Silva T, Regateiro F, Oliveira CR. Apoptosis Deregulation Influences Chemoresistance to Azaguanine in Human Leukemic Cell Lines. Cancer Invest 2012; 30:331-42. [DOI: 10.3109/07357907.2012.659925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A. B. Sarmento-Ribeiro
- Applied Molecular Biology/Biochemistry Institute and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra,
Coimbra, Portugal,1
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra,
Coimbra, Portugal,2
- Universitaire Clinic of Hematology, Faculty of Medicine, University of Coimbra, Portugal6
| | - M. Dourado
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra,
Coimbra, Portugal,2
- Physiopathology Discipline of Medical Dental Care, Faculty of Medicine, University of Coimbra,
Coimbra, Portugal,3
| | - A. Paiva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra,
Coimbra, Portugal,2
- Center of Histocompatibility,
Coimbra, Portugal,4
| | - A. Freitas
- Center of Histocompatibility,
Coimbra, Portugal,4
| | - T. Silva
- Hematopathology, Institute of Pathological Anatomy, Faculty of Medicine, University of Coimbra,
Coimbra, Portugal,5
| | - F. Regateiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra,
Coimbra, Portugal,2
- Center of Histocompatibility,
Coimbra, Portugal,4
| | - C. R. Oliveira
- Applied Molecular Biology/Biochemistry Institute and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra,
Coimbra, Portugal,1
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra,
Coimbra, Portugal,2
| |
Collapse
|
40
|
Dayton A, Selvendiran K, Meduru S, Khan M, Kuppusamy ML, Naidu S, Kálai T, Hideg K, Kuppusamy P. Amelioration of doxorubicin-induced cardiotoxicity by an anticancer-antioxidant dual-function compound, HO-3867. J Pharmacol Exp Ther 2011; 339:350-7. [PMID: 21799049 PMCID: PMC3199994 DOI: 10.1124/jpet.111.183681] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 07/26/2011] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) is a drug commonly used for the treatment of cancer. The development of resistance to DOX is common, and high cumulative doses cause potentially lethal cardiac side effects. HO-3867 (3,5-bis(4-fluorobenzylidene)-1-[(2,2,5,5-tetramethyl-2,5-dihydro-1-hydroxy-pyrrol-3-yl)methyl]piperidin-4-one), a synthetic curcumin analog, has been shown to exhibit both anticancer and cardioprotective effects. However, its cardioprotection in the setting of a conventional cancer therapy has not been established. This work investigated the use of HO-3867 and DOX to achieve a complementary outcome, i.e., increased toxicity toward cancer cells, and reduced cardiac toxicity. Combination treatment was investigated using DOX-resistant MCF-7 breast cancer cells [MCF-7 multidrug-resistant (MDR)] and BALB/c mice. Lower doses of HO-3867 and DOX (5 and 2.5 μM, respectively) reduced viability of MCF-7 MDR cells to an extent significantly greater than that when either drug was used alone, an effect equivalent to that induced by exposure to 50 μM DOX. In normal cardiac cells, the loss of viability from combination treatment was significantly lower than that induced by 50 μM DOX. Increases in apoptotic markers, e.g., cleaved caspase-3, and decreases in fatty acid synthase and pAkt expressions were observed by Western blotting. Mice treated with both HO-3867 and DOX showed significant improvement in cardiac functional parameters compared with mice treated with DOX alone. Reduced expression of Bcl-2 and pAkt was observed in mice treated with DOX alone, whereas mice given combination treatment showed levels similar to control. The study indicates that combination treatment of HO-3867 and DOX is a viable option for treatment of cancer with reduced cardiotoxic side effects.
