1
|
Cao W, Lan J, Hu C, Kong J, Xiang L, Zhang Z, Sun Y, Zeng Z, Lei S. Predicting the prognosis of glioma patients with TERT promoter mutations and guiding the specific immune profile of immune checkpoint blockade therapy. Aging (Albany NY) 2024; 16:5618-5633. [PMID: 38499392 PMCID: PMC11006486 DOI: 10.18632/aging.205668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 03/20/2024]
Abstract
The telomerase reverse transcriptase promoter (TERTp) is frequently mutated in gliomas. This study sought to identify immune biomarkers of gliomas with TERTp mutations. Data from TCGA were used to identify and validate survival-associated gene signatures, and immune and stromal scores were calculated using the ESTIMATE algorithm. High stromal or immune scores in patients with TERTp-mutant gliomas correlated with shorter overall survival compared to cases with low stromal or immune scores. Among TERTp-mutant gliomas with both high immune and high stromal scores, 213 commonly shared DEGs were identified. Among 71 interacting DEGs representing candidate hub genes in a PPI network, HOXC6, WT1, CD70, and OTP showed significant ability in establishing subgroups of high- and low-risk patients. A risk model based on these 4 genes showed strong prognostic potential for gliomas with mutated TERTp, but was inapplicable for TERTp-wild-type gliomas. TERTp-mutant gliomas with high-risk scores displayed a greater percentage of naïve B cells, plasma cells, naïve CD4 T cells, and activated mast cells than low-risk score gliomas. TIDE analysis indicated that immune checkpoint blockade (ICB) therapy may benefit glioma patients with TERTp mutations. The present risk model can help predict prognosis of glioma patients with TERTp mutations and aid ICB treatment options.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jinzhi Lan
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chujiao Hu
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guiyang, Guizhou 550025, China
| | - Jinping Kong
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Limin Xiang
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zhixue Zhang
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yating Sun
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Schilling K. Revisiting the development of cerebellar inhibitory interneurons in the light of single-cell genetic analyses. Histochem Cell Biol 2024; 161:5-27. [PMID: 37940705 PMCID: PMC10794478 DOI: 10.1007/s00418-023-02251-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The present review aims to provide a short update of our understanding of the inhibitory interneurons of the cerebellum. While these cells constitute but a minority of all cerebellar neurons, their functional significance is increasingly being recognized. For one, inhibitory interneurons of the cerebellar cortex are now known to constitute a clearly more diverse group than their traditional grouping as stellate, basket, and Golgi cells suggests, and this diversity is now substantiated by single-cell genetic data. The past decade or so has also provided important information about interneurons in cerebellar nuclei. Significantly, developmental studies have revealed that the specification and formation of cerebellar inhibitory interneurons fundamentally differ from, say, the cortical interneurons, and define a mode of diversification critically dependent on spatiotemporally patterned external signals. Last, but not least, in the past years, dysfunction of cerebellar inhibitory interneurons could also be linked with clinically defined deficits. I hope that this review, however fragmentary, may stimulate interest and help focus research towards understanding the cerebellum.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut - Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, 53115, Bonn, Germany.
| |
Collapse
|
3
|
Steinmetz EL, Noh S, Klöppel C, Fuhr MF, Bach N, Raffael ME, Hildebrandt K, Wittling F, Jann D, Walldorf U. Generation of Mutants from the 57B Region of Drosophila melanogaster. Genes (Basel) 2023; 14:2047. [PMID: 38002990 PMCID: PMC10671637 DOI: 10.3390/genes14112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mutants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identified several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during development for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future.
Collapse
Affiliation(s)
- Eva Louise Steinmetz
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Zoology & Physiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building B2.1, D-66123 Saarbrücken, Germany
| | - Sandra Noh
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Christine Klöppel
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Martin F. Fuhr
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Nicole Bach
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Mona Evelyn Raffael
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Kirsten Hildebrandt
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Fabienne Wittling
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Doris Jann
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Medical Biochemistry & Molecular Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 45.2, D-66421 Homburg, Germany
| | - Uwe Walldorf
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| |
Collapse
|
4
|
Diaz C, de la Torre MM, Rubenstein JLR, Puelles L. Dorsoventral Arrangement of Lateral Hypothalamus Populations in the Mouse Hypothalamus: a Prosomeric Genoarchitectonic Analysis. Mol Neurobiol 2023; 60:687-731. [PMID: 36357614 PMCID: PMC9849321 DOI: 10.1007/s12035-022-03043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
The lateral hypothalamus (LH) has a heterogeneous cytoarchitectonic organization that has not been elucidated in detail. In this work, we analyzed within the framework of the prosomeric model the differential expression pattern of 59 molecular markers along the ventrodorsal dimension of the medial forebrain bundle in the mouse, considering basal and alar plate subregions of the LH. We found five basal (LH1-LH5) and four alar (LH6-LH9) molecularly distinct sectors of the LH with neuronal cell groups that correlate in topography with previously postulated alar and basal hypothalamic progenitor domains. Most peptidergic populations were restricted to one of these LH sectors though some may have dispersed into a neighboring sector. For instance, histaminergic Hdc-positive neurons were mostly contained within the basal LH3, Nts (neurotensin)- and Tac2 (tachykinin 2)-expressing cells lie strictly within LH4, Hcrt (hypocretin/orexin)-positive and Pmch (pro-melanin-concentrating hormone)-positive neurons appeared within separate LH5 subdivisions, Pnoc (prepronociceptin)-expressing cells were mainly restricted to LH6, and Sst (somatostatin)-positive cells were identified within the LH7 sector. The alar LH9 sector, a component of the Foxg1-positive telencephalo-opto-hypothalamic border region, selectively contained Satb2-expressing cells. Published studies of rodent LH subdivisions have not described the observed pattern. Our genoarchitectonic map should aid in systematic approaches to elucidate LH connectivity and function.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Margaret Martinez de la Torre
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
5
|
Hildebrandt K, Klöppel C, Gogel J, Hartenstein V, Walldorf U. Orthopedia expression during Drosophila melanogaster nervous system development and its regulation by microRNA-252. Dev Biol 2022; 492:87-100. [PMID: 36179878 DOI: 10.1016/j.ydbio.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
During brain development of Drosophila melanogaster many transcription factors are involved in regulating neural fate and morphogenesis. In our study we show that the transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, plays an important role in this process. Otp is expressed in a stable pattern in defined lineages from mid-embryonic stages into the adult brain and therefore a very stable marker for these lineages. We determined the abundance of the two different otp transcripts in the brain and hindgut during development using qPCR. CRISPR/Cas9 generated otp mutants of the longer protein form significantly affect the expression of Otp in specific areas. We generated an otp enhancer trap strain by gene targeting and reintegration of Gal4, which mimics the complete expression of otp during development except the embryonic hindgut expression. Since in the embryo, the expression of Otp is posttranscriptionally regulated, we looked for putative miRNAs interacting with the otp 3'UTR, and identified microRNA-252 as a candidate. Further analyses with mutated and deleted forms of the microRNA-252 interacting sequence in the otp 3'UTR demonstrate an in vivo interaction of microRNA-252 with the otp 3'UTR. An effect of this interaction is seen in the adult brain, where Otp expression is partially abolished in a knockout strain of microRNA-252. Our results show that Otp is another important factor for brain development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg, Saar, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg, Saar, Germany
| | - Jasmin Gogel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg, Saar, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg, Saar, Germany.
| |
Collapse
|
6
|
Santos-Durán GN, Ferreiro-Galve S, Mazan S, Anadón R, Rodríguez-Moldes I, Candal E. Developmental genoarchitectonics as a key tool to interpret the mature anatomy of the chondrichthyan hypothalamus according to the prosomeric model. Front Neuroanat 2022; 16:901451. [PMID: 35991967 PMCID: PMC9385951 DOI: 10.3389/fnana.2022.901451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.
Collapse
Affiliation(s)
- Gabriel N. Santos-Durán
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Susana Ferreiro-Galve
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Sylvie Mazan
- CNRS-UMR 7232, Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Paris, France
| | - Ramón Anadón
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Isabel Rodríguez-Moldes
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Eva Candal
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
- *Correspondence: Eva Candal,
| |
Collapse
|
7
|
Eugenin von Bernhardi J, Biechl D, Miek L, Herget U, Ryu S, Wullimann MF. A versatile transcription factor: Multiple roles of orthopedia a (otpa) beyond its restricted localization in dopaminergic systems of developing and adult zebrafish (Danio rerio) brains. J Comp Neurol 2022; 530:2537-2561. [PMID: 35708548 DOI: 10.1002/cne.25351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
Many transcription factors boost neural development and differentiation in specific directions and serve for identifying similar or homologous structures across species. The expression of Orthopedia (Otp) is critical for the development of certain cell groups along the vertebrate neuraxis, for example, the medial amygdala or hypothalamic neurosecretory neurons. Therefore, the primary focus of the present study is the distribution of Orthopedia a (Otpa) in the larval and adult zebrafish (Danio rerio) brain. Since Otpa is also critical for the development of zebrafish basal diencephalic dopaminergic cells, colocalization of Otpa with the catecholamine synthesizing enzyme tyrosine hydroxylase (TH) is studied. Cellular colocalization of Otpa and dopamine is only seen in magnocellular neurons of the periventricular posterior tubercular nucleus and in the posterior tuberal nucleus. Otpa-positive cells occur in many additional structures along the zebrafish neuraxis, from the secondary prosencephalon down to the hindbrain. Furthermore, Otpa expression is studied in shh-GFP and islet1-GFP transgenic zebrafish. Otpa-positive cells only express shh in dopaminergic magnocellular periventricular posterior tubercular cells, and only colocalize with islet1-GFP in the ventral zone and prerecess caudal periventricular hypothalamic zone and the perilemniscal nucleus. The scarcity of cellular colocalization of Otpa in islet1-GFP cells indicates that the Shh-islet1 neurogenetic pathway is not active in most Otpa-expressing domains. Our analysis reveals detailed correspondences between mouse and zebrafish forebrain territories including the zebrafish intermediate nucleus of the ventral telencephalon and the mouse medial amygdala. The zebrafish preoptic Otpa-positive domain represents the neuropeptidergic supraopto-paraventricular region of all tetrapods. Otpa domains in the zebrafish basal plate hypothalamus suggest that the ventral periventricular hypothalamic zone corresponds to the otp-expressing basal hypothalamic tuberal field in the mouse. Furthermore, the mouse otp domain in the mammillary hypothalamus compares partly to our Otpa-positive domain in the prerecess caudal periventricular hypothalamic zone (Hc-a).
