1
|
Liu X, Liu X. PRC2, Chromatin Regulation, and Human Disease: Insights From Molecular Structure and Function. Front Oncol 2022; 12:894585. [PMID: 35800061 PMCID: PMC9255955 DOI: 10.3389/fonc.2022.894585] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a multisubunit histone-modifying enzyme complex that mediates methylation of histone H3 lysine 27 (H3K27). Trimethylated H3K27 (H3K27me3) is an epigenetic hallmark of gene silencing. PRC2 plays a crucial role in a plethora of fundamental biological processes, and PRC2 dysregulation has been repeatedly implicated in cancers and developmental disorders. Here, we review the current knowledge on mechanisms of cellular regulation of PRC2 function, particularly regarding H3K27 methylation and chromatin targeting. PRC2-related disease mechanisms are also discussed. The mode of action of PRC2 in gene regulation is summarized, which includes competition between H3K27 methylation and acetylation, crosstalk with transcription machinery, and formation of high-order chromatin structure. Recent progress in the structural biology of PRC2 is highlighted from the aspects of complex assembly, enzyme catalysis, and chromatin recruitment, which together provide valuable insights into PRC2 function in close-to-atomic detail. Future studies on the molecular function and structure of PRC2 in the context of native chromatin and in the presence of other regulators like RNAs will continue to deepen our understanding of the stability and plasticity of developmental transcriptional programs broadly impacted by PRC2.
Collapse
|
2
|
Liu X. A Structural Perspective on Gene Repression by Polycomb Repressive Complex 2. Subcell Biochem 2020; 96:519-562. [PMID: 33252743 DOI: 10.1007/978-3-030-58971-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a major repressive chromatin complex formed by the Polycomb Group (PcG) proteins. PRC2 mediates trimethylation of histone H3 lysine 27 (H3K27me3), a hallmark of gene silencing. PRC2 is a key regulator of development, impacting many fundamental biological processes, like stem cell differentiation in mammals and vernalization in plants. Misregulation of PRC2 function is linked to a variety of human cancers and developmental disorders. In correlation with its diverse roles in development, PRC2 displays a high degree of compositional complexity and plasticity. Structural biology research over the past decade has shed light on the molecular mechanisms of the assembly, catalysis, allosteric activation, autoinhibition, chemical inhibition, dimerization and chromatin targeting of various developmentally regulated PRC2 complexes. In addition to these aspects, structure-function analysis is also discussed in connection with disease data in this chapter.
Collapse
Affiliation(s)
- Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Identification and Expression Pattern of EZH2 in Pig Developing Fetuses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5315930. [PMID: 33083470 PMCID: PMC7557918 DOI: 10.1155/2020/5315930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
The proper methylation status of histones is essential for appropriate cell lineage and organogenesis. EZH2, a methyltransferase catalyzing H3K27me3, has been abundantly studied in human and mouse embryonic development. The pig is an increasing important animal model for molecular study and pharmaceutical research. However, the transcript variant and temporal expression pattern of EZH2 in the middle and late porcine fetus are still unknown. Here, we identified the coding sequence of the EZH2 gene and characterized its expression pattern in fetal tissues of Duroc pigs at 65- and 90-day postcoitus (dpc). Our results showed that the coding sequence of EZH2 was 2241 bp, encoding 746 amino acids. There were 9 amino acid insertions and an amino acid substitution in this transcript compared with the validated reference sequence in NCBI. EZH2 was ubiquitously expressed in the fetal tissues of two time points with different expression levels. These results validated a different transcript in pigs and characterized its expression profile in fetal tissues of different gestation stages, which indicated that EZH2 played important roles during porcine embryonic development.
Collapse
|
4
|
Mu W, Starmer J, Yee D, Magnuson T. EZH2 variants differentially regulate polycomb repressive complex 2 in histone methylation and cell differentiation. Epigenetics Chromatin 2018; 11:71. [PMID: 30522506 PMCID: PMC6282306 DOI: 10.1186/s13072-018-0242-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Background Polycomb repressive complex 2 (PRC2) is responsible for establishing and maintaining histone H3K27 methylation during cell differentiation and proliferation. H3K27 can be mono-, di-, or trimethylated, resulting in differential gene regulation. However, it remains unknown how PRC2 specifies the degree and biological effects of H3K27 methylation within a given cellular context. One way to determine PRC2 specificity may be through alternative splicing of Ezh2, PRC2’s catalytic subunit, during cell differentiation and tissue maturation. Results We fully characterized the alternative splicing of Ezh2 in somatic cells and male germ cells and found that Ezh’s exon 14 was differentially regulated during mitosis and meiosis. The Ezh2 isoform containing exon 14 (ex14-Ezh2) is upregulated during cell cycle progression, consistent with a role in maintaining H3K27 methylation during chromatin replication. In contrast, the isoform lacking exon 14 (ex14D-Ezh2) was almost exclusively present in spermatocytes when new H3K27me2 is established during meiotic differentiation. Moreover, Ezh2’s transcript is normally controlled by E2F transcription activators, but in spermatocytes, Ezh2’s transcription is controlled by the meiotic regulator MYBL1. Compared to ex14-EZH2, ex14D-EZH2 has a diminished efficiency for catalyzing H3K27me3 and promotes embryonic stem cell differentiation. Conclusions Ezh2’s expression is regulated at transcriptional and post-transcriptional levels in a cellular context-dependent manner. EZH2 variants determine functional specificity of PRC2 in histone methylation during cell proliferation and differentiation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0242-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weipeng Mu
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Joshua Starmer
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Della Yee
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA.