Collapse
Affiliation(s)
- Alex Dayton
- Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, 420 W. 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang X, Peng X, Yu W, Hou S, Zhao Y, Zhang Z, Huang X, Wu K. Alpha-tocopheryl succinate enhances doxorubicin-induced apoptosis in human gastric cancer cells via promotion of doxorubicin influx and suppression of doxorubicin efflux. Cancer Lett 2011; 307:174-81. [PMID: 21536373 DOI: 10.1016/j.canlet.2011.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOXO), a chemotherapy drug, is widely used in clinic for treating a variety of cancers. However, the treatment eventfully fails due to drug resistance and toxicity. Therefore, a combination strategy is needed to increase efficacy and reduce toxicity of DOXO. alpha-tocopheryl succinate (α-TOS) exhibits anticancer actions in vitro and in vivo. Here, we reported that combination of DOXO+α-TOS cooperatively acted to induce apoptosis in SGC-7901 cells. α-TOS enhanced cellular level of DOXO via promotion of DOXO influx and suppression of DOXO efflux. DOXO induced MDR1 mRNA and protein expression and α-TOS inhibited this event, indicating that α-TOS suppressed DOXO efflux via inhibition of MDR1. Furthermore, combination of DOXO+α-TOS induced increased levels of Fas and Bax protein expression and cleavage of caspase-8 and caspase-9, suggesting that combination treatment induced Fas/caspase-8 and Bax mediated mitochondria dependent apoptosis. Taken together, our results demonstrated that α-TOS enhanced DOXO anticancer efficiency via promotion of DOXO influx and suppression of MDR-1 mediated DOXO efflux.
Collapse
Affiliation(s)
- Xuguang Zhang
- Department of Nutrition and Food, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Relative resistance to oral theophylline treatment in patients with hyposmia manifested by decreased secretion of nasal mucus cyclic nucleotides. Am J Med Sci 2011; 341:17-22. [PMID: 21191261 DOI: 10.1097/maj.0b013e3181f1fdc8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Oral treatment with the phosphodiesterase inhibitor theophylline in an open-label fixed-design clinical trial in 312 patients with hyposmia improved smell function in >50%. Before treatment, all patients had lower than normal levels of nasal mucus cAMP and cGMP. The purpose of this study was to study relationships among changes in smell function, theophylline levels and nasal mucus cAMP and cGMP among patients whose smell function improved (responders) and those who did not improve (nonresponders) on oral theophylline treatment. METHODS After all data analysis from the clinical trial was completed, data from each of the 31 of the 312 patients in whom nasal mucus cAMP and cGMP and theophylline levels were available before and after theophylline treatment at several drug doses were evaluated. At initiation and at termination of each treatment, dose smell function, nasal mucus cAMP and cGMP and plasma theophylline were analyzed. RESULTS On the same theophylline dose, although serum theophylline increased among both responders and nonresponders, serum levels were consistently higher among responders. Nasal mucus cAMP and cGMP were also higher among responders than nonresponders. At higher theophylline doses, cGMP reached normal levels among responders, whereas it did not change significantly among nonresponders. CONCLUSIONS Some patients with hyposmia with initially low nasal mucus cAMP and cGMP levels may be relatively resistant to oral theophylline treatment. This result may offer a mechanism of response lack among some patients whose smell function did not improve after oral theophylline treatment although other factors may influence their response lack.
Collapse
|
43
|
Nieciecka D, Krysinski P. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1100-1107. [PMID: 21218807 DOI: 10.1021/la103583g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.