Collapse
Affiliation(s)
- Jaime Eugenin von Bernhardi
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany.,The Solomon Snyder Department of Neuroscience, Johns Hopkins Univeristy, Baltimore, Maryland, USA
| | - Daniela Biechl
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany
| | - Laura Miek
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Soojin Ryu
- Living Systems Institute University of Exeter, Exeter, Devon, UK.,College of Medicine and Health, University of Exeter, Exeter, Devon, UK
| | - Mario F Wullimann
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany.,Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Hildebrandt K, Kolb D, Klöppel C, Kaspar P, Wittling F, Hartwig O, Federspiel J, Findji I, Walldorf U. Regulatory modules mediating the complex neural expression patterns of the homeobrain gene during Drosophila brain development. Hereditas 2022; 159:2. [PMID: 34983686 PMCID: PMC8728971 DOI: 10.1186/s41065-021-00218-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The homeobox gene homeobrain (hbn) is located in the 57B region together with two other homeobox genes, Drosophila Retinal homeobox (DRx) and orthopedia (otp). All three genes encode transcription factors with important functions in brain development. Hbn mutants are embryonic lethal and characterized by a reduction in the anterior protocerebrum, including the mushroom bodies, and a loss of the supraoesophageal brain commissure. RESULTS In this study we conducted a detailed expression analysis of Hbn in later developmental stages. In the larval brain, Hbn is expressed in all type II lineages and the optic lobes, including the medulla and lobula plug. The gene is expressed in the cortex of the medulla and the lobula rim in the adult brain. We generated a new hbnKOGal4 enhancer trap strain by reintegrating Gal4 in the hbn locus through gene targeting, which reflects the complete hbn expression during development. Eight different enhancer-Gal4 strains covering 12 kb upstream of hbn, the two large introns and 5 kb downstream of the gene, were established and hbn expression was investigated. We characterized several enhancers that drive expression in specific areas of the brain throughout development, from embryo to the adulthood. Finally, we generated deletions of four of these enhancer regions through gene targeting and analysed their effects on the expression and function of hbn. CONCLUSION The complex expression of Hbn in the developing brain is regulated by several specific enhancers within the hbn locus. Each enhancer fragment drives hbn expression in several specific cell lineages, and with largely overlapping patterns, suggesting the presence of shadow enhancers and enhancer redundancy. Specific enhancer deletion strains generated by gene targeting display developmental defects in the brain. This analysis opens an avenue for a deeper analysis of hbn regulatory elements in the future.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Petra Kaspar
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: COS Heidelberg, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Fabienne Wittling
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Hemholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, 66123, Saarbrücken, Germany
| | - Olga Hartwig
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Hemholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, 66123, Saarbrücken, Germany
| | - Jannic Federspiel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - India Findji
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
9
|
Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell 2021; 29:328-343.e5. [PMID: 34879244 DOI: 10.1016/j.stem.2021.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022]
Abstract
The hypothalamus comprises various nuclei and neuronal subpopulations that control fundamental homeostasis and behaviors. However, spatiotemporal molecular characterization of hypothalamus development in humans is largely unexplored. Here, we revealed spatiotemporal transcriptome profiles and cell-type characteristics of human hypothalamus development and illustrated the molecular diversity of neural progenitors and the cell-fate decision, which is programmed by a combination of transcription factors. Different neuronal and glial fates are sequentially produced and showed spatial developmental asynchrony. Moreover, human hypothalamic gliogenesis occurs at an earlier stage of gestation and displays distinctive transcription profiles compared with those in mouse. Notably, early oligodendrocyte cells in humans exhibit different gene patterns and interact with neuronal cells to regulate neuronal maturation by Wnt, Hippo, and integrin signals. Overall, our study provides a comprehensive molecular landscape of human hypothalamus development at early- and mid-embryonic stages and a foundation for understanding its spatial and functional complexity.
Collapse
|
10
|
Klöppel C, Hildebrandt K, Kolb D, Fürst N, Bley I, Karlowatz RJ, Walldorf U. Functional analysis of enhancer elements regulating the expression of the Drosophila homeodomain transcription factor DRx by gene targeting. Hereditas 2021; 158:42. [PMID: 34736520 PMCID: PMC8569992 DOI: 10.1186/s41065-021-00210-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background The Drosophila brain is an ideal model system to study stem cells, here called neuroblasts, and the generation of neural lineages. Many transcriptional activators are involved in formation of the brain during the development of Drosophila melanogaster. The transcription factor Drosophila Retinal homeobox (DRx), a member of the 57B homeobox gene cluster, is also one of these factors for brain development. Results In this study a detailed expression analysis of DRx in different developmental stages was conducted. We show that DRx is expressed in the embryonic brain in the protocerebrum, in the larval brain in the DM and DL lineages, the medulla and the lobula complex and in the central complex of the adult brain. We generated a DRx enhancer trap strain by gene targeting and reintegration of Gal4, which mimics the endogenous expression of DRx. With the help of eight existing enhancer-Gal4 strains and one made by our group, we mapped various enhancers necessary for the expression of DRx during all stages of brain development from the embryo to the adult. We made an analysis of some larger enhancer regions by gene targeting. Deletion of three of these enhancers showing the most prominent expression patterns in the brain resulted in specific temporal and spatial loss of DRx expression in defined brain structures. Conclusion Our data show that DRx is expressed in specific neuroblasts and defined neural lineages and suggest that DRx is another important factor for Drosophila brain development. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00210-z.
Collapse
Affiliation(s)
- Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Nora Fürst
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.,Present address: Genetics/Epigenetics, Saarland University, Building A2.4, 66123, Saarbrücken, Germany
| | - Isabelle Bley
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.,Present address: Research Institute Children's Cancer Center Hamburg, Building N63, Martinistr. 52, 20251, Hamburg, Germany
| | | | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
11
|
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, Benoit JB. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biol 2021; 19:41. [PMID: 33750380 PMCID: PMC7944917 DOI: 10.1186/s12915-021-00975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. Conclusions The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00975-9.
Collapse
Affiliation(s)
- Pia U Olafson
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California - Davis, Davis, CA, USA
| | - Greta Buckmeier
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig J Coates
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - Megan Davis
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Justin Dykema
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Scott J Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Evan N Jansen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Lawson
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Gareth L Maslen
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dana Nayduch
- Arthropod-borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kennan J Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Tyler J Raszick
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Perot Saelao
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Sonja L Swiger
- Department of Entomology, Texas A&M AgriLife Research and Extension Center, Stephenville, TX, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - David B Taylor
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, USA
| | - Wesley C Warren
- University of Missouri, Bond Life Sciences Center, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,College of Medicine, Ohio State University, Columbus, OH, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Kolb D, Kaspar P, Klöppel C, Walldorf U. The Drosophila homeodomain transcription factor Homeobrain is involved in the formation of the embryonic protocerebrum and the supraesophageal brain commissure. Cells Dev 2021; 165:203657. [PMID: 33993980 DOI: 10.1016/j.cdev.2021.203657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
During the embryonic development of Drosophila melanogaster many transcriptional activators are involved in the formation of the embryonic brain. In our study we show that the transcription factor Homeobrain (Hbn), a member of the 57B homeobox gene cluster, is an additional factor involved in the formation of the embryonic Drosophila brain. Using a Hbn antibody and specific cell type markers a detailed expression analysis during embryonic brain development was conducted. We show that Hbn is expressed in several regions in the protocerebrum, including fibre tract founder cells closely associated with the supraesophageal brain commissure and also in the mushroom bodies. During the formation of the supraesophageal commissure, Hbn and FasII-positive founder cells build an interhemispheric bridge priming the commissure and thereby linking both brain hemispheres. The Hbn expression is restricted to neural but not glial cells in the embryonic brain. In a mutagenesis screen we generated two mutant hbn alleles that both show embryonic lethality. The phenotype of the hbn mutant alleles is characterized by a reduction of the protocerebrum, a loss of the supraesophageal commissure and mushroom body progenitors and also by a dislocation of the optic lobes. Extensive apoptosis correlates with the impaired formation of the embryonic protocerebrum and the supraesophageal commissure. Our results show that Hbn is another important factor for embryonic brain development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Petra Kaspar
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany.