| |
Collapse
|
5
|
EZH2 promotes neoplastic transformation through VAV interaction-dependent extranuclear mechanisms. Oncogene 2017; 37:461-477. [PMID: 28967906 DOI: 10.1038/onc.2017.309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022]
Abstract
Recently, we reported that the histone methyltransferase, EZH2, controls leukocyte migration through interaction with the cytoskeleton remodeling effector, VAV, and direct methylation of the cytoskeletal regulatory protein, Talin. However, it is unclear whether this extranuclear, epigenetic-independent function of EZH2 has a profound impact on the initiation of cellular transformation and metastasis. Here, we show that EZH2 increases Talin1 methylation and cleavage, thereby enhancing adhesion turnover and promoting accelerated tumorigenesis. This transforming capacity is abolished by targeted disruption of EZH2 interaction with VAV. Furthermore, our studies demonstrate that EZH2 in the cytoplasm is closely associated with cancer stem cell properties, and that overexpression of EZH2, a mutant EZH2 lacking its nuclear localization signal (EZH2ΔNLS), or a methyl-mimicking Talin1 mutant substantially promotes JAK2-dependent STAT3 activation and cellular transformation. Taken together, our results suggest a critical role for the VAV interaction-dependent, extranuclear action of EZH2 in neoplastic transformation.
Collapse
|
6
|
Dupret B, Völkel P, Vennin C, Toillon RA, Le Bourhis X, Angrand PO. The histone lysine methyltransferase Ezh2 is required for maintenance of the intestine integrity and for caudal fin regeneration in zebrafish. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1079-1093. [PMID: 28887218 DOI: 10.1016/j.bbagrm.2017.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 10/18/2022]
Abstract
The histone lysine methyltransferase EZH2, as part of the Polycomb Repressive Complex 2 (PRC2), mediates H3K27me3 methylation which is involved in gene expression program repression. Through its action, EZH2 controls cell-fate decisions during the development and the differentiation processes. Here, we report the generation and the characterization of an ezh2-deficient zebrafish line. In contrast to its essential role in mouse early development, loss of ezh2 function does not affect zebrafish gastrulation. Ezh2 zebrafish mutants present a normal body plan but die at around 12 dpf with defects in the intestine wall, due to enhanced cell death. Thus, ezh2-deficient zebrafish can initiate differentiation toward the different developmental lineages but fail to maintain the intestinal homeostasis. Expression studies revealed that ezh2 mRNAs are maternally deposited. Then, ezh2 is ubiquitously expressed in the anterior part of the embryos at 24 hpf, but its expression becomes restricted to specific regions at later developmental stages. Pharmacological inhibition of Ezh2 showed that maternal Ezh2 products contribute to early development but are dispensable to body plan formation. In addition, ezh2-deficient mutants fail to properly regenerate their spinal cord after caudal fin transection suggesting that Ezh2 and H3K27me3 methylation might also be involved in the process of regeneration in zebrafish.
