1
|
Ivanov I, Bjork JM, Blair J, Newcorn JH. Sensitization-based risk for substance abuse in vulnerable individuals with ADHD: Review and re-examination of evidence. Neurosci Biobehav Rev 2022; 135:104575. [PMID: 35151770 PMCID: PMC9893468 DOI: 10.1016/j.neubiorev.2022.104575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Evidence of sensitization following stimulants administration in humans is just emerging, which prevents reaching more definitive conclusions in favor or against a purported protective role of stimulant treatments for ADHD for the development of substance use disorders. Existing evidence from both animal and human research suggest that stimulants produce neurophysiological changes in the brain reward system, some of which could be persistent. This could be relevant in choosing optimal treatments for young patients with ADHD who have additional clinical risk factors for substance abuse (e.g. conduct disorder (CD) and/or familial addictions). Here we stipulate that, while the majority of youth with ADHD greatly benefit from treatments with stimulants, there might be a subpopulation of individuals whose neurobiological profiles may confer risk for heightened vulnerability to the effects of stimulants on the responsiveness of the brain reward system. We propose that focused human research is needed to elucidate the unknown effects of prolonged stimulant exposure on the neurophysiology of the brain reward system in young patients with ADHD.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | - James Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA, Bauman AJ, Thukral S, Sultan FA, Goska NA, Ianov L, Day JJ. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. SCIENCE ADVANCES 2020; 6:eaba4221. [PMID: 32637607 PMCID: PMC7314536 DOI: 10.1126/sciadv.aba4221] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/08/2020] [Indexed: 05/21/2023]
Abstract
Drugs of abuse elevate dopamine levels in the nucleus accumbens (NAc) and alter transcriptional programs believed to promote long-lasting synaptic and behavioral adaptations. Here, we leveraged single-nucleus RNA-sequencing to generate a comprehensive molecular atlas of cell subtypes in the NAc, defining both sex-specific and cell type-specific responses to acute cocaine experience in a rat model system. Using this transcriptional map, we identified an immediate early gene expression program that is up-regulated following cocaine experience in vivo and dopamine receptor activation in vitro. Multiplexed induction of this gene program with a large-scale CRISPR-dCas9 activation strategy initiated a secondary synapse-centric transcriptional profile, altered striatal physiology in vitro, and enhanced cocaine sensitization in vivo. Together, these results define the transcriptional response to cocaine with cellular precision and demonstrate that drug-responsive gene programs can potentiate both physiological and behavioral adaptations to drugs of abuse.
Collapse
Affiliation(s)
- Katherine E. Savell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J. Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E. Zipperly
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey G. Duke
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Allison J. Bauman
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saakshi Thukral
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Faraz A. Sultan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nicholas A. Goska
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Zhukovsky P, Puaud M, Jupp B, Sala-Bayo J, Alsiö J, Xia J, Searle L, Morris Z, Sabir A, Giuliano C, Everitt BJ, Belin D, Robbins TW, Dalley JW. Withdrawal from escalated cocaine self-administration impairs reversal learning by disrupting the effects of negative feedback on reward exploitation: a behavioral and computational analysis. Neuropsychopharmacology 2019; 44:2163-2173. [PMID: 30952156 PMCID: PMC6895115 DOI: 10.1038/s41386-019-0381-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 11/11/2022]
Abstract
Addiction is regarded as a disorder of inflexible choice with behavior dominated by immediate positive rewards over longer-term negative outcomes. However, the psychological mechanisms underlying the effects of self-administered drugs on behavioral flexibility are not well understood. To investigate whether drug exposure causes asymmetric effects on positive and negative outcomes we used a reversal learning procedure to assess how reward contingencies are utilized to guide behavior in rats previously exposed to intravenous cocaine self-administration (SA). Twenty-four rats were screened for anxiety in an open field prior to acquisition of cocaine SA over six daily sessions with subsequent long-access cocaine SA for 7 days. Control rats (n = 24) were trained to lever-press for food under a yoked schedule of reinforcement. Higher rates of cocaine SA were predicted by increased anxiety and preceded impaired reversal learning, expressed by a decrease in lose-shift as opposed to win-stay probability. A model-free reinforcement learning algorithm revealed that rats with high, but not low cocaine escalation failed to exploit previous reward learning and were more likely to repeat the same response as the previous trial. Eight-day withdrawal from high cocaine escalation was associated, respectively, with increased and decreased dopamine receptor D2 (DRD2) and serotonin receptor 2C (HTR2C) expression in the ventral striatum compared with controls. Dopamine receptor D1 (DRD1) expression was also significantly reduced in the orbitofrontal cortex of high cocaine-escalating rats. These findings indicate that withdrawal from escalated cocaine SA disrupts how negative feedback is used to guide goal-directed behavior for natural reinforcers and that trait anxiety may be a latent variable underlying this interaction.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Mickael Puaud