| |
Collapse
|
13
|
Morales L, Castro-Robles B, Abellán A, Desfilis E, Medina L. A novel telencephalon-opto-hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala. J Comp Neurol 2021; 529:2418-2449. [PMID: 33386618 DOI: 10.1002/cne.25103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Deficits in social cognition and behavior are a hallmark of many psychiatric disorders. The medial extended amygdala, including the medial amygdala and the medial bed nucleus of the stria terminalis, is a key component of functional networks involved in sociality. However, this nuclear complex is highly heterogeneous and contains numerous GABAergic and glutamatergic neuron subpopulations. Deciphering the connections of different neurons is essential in order to understand how this structure regulates different aspects of sociality, and it is necessary to evaluate their differential implication in distinct mental disorders. Developmental studies in different vertebrates are offering new venues to understand neuronal diversity of the medial extended amygdala and are helping to establish a relation between the embryonic origin and molecular signature of distinct neurons with the functional subcircuits in which they are engaged. These studies have provided many details on the distinct GABAergic neurons of the medial extended amygdala, but information on the glutamatergic neurons is still scarce. Using an Otp-eGFP transgenic mouse and multiple fluorescent labeling, we show that most glutamatergic neurons of the medial extended amygdala originate in a distinct telencephalon-opto-hypothalamic embryonic domain (TOH), located at the transition between telencephalon and hypothalamus, which produces Otp-lineage neurons expressing the telencephalic marker Foxg1 but not Nkx2.1 during development. These glutamatergic cells include a subpopulation of projection neurons of the medial amygdala, which activation has been previously shown to promote autistic-like behavior. Our data open new venues for studying the implication of this neuron subtype in neurodevelopmental disorders producing social deficits.
Collapse
Affiliation(s)
- Lorena Morales
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Beatriz Castro-Robles
- Laboratory of Cerebrovascular, Neurodegenerative and Neuro-oncology Diseases, Research Unit, Complejo Hospitalario Universitario de Albacete, Castilla-La Mancha, Spain
| | - Antonio Abellán
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Ester Desfilis
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Loreta Medina
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| |
Collapse
|
14
|
Cheng J, Liu HP, Lin WY, Tsai FJ. Identification of contributing genes of Huntington's disease by machine learning. BMC Med Genomics 2020; 13:176. [PMID: 33228685 PMCID: PMC7684976 DOI: 10.1186/s12920-020-00822-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Huntington’s disease (HD) is an inherited disorder caused by the polyglutamine (poly-Q) mutations of the HTT gene results in neurodegeneration characterized by chorea, loss of coordination, cognitive decline. However, HD pathogenesis is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of HD’s mechanism from machine learning is so far unrealized, majorly due to the lack of needed data density.
Methods To harness the knowledge of the HD pathogenesis from the expression profiles of postmortem prefrontal cortex samples of 157 HD and 157 controls, we used gene profiling ranking as the criteria to reduce the dimension to the order of magnitude of the sample size, followed by machine learning using the decision tree, rule induction, random forest, and generalized linear model. Results These four Machine learning models identified 66 potential HD-contributing genes, with the cross-validated accuracy of 90.79 ± 4.57%, 89.49 ± 5.20%, 90.45 ± 4.24%, and 97.46 ± 3.26%, respectively. The identified genes enriched the gene ontology of transcriptional regulation, inflammatory response, neuron projection, and the cytoskeleton. Moreover, three genes in the cognitive, sensory, and perceptual systems were also identified. Conclusions The mutant HTT may interfere with both the expression and transport of these identified genes to promote the HD pathogenesis.
Collapse
Affiliation(s)
- Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,Brain Diseases Research Center, China Medical University, Taichung, 40402, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan. .,Children's Medical Center, China Medical University Hospital, Taichung, 40447, Taiwan.
| |
Collapse
|
15
|
Hildebrandt K, Bach N, Kolb D, Walldorf U. The homeodomain transcription factor Orthopedia is involved in development of the Drosophila hindgut. Hereditas 2020; 157:46. [PMID: 33213520 PMCID: PMC7678101 DOI: 10.1186/s41065-020-00160-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background The Drosophila hindgut is commonly used model for studying various aspects of organogenesis like primordium establishment, further specification, patterning, and morphogenesis. During embryonic development of Drosophila, many transcriptional activators are involved in the formation of the hindgut. The transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, is expressed in the hindgut and nervous system of developing Drosophila embryos, but due to the lack of mutants no functional analysis has been conducted yet. Results We show that two different otp transcripts, a hindgut-specific and a nervous system-specific form, are present in the Drosophila embryo. Using an Otp antibody, a detailed expression analysis during hindgut development was carried out. Otp was not only expressed in the embryonic hindgut, but also in the larval and adult hindgut. To analyse the function of otp, we generated the mutant otp allele otpGT by ends-out gene targeting. In addition, we isolated two EMS-induced otp alleles in a genetic screen for mutants of the 57B region. All three otp alleles showed embryonic lethality with a severe hindgut phenotype. Anal pads were reduced and the large intestine was completely missing. This phenotype is due to apoptosis in the hindgut primordium and the developing hindgut. Conclusion Our data suggest that Otp is another important factor for hindgut development of Drosophila. As a downstream factor of byn Otp is most likely present only in differentiated hindgut cells during all stages of development rather than in stem cells.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Nicole Bach
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany.
| |
Collapse
|
16
|
Hu Y, Li J, Zhu Y, Li M, Lin J, Yang L, Wang C, Lu Z. Development and characterization of an Otp conditional loss of function allele. Genesis 2020; 58:e23370. [PMID: 32468663 DOI: 10.1002/dvg.23370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 01/11/2023]
Abstract
Orthopedia (Otp) is a homeodomain transcription factor that plays an essential role in the development of hypothalamic neurosecretory systems. Loss of Otp results in the failure of differentiation of key hypothalamic neuroendocrine cell types, and pups die soon after birth. Although the constitutive knockout Otp mouse model (Otp KO ) has significantly expanded our understanding of Otp's function in vivo, a conditional loss of function Otp allele that enables tissue or cell-type specific ablation of Otp has not been developed. Here, we used CRISPR/Cas9 gene-editing technology to generate a conditional Otp knockout mouse line in which exon 2 of the murine Otp gene is flanked by LoxP sites (Otp f/f ). Crossing the Otp f/f mouse with Agrp-Ires-cre mouse, we demonstrate the requirement for Otp in the continuous differentiation of AgRP neurons after cell fate determination. We also show that the residual AgRP neurons in Agrp-Ires-cre;Otp f/f mice project to similar downstream target regions. This newly developed Otp f/f mouse can be used to explore the functions of Otp with cell-type or temporal specificity.
Collapse
Affiliation(s)
- Yu Hu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Jiamin Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Zhu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,Shenzhen Key Lab of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengqi Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,Shenzhen Key Lab of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianbang Lin
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lixin Yang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Wang
- Naval Medical Center of PLA, Shanghai, China
| | - Zhonghua Lu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Wang K, Liu ZG, Lin ZG, Yin L, Gao FC, Chen GH, Ji T. Epigenetic Modifications May Regulate the Activation of the Hypopharyngeal Gland of Honeybees ( Apis Mellifera) During Winter. Front Genet 2020; 11:46. [PMID: 32117456 PMCID: PMC7029738 DOI: 10.3389/fgene.2020.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/15/2020] [Indexed: 01/31/2023] Open
Abstract
DNA methylation is an epigenetic modification primarily responsible for individual phenotypic variation. This modification has been reported to play an important role in caste, brain plasticity, and body development in honeybees (Apis mellifera). Here, we report the DNA methylation profile of honeybee hypopharyngeal glands, from atrophy in winter to arousal in the following spring, through the use of whole-genome bisulfite sequencing. Consistent with previous studies in other Apis species, we found low methylation levels of the hypopharyngeal gland genome that were mostly of the CG type. Notably, we observed a strong preference for CpG methylation, which was localized in promoters and exon regions. This result further indicated that, in honeybees, DNA methylation may regulate gene expression by mediating alternative splicing, in addition to silencing gene in the promoter regions. After assessment by correlation analysis, we identified seven candidate proteins encoded by differentially methylated genes, including aristaless-related homeobox, forkhead box protein O, headcase, alpha-amylase, neural-cadherin, epidermal growth factor receptor, and aquaporin, which are reported to be involved in cell growth, proliferation, and differentiation. Hypomethylation followed by upregulated expression of these candidates suggested that DNA methylation may play significant roles in the activation of hypopharyngeal glands in overwintering honeybees. Overall, this study elucidates epigenetic modification differences in honeybee hypopharyngeal glands by comparing an inactive winter state to an aroused state in the following spring, which could provide further insight into the evolution of insect sociality and regulatory plasticity.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhen-guo Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhe-guang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Fu-chao Gao
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guo-hong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Mitsumoto K, Suga H, Sakakibara M, Soen M, Yamada T, Ozaki H, Nagai T, Kano M, Kasai T, Ozone C, Ogawa K, Sugiyama M, Onoue T, Tsunekawa T, Takagi H, Hagiwara D, Ito Y, Iwama S, Goto M, Banno R, Arima H. Improved methods for the differentiation of hypothalamic vasopressin neurons using mouse induced pluripotent stem cells. Stem Cell Res 2019; 40:101572. [PMID: 31539858 DOI: 10.1016/j.scr.2019.101572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
High differentiation efficiency is one of the most important factors in developing an in vitro model from pluripotent stem cells. In this report, we improved the handling technique applied to mouse-induced pluripotent stem (iPS) cells, resulting in better differentiation into hypothalamic vasopressin (AVP) neurons. We modified the culture procedure to make the maintenance of iPS cells in an undifferentiated state much easier. Three-dimensional floating culture was demonstrated to be effective for mouse iPS cells. We also improved the differentiation method with regards to embryology, resulting in a greater number of bigger colonies of AVP neurons differentiating from mouse iPS cells. Fgf8, which was not used in the original differentiation method, increased iPS differentiation into AVP neurons. These refinements will be useful as a valuable tool for the modeling of degenerative disease in AVP neurons in vitro using disease-specific iPS cells in future studies.