Collapse
Affiliation(s)
- Dorota Nieciecka
- Laboratory of Electrochemistry, Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Pasteur 1, Poland
| | | |
Collapse
|
44
|
Takeuchi M, Ashihara E, Yamazaki Y, Kimura S, Nakagawa Y, Tanaka R, Yao H, Nagao R, Hayashi Y, Hirai H, Maekawa T. Rakicidin A effectively induces apoptosis in hypoxia adapted Bcr-Abl positive leukemic cells. Cancer Sci 2010; 102:591-6. [PMID: 21166958 DOI: 10.1111/j.1349-7006.2010.01813.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Treatment with Abl tyrosine kinase inhibitors (TKI) drastically improves the prognosis of chronic myelogenous leukemia (CML) patients. However, quiescent CML cells are insensitive to TKI and can lead to relapse of the disease. Thus, research is needed to elucidate the properties of these quiescent CML cells, including their microenvironment, in order to effectively target them. Hypoxia is known to be a common feature of solid tumors that contributes to therapeutic resistance. Leukemic cells are also able to survive and proliferate in severely hypoxic environments. The hypoxic conditions in the bone marrow (BM) allow leukemic cells that reside there to become insensitive to cell death stimuli. To target leukemic cells in hypoxic conditions, we focused on the hypoxia-selective cytotoxin, Rakicidin A. A previous report showed that Rakicidin A, a natural product produced by the Micromonospora strain, induced hypoxia-selective cytotoxicity in solid tumors. Here, we describe Rakicidin A-induced cell death in hypoxia-adapted (HA)-CML cells with stem cell-like characteristics. Interestingly, apoptosis was induced via caspase-dependent and -independent pathways. In addition, treatment with Rakicidin A in combination with the TKI, imatinib, resulted in synergistic cytotoxicity against HA-CML cells. In conclusion, Rakicidin A is a promising compound for targeting TKI-resistant quiescent CML stem cells in the hypoxic BM environment.
Collapse
Affiliation(s)
- Miki Takeuchi
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kashkin KN, Musatkina EA, Komelkov AV, Favorskaya IA, Trushkin EV, Shleptsova VA, Sakharov DA, Vinogradova TV, Kopantzev EP, Zinovyeva MV, Kovaleva OV, Zborovskaya IB, Tonevitsky AG, Sverdlov ED. Expression profiling and putative mechanisms of resistance to doxorubicin of human lung cancer cells. DOKL BIOCHEM BIOPHYS 2010; 430:20-3. [DOI: 10.1134/s1607672910010072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Catalgol B, Wendt B, Grimm S, Breusing N, Ozer NK, Grune T. Chromatin repair after oxidative stress: role of PARP-mediated proteasome activation. Free Radic Biol Med 2010; 48:673-80. [PMID: 20025963 DOI: 10.1016/j.freeradbiomed.2009.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
Oxidative stress is an inevitable process in the nucleus, especially in antitumor chemotherapy, and adaptation by defense mechanisms seems to be one element in the development of long-term resistance to many chemotherapeutic drugs. In this study, a potential chromatin repair mechanism during oxidative stress was investigated in HT22 cells. The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified histone proteins in the nucleus. Poly(ADP-ribosyl)ation reactions also play an important role in DNA repair as a consequence of oxidative damage and single-strand breaks. Such a reaction may occur also with the 20S proteasome--with a known increase in enzymatic activity--and also with histones--reducing their proteolytic susceptibility as shown for the first time here. After hydrogen peroxide treatment of HT22 cells, degradation of the model peptide substrate suc-LLVY-MCA and degradation of oxidized histones by nuclear proteasome increased. During the removal of protein carbonyls, single-strand breaks and 8-hydroxy-2'-deoxyguanosine, proteasome, and poly(ADP-ribose) polymerase-1 enzymes were shown to play tightly interacting roles. Our results following the repair of oxidative damage show the proteolytic activation of proteasome concerning poly(ADP-ribosyl)ation together with a decline in poly(ADP-ribosyl)ation of oxidized histones, leading to a selective recognition of oxidatively modified histones.