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Bianca Jupp
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Júlia Sala-Bayo
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Lydia Searle
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Zoe Morris
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aryan Sabir
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Chiara Giuliano
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
4
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
5
|
Mongi-Bragato B, Avalos MP, Guzmán AS, Bollati FA, Cancela LM. Enkephalin as a Pivotal Player in Neuroadaptations Related to Psychostimulant Addiction. Front Psychiatry 2018; 9:222. [PMID: 29892236 PMCID: PMC5985699 DOI: 10.3389/fpsyt.2018.00222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Enkephalin expression is high in mesocorticolimbic areas associated with psychostimulant-induced behavioral and neurobiological effects, and may also modulate local neurotransmission in this circuit network. Psychostimulant drugs, like amphetamine and cocaine, significantly increase the content of enkephalin in these brain structures, but we do not yet understand the specific significance of this drug-induced adaptation. In this review, we summarize the neurochemical and molecular mechanism of psychostimulant-induced enkephalin activation in mesocorticolimbic brain areas, and the contribution of this opioid peptide in the pivotal neuroadaptations and long-term behavioral changes underlying psychostimulant addiction. There is evidence suggesting that adaptive changes in enkephalin content in the mesocorticolimbic circuit, induced by acute and chronic psychostimulant administration, may represent a key initial step in the long-term behavioral and neuronal plasticity induced by these drugs.
Collapse
Affiliation(s)
- Bethania Mongi-Bragato
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María P Avalos
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S Guzmán
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Flavia A Bollati
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M Cancela
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Noble F, Lenoir M, Marie N. The opioid receptors as targets for drug abuse medication. Br J Pharmacol 2015; 172:3964-79. [PMID: 25988826 DOI: 10.1111/bph.13190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/24/2015] [Accepted: 05/10/2015] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Florence Noble
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Magalie Lenoir
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
Rasgrf2 controls dopaminergic adaptations to alcohol in mice. Brain Res Bull 2014; 109:143-50. [DOI: 10.1016/j.brainresbull.2014.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
|
8
|
Yoo JH, Kitchen I, Bailey A. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us? Br J Pharmacol 2012; 166:1993-2014. [PMID: 22428846 DOI: 10.1111/j.1476-5381.2012.01952.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cocaine addiction has become a major concern in the UK as Britain tops the European 'league table' for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Division of Biochemistry, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | |
Collapse
|
9
|
Zhang Y, Schlussman SD, Rabkin J, Butelman ER, Ho A, Kreek MJ. Chronic escalating cocaine exposure, abstinence/withdrawal, and chronic re-exposure: effects on striatal dopamine and opioid systems in C57BL/6J mice. Neuropharmacology 2012; 67:259-66. [PMID: 23164614 DOI: 10.1016/j.neuropharm.2012.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022]
Abstract
Cocaine addiction is a chronic relapsing disease with periods of chronic escalating self-exposure, separated by periods of abstinence/withdrawal of varying duration. Few studies compare such cycles in preclinical models. This study models an "addiction-like cycle" in mice to determine neurochemical/molecular alterations that underlie the chronic, relapsing nature of this disease. Groups of male C57BL/6J mice received acute cocaine exposure (14-day saline/14-day withdrawal/13-day saline + 1-day cocaine), chronic cocaine exposure (14 day cocaine) or chronic re-exposure (14-day cocaine/14-day withdrawal/14-day cocaine). Escalating-dose binge cocaine (15-30 mg/kg/injection × 3/day, i.p. at hourly intervals) or saline (14-day saline) was administered, modeling initial exposure. In "re-exposure" groups, after a 14-day injection-free period (modeling abstinence/withdrawal), mice that had received cocaine were re-injected with 14-day escalating-dose binge cocaine, whereas controls received saline. Microdialysis was conducted on the 14th day of exposure or re-exposure to determine striatal dopamine content. Messenger RNA levels of preprodynorphin (Pdyn), dopamine D1 (Drd1) and D2 (Drd2) in the caudate putamen were determined by real-time PCR. Basal striatal dopamine levels were lower in mice after 14-day escalating exposure or re-exposure than in those in the acute cocaine group and controls. Pdyn mRNA levels were higher in the cocaine groups than in controls. Long-term adaptation was observed across the stages of this addiction-like cycle, in that the effects of cocaine on dopamine levels were increased after re-exposure compared to exposure. Changes in striatal dopaminergic responses across chronic escalating cocaine exposure and re-exposure are a central feature of the neurobiology of relapsing addictive states.