Collapse
Affiliation(s)
- Barbara Dupret
- Cell Plasticity & Cancer, Inserm U908/University of Lille, Lille, France
| | - Pamela Völkel
- Cell Plasticity & Cancer, Inserm U908/University of Lille, Lille, France; CNRS, Lille, France
| | - Constance Vennin
- Cell Plasticity & Cancer, Inserm U908/University of Lille, Lille, France; SIRIC ONCOLille, Lille, France
| | | | - Xuefen Le Bourhis
- Cell Plasticity & Cancer, Inserm U908/University of Lille, Lille, France
| | | |
Collapse
|
7
|
Zhou X, Zang X, Ponnusamy M, Masucci MV, Tolbert E, Gong R, Zhao TC, Liu N, Bayliss G, Dworkin LD, Zhuang S. Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. J Am Soc Nephrol 2015; 27:2092-108. [PMID: 26701983 DOI: 10.1681/asn.2015040457] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/30/2015] [Indexed: 01/06/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a methyltransferase that induces histone H3 lysine 27 trimethylation (H3K27me3) and functions as an oncogenic factor in many cancer types. However, the role of EZH2 in renal fibrogenesis remains unexplored. In this study, we found high expression of EZH2 and H3K27me3 in cultured renal fibroblasts and fibrotic kidneys from mice with unilateral ureteral obstruction and humans with CKD. Pharmacologic inhibition of EZH2 with 3-deazaneplanocin A (3-DZNeP) or GSK126 or siRNA-mediated silencing of EZH2 inhibited serum- and TGFβ1-induced activation of renal interstitial fibroblasts in vitro, and 3-DZNeP administration abrogated deposition of extracellular matrix proteins and expression of α-smooth muscle actin in the obstructed kidney. Injury to the kidney enhanced Smad7 degradation, Smad3 phosphorylation, and TGFβ receptor 1 expression, and 3-DZNeP administration prevented these effects. 3-DZNeP also suppressed phosphorylation of the renal EGF and PDGFβ receptors and downstream signaling molecules signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 after injury. Moreover, EZH2 inhibition increased the expression of phosphatase and tensin homolog (PTEN), a protein previously associated with dephosphorylation of tyrosine kinase receptors in the injured kidney and serum-stimulated renal interstitial fibroblasts. Finally, blocking PTEN with SF1670 largely diminished the inhibitory effect of 3-DZNeP on renal myofibroblast activation. These results uncovered the important role of EZH2 in mediating the development of renal fibrosis by downregulating expression of Smad7 and PTEN, thus activating profibrotic signaling pathways. Targeted inhibition of EZH2, therefore, could be a novel therapy for treating CKD.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiujuan Zang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island; Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Murugavel Ponnusamy
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Monica V Masucci
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Evelyn Tolbert
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Rujun Gong
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Boston University, Providence, Rhode Island; and
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Lance D Dworkin
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island; Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Abstract
Post-translational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. In particular, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase EZH2, emerges as a key control of gene expression and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines the roles of histone lysine methylases and demethylases in cells and focuses on the recent knowledge and developments about EZH2.
Collapse
|
9
|
Marchesi I, Fiorentino FP, Rizzolio F, Giordano A, Bagella L. The ablation of EZH2 uncovers its crucial role in rhabdomyosarcoma formation. Cell Cycle 2012; 11:3828-36. [PMID: 22983009 DOI: 10.4161/cc.22025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric tumor that arises from muscle precursor cells. RMS cells express several markers of early myogenic differentiation, but they fail to complete both differentiation program and cell cycle arrest, resulting in uncontrolled proliferation and incomplete myogenesis. Previous studies showed that EZH2, which is involved in both differentiation and cancer progression, is overexpressed in RMS, but a functional binding between its expression and its functional role in tumor formation or progression has not yet been demonstrated. We hypothesized that EZH2 is a key regulator of muscular differentiation program in RMS cells. In this study, we demonstrated that EZH2 directly binds muscle specific genes in RD cells. Silencing of EZH2 promotes the recruitment of a multiprotein complex at muscle-specific promoters, their transcriptional activation and protein expression. Moreover, we demonstrated that EZH2 is directly involved in transcriptional repression of MyoD, the main factor promoting myogenesis. EZH2 ablation induces MyoD activation the recovery of its binding on muscle-specific genes.
Collapse
Affiliation(s)
- Irene Marchesi
- Department of Biomedical Sciences, Division of Biochemistry and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
10
|
Ningxia Z, Shuyan L, Zhongjing S, Ling C, Tianzhong M, Lifeng W, Yan Y, Leili L, Xiancai C, Haibin C. The expression pattern of polycomb group protein Ezh2 during mouse embryogenesis. Anat Rec (Hoboken) 2011; 294:1150-7. [PMID: 21630475 DOI: 10.1002/ar.21416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 04/07/2011] [Indexed: 01/01/2023]
Abstract
The Polycomb group (PcG) family proteins are required for the stability of homeotic selector genes and other genes related to the regulation of mammalian development through their roles in the modulation of chromatin domains. Among them, the mammalian enhancer zeste homologue 2 (Ezh2) contributes to the transcriptional repression of these genes. Previous studies tracked the Ezh2 expression at cDNA and mRNA levels during mouse development. However, little information is known about the expression patterns of Ezh2 at the protein levels. In this study, the embryos (E6.5-E18.5) obtained through timed matings of strain Kunming mice were inserted into paraffin blocks. Tissue microarrays were constructed and followed by subsequent immunohistochemical staining. The positive cells were identified and scored based on both the percentage of stained cells and their staining intensities. Ezh2 protein expression was found throughout the embryonic tissues including the nerves, intestine epithelial, liver, pancreas, renal tubule, and lungs. Its expression level was higher at early embryonic developmental stages. However, the nerve fibers and myocardium showed weak or no immunostaining reactivities. Ezh2 protein was moderately expressed in the nuclei of renal tubule epithelial cells at E14.5. In contrast, it was weakly expressed in the fetal kidneys at E18.5 and the protein was localized in the cytoplasm of the renal tubule epithelial cells. Our data confirmed that Ezh2 protein was expressed in mouse embryos and its expression exhibited tissue specificity and dependence on the stages of embryo development. thus providing new information helpful for understanding the possible roles of Ezh2 in embryogenesis.