Collapse
Affiliation(s)
- Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| | - Mayu Sakakibara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mika Soen
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tomiko Yamada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takashi Nagai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mayuko Kano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takatoshi Kasai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Chikafumi Ozone
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Koichiro Ogawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
19
|
Curt JR, Yaghmaeian Salmani B, Thor S. Anterior CNS expansion driven by brain transcription factors. eLife 2019; 8:45274. [PMID: 31271353 PMCID: PMC6634974 DOI: 10.7554/elife.45274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
During CNS development, there is prominent expansion of the anterior region, the brain. In Drosophila, anterior CNS expansion emerges from three rostral features: (1) increased progenitor cell generation, (2) extended progenitor cell proliferation, (3) more proliferative daughters. We find that tailless (mouse Nr2E1/Tlx), otp/Rx/hbn (Otp/Arx/Rax) and Doc1/2/3 (Tbx2/3/6) are important for brain progenitor generation. These genes, and earmuff (FezF1/2), are also important for subsequent progenitor and/or daughter cell proliferation in the brain. Brain TF co-misexpression can drive brain-profile proliferation in the nerve cord, and can reprogram developing wing discs into brain neural progenitors. Brain TF expression is promoted by the PRC2 complex, acting to keep the brain free of anti-proliferative and repressive action of Hox homeotic genes. Hence, anterior expansion of the Drosophila CNS is mediated by brain TF driven ‘super-generation’ of progenitors, as well as ‘hyper-proliferation’ of progenitor and daughter cells, promoted by PRC2-mediated repression of Hox activity.
Collapse
Affiliation(s)
- Jesús Rodriguez Curt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | | | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden.,School of Biomedical Sciences, University of Queensland, Saint Lucia, Australia
| |
Collapse
|
20
|
Drosophila Homeodomain-Interacting Protein Kinase (Hipk) Phosphorylates the Homeodomain Proteins Homeobrain, Empty Spiracles, and Muscle Segment Homeobox. Int J Mol Sci 2019; 20:ijms20081931. [PMID: 31010135 PMCID: PMC6515119 DOI: 10.3390/ijms20081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022] Open
Abstract
The Drosophila homeodomain-interacting protein kinase (Hipk) is the fly representative of the well-conserved group of HIPKs in vertebrates. It was initially found through its characteristic interactions with homeodomain proteins. Hipk is involved in a variety of important developmental processes, such as the development of the eye or the nervous system. In the present study, we set Hipk and the Drosophila homeodomain proteins Homeobrain (Hbn), Empty spiracles (Ems), and Muscle segment homeobox (Msh) in an enzyme-substrate relationship. These homeoproteins are transcription factors that function during Drosophila neurogenesis and are, at least in part, conserved in vertebrates. We reveal a physical interaction between Hipk and the three homeodomain proteins in vivo using bimolecular fluorescence complementation (BiFC). In the course of in vitro phosphorylation analysis and subsequent mutational analysis we mapped several Hipk phosphorylation sites of Hbn, Ems, and Msh. The phosphorylation of Hbn, Ems, and Msh may provide further insight into the function of Hipk during development of the Drosophila nervous system.
Collapse
|
21
|
Dhaygude K, Nair A, Johansson H, Wurm Y, Sundström L. The first draft genomes of the ant Formica exsecta, and its Wolbachia endosymbiont reveal extensive gene transfer from endosymbiont to host. BMC Genomics 2019; 20:301. [PMID: 30991952 PMCID: PMC6469114 DOI: 10.1186/s12864-019-5665-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/02/2019] [Indexed: 02/05/2023] Open
Abstract
Background Adapting to changes in the environment is the foundation of species survival, and is usually thought to be a gradual process. However, transposable elements (TEs), epigenetic modifications, and/or genetic material acquired from other organisms by means of horizontal gene transfer (HGTs), can also lead to novel adaptive traits. Social insects form dense societies, which attract and maintain extra- and intracellular accessory inhabitants, which may facilitate gene transfer between species. The wood ant Formica exsecta (Formicidae; Hymenoptera), is a common ant species throughout the Palearctic region. The species is a well-established model for studies of ecological characteristics and evolutionary conflict. Results In this study, we sequenced and assembled draft genomes for F. exsecta and its endosymbiont Wolbachia. The F. exsecta draft genome is 277.7 Mb long; we identify 13,767 protein coding genes, for which we provide gene ontology and protein domain annotations. This is also the first report of a Wolbachia genome from ants, and provides insights into the phylogenetic position of this endosymbiont. We also identified multiple horizontal gene transfer events (HGTs) from Wolbachia to F. exsecta. Some of these HGTs have also occurred in parallel in multiple other insect genomes, highlighting the extent of HGTs in eukaryotes. Conclusion We present the first draft genome of ant F. exsecta, and its endosymbiont Wolbachia (wFex), and show considerable rates of gene transfer from the symbiont to the host. We expect that especially the F. exsecta genome will be valuable resource in further exploration of the molecular basis of the evolution of social organization. Electronic supplementary material The online version of this article (10.1186/s12864-019-5665-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and environmental sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland.
| | - Abhilash Nair
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and environmental sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Helena Johansson
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and environmental sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Yannick Wurm
- Organismal Biology Department, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Liselotte Sundström
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and environmental sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900, Hanko, Finland
| |
Collapse
|
22
|
Mattiske T, Tan MH, Dearsley O, Cloosterman D, Hii CS, Gécz J, Shoubridge C. Regulating transcriptional activity by phosphorylation: A new mechanism for the ARX homeodomain transcription factor. PLoS One 2018; 13:e0206914. [PMID: 30419043 PMCID: PMC6231642 DOI: 10.1371/journal.pone.0206914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/22/2018] [Indexed: 01/08/2023] Open
Abstract
Aristaless-related homeobox (ARX) gene encodes a paired-type homeodomain transcription factor with critical roles in development. Here we identify that ARX protein is phosphorylated. Using mass spectrometry and in vitro kinase assays we identify phosphorylation at serines 37, 67 and 174. Through yeast-2-hybrid and CoIP we identified PICK1 (Protein interacting with C kinase 1) binding with the C-terminal region of ARX. PICK1 is a scaffold protein known to facilitate phosphorylation of protein partners by protein kinase C alpha (PRKCA). We confirm that ARX is phosphorylated by PRKCA and demonstrate phosphorylation at serine 174. We demonstrate that phosphorylation is required for correct transcriptional activity of the ARX protein using transcriptome-wide analysis of gene expression of phospho-null mutants (alanines replacing serines) compared to ARX wild-type (ARX-WT) overexpressed in pancreatic alpha TC cells. Compared to untransfected cells, ARX-WT overexpression significantly altered expression of 70 genes (Log2FC >+/-1.0, P-value <0.05). There were fewer genes with significantly altered expression compared to untransfected cells with the double phospho-null mutant Ser37Ala+Ser67Ala (26%) and Ser174Ala (39%), respectively. We demonstrate that the c-terminal region of ARX required to bind PICK1 causes a shift in PICK1 subcellular localisation to the nucleus to co-locate with the ARX protein, and truncation of this C-terminal region leads to the same loss of transcriptional activation as S174A mutant. In conclusion, we show that ARX is phosphorylated at several sites and that this modification affects its transcriptional activity.
Collapse
Affiliation(s)
- Tessa Mattiske
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - May H. Tan
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Oliver Dearsley
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | | | - Charles S. Hii
- Department of Immunopathology, SA-Pathology, Adelaide, Australia
| | - Jozef Gécz
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Healthy Mothers and Babies, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
23
|
Nagpal J, Herget U, Choi MK, Ryu S. Anatomy, development, and plasticity of the neurosecretory hypothalamus in zebrafish. Cell Tissue Res 2018; 375:5-22. [PMID: 30109407 DOI: 10.1007/s00441-018-2900-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus harbors diverse neurosecretory cells with critical physiological roles for the homeostasis. Decades of research in rodents have provided a large amount of information on the anatomy, development, and function of this important hypothalamic nucleus. However, since the hypothalamus lies deep within the brain in mammals and is difficult to access, many questions regarding development and plasticity of this nucleus still remain. In particular, how different environmental conditions, including stress exposure, shape the development of this important nucleus has been difficult to address in animals that develop in utero. To address these open questions, the transparent larval zebrafish with its rapid external development and excellent genetic toolbox offers exciting opportunities. In this review, we summarize recent information on the anatomy and development of the neurosecretory preoptic area (NPO), which represents a similar structure to the mammalian PVN in zebrafish. We will then review recent studies on the development of different cell types in the neurosecretory hypothalamus both in mouse and in fish. Lastly, we discuss stress-induced plasticity of the PVN mainly discussing the data obtained in rodents, but pointing out tools and approaches available in zebrafish for future studies. This review serves as a primer for the currently available information relevant for studying the development and plasticity of this important brain region using zebrafish.