Collapse
Affiliation(s)
- Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Eipper-Mains JE, Eipper BA, Mains RE. Global Approaches to the Role of miRNAs in Drug-Induced Changes in Gene Expression. Front Genet 2012; 3:109. [PMID: 22707957 PMCID: PMC3374462 DOI: 10.3389/fgene.2012.00109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/29/2012] [Indexed: 12/17/2022] Open
Abstract
Neurons modulate gene expression with subcellular precision through excitation-coupled local protein synthesis, a process that is regulated in part through the involvement of microRNAs (miRNAs), a class of small non-coding RNAs. The biosynthesis of miRNAs is reviewed, with special emphasis on miRNA families, the subcellular localization of specific miRNAs in neurons, and their potential roles in the response to drugs of abuse. For over a decade, DNA microarrays have dominated genome-wide gene expression studies, revealing widespread effects of drug exposure on neuronal gene expression. We review a number of recent studies that explore the emerging role of miRNAs in the biochemical and behavioral responses to cocaine. The more powerful next-generation sequencing technology offers certain advantages and is supplanting microarrays for the analysis of complex transcriptomes. Next-generation sequencing is unparalleled in its ability to identify and quantify low-abundance transcripts without prior sequence knowledge, facilitating the accurate detection and quantification of miRNAs expressed in total tissue and miRNAs localized to postsynaptic densities (PSDs). We previously identified cocaine-responsive miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several bioinformatically predicted target genes. The miR-8 family was found to be highly enriched and cocaine-regulated at the PSD, where its members may modulate expression of cell adhesion molecules. An integrative approach that combines mRNA, miRNA, and protein expression profiling in combination with focused single gene studies and innovative behavioral paradigms should facilitate the development of more effective therapeutic approaches to treat addiction.
Collapse
Affiliation(s)
- Jodi E Eipper-Mains
- Department of Genetics and Developmental Biology, University of Connecticut Health Center Farmington, CT, USA
| | | | | |
Collapse
|
11
|
Zhang Y, Schlussman SD, Butelman ER, Ho A, Kreek MJ. Effects of withdrawal from chronic escalating-dose binge cocaine on conditioned place preference to cocaine and striatal preproenkephalin mRNA in C57BL/6J mice. Neuropharmacology 2012; 63:322-9. [PMID: 22504589 DOI: 10.1016/j.neuropharm.2012.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/13/2012] [Accepted: 03/25/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Relapse is a serious problem for the effective treatment of cocaine addiction. RATIONALE Examining cocaine re-exposure-induced behavioral and neurobiological alterations following chronic escalating-dose binge cocaine administration and withdrawal may provide insight into the neurobiological basis of cocaine relapse. OBJECTIVES Our goal was to determine how exposure to chronic escalating-dose cocaine affects development of subsequent cocaine-induced conditioned place preference (CPP) and changes in endogenous opioid systems. METHODS Mice were injected with either escalating-dose binge cocaine (15-30 mg/kg/injection × 3/day) or saline for 14-days and conditioned with 15 mg/kg of cocaine or saline (once per day for 10-days), starting either 1 or 14-days after the last day of binge injections. RESULTS Mice exposed to chronic escalating cocaine did not develop CPP to cocaine when conditioning commenced on the first day of withdrawal (CPP test on day 10 of withdrawal). By contrast, mice did develop CPP to cocaine when conditioning started on the 14th day of withdrawal (CPP test on day 24 of withdrawal). Furthermore, preproenkephalin (Penk) mRNA levels in caudate putamen were significantly higher in mice that received 14-day withdrawal from escalating-dose binge cocaine before the CPP procedure (tested 24 days post-binge) than those that received 1-day withdrawal (tested 10 days post-binge). CONCLUSIONS The rewarding effect of cocaine was blunted in early withdrawal from chronic escalating exposure, but recovered in more prolonged withdrawal. Time-dependent elevations in Penk mRNA levels may be part of the underlying mechanisms of this effect.