Collapse
Affiliation(s)
- Zhu Ningxia
- Department of Histology and Embryology, Medical College of Shantou University, Guangdong Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Park KE, Magnani L, Cabot RA. Differential remodeling of mono- and trimethylated H3K27 during porcine embryo development. Mol Reprod Dev 2010; 76:1033-42. [PMID: 19536841 DOI: 10.1002/mrd.21061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Histone methylation plays an important role in regulating chromatin structure and gene expression. Methylation of the lysine residue 27 of histone H3 (H3K27) is an epigenetic mark that is closely linked with transcriptional repression; global patterns of H3K27 methylation undergo dramatic changes during cleavage development in the mouse. The aim of this study was to characterize the H3K27 methylation pattern in cleavage stage porcine embryos obtained either by in vivo or in vitro fertilization or parthenogenetic activation and to determine the expression patterns of EED, EZH2, and SUZ12 (regulators of H3K27 methylation). We found that monomethylated H3K27 was detectable in the nuclei of oocytes and pronuclear, 2-cell, 4-cell, 8-cell, and blastocyst stage embryos. Trimethylated H3K27 was detectable in the nuclei of GV stage oocytes, the chromosome of MII stage oocytes and a single pronucleus of the pronuclear stage embryos produced by fertilization; the signals were faint or absent in nuclei of two-cell through blastocyst stage embryos. In addition, EED transcripts were increased from the four-cell stage (P < 0.05) in embryos obtained by in vitro fertilization, parthenogenetic activation and in vivo fertilization. EZH2 transcript levels were highest in the GV-stage oocyte (P < 0.05). SUZ12 transcripts were transiently increased at the four-cell stage (P < 0.05) in parthenogenetic and in vivo derived embryos. Our results suggest that H3K27 trimethylation is an epigenetic marker of maternally derived chromatin that is globally remodeled during porcine embryogenesis.
Collapse
Affiliation(s)
- Ki-Eun Park
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
12
|
Abstract
Genomic imprinting results in the expression of genes in a parent-of-origin-dependent manner. The mechanism and developmental consequences of genomic imprinting are most well characterized in mammals, plants, and certain insect species (e.g., sciarid flies and coccid insects). However, researchers have observed imprinting phenomena in species in which imprinting of endogenous genes is not known to exist or to be developmentally essential. In this review, I survey the known mechanisms of imprinting, focusing primarily on examples from mammals, where imprinting is relatively well characterized. Where appropriate, I draw attention to imprinting mechanisms in other organisms to compare and contrast how diverse organisms employ different strategies to perform the same process. I discuss how the various mechanisms come into play in the context of the imprint life cycle. Finally, I speculate why imprinting may be more widely prevalent than previously thought.