Collapse
Affiliation(s)
- Jatin Nagpal
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd. Mail Code 156-29, Pasadena, CA, 91125, USA
| | - Min K Choi
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Soojin Ryu
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
24
|
Lee B, Kim J, An T, Kim S, Patel EM, Raber J, Lee SK, Lee S, Lee JW. Dlx1/2 and Otp coordinate the production of hypothalamic GHRH- and AgRP-neurons. Nat Commun 2018; 9:2026. [PMID: 29795232 PMCID: PMC5966420 DOI: 10.1038/s41467-018-04377-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/23/2018] [Indexed: 01/07/2023] Open
Abstract
Despite critical roles of the hypothalamic arcuate neurons in controlling the growth and energy homeostasis, the gene regulatory network directing their development remains unclear. Here we report that the transcription factors Dlx1/2 and Otp coordinate the balanced generation of the two functionally related neurons in the hypothalamic arcuate nucleus, GHRH-neurons promoting the growth and AgRP-neurons controlling the feeding and energy expenditure. Dlx1/2-deficient mice show a loss-of-GHRH-neurons and an increase of AgRP-neurons, and consistently develop dwarfism and consume less energy. These results indicate that Dlx1/2 are crucial for specifying the GHRH-neuronal identity and, simultaneously, for suppressing AgRP-neuronal fate. We further show that Otp is required for the generation of AgRP-neurons and that Dlx1/2 repress the expression of Otp by directly binding the Otp gene. Together, our study demonstrates that the identity of GHRH- and AgRP-neurons is synchronously specified and segregated by the Dlx1/2-Otp gene regulatory axis.
Collapse
Affiliation(s)
- Bora Lee
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Janghyun Kim
- Neuroscience Section, Papé Family Pediatrics Research Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Taekyeong An
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 06978, Korea
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 06978, Korea
| | - Esha M Patel
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
- Departments of Neurology and Radiation Medicine, and Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatrics Research Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Jae W Lee
- Neuroscience Section, Papé Family Pediatrics Research Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
25
|
Slota LA, McClay DR. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo. Dev Biol 2018; 435:138-149. [PMID: 29331498 PMCID: PMC5837949 DOI: 10.1016/j.ydbio.2017.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
26
|
Moir L, Bochukova EG, Dumbell R, Banks G, Bains RS, Nolan PM, Scudamore C, Simon M, Watson KA, Keogh J, Henning E, Hendricks A, O'Rahilly S, Barroso I, Sullivan AE, Bersten DC, Whitelaw ML, Kirsch S, Bentley E, Farooqi IS, Cox RD. Disruption of the homeodomain transcription factor orthopedia homeobox (Otp) is associated with obesity and anxiety. Mol Metab 2017; 6:1419-1428. [PMID: 29107289 PMCID: PMC5681237 DOI: 10.1016/j.molmet.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Genetic studies in obese rodents and humans can provide novel insights into the mechanisms involved in energy homeostasis. Methods In this study, we genetically mapped the chromosomal region underlying the development of severe obesity in a mouse line identified as part of a dominant N-ethyl-N-nitrosourea (ENU) mutagenesis screen. We characterized the metabolic and behavioral phenotype of obese mutant mice and examined changes in hypothalamic gene expression. In humans, we examined genetic data from people with severe early onset obesity. Results We identified an obese mouse heterozygous for a missense mutation (pR108W) in orthopedia homeobox (Otp), a homeodomain containing transcription factor required for the development of neuroendocrine cell lineages in the hypothalamus, a region of the brain important in the regulation of energy homeostasis. OtpR108W/+ mice exhibit increased food intake, weight gain, and anxiety when in novel environments or singly housed, phenotypes that may be partially explained by reduced hypothalamic expression of oxytocin and arginine vasopressin. R108W affects the highly conserved homeodomain, impairs DNA binding, and alters transcriptional activity in cells. We sequenced OTP in 2548 people with severe early-onset obesity and found a rare heterozygous loss of function variant in the homeodomain (Q153R) in a patient who also had features of attention deficit disorder. Conclusions OTP is involved in mammalian energy homeostasis and behavior and appears to be necessary for the development of hypothalamic neural circuits. Further studies will be needed to investigate the contribution of rare variants in OTP to human energy homeostasis. A mouse Otp mutation alters hypothalamic neuropeptide expression leading to increased food intake, obesity and anxiety. In severe early onset obesity, we found a heterozygous LOF variant in a patient with attention deficit disorder features. These studies show for the first time that mutations in the Otp/OTP gene cause obesity.
Collapse
Affiliation(s)
- Lee Moir
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Elena G Bochukova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Rebecca Dumbell
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Rasneer S Bains
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Patrick M Nolan
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Cheryl Scudamore
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Michelle Simon
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Kimberly A Watson
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK
| | - Julia Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Audrey Hendricks
- Wellcome Trust Sanger Institute, Cambridge, UK; Department of Mathematical and Statistical Sciences, University of Colorado-Denver, Denver, CO 80204, USA
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | | | - Adrienne E Sullivan
- Department Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - David C Bersten
- Department Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Murray L Whitelaw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Susan Kirsch
- Department of Endocrinology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
| | - Elizabeth Bentley
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Roger D Cox
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
27
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
28
|
Yang KY, Chen Y, Zhang Z, Ng PKS, Zhou WJ, Zhang Y, Liu M, Chen J, Mao B, Tsui SKW. Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development. Sci Rep 2016; 6:23195. [PMID: 26979494 PMCID: PMC4793263 DOI: 10.1038/srep23195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/29/2016] [Indexed: 01/05/2023] Open
Abstract
Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis, and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development, and advance understanding of the developmental dynamics in vertebrates.
Collapse
Affiliation(s)
- Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Chen
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - Zuming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Patrick Kwok-Shing Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yinfeng Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minghua Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, Chinese Academy of Sciences, Nanjing, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat 2015. [PMID: 25954163 DOI: 10.3389/fnana.2015.00047.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism's development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.
Collapse
Affiliation(s)
- Jakob Biran
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Maayan Tahor
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Einav Wircer
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Gil Levkowitz
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
30
|
Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat 2015; 9:47. [PMID: 25954163 PMCID: PMC4404869 DOI: 10.3389/fnana.2015.00047] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022] Open
Abstract
The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.
Collapse
Affiliation(s)
- Jakob Biran
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Maayan Tahor
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Einav Wircer
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Gil Levkowitz
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
31
|
Merkle FT, Maroof A, Wataya T, Sasai Y, Studer L, Eggan K, Schier AF. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 2015; 142:633-43. [PMID: 25670790 DOI: 10.1242/dev.117978] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases.
Collapse
Affiliation(s)
- Florian T Merkle
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Asif Maroof
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Takafumi Wataya
- Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan Department of Neurosurgery, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
| | - Yoshiki Sasai
- Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
32
|
Puelles L, Rubenstein JLR. A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front Neuroanat 2015; 9:27. [PMID: 25852489 PMCID: PMC4365718 DOI: 10.3389/fnana.2015.00027] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/23/2015] [Indexed: 01/12/2023] Open
Abstract
In this essay, we aim to explore in depth the new concept of the hypothalamus that was presented in the updated prosomeric model (Puelles et al., 2012b; Allen Developing Mouse Brain Atlas). Initial sections deal with the antecedents of prosomeric ideas represented by the extensive literature centered on the alternative columnar model of Herrick (1910), Kuhlenbeck (1973) and Swanson (1992, 2003); a detailed critique explores why the columnar model is not helpful in the search for causal developmental explanations. In contrast, the emerging prosomeric scenario visibly includes many possibilities to propose causal explanations of hypothalamic structure relative to both anteroposterior and dorsoventral patterning mechanisms, and insures the possibility to compare hypothalamic histogenesis with that of more caudal parts of the brain. Next the four major changes introduced in the organization of the hypothalamus on occasion of the updated model are presented, and our rationale for these changes is explored in detail. It is hoped that this example of morphological theoretical analysis may be useful for readers interested in brain models, or in understanding why models may need to change in the quest for higher consistency.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy, School of Medicine, University Murcia and Instituto Murciano de Investigación BiosanitariaMurcia, Spain
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San FranciscoSan Francisco, CA, USA
| |
Collapse
|
33
|
Gutierrez-Triana JA, Herget U, Lichtner P, Castillo-Ramírez LA, Ryu S. A vertebrate-conserved cis-regulatory module for targeted expression in the main hypothalamic regulatory region for the stress response. BMC DEVELOPMENTAL BIOLOGY 2014; 14:41. [PMID: 25427861 PMCID: PMC4248439 DOI: 10.1186/s12861-014-0041-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/11/2014] [Indexed: 01/30/2023]
Abstract
Background The homeodomain transcription factor orthopedia (Otp) is an evolutionarily conserved regulator of neuronal fates. In vertebrates, Otp is necessary for the proper development of different regions of the brain and is required in the diencephalon to specify several hypothalamic cell types, including the cells that control the stress response. To understand how this widely expressed transcription factor accomplishes hypothalamus-specific functions, we performed a comprehensive screening of otp cis-regulatory regions in zebrafish. Results Here, we report the identification of an evolutionarily conserved vertebrate enhancer module with activity in a restricted area of the forebrain, which includes the region of the hypothalamus that controls the stress response. This region includes neurosecretory cells producing Corticotropin-releasing hormone (Crh), Oxytocin (Oxt) and Arginine vasopressin (Avp), which are key components of the stress axis. Lastly, expression of the bacterial nitroreductase gene under this specific enhancer allowed pharmacological attenuation of the stress response in zebrafish larvae. Conclusion Vertebrates share many cellular and molecular components of the stress response and our work identified a striking conservation at the cis-regulatory level of a key hypothalamic developmental gene. In addition, this enhancer provides a useful tool to manipulate and visualize stress-regulatory hypothalamic cells in vivo with the long-term goal of understanding the ontogeny of the stress axis in vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12861-014-0041-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jose Arturo Gutierrez-Triana
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany. .,Current address: Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany.
| | - Ulrich Herget
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany. .,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg, Heidelberg, Germany.
| | - Patrick Lichtner
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany.
| | - Luis A Castillo-Ramírez
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany. .,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg, Heidelberg, Germany.