Collapse
Affiliation(s)
- Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
12
|
Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 2012; 7:686-700. [PMID: 22391864 PMCID: PMC3419353 DOI: 10.1007/s11481-012-9345-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/06/2012] [Indexed: 12/15/2022]
Abstract
Changes in synapse structure occur in frontal neocortex with HIV encephalitis (HIVE) and may contribute to HIV-associated neurocognitive disorders (HAND). A postmortem survey was conducted to determine if mRNAs involved in synaptic transmission are perturbed in dorsolateral prefrontal cortex (DLPFC) in subjects with HIVE or HAND. Expression of the opioid neurotransmitter preproenkephalin mRNA (PENK) was significantly decreased in a sampling of 446 brain specimens from HIV-1 infected people compared to 67 HIV negative subjects. Decreased DLPFC PENK was most evident in subjects with HIVE and/or increased expression of interferon regulatory factor 1 mRNA (IRF1). Type 2 dopamine receptor mRNA (DRD2L) was decreased significantly, but not in the same set of subjects with PENK dysregulation. DRD2L downregulation occurred primarily in the subjects without HIVE or neurocognitive impairment. Subjects with neurocognitive impairment often failed to significantly downregulate DRD2L and had abnormally high IRF1 expression. Conclusion: Dysregulation of synaptic preproenkephalin and DRD2L in frontal neocortex can occur with and without neurocognitive impairment in HIV-infected people. Downregulation of DRD2L in the prefrontal cortex was associated with more favorable neuropsychological and neuropathological outcomes; the failure to downregulate DRD2L was significantly less favorable. PENK downregulation was related neuropathologically to HIVE, but was not related to neuropsychological outcome independently. Emulating endogenous synaptic plasticity pharmacodynamically could enhance synaptic accommodation and improve neuropsychological and neuropathological outcomes in HIV/AIDS.
Collapse
|
13
|
Minkowski CP, Epstein D, Frost JJ, Gorelick DA. Differential response to IV carfentanil in chronic cocaine users and healthy controls. Addict Biol 2012; 17:149-55. [PMID: 21054687 DOI: 10.1111/j.1369-1600.2010.00256.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chronic cocaine exposure in both rodents and humans increases regional brain mu-opioid receptor (mOR) binding potential, suggesting that cocaine users might have an altered response to mOR agonists. We evaluated the response to IV carfentanil (a selective mOR agonist) in 23 cocaine users [mean (standard deviation) age 33.8 (4.0) years, 83% men] who underwent positron emission tomography (PET) scanning with [C-11]-carfentanil [44.7 (19.5) ng/kg] while housed on a closed research ward and 15 healthy non-drug-using controls [43.9 (14.2) years, 80% men] scanned [49.5 (12.6) ng/kg] as outpatients. Cocaine users had used for 8.7 (4.3) years and on 73 (22)% of days in the two weeks prior to PET scanning. Common adverse effects associated with mOR agonists (nausea, dizziness, headache, vomiting, itchiness) were assessed by self-report (five-point Likert scales) during and for 90 minutes after the scans. Cocaine users were significantly less likely than controls to report any symptom (30.4% versus 60%) and had fewer total symptoms [0.43 (0.73) versus 1.1 (1.0)] during scans, even after statistically controlling for age and carfentanil dose. These differences were also present after the scans and at repeat scans performed after about one week or 12 weeks of monitored cocaine abstinence. In a larger group of cocaine users and separate controls, there was no significant group difference in carfentanil half-life, suggesting that the observed difference was pharmacodynamically, rather than pharmacokinetically, based. These findings suggest that cocaine users are less responsive than healthy controls to mOR agonist adverse effects despite having increased regional brain mOR binding potential.
Collapse
Affiliation(s)
- Carolynne P Minkowski
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, USA
| | | | | | | |
Collapse
|
14
|
Eipper-Mains JE, Kiraly DD, Palakodeti D, Mains RE, Eipper BA, Graveley BR. microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA (NEW YORK, N.Y.) 2011; 17:1529-1543. [PMID: 21708909 PMCID: PMC3153976 DOI: 10.1261/rna.2775511] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/06/2011] [Indexed: 05/31/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that modulate gene expression by binding target mRNAs. The hundreds of miRNAs expressed in the brain are critical for synaptic development and plasticity. Drugs of abuse cause lasting changes in the limbic regions of the brain that process reward, and addiction is viewed as a form of aberrant neuroplasticity. Using next-generation sequencing, we cataloged miRNA expression in the nucleus accumbens and at striatal synapses in control and chronically cocaine-treated mice. We identified cocaine-responsive miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several predicted synaptic target genes. The miR-8 family, known for its roles in cancer, is highly enriched and cocaine regulated at striatal synapses, where its members may affect expression of cell adhesion molecules. Synaptically enriched cocaine-regulated miRNAs may contribute to long-lasting drug-induced plasticity through fine-tuning regulatory pathways that modulate the actin cytoskeleton, neurotransmitter metabolism, and peptide hormone processing.