Collapse
Affiliation(s)
- Ky Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
13
|
Lee J, Kanatsu-Shinohara M, Ogonuki N, Miki H, Inoue K, Morimoto T, Morimoto H, Ogura A, Shinohara T. Heritable imprinting defect caused by epigenetic abnormalities in mouse spermatogonial stem cells. Biol Reprod 2008; 80:518-27. [PMID: 19020300 DOI: 10.1095/biolreprod.108.072330] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Male germ cells undergo dynamic epigenetic reprogramming during fetal development, eventually establishing spermatogonial stem cells (SSCs) that can convert into pluripotent stem cells. However, little is known about the developmental potential of fetal germ cells and how they mature into SSCs. We developed a culture system for fetal germ cells that proliferate for long periods of time. Male germ cells from embryos 12.5-18.5 days postcoitum could expand by glial cell line-derived neurotrophic factor, a self-renewal factor for SSCs. These cells did not form teratomas, but repopulated seminiferous tubules and produced spermatogenesis, exhibiting spermatogonia potential. However, the offspring from cultured cells showed growth abnormalities and were defective in genomic imprinting. The imprinting defect persisted in both the male and female germlines for at least four generations. Moreover, germ cells in the offspring showed abnormal histone modifications and DNA methylation patterns. These results indicate that fetal germ cells have a limited ability to become pluripotent cells and lose the ability to undergo epigenetic reprogramming by in vitro culture.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008; 647:21-9. [PMID: 18723033 DOI: 10.1016/j.mrfmmm.2008.07.010] [Citation(s) in RCA: 675] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/11/2008] [Accepted: 07/23/2008] [Indexed: 12/24/2022]
Abstract
EZH2 is the catalytic subunit of Polycomb repressive complex 2 (PRC2), which is a highly conserved histone methyltransferase that targets lysine-27 of histone H3. This methylated H3-K27 chromatin mark is commonly associated with silencing of differentiation genes in organisms ranging from plants to flies to humans. Studies on human tumors show that EZH2 is frequently over-expressed in a wide variety of cancerous tissue types, including prostate and breast. Although the mechanistic contributions of EZH2 to cancer progression are not yet determined, functional links between EZH2-mediated histone methylation and DNA methylation suggest partnership with the gene silencing machinery implicated in tumor suppressor loss. Here we review the basic molecular biology of EZH2 and the findings that implicate EZH2 in different cancers. We also discuss EZH2 connections to other silencing enzymes, such as DNA methyltransferases and histone deacetylases, and we consider progress on deciphering mechanistic consequences of EZH2 overabundance and its potential roles in tumorigenesis. Finally, we review recent findings that link EZH2 roles in stem cells and cancer, and we consider prospects for integrating EZH2 blockade into strategies for developing epigenetic therapies.
Collapse
Affiliation(s)
- Jeffrey A Simon
- Department of Genetics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
15
|
Host proteins interacting with the Moloney murine leukemia virus integrase: multiple transcriptional regulators and chromatin binding factors. Retrovirology 2008; 5:48. [PMID: 18554410 PMCID: PMC2481268 DOI: 10.1186/1742-4690-5-48] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 06/13/2008] [Indexed: 01/08/2023] Open
Abstract
Background A critical step for retroviral replication is the stable integration of the provirus into the genome of its host. The viral integrase protein is key in this essential step of the retroviral life cycle. Although the basic mechanism of integration by mammalian retroviruses has been well characterized, the factors determining how viral integration events are targeted to particular regions of the genome or to regions of a particular DNA structure remain poorly defined. Significant questions remain regarding the influence of host proteins on the selection of target sites, on the repair of integration intermediates, and on the efficiency of integration. Results We describe the results of a yeast two-hybrid screen using Moloney murine leukemia virus integrase as bait to screen murine cDNA libraries for host proteins that interact with the integrase. We identified 27 proteins that interacted with different integrase fusion proteins. The identified proteins include chromatin remodeling, DNA repair and transcription factors (13 proteins); translational regulation factors, helicases, splicing factors and other RNA binding proteins (10 proteins); and transporters or miscellaneous factors (4 proteins). We confirmed the interaction of these proteins with integrase by testing them in the context of other yeast strains with GAL4-DNA binding domain-integrase fusions, and by in vitro binding assays between recombinant proteins. Subsequent analyses revealed that a number of the proteins identified as Mo-MLV integrase interactors also interact with HIV-1 integrase both in yeast and in vitro. Conclusion We identify several proteins interacting directly with both MoMLV and HIV-1 integrases that may be common to the integration reaction pathways of both viruses. Many of the proteins identified in the screen are logical interaction partners for integrase, and the validity of a number of the interactions are supported by other studies. In addition, we observe that some of the proteins have documented interactions with other viruses, raising the intriguing possibility that there may be common host proteins used by different viruses. We undertook this screen to identify host factors that might affect integration target site selection, and find that our screens have generated a wealth of putative interacting proteins that merit further investigation.