Collapse
Affiliation(s)
- Betul Catalgol
- Institute of Biological Chemistry and Nutrition, University Hohenheim, 70593 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Protective effect of melatonin against mitomycin C-induced genotoxic damage in peripheral blood of rats. J Biomed Biotechnol 2009; 2009:791432. [PMID: 19859567 PMCID: PMC2764378 DOI: 10.1155/2009/791432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/05/2009] [Indexed: 11/17/2022] Open
Abstract
Mitomycin C (MMC) generates free radicals when metabolized. We investigated the effect of melatonin against MMC-induced genotoxicity in polychromatic erythrocytes and MMC-induced lipid peroxidation in brain and liver homogenates. Rats (N = 36) were classified into 4 groups: control, melatonin, MMC, and MMC + melatonin. Melatonin and MMC doses of
10 mg/kg and 2 mg/kg, respectively, were injected intraperitoneally. Peripheral blood samples were collected at 0, 24, 48, 72, and 96 hours posttreatment and homogenates were obtained at 96 hours posttreatment. The number of micronucleated polychromatic erythrocytes (MN-PCE) per 1000 PCE was used as a genotoxic marker. Malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA) levels were used as an index of lipid peroxidation. The MMC group showed a significant increase in MN-PCE at 24, 48, 72, and 96 hours that was significantly reduced with melatonin begin coadministrated. No significant differences were found in lipid peroxidation. Our results indicate that MMC-induced genotoxicity can be reduced by melatonin.
Collapse
|
48
|
Nowicka AM, Kowalczyk A, Donten M, Krysinski P, Stojek Z. Influence of a Magnetic Nanoparticle As a Drug Carrier on the Activity of Anticancer Drugs: Interactions of Double Stranded DNA and Doxorubicin Modified with a Carrier. Anal Chem 2009; 81:7474-83. [DOI: 10.1021/ac9014534] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Anna M. Nowicka
- Department of Chemistry, University of Warsaw, ul. Pasteura 1, PL-02-093 Warsaw
| | - Agata Kowalczyk
- Department of Chemistry, University of Warsaw, ul. Pasteura 1, PL-02-093 Warsaw
| | - Mikolaj Donten
- Department of Chemistry, University of Warsaw, ul. Pasteura 1, PL-02-093 Warsaw
| | - Pawel Krysinski
- Department of Chemistry, University of Warsaw, ul. Pasteura 1, PL-02-093 Warsaw
| | - Zbigniew Stojek
- Department of Chemistry, University of Warsaw, ul. Pasteura 1, PL-02-093 Warsaw
| |
Collapse
|
49
|
Konno S. Synergistic potentiation of D-fraction with vitamin C as possible alternative approach for cancer therapy. Int J Gen Med 2009; 2:91-108. [PMID: 20360893 PMCID: PMC2840554 DOI: 10.2147/ijgm.s5498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maitake D-fraction or PDF is the bioactive extract of maitake mushroom (Grifola frondosa) and its active constituent is the protein-bound polysaccharide (proteoglucan), or more specifically known as beta-glucan. PDF has been extensively studied and a number of its medicinal potentials/properties have been unveiled and demonstrated. Those include various physiological benefits ranging from immunomodulatory and antitumor activities to treatment for hypertension, diabetes, hypercholesterolemia, viral infections (hepatitis B and human immunodeficiency virus), and obesity. Particularly, two major biological activities of PDF, immunomodulatory and antitumor activities, have been the main target for scientific and clinical research. To demonstrate and confirm such biological activities, numerous studies have been performed in vitro and in vivo or in clinical settings. These studies showed that PDF was indeed capable of modulating immunologic and hematologic parameters, inhibiting or regressing the cancer cell growth, and even improving quality of life of cancer patients. Synergistic potentiation of PDF with vitamin C demonstrated in vitro is rather interesting and may have clinical implication, because such combination therapy appears to help improve the efficacy of currently ongoing cancer therapies. Recently, intravenous administration of vitamin C has been often used to increase its physiological concentration and this useful procedure may further make this combination therapy feasible. Therefore, PDF may have great potential, either being used solely or combined with other agents, for cancer therapy. Such relevant and detailed studies will be described and discussed herein with a special focus on the combination of PDF and vitamin C as a viable therapeutic option.
Collapse
Affiliation(s)
- Sensuke Konno
- Department of Urology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
50
|
Logani MK, Ziskin MC. Millimeter Waves at 25 mw/cm2have No Effect on Hydroxyl Radical-Dependent Lipid Peroxidation. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379809012888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|