Collapse
Affiliation(s)
- Jodi E. Eipper-Mains
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Drew D. Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Dasaradhi Palakodeti
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Betty A. Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Brenton R. Graveley
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
15
|
New operant model of reinstatement of food-seeking behavior in mice. Psychopharmacology (Berl) 2011; 215:49-70. [PMID: 21161187 DOI: 10.1007/s00213-010-2110-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE A major problem in treating obesity is the high rate of relapse to abnormal food-taking behavior when maintaining diet. OBJECTIVES The present study evaluates the reinstatement of extinguished palatable food-seeking behavior induced by cues previously associated with the palatable food, re-exposure to this food, or stress. The participation of the opioid and dopamine mechanisms in the acquisition, extinction, and cue-induced reinstatement was also investigated. MATERIALS AND METHODS C57BL/6 mice were first trained on a fixed-ratio-1 schedule of reinforcement to obtain chocolate-flavored pellets during 20 days, which was associated to a stimulus light. Operant behavior was then extinguished during 20 daily sessions. mRNA levels of opioid peptide precursors and dopamine receptors were evaluated in the brain by in situ hybridization and RT-PCR techniques. RESULTS A reinstatement of food-seeking behavior was only obtained after exposure to the food-associated cue. A down-regulation of prodynorphin mRNA was found in the dorsal striatum and nucleus accumbens after the acquisition, extinction, and reinstatement of the operant behavior. Extinction and reinstatement of this operant response enhanced proenkephalin mRNA in the dorsal striatum and/or the nucleus accumbens core. Down-regulation of D2 receptor expression was observed in the dorsal striatum and nucleus accumbens after reinstatement. An up-regulation of PDYN mRNA expression was found in the hypothalamus after extinction and reinstatement. CONCLUSIONS This study provides a new operant model in mice for the evaluation of food-taking behavior and reveals specific changes in the dopamine and opioid system associated to the behavioral responses directed to obtain a natural reward.
Collapse
|
16
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 702] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
17
|
Brain mu-opioid receptor binding: relationship to relapse to cocaine use after monitored abstinence. Psychopharmacology (Berl) 2008; 200:475-86. [PMID: 18762918 PMCID: PMC2575005 DOI: 10.1007/s00213-008-1225-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Cocaine users have increased regional brain mu-opioid receptor (mOR) binding which correlates with cocaine craving. The relationship of mOR binding to relapse is unknown. OBJECTIVE To evaluate regional brain mOR binding as a predictor of relapse to cocaine use is the objective of the study. MATERIALS AND METHODS Fifteen nontreatment-seeking, adult cocaine users were housed on a closed research ward for 12 weeks of monitored abstinence and then followed for up to 1 year after discharge. Regional brain mOR binding was measured after 1 and 12 weeks using positron emission tomography (PET) with [11C]carfentanil (a selective mOR agonist). Time to first cocaine use (lapse) and to first two consecutive days of cocaine use (relapse) after discharge was based on self-report and urine toxicology. RESULTS A shorter interval before relapse was associated with increased mOR binding in frontal and temporal cortical regions at 1 and 12 weeks of abstinence (Ps < 0.001) and with a lesser decrease in binding between 1 and 12 weeks (Ps < 0.0008). There were significant positive correlations between mOR binding at 12 weeks and percent days of cocaine use during first month after relapse (Ps < 0.002). In multiple linear regression analysis, mOR binding contributed significantly to the prediction of time to relapse (R2= 0.79, P < 0.001), even after accounting for clinical variables. CONCLUSIONS Increased brain mOR binding in frontal and temporal cortical regions is a significant independent predictor of time to relapse to cocaine use, suggesting an important role for the brain endogenous opioid system in cocaine addiction.