Collapse
|
16
|
Blumenberg M, Gao S, Dickman K, Grollman AP, Bottinger EP, Zavadil J. Chromatin Structure Regulation in Transforming Growth Factor-β-Directed Epithelial-Mesenchymal Transition. Cells Tissues Organs 2007; 185:162-74. [PMID: 17587822 DOI: 10.1159/000101317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) occur in organogenesis throughout embryonic development and are recapitulated during epithelial tissue injury and in carcinoma progression. EMTs are regulated by complex, precisely orchestrated cell signaling and gene expression networks, with the participation of key developmental pathways. Here we review context-dependent modules of gene regulation by hairy/enhancer-of-split-related (H/E(spl)) repressors downstream of transforming growth factor-beta (TGF-beta)/Smad and Notch signals in EMT and in other phenotype transitions such as differentiation and cancer. Based on multiple models of disease-related EMT, we propose that Polycomb group epigenetic silencers and histone-lysine methyl-transferases EZH1 and EZH2 are candidate targets of H/E(spl)-mediated transcriptional repression, in a process accompanied by replacement of modified core histone H3 with de novo synthesized histone variant H3.3B. Finally, we discuss the potential significance of this scenario for EMT in the light of recent findings on gene regulation by histone modifications and chromatin structure changes.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
17
|
Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 2007; 27:5105-19. [PMID: 17502350 PMCID: PMC1951944 DOI: 10.1128/mcb.00162-07] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Essential for embryonic development, the polycomb group protein enhancer of zeste homolog 2 (EZH2) is overexpressed in breast and prostate cancers and is implicated in the growth and aggression of the tumors. The tumorigenic mechanism underlying EZH2 overexpression is largely unknown. It is believed that EZH2 exerts its biological activity as a transcription repressor. However, we report here that EZH2 functions in gene transcriptional activation in breast cancer cells. We show that EZH2 transactivates genes that are commonly targeted by estrogen and Wnt signaling pathways. We demonstrated that EZH2 physically interacts directly with estrogen receptor alpha and beta-catenin, thus connecting the estrogen and Wnt signaling circuitries, functionally enhances gene transactivation by estrogen and Wnt pathways, and phenotypically promotes cell cycle progression. In addition, we identified the transactivation activity of EZH2 in its two N-terminal domains and demonstrated that these structures serve as platforms to connect transcription factors and the Mediator complex. Our experiments indicated that EZH2 is a dual function transcription regulator with a dynamic activity, and we provide a mechanism for EZH2 in tumorigenesis.
Collapse
Affiliation(s)
- Bin Shi
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res 2007; 618:163-74. [PMID: 17306846 PMCID: PMC1892579 DOI: 10.1016/j.mrfmmm.2006.05.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/25/2006] [Indexed: 04/15/2023]
Abstract
Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.
Collapse
Affiliation(s)
- Timothy J Moss
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
19
|
Lien YC, Noel T, Liu H, Stromberg AJ, Chen KC, St Clair DK. Phospholipase C-delta1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. Cancer Res 2006; 66:4329-38. [PMID: 16618758 DOI: 10.1158/0008-5472.can-05-3424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The clinical application of adriamycin, an exceptionally good chemotherapeutic agent, is limited by its dose-related cardiomyopathy. Our recent study showed that tumor necrosis factor-alpha (TNF-alpha) receptors mediated cytoprotective signaling against adriamycin-induced mitochondrial injury and cardiomyocyte apoptosis. In the present study, we investigated the potential targets of TNF receptor-mediated cytoprotective signaling by global genome microarray analysis using wild-type and TNF receptor-deficient mice. Microarray analysis revealed that adriamycin treatment induced the down-regulation of several mitochondrial functions and energy production-related genes in double TNF receptor-deficient mice, notably, phospholipase C-delta1, a protein involved in fatty acid metabolism and calcium regulation. The role of phospholipase C-delta1 in TNF receptor-mediated cardioprotection against adriamycin-induced injury was evaluated by measuring changes in cardiac function using high-frequency ultrasound biomicroscopy. Selective inhibition of phospholipase C activity in wild-type mice by its inhibitor, U73122, exacerbated adriamycin-induced cardiac dysfunction. Inhibition of phospholipase C-delta1 resulted in the significant decrease of left ventricular ejection fraction and fractional shortening, and the decreased levels were similar to those observed in adriamycin-treated double TNF receptor-deficient mice. The data derived from the global genome analysis identified phospholipase C-delta1 as an important target for TNF receptors and revealed the critical role of TNF receptor signaling in the protection against adriamycin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Graduate Center for Toxicology, Department of Statistics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
20
|
Shindo N, Sakai A, Arai D, Matsuoka O, Yamasaki Y, Higashinakagawa T. The ESC-E(Z) complex participates in the hedgehog signaling pathway. Biochem Biophys Res Commun 2005; 327:1179-87. [PMID: 15652519 DOI: 10.1016/j.bbrc.2004.12.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Indexed: 11/22/2022]
Abstract
Polycomb group (PcG) genes are required for stable inheritance of epigenetic states throughout development, a phenomenon termed cellular memory. In Drosophila and mice, the product of the E(z) gene, one of the PcG genes, constitutes the ESC-E(Z) complex and specifically methylates histone H3. It has been argued that this methylation sets the stage for appropriate repression of certain genes. Here, we report the isolation of a well-conserved homolog of E(z), olezh2, in medaka. Hypomorphic knock-down of olezh2 resulted in a cyclopia phenotype and markedly perturbed hedgehog signaling, consistent with our previous report on oleed, a medaka esc. We also found cyclopia in embryos treated with trichostatin A, an inhibitor of histone deacetylase, which is a transient component of the ESC-E(Z) complex. The level of tri-methylation at lysine 27 of histone H3 was substantially decreased in both olezh2 and oleed knock-down embryos, and in embryos with hedgehog signaling perturbed by forskolin. We conclude that the ESC-E(Z) complex per se participates in hedgehog signaling.