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Herget U, Wolf A, Wullimann MF, Ryu S. Molecular neuroanatomy and chemoarchitecture of the neurosecretory preoptic-hypothalamic area in zebrafish larvae. J Comp Neurol 2014; 522:1542-64. [PMID: 24127437 DOI: 10.1002/cne.23480] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/31/2013] [Accepted: 09/30/2013] [Indexed: 12/16/2022]
Abstract
The paraventricular nucleus (PVN) in mammals is the main hypothalamic nucleus controlling hormone release in the pituitary and plays pivotal roles in homeostasis. While the location of a PVN-homologous region has been described in adult fish as the neurosecretory preoptic area (NPO), this region has not been clearly defined in larval zebrafish due to the difficulty in defining cytoarchitectonic nuclear boundaries in the larval brain. Here we identify the precise location of the larval zebrafish NPO using conserved transcription factor and neuropeptide gene expressions. Our results identify the dorsal half of the preoptic-hypothalamic orthopedia a (otpa) domain as the larval NPO and the homologous region to the mammalian PVN. Further, by reconstructing the locations of cells producing zebrafish neuropeptides found in the mammalian PVN (CCK, CRH, ENK, NTS, SS, VIP, OXT, AVP), we provide the first 3D arrangement map of NPO neuropeptides in the larval zebrafish brain. Our results show striking conservation of transcription factor expression (otp, arx, dlx5a, isl1) in and around the NPO/PVN together with neuropeptide expression within it. Finally, we describe the exact anatomical location of cells producing Oxt and Avp in the adult zebrafish. Thus, our results identify the definitive borders and extent of the PVN homologous region in larval zebrafish and serve as an important basis for cross-species comparisons of PVN/NPO structure and function.
Collapse
Affiliation(s)
- Ulrich Herget
- Max Planck Institute for Medical Research, Developmental Genetics of the Nervous System, 69120, Heidelberg, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
35
|
Novel and recurrent PITX3 mutations in Belgian families with autosomal dominant congenital cataract and anterior segment dysgenesis have similar phenotypic and functional characteristics. Orphanet J Rare Dis 2014; 9:26. [PMID: 24555714 PMCID: PMC3937428 DOI: 10.1186/1750-1172-9-26] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Background Congenital cataracts are clinically and genetically heterogeneous with more than 45 known loci and 38 identified genes. They can occur as isolated defects or in association with anterior segment developmental anomalies. One of the disease genes for congenital cataract with or without anterior segment dysgenesis (ASD) is PITX3, encoding a transcription factor with a crucial role in lens and anterior segment development. Only five unique PITX3 mutations have been described, of which the 17-bp duplication c.640_656dup, p.(Gly220Profs*95), is the most common one and the only one known to cause cataract with ASD. The aim of this study was to perform a genetic study of the PITX3 gene in five probands with autosomal dominant congenital cataract (ADCC) and ASD, to compare their clinical presentations to previously reported PITX3-associated phenotypes and to functionally evaluate the PITX3 mutations found. Methods Sanger sequencing of the coding region and targeted exons of PITX3 was performed in probands and family members respectively. Transactivation, DNA-binding and subcellular localization assays were performed for the PITX3 mutations found. Ophthalmological examinations included visual acuity measurement, slit-lamp biomicroscopy, tonometry and fundoscopy. Results In four Belgian families with ADCC and ASD the recurrent 17-bp duplication c.640_656dup, p.(Gly220Profs*95), was found in a heterozygous state. A novel PITX3 mutation c.573del, p.(Ser192Alafs*117), was identified in heterozygous state in a Belgo-Romanian family with a similar phenotype. Functional assays showed that this novel mutation retains its nuclear localization but results in decreased DNA-binding and transactivation activity, similar to the recurrent duplication. Conclusions Our study identified a second PITX3 mutation leading to congenital cataract with ASD. The similarity in phenotypic expression was substantiated by our in vitro functional studies which demonstrated comparable molecular consequences for the novel p.(Ser192Alafs*117) and the recurrent p.(Gly220Profs*95) mutations.
Collapse
|
36
|
Riviere G, Wu GC, Fellous A, Goux D, Sourdaine P, Favrel P. DNA methylation is crucial for the early development in the Oyster C. gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:739-53. [PMID: 23877618 DOI: 10.1007/s10126-013-9523-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/04/2013] [Indexed: 05/02/2023]
Abstract
In vertebrates, epigenetic modifications influence gene transcription, and an appropriate DNA methylation is critical in development. Indeed, a precise temporal and spatial pattern of early gene expression is mandatory for a normal embryogenesis. However, such a regulation and its underlying mechanisms remain poorly understood in more distant organisms such as Lophotrochozoa. Thus, despite DNA in the oyster genome being methylated, the role of DNA methylation in development is unknown. To clarify this point, oyster genomic DNA was examined during early embryogenesis and found differentially methylated. Reverse transcriptase quantitative polymerase chain reaction indicated stage-specific levels of transcripts encoding DNA-methyltransferase (DNMT) and methyl-binding domain proteins. In addition, as highlighted by electronic microscopy and immunohistochemistry, the DNMT inhibitor 5-aza-cytidine induced alterations in the quantity and the localisation of methylated DNA and severe dose-dependent development alterations and was lethal after zygotic genome reinitiation. Furthermore, methyl-DNA-immunoprecipitation-quantitative polymerase chain reaction revealed that the transcription level of most of the homeobox gene orthologues examined, but not of the other early genes investigated, was inversely correlated with their specific DNA methylation. Altogether, our results demonstrate that DNA methylation influences gene expression in Crassostrea gigas and is critical for oyster development, possibly by specifically controlling the transcription level of homeobox orthologues. These findings provide evidence for the importance of epigenetic regulation of development in Lophotrochozoans and bring new insights into the early life of C. gigas, one of the most important aquaculture resources worldwide.
Collapse
Affiliation(s)
- Guillaume Riviere
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA) Esplanade de la paix, Université de Caen Basse-Normandie, 14032, Caen Cedex, France,
| | | | | | | | | | | |
Collapse
|
37
|
Fernandes AM, Beddows E, Filippi A, Driever W. Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS One 2013; 8:e75002. [PMID: 24073233 PMCID: PMC3779234 DOI: 10.1371/journal.pone.0075002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022] Open
Abstract
The homeodomain transcription factor Orthopedia (Otp) is an important regulator for specification of defined subsets of neuroendocrine cells and dopaminergic neurons in vertebrates. In zebrafish, two paralogous otp genes, otpa and otpb, are present in the genome. Neither complete loss of Otp activity nor differential contributions of Otpa and Otpb to specification of defined neuronal populations have been analyzed in detail. We characterized zebrafish embryos and early larvae mutant for null alleles of otpa, otpb, or both genes to determine their individual contributions to the specification of th expressing dopaminergic neuronal populations as well as of crh, oxt, avp, trh or sst1.1 expressing neuroendocrine cells. otpa mutant larvae show an almost complete reduction of ventral diencephalic dopaminergic neurons, as reported previously. A small reduction in the number of trh cells in the preoptic region is detectable in otpa mutants, but no significant loss of crh, oxt and avp preoptic neuroendocrine cells. otpb single mutant larvae do not display a reduction in dopaminergic neurons or neuroendocrine cells in the otp expressing regions. In contrast, in otpa and otpb double mutant larvae specific groups of dopaminergic neurons as well as of crh, oxt, avp, trh and sst1.1-expressing neuroendocrine cells are completely lost. These observations suggest that the requirement for otpa and otpb function during development of the larval diencephalon is partially redundant. During evolutionary diversification of the paralogous otp genes, otpa maintained the prominent role in ventral diencephalic dopaminergic and neuroendocrine cell specification and is capable of partially compensating otpb loss of function. In addition, we identified a role of Otp in the development of a domain of somatostatin1-expressing cells in the rostral hindbrain, a region with strong otp expression but so far uncharacterized Otp function. Otp may thus be crucial for defined neuronal cell types also in the hindbrain.