Collapse
|
18
|
Perreault ML, Graham D, Scattolon S, Wang Y, Szechtman H, Foster JA. Cotreatment with the kappa opioid agonist U69593 enhances locomotor sensitization to the D2/D3 dopamine agonist quinpirole and alters dopamine D2 receptor and prodynorphin mRNA expression in rats. Psychopharmacology (Berl) 2007; 194:485-96. [PMID: 17619861 DOI: 10.1007/s00213-007-0855-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/08/2007] [Indexed: 11/30/2022]
Abstract
RATIONALE The repeated coadministration of the kappa opioid receptor agonist U69593 with the D2/D3 dopamine (DA) agonist quinpirole (QNP) potentiates locomotor sensitization induced by QNP. Behavioral evidence has implicated both pre- and postsynaptic changes as being involved in this augmentation. OBJECTIVES The objectives of this study were to obtain supporting molecular evidence of pre- and/or postsynaptic alterations in the DA system with U69593/QNP cotreatment and to examine the relationship of such changes to locomotor sensitization. MATERIALS AND METHODS Gene expression of D1 and D2 receptors (D1R and D2R), the DA transporter, as well as the endogenous opioid prodynorphin (DYN), in the basal ganglia was examined by in situ hybridization in rats after one or ten drug injections. RESULTS After one injection, changes that were specific to U69593/QNP cotreatment were decreased D1R and D2R messenger RNA (mRNA) in the nucleus accumbens (Acb) shell and increased DYN mRNA in the dorsal striatum (STR). After ten injections, U69593/QNP-specific changes were decreased D2R mRNA in substantia nigra (SN) and increased DYN mRNA in STR and Acb core. Only in U69593/QNP rats was the sensitized locomotor performance on injection ten positively correlated with DYN mRNA levels in Acb and STR. CONCLUSIONS Distinct alterations of D2R and DYN mRNA levels in SN and Acb/STR, respectively, strengthen the evidence implicating pre- and postsynaptic changes in augmented locomotor sensitization to U69593/QNP cotreatment. It is suggested that repeated U69593/QNP cotreatment may augment locomotor sensitization to QNP by activating D1R-expressing DYN neurons and attenuating presynaptic D2R function.
Collapse
Affiliation(s)
- Melissa L Perreault
- Department of Psychiatry and Behavioural Neurosciences, Health Science Centre, Room 4N7, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Malaplate-Armand C, Becuwe P, Ferrari L, Masson C, Dauça M, Visvikis S, Lambert H, Batt AM. Effect of acute and chronic psychostimulant drugs on redox status, AP-1 activation and pro-enkephalin mRNA in the human astrocyte-like U373 MG cells. Neuropharmacology 2005; 48:673-84. [PMID: 15814102 DOI: 10.1016/j.neuropharm.2004.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2004] [Revised: 12/09/2004] [Accepted: 12/17/2004] [Indexed: 11/24/2022]
Abstract
In order to approach the astroglial implication of addictive and neurotoxic processes associated with psychostimulant drug abuse, the effects of amphetamine or cocaine (1-100 microM) on redox status, AP-1 transcription factor and pro-enkephalin, an AP-1 target gene, were investigated in the human astrocyte-like U373 MG cells. We demonstrated an early increase in the generation of radical oxygen species and in the formation of 4-hydroxynonenal-adducts reflecting the pro-oxidant action of both substances. After 1 h or 96 h of treatment, Fos and Jun protein levels were altered and the DNA-binding activity of AP-1 was increased in response to both substances. Using supershift experiments, we observed that the composition of AP-1 dimer differed according to the substance and the duration of treatment. FRA-2 protein represented the main component of the chronic amphetamine- or cocaine-activated complexes, which suggests its relevance in the long-term effects of psychostimulant drugs. Concomitantly, the pro-enkephalin gene was differently regulated by either 6 h or 96 h of treatment. Because astrocytes interact extensively with the neurons in the brain, our data led us to conclude that oxidation-regulated AP-1 target genes may represent one of the molecular mechanisms underlying neuronal adaptation associated with psychostimulant dependence.
Collapse
|
20
|
Gorelick DA, Kim YK, Bencherif B, Boyd SJ, Nelson R, Copersino M, Endres CJ, Dannals RF, Frost JJ. Imaging brain mu-opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biol Psychiatry 2005; 57:1573-82. [PMID: 15953495 DOI: 10.1016/j.biopsych.2005.02.026] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/11/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cocaine treatment upregulates brain mu-opioid receptors (mOR) in animals. Human data regarding this phenomenon are limited. We previously used positron emission tomography (PET) with [11C]-carfentanil to show increased mOR binding in brain regions of 10 cocaine-dependent men after 1 and 28 days of abstinence. METHODS Regional brain mOR binding potential (BP) was measured with [11C]carfentanil PET scanning in 17 cocaine users over 12 weeks of abstinence on a research ward and in 16 healthy control subjects. RESULTS Mu-opioid receptor BP was increased in the frontal, anterior cingulate, and lateral temporal cortex after 1 day of abstinence. Mu-opioid receptor BP remained elevated in the first two regions after 1 week and in the anterior cingulate and anterior frontal cortex after 12 weeks. Increased binding in some regions at 1 day and 1 week was positively correlated with self-reported cocaine craving. Mu-opioid receptor BP was significantly correlated with percentage of days with cocaine use and amount of cocaine used per day of use during the 2 weeks before admission and with urine benzoylecgonine concentration at the first PET scan. CONCLUSIONS These results suggest that chronic cocaine use influences endogenous opioid systems in the human brain and might explain mechanisms of cocaine craving and reinforcement.