Collapse
Affiliation(s)
- Norihisa Shindo
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Major in Integrated Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo 169-8050, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
In development, cells pass on established gene expression patterns to daughter cells over multiple rounds of cell division. The cellular memory of the gene expression state is termed maintenance, and the proteins required for this process are termed maintenance proteins. The best characterized are proteins of the Polycomb and trithorax Groups that are required for silencing and maintenance of activation of target loci, respectively. These proteins act through DNA elements termed maintenance elements. Here, we re-examine the genetics and molecular biology of maintenance proteins. We discuss molecular models for the maintenance of activation and silencing, and the establishment of epigenetic marks, and suggest that maintenance proteins may play a role in propagating the mark through DNA synthesis.
Collapse
Affiliation(s)
- Hugh W Brock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
22
|
Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, Jenuwein T, Kouzarides T, Tarakhovsky A, Surani MA. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 2003; 130:4235-48. [PMID: 12900441 DOI: 10.1242/dev.00625] [Citation(s) in RCA: 251] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enhancer of zeste 2 (Ezh2), a SET domain-containing protein, is crucial for development in many model organisms, including early mouse development. In mice, Ezh2 is detected as a maternally inherited protein in the oocyte but its function at the onset of development is unknown. We have used a conditional allele of Ezh2 to deplete the oocyte of this maternal inheritance. We show that the loss of maternal Ezh2 has a long-term effect causing severe growth retardation of neonates despite 'rescue' through embryonic transcription from the paternal allele. This phenotypic effect on growth could be attributed to the asymmetric localisation of the Ezh2/Eed complex and the associated histone methylation pattern to the maternal genome, which is disrupted in Ezh2 mutant zygotes. During subsequent development, we detect distinct histone methylation patterns in the trophectoderm and the pluripotent epiblast. In the latter where Oct4 expression continues from the zygote onwards, the Ezh2/Eed complex apparently establishes a unique epigenetic state and plasticity, which probably explains why loss of Ezh2 is early embryonic lethal and obligatory for the derivation of pluripotent embryonic stem cells. By contrast, in the differentiating trophectoderm cells where Oct4 expression is progressively downregulated Ezh2/Eed complex is recruited transiently to one X chromosome in female embryos at the onset of X-inactivation. This accumulation and the associated histone methylation are also lost in Ezh2 mutants, suggesting a role in X inactivation. Thus, Ezh2 has significant and diverse roles during early development, as well as during the establishment of the first differentiated cells, the trophectoderm, and of the pluripotent epiblast cells.
Collapse
Affiliation(s)
- Sylvia Erhardt
- Wellcome Trust/Cancer Research UK Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Erhardt S, Lyko F, Ainscough JFX, Surani MA, Paro R. Polycomb-group proteins are involved in silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in Drosophila. Dev Genes Evol 2003; 213:336-44. [PMID: 12750886 DOI: 10.1007/s00427-003-0331-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Accepted: 03/20/2003] [Indexed: 12/22/2022]
Abstract
A subset of autosomal genes undergo genomic imprinting which results in expression from only the paternal or maternal chromosome. While this phenomenon is restricted to mammals and angiosperms, the underlying silencing mechanisms appear to be evolutionarily conserved. A biallelically unmethylated DNaseI hypersensitive region (A6-A4) between the imprinted Igf2 and H19 genes is conserved in humans and mice and functions as a tissue-specific maintenance element for the imprinted growth factor IGF2. In order to analyse A6-A4 for potentially conserved transcriptional maintenance properties, we have generated transgenic Drosophila harbouring the element in a reporter construct. These flies depicted silencing of the reporter genes lacZ and mini -white. The silenced state of the mini -white gene showed variegation and sensitivity to temperature changes. In addition, two members of the conserved Polycomb group, Enhancer of zeste and Posterior sex combs, were needed for repression. Polycomb group proteins are essential for gene silencing during development. Our results indicate that Polycomb group proteins may also be involved in the regulation of mammalian imprinted genes.