Collapse
Affiliation(s)
- António M. Fernandes
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Erin Beddows
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alida Filippi
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
38
|
Domínguez L, Morona R, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. J Comp Neurol 2013; 521:725-59. [PMID: 22965483 DOI: 10.1002/cne.23222] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/19/2012] [Accepted: 08/21/2012] [Indexed: 12/19/2022]
Abstract
The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
39
|
LHX2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis. J Neurosci 2013; 33:6877-84. [PMID: 23595746 DOI: 10.1523/jneurosci.4216-12.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Eye formation is regulated by a complex network of eye field transcription factors (EFTFs), including LIM-homeodomain gene LHX2. We disrupted LHX2 function at different stages during this process using a conditional knock-out strategy in mice. We find that LHX2 function is required in an ongoing fashion to maintain optic identity across multiple stages, from the formation of the optic vesicle to the differentiation of the neuroretina. At each stage, loss of Lhx2 led to upregulation of a set of molecular markers that are normally expressed in the thalamic eminence and in the anterodorsal hypothalamus in a portion of the optic vesicle or retina. Furthermore, the longer LHX2 function was maintained, the further optic morphogenesis progressed. Early loss of function caused profound mispatterning of the entire telencephalic-optic-hypothalamic field, such that the optic vesicle became mispositioned and appeared to arise from the diencephalic-telencephalic boundary. At subsequent stages, loss of Lhx2 did not affect optic vesicle position but caused arrest of optic cup formation. If Lhx2 was selectively disrupted in the neuroretina from E11.5, the neuroretina showed gross dysmorphology along with aberrant expression of markers specific to the thalamic eminence and anterodorsal hypothalamus. Our findings indicate a continual requirement for LHX2 throughout the early stages of optic development, not only to maintain optic identity by suppressing alternative fates but also to mediate multiple steps of optic morphogenesis. These findings provide new insight into the anophthalmic phenotype of the Lhx2 mutant and reveal novel roles for this transcription factor in eye development.
Collapse
|
40
|
Wolf A, Ryu S. Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development 2013; 140:1762-73. [PMID: 23533176 DOI: 10.1242/dev.085357] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hypothalamus is a key integrative center in the brain that consists of diverse cell types required for a variety of functions including homeostasis, reproduction, stress response, social and cognitive behavior. Despite our knowledge of several transcription factors crucial for hypothalamic development, it is not known how the wide diversity of neuron types in the hypothalamus is produced. In particular, almost nothing is known about the mechanisms that specify neurons in the posteriormost part of the hypothalamus, the mammillary area. Here, we investigated the specification of two distinct neuron types in the mammillary area that produce the hypothalamic hormones Vasoactive intestinal peptide (Vip) and Urotensin 1 (Uts1). We show that Vip- and Uts1-positive neurons develop in distinct domains in the mammillary area defined by the differential expression of the transcription factors Fezf2, Otp, Sim1a and Foxb1.2. Coordinated activities of these factors are crucial for the establishment of the mammillary area subdomains and the specification of Vip- and Uts1-positive neurons. In addition, Fezf2 is important for early development of the posterior hypothalamus. Thus, our study provides the first molecular anatomical map of the posterior hypothalamus in zebrafish and identifies, for the first time, molecular requirements underlying the specification of distinct posterior hypothalamic neuron types.
Collapse
Affiliation(s)
- Andrea Wolf
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | |
Collapse
|
41
|
Morales-Delgado N, Castro-Robles B, Ferrán JL, Martinez-de-la-Torre M, Puelles L, Díaz C. Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Struct Funct 2013; 219:1083-111. [PMID: 24337236 PMCID: PMC4013449 DOI: 10.1007/s00429-013-0554-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/11/2013] [Indexed: 01/25/2023]
Abstract
According to the updated prosomeric model, the hypothalamus is subdivided rostrocaudally into terminal and peduncular parts, and dorsoventrally into alar, basal, and floor longitudinal zones. In this context, we examined the ontogeny of peptidergic cell populations expressing Crh, Trh, and Ghrh mRNAs in the mouse hypothalamus, comparing their distribution relative to the major progenitor domains characterized by molecular markers such as Otp, Sim1, Dlx5, Arx, Gsh1, and Nkx2.1. All three neuronal types originate mainly in the peduncular paraventricular domain and less importantly at the terminal paraventricular domain; both are characteristic alar Otp/Sim1-positive areas. Trh and Ghrh cells appeared specifically at the ventral subdomain of the cited areas after E10.5. Additional Ghrh cells emerged separately at the tuberal arcuate area, characterized by Nkx2.1 expression. Crh-positive cells emerged instead in the central part of the peduncular paraventricular domain at E13.5 and remained there. In contrast, as development progresses (E13.5-E18.5) many alar Ghrh and Trh cells translocate into the alar subparaventricular area, and often also into underlying basal neighborhoods expressing Nkx2.1 and/or Dlx5, such as the tuberal and retrotuberal areas, becoming partly or totally depleted at the original birth sites. Our data correlate a topologic map of molecularly defined hypothalamic progenitor areas with three types of specific neurons, each with restricted spatial origins and differential migratory behavior during prenatal hypothalamic development. The study may be useful for detailed causal analysis of the respective differential specification mechanisms. The postulated migrations also contribute to our understanding of adult hypothalamic complexity.
Collapse
Affiliation(s)
- Nicanor Morales-Delgado
- Department of Medical Sciences, School of Medicine, Regional Centre for Biomedical Research and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Calle Almansa, 14, 02006, Albacete, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Struct Funct 2013; 219:777-92. [PMID: 23494735 DOI: 10.1007/s00429-013-0534-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
Hindbrain rhombomeres in general are differentially specified molecularly by unique combinations of Hox genes with other developmental genes. Rhombomere 1 displays special features, including absence of Hox gene expression. It lies within the hindbrain range of the Engrailed genes (En1, En2), controlled by the isthmic organizer via diffusion of FGF8. It is limited rostrally by the isthmus territory, and caudally by rhombomere 2. It is double the normal size of any other rhombomere. Its dorsal part generates the cerebellar hemispheres and its ventral part gives rise to several populations, such as some raphe nuclei, the interpeduncular nucleus, the rhabdoid nucleus, anterior, dorsal, ventral and posterodorsal tegmental nuclei, the cholinergic pedunculopontine and laterodorsal tegmental nuclei, rostral parts of the hindbrain reticular formation, the locus coeruleus, and part of the lateral lemniscal and paralemniscal nuclei, among other formations. Some of these populations migrate tangentially before reaching their final positions. The morphogen Sonic Hedgehog (Shh) is normally released from the local floor plate and underlying notochord. In the present report we explore, first, whether Shh is required in the specification of these r1 populations, and, second, its possible role in the guidance of tangentially migrating neurons that approach the midline. Our results indicate that when Shh function is altered selectively in a conditional mutant mouse strain, most populations normally generated in the medial basal plate of r1 are completely absent. Moreover, the relocation of some neurons that normally originate in the alar plate and migrate tangentially into the medial basal plate is variously altered. In contrast, neurons that migrate radially (or first tangentially and then radially) into the lateral basal plate were not significantly affected.
Collapse
|
43
|
Reichert M, Takano S, von Burstin J, Kim SB, Lee JS, Ihida-Stansbury K, Hahn C, Heeg S, Schneider G, Rhim AD, Stanger BZ, Rustgi AK. The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes Dev 2013; 27:288-300. [PMID: 23355395 DOI: 10.1101/gad.204453.112] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pancreatic exocrine cell plasticity can be observed during development, pancreatitis with subsequent regeneration, and also transformation. For example, acinar-ductal metaplasia (ADM) occurs during acute pancreatitis and might be viewed as a prelude to pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) development. To elucidate regulatory processes that overlap ductal development, ADM, and the progression of normal cells to PanIN lesions, we undertook a systematic approach to identify the Prrx1 paired homeodomain Prrx1 transcriptional factor as a highly regulated gene in these processes. Prrx1 annotates a subset of pancreatic ductal epithelial cells in Prrx1creER(T2)-IRES-GFP mice. Furthermore, sorted Prrx1(+) cells have the capacity to self-renew and expand during chronic pancreatitis. The two isoforms, Prrx1a and Prrx1b, regulate migration and invasion, respectively, in pancreatic cancer cells. In addition, Prrx1b is enriched in circulating pancreatic cells (Pdx1cre;LSL-Kras(G12D/+);p53(fl/+);R26YFP). Intriguingly, the Prrx1b isoform, which is also induced in ADM, binds the Sox9 promoter and positively regulates Sox9 expression. This suggests a new hierarchical scheme whereby a Prrx1-Sox9 axis may influence the emergence of acinar-ductal metaplasia and regeneration. Furthermore, our data provide a possible explanation of why pancreatic cancer is skewed toward a ductal fate.
Collapse
Affiliation(s)
- Maximilian Reichert
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 2012; 218:1229-77. [PMID: 23052546 PMCID: PMC3748323 DOI: 10.1007/s00429-012-0456-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/08/2012] [Indexed: 12/18/2022]
Abstract
The raphe nuclei represent the origin of central serotonergic projections. The literature distinguishes seven nuclei grouped into rostral and caudal clusters relative to the pons. The boundaries of these nuclei have not been defined precisely enough, particularly with regard to developmental units, notably hindbrain rhombomeres. We hold that a developmental point of view considering rhombomeres may explain observed differences in connectivity and function. There are twelve rhombomeres characterized by particular genetic profiles, and each develops between one and four distinct serotonergic populations. We have studied the distribution of the conventional seven raphe nuclei among these twelve units. To this aim, we correlated 5-HT-immunoreacted neurons with rhombomeric boundary landmarks in sagittal mouse brain sections at different developmental stages. Furthermore, we performed a partial genoarchitectonic analysis of the developing raphe nuclei, mapping all known serotonergic differentiation markers, and compared these results, jointly with others found in the literature, with our map of serotonin-containing populations, in order to examine regional variations in correspondence. Examples of regionally selective gene patterns were identified. As a result, we produced a rhombomeric classification of some 45 serotonergic populations, and suggested a corresponding modified terminology. Only a minor rostral part of the dorsal raphe nucleus lies in the midbrain. Some serotonergic neurons were found in rhombomere 4, contrary to the conventional assumption that it lacks such neurons. We expect that our reclassification of raphe nuclei may be useful for causal analysis of their differential molecular specification, as well as for studies of differential connectivity and function.