Collapse
Affiliation(s)
- David A Gorelick
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barr AM, Markou A. Psychostimulant withdrawal as an inducing condition in animal models of depression. Neurosci Biobehav Rev 2005; 29:675-706. [PMID: 15893821 DOI: 10.1016/j.neubiorev.2005.03.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A large body of evidence indicates that the withdrawal from high doses of psychostimulant drugs in humans induces a transient syndrome, with symptoms that appear isomorphic to those of major depressive disorder. Pharmacological treatment strategies for psychostimulant withdrawal in humans have focused mainly on compounds with antidepressant properties. Animal models of psychostimulant withdrawal have been shown to demonstrate a wide range of deficits, including changes in homeostatic, affective and cognitive behaviors, as well as numerous physiological changes. Many of these behavioral and physiological sequelae parallel specific symptoms of major depressive disorder, and have been reversed by treatment with antidepressant drugs. These combined findings provide strong support for the use of psychostimulant withdrawal as an inducing condition in animal models of depression. In the current review we propound that the psychostimulant withdrawal model displays high levels of predictive and construct validity. Recent progress and limitations in the development of this model, as well as future directions for research, are evaluated and discussed.
Collapse
Affiliation(s)
- Alasdair M Barr
- Department of Neuropharmacology, CVN-7, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037 USA
| | | |
Collapse
|
22
|
Spijker S, Houtzager SWJ, De Gunst MCM, De Boer WPH, Schoffelmeer ANM, Smit AB. Morphine exposure and abstinence define specific stages of gene expression in the rat nucleus accumbens. FASEB J 2004; 18:848-50. [PMID: 15033927 DOI: 10.1096/fj.03-0612fje] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intermittent exposure to addictive drugs causes long-lasting changes in responsiveness to these substances due to persistent molecular and cellular alterations within the meso-corticolimbic system. In this report, we studied the expression profiles of 159 genes in the rat nucleus accumbens during morphine exposure (14 days, 10 mg/kg s.c.) and drug-abstinence (3 weeks). We used real-time quantitative PCR to monitor gene expression after establishing its sensitivity and resolution to resolve small changes in expression for genes in various abundance classes. Morphine-exposure (5 time points) and subsequent abstinence (6 time points) induced phase-specific temporal gene expression of distinct functional groups of genes, for example, short-term homeostatic responses. Opiate withdrawal appeared to be a new stimulus in terms of gene expression and mediates a marked wave of gene repression. Prolonged abstinence resulted in persistently changed expression levels of genes involved in neuronal outgrowth and re-wiring. Our findings substantiate the hypothesis that this new gene program, initiated upon morphine-withdrawal, may subserve long-term neuronal plasticity involved in the persistent behavioral consequences of repeated drug-exposure.
Collapse
Affiliation(s)
- Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Graduate School Neurosciences Amsterdam, Research Institute Neurosciences,Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Hwang CK, D'Souza UM, Eisch AJ, Yajima S, Lammers CH, Yang Y, Lee SH, Kim YM, Nestler EJ, Mouradian MM. Dopamine receptor regulating factor, DRRF: a zinc finger transcription factor. Proc Natl Acad Sci U S A 2001; 98:7558-63. [PMID: 11390978 PMCID: PMC34707 DOI: 10.1073/pnas.121635798] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopamine receptor genes are under complex transcription control, determining their unique regional distribution in the brain. We describe here a zinc finger type transcription factor, designated dopamine receptor regulating factor (DRRF), which binds to GC and GT boxes in the D1A and D2 dopamine receptor promoters and effectively displaces Sp1 and Sp3 from these sequences. Consequently, DRRF can modulate the activity of these dopamine receptor promoters. Highest DRRF mRNA levels are found in brain with a specific regional distribution including olfactory bulb and tubercle, nucleus accumbens, striatum, hippocampus, amygdala, and frontal cortex. Many of these brain regions also express abundant levels of various dopamine receptors. In vivo, DRRF itself can be regulated by manipulations of dopaminergic transmission. Mice treated with drugs that increase extracellular striatal dopamine levels (cocaine), block dopamine receptors (haloperidol), or destroy dopamine terminals (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) show significant alterations in DRRF mRNA. The latter observations provide a basis for dopamine receptor regulation after these manipulations. We conclude that DRRF is important for modulating dopaminergic transmission in the brain.