Collapse
Affiliation(s)
- Sylvia Erhardt
- ZMBH, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
24
|
Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 2003; 4:124-31. [PMID: 12496962 DOI: 10.1038/ni876] [Citation(s) in RCA: 483] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 11/22/2002] [Indexed: 02/06/2023]
Abstract
Polycomb group protein Ezh2 is an essential epigenetic regulator of embryonic development in mice, but its role in the adult organism is unknown. High expression of Ezh2 in developing murine lymphocytes suggests Ezh2 involvement in lymphopoiesis. Using Cre-mediated conditional mutagenesis, we demonstrated a critical role for Ezh2 in early B cell development and rearrangement of the immunoglobulin heavy chain gene (Igh). We also revealed Ezh2 as a key regulator of histone H3 methylation in early B cell progenitors. Our data suggest Ezh2-dependent histone H3 methylation as a novel regulatory mechanism controlling Igh rearrangement during early murine B cell development.
Collapse
Affiliation(s)
- I-Hsin Su
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Park IK, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R, Klug CA, Li K, Kuhr C, Doyle MJ, Xie T, Schummer M, Sun Y, Goldsmith A, Clarke MF, Weissman IL, Hood L, Li L. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 2002; 99:488-98. [PMID: 11781229 DOI: 10.1182/blood.v99.2.488] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.
Collapse
Affiliation(s)
- In-Kyung Park
- University of Michigan, Department of Internal Medicine, Ann Arbor, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gunster MJ, Raaphorst FM, Hamer KM, den Blaauwen JL, Fieret E, Meijer CJ, Otte AP. Differential expression of human Polycomb group proteins in various tissues and cell types. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:129-43. [PMID: 11455578 DOI: 10.1002/jcb.1093] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polycomb group proteins are involved in the maintenance of cellular identity. As multimeric complexes they repress cell type-specific sets of target genes. One model predicts that the composition of Polycomb group complexes determines the specificity for their target genes. To study this hypothesis, we analyzed the expression of Polycomb group genes in various human tissues using Northern blotting and immunohistochemistry. We found that Polycomb group expression varies greatly among tissues and even among specific cell types within a particular tissue. Variations in mRNA expression ranged from expression of all analyzed Polycomb group genes in the heart and testis to no detectable Polycomb group expression at all in bone marrow. Furthermore, each Polycomb group gene was expressed in a different number of tissues. RING1 was expressed in practically all tissues, while HPH1 was expressed in only a few tissues. Also within one tissue the level of Polycomb group expression varied greatly. Cell type-specific Polycomb group expression patterns were observed in thyroid, pancreas, and kidney. Finally, in various developmental stages of fetal kidney, different Polycomb group expression patterns were observed. We conclude that Polycomb group expression can vary depending on the tissue, cell type, and development stage. Polycomb group complexes can only be composed of the Polycomb group proteins that are expressed. This implies that with cell type-specific Polycomb group expression patterns, cell type-specific Polycomb group complexes exist. The fact that there are cell type-specific Polycomb group targets and cell type-specific Polycomb group complexes fits well with the hypothesis that the composition of Polycomb group complexes may determine their target specificity. J. Cell. Biochem. Suppl. 36: 129-143, 2001.
Collapse
Affiliation(s)
- M J Gunster
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Angrand PO, Apiou F, Stewart AF, Dutrillaux B, Losson R, Chambon P. NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 2001; 74:79-88. [PMID: 11374904 DOI: 10.1006/geno.2001.6524] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the isolation and characterization of NSD3, the third member of a gene family including Nsd1 and NSD2. Murine Nsd1 was isolated in a search for proteins that interact with the ligand-binding domain of retinoic acid receptor alpha. NSD2 (also known as WHSC1 and MMSET) is located in the Wolf-Hirschhorn syndrome (WHS) critical region on 4p16.3 and is involved in multiple myeloma with t(4;14) translocations. The proteins Nsd1, NSD2, and NSD3 are highly similar within a block of about 700 amino acids. This block contains several conserved domains, such as the SET domain and the PHD finger, present in proteins involved in development and/or chromatin reorganization. The NSD3 gene consists of an 8.5-kb transcript composed of 23 coding exons and spans >90 kb of genomic DNA. NSD3 maps to chromosome band 8p12 and is amplified in several tumor cell lines and primary breast carcinomas.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Binding Sites
- Blotting, Northern
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carrier Proteins/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 8/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Female
- Gene Amplification
- Gene Expression
- Genes/genetics
- Histone-Lysine N-Methyltransferase
- Humans
- In Situ Hybridization, Fluorescence
- Introns
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Poly A/genetics