Collapse
|
45
|
Shorter JR, Arechavaleta-Velasco M, Robles-Rios C, Hunt GJ. A genetic analysis of the stinging and guarding behaviors of the honey bee. Behav Genet 2012; 42:663-74. [PMID: 22327626 DOI: 10.1007/s10519-012-9530-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/31/2012] [Indexed: 11/30/2022]
Abstract
In order to identify genes that are influencing defensive behaviors, we have taken a new approach by dissecting colony-level defensive behavior into individual behavioral measurements using two families containing backcross workers from matings involving European and Africanized bees. We removed the social context from stinging behavior by using a laboratory assay to measure the stinging response of individual bees. A mild shock was given to bees using a constant-current stimulator. The time it took bees to sting in response to this stimulus was recorded. In addition, bees that were seen performing guard behaviors at the hive entrance were collected. We performed QTL mapping in two backcross families with SNP probes within genes and identified two new QTL regions for stinging behavior and another QTL region for guarding behavior. We also identified several candidate genes involved in neural signaling, neural development and muscle development that may be influencing stinging and guarding behaviors. The lack of overlap between these regions and previous defensive behavior QTL underscores the complexity of this behavior and increases our understanding of its genetic architecture.
Collapse
Affiliation(s)
- John R Shorter
- Department of Entomology, Purdue University, 901 West State St, West Lafayette, IN 47906, USA.
| | | | | | | |
Collapse
|
46
|
Lorente-Cánovas B, Marín F, Corral-San-Miguel R, Hidalgo-Sánchez M, Ferrán JL, Puelles L, Aroca P. Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Dev Biol 2011; 361:12-26. [PMID: 22019302 DOI: 10.1016/j.ydbio.2011.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/22/2023]
Abstract
The interpeduncular nucleus (IP) is a key limbic structure, highly conserved evolutionarily among vertebrates. The IP receives indirect input from limbic areas of the telencephalon, relayed by the habenula via the fasciculus retroflexus. The function of the habenulo-IP complex is poorly understood, although there is evidence that in rodents it modulates behaviors such as learning and memory, avoidance, reward and affective states. The IP has been an important subject of interest for neuroscientists, and there are multiple studies about the adult structure, chemoarchitecture and its connectivity, with complex results, due to the presence of multiple cell types across a variety of subnuclei. However, the ontogenetic origins of these populations have not been examined, and there is some controversy about its location in the midbrain-anterior hindbrain area. To address these issues, we first investigated the anteroposterior (AP) origin of the IP complex by fate-mapping its neuromeric origin in the chick, discovering that the IP develops strictly within isthmus and rhombomere 1. Next, we studied the dorsoventral (DV) positional identity of subpopulations of the IP complex. Our results indicate that there are at least four IP progenitor domains along the DV axis. These specific domains give rise to distinct subtypes of cell populations that target the IP with variable subnuclear specificity. Interestingly, these populations can be characterized by differential expression of the transcription factors Pax7, Nkx6.1, Otp, and Otx2. Each of these subpopulations follows a specific route of migration from its source, and all reach the IP roughly at the same stage. Remarkably, IP progenitor domains were found both in the alar and basal plates. Some IP populations showed rostrocaudal restriction in their origins (isthmus versus anterior or posterior r1 regions). A tentative developmental model of the structure of the avian IP is proposed. The IP emerges as a plurisegmental and developmentally heterogeneous formation that forms ventromedially within the isthmus and r1. These findings are relevant since they help to understand the highly complex chemoarchitecture, hodology and functions of this important brainstem structure.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
47
|
Embryonic expression of Drosophila ceramide synthase schlank in developing gut, CNS and PNS. Gene Expr Patterns 2011; 11:501-10. [PMID: 21907829 DOI: 10.1016/j.gep.2011.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/17/2011] [Accepted: 08/19/2011] [Indexed: 12/17/2022]
Abstract
Schlank is a member of the highly conserved ceramide synthase family and controls growth and body fat in Drosophila. Ceramide synthases are key enzymes in the sphingolipid de novo synthesis pathway. Ceramide synthase proteins and the (dihydro)ceramide produced are involved in a variety of biological processes among them apoptosis and neurodegeneration. The full extent of their involvement in these processes will require a precise analysis of the distribution and expression pattern of ceramide synthases. Paralogs of the ceramide synthase family have been found in all eukaryotes studied, however the mRNA and protein expression patterns have not yet been analysed systematically. In this study, we use antibodies that specifically recognize Schlank, a schlank mRNA probe and an endogenous schlank promoter driven LacZ reporter line to reveal the expression pattern of Schlank throughout embryogenesis. We found that Schlank is expressed in all embryonic epithelia during embryogenesis including the developing epidermis and the gastrointestinal tract. In addition, Schlank is upregulated in the developing central (CNS) and peripheral nervous system (PNS). Co-staining experiments with neuronal and glial markers revealed specific expression of Schlank in glial and neuronal cells of the CNS and PNS.
Collapse
|
48
|
VanDunk C, Hunter LA, Gray PA. Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J Neurosci 2011; 31:6457-67. [PMID: 21525287 PMCID: PMC3106226 DOI: 10.1523/jneurosci.5385-10.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/21/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the master mammalian circadian clock. The SCN is highly specialized because it is responsible for generating a near 24 h rhythm, integrating external cues, and translating the rhythm throughout the body. Currently, our understanding of the developmental origin and genetic program involved in the proper specification and maturation of the SCN is limited. Herein, we provide a detailed analysis of transcription factor (TF) and developmental-gene expression in the SCN from neurogenesis to adulthood in mice (Mus musculus). TF expression within the postmitotic SCN was not static but rather showed specific temporal and spatial changes during prenatal and postnatal development. In addition, we found both global and regional patterns of TF expression extending into the adult. We found that the SCN is derived from a distinct region of the neuroepithelium expressing a combination of developmental genes: Six3, Six6, Fzd5, and transient Rx, allowing us to pinpoint the origin of this region within the broader developing telencephalon/diencephalon. We tested the necessity of two TFs in SCN development, RORα and Six3, which were expressed during SCN development, persisted into adulthood, and showed diurnal rhythmicity. Loss of RORα function had no effect on SCN peptide expression or localization. In marked contrast, the conditional deletion of Six3 from early neural progenitors completely eliminated the formation of the SCN. Our results provide the first description of the involvement of TFs in the specification and maturation of a neural population necessary for circadian behavior.
Collapse
Affiliation(s)
- Cassandra VanDunk
- Department of Anatomy and Neurobiology and
- Division of Biology and Biomedical Sciences, Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
49
|
Ekşioğlu YZ, Pong AW, Takeoka M. A novel mutation in the aristaless domain of the ARX gene leads to Ohtahara syndrome, global developmental delay, and ambiguous genitalia in males and neuropsychiatric disorders in females. Epilepsia 2011; 52:984-92. [DOI: 10.1111/j.1528-1167.2011.02980.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Moreno N, González A. The non-evaginated secondary prosencephalon of vertebrates. Front Neuroanat 2011; 5:12. [PMID: 21427782 PMCID: PMC3049325 DOI: 10.3389/fnana.2011.00012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/16/2011] [Indexed: 01/22/2023] Open
Abstract
The secondary prosencephalon (telencephalon plus hypothalamus) is probably the most complex area of the brain, with complicated patterning specifications. As yet, no prosomeric subdivisions have been reported and only distinct histogenetic territories have been recognized. In the present comparative study we analyzed cross-correlated expression maps in the non-evaginated territories of the secondary prosencephalon in different vertebrates throughout development, to assess the existence of comparable divisions and subdivisions in the different groups. Each division is characterized by expression of a unique combination of developmental regulatory genes, and each appears to represent a self-regulated and topologically constant histogenetic brain compartment that gives rise to a specific cell group. The non-evaginated area of the telencephalon corresponds to the preoptic region, whereas the hypothalamus, topologically rostral to the diencephalic prethalamus, includes basal (mammillary and tuberal) and alar (paraventricular and suprachiasmatic) parts. This complex area is specified by a cascade of transcription factors, among which the Dlx family members and Nkx2.1 are essential for the correct development. The only exception is found in the subdivision named termed the supraoptoparaventricular area, in which the transcription factor Orthopedia is essential in restricting the fate of multiple categories of neuroendocrine neurons, in the absence of the Dlx/Nkx2.1 combination. Our analysis, based on own data and published results by other researchers, suggests that common features are shared at least by all tetrapods and, therefore, they most likely were present in the stem tetrapods. The available data for agnathans (lampreys) and other fish groups indicate that not all subdivisions of the secondary prosencephalon were present at the origin of vertebrates, raising important questions about their evolution.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense of Madrid Madrid, Spain
| | | |
Collapse
|