Collapse
Affiliation(s)
- C K Hwang
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1406, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fauchey V, Jaber M, Caron MG, Bloch B, Le Moine C. Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur J Neurosci 2000; 12:19-26. [PMID: 10651856 DOI: 10.1046/j.1460-9568.2000.00876.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice with a genetic disruption of the dopamine transporter (DAT-/-) exhibit locomotor hyperactivity and profound alterations in the homeostasis of the nigrostriatal system, e.g. a dramatic increase in the extracellular dopamine level. Here, we investigated the adaptive changes in dopamine D1, D2 and D3 receptor gene expression in the caudate putamen and nucleus accumbens of DAT-/- mice. We used quantitative in situ hybridization and found that the constitutive hyperdopaminergia results in opposite regulations in the gene expression for the dopamine receptors. In DAT-/- mice, we observed increased mRNA levels encoding the D3 receptor (caudate putamen, +60-85%; nucleus accumbens, +40-107%), and decreased mRNA levels for both D1 (caudate putamen, -34%; nucleus accumbens, -45%) and D2 receptors (caudate putamen, -36%; nucleus accumbens, -33%). Furthermore, we assessed the phenotypical organization of the striatal efferent neurons by using double in situ hybridization. Our results show that in DAT+/+ mice, D1 and D2 receptor mRNAs are segregated in two different main populations corresponding to substance P and preproenkephalin A mRNA-containing neurons, respectively. The phenotype of D1 or D2 mRNA-containing neurons was unchanged in both the caudate putamen and nucleus accumbens of DAT-/- mice. Interestingly, we found an increased density of preproenkephalin A-negative neurons that express the D3 receptor mRNA in the nucleus accumbens (core, +35%; shell, +46%) of DAT-/- mice. Our data further support the critical role for the D3 receptor in the regulation of D1-D2 interactions, an action being restricted to neurons coexpressing D1 and D3 receptors in the nucleus accumbens.
Collapse
Affiliation(s)
- V Fauchey
- UMR CNRS 5541, Laboratoire d'Histologie Embryologie, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Smith Y, Kieval J, Couceyro PR, Kuhar MJ. CART peptide-immunoreactive neurones in the nucleus accumbens in monkeys: ultrastructural analysis, colocalization studies, and synaptic interactions with dopaminergic afferents. J Comp Neurol 1999; 407:491-511. [PMID: 10235641 DOI: 10.1002/(sici)1096-9861(19990517)407:4<491::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a novel mRNA whose level of expression was found to be increased in the striatum after acute administration of psychomotor stimulants in rats. To define better the potential role of CART peptides in behavioural and physiologic changes induced by psychomotor stimulants, we analyzed the distribution, ultrastructural features, synaptic connectivity, and transmitter content of CART peptide-immunoreactive neurones in the nucleus accumbens in monkeys. Medium-sized CART peptide-immunoreactive neurones within a rich plexus of labelled varicosities were found mostly in the medial division of the shell of the nucleus accumbens in monkeys. At the electron microscope level, CART peptide immunoreactivity was exclusively associated with neuronal structures that included perikarya, dendrites, spines as well as nerve terminals packed with electron-lucent and dense-core vesicles. Most CART peptide-containing somata displayed the ultrastructural features of striatal output neurones. The majority of labelled terminals formed symmetric axodendritic synapses and displayed gamma-aminobutyric acid (GABA) immunoreactivity. CART peptide-immunoreactive somata were not immunoreactive for parvalbumin and somatostatin, two markers of striatal interneurones, nor for calbindin D-28k, a marker of a subpopulation of projection neurones. In double-immunostained sections, CART peptide-immunoreactive dendrites were found to be contacted by tyrosine hydroxylase-positive terminals which displayed the ultrastructural features of dopamine-containing boutons. These findings strongly suggest that CART peptides may be a cotransmitter with GABA in a subpopulation of projection neurones in the monkey accumbens. Furthermore, the fact that CART peptide-immunoreactive neurones receive direct synaptic inputs from dopaminergic afferents and are particularly abundant in the caudomedial division of the shell of the nucleus accumbens suggest that CART peptides might be involved in neuronal and behavioural changes that underlie addiction to psychomotor stimulants and feeding in primates.
Collapse
Affiliation(s)
- Y Smith
- Yerkes Regional Primate Research Center, Department of Neurology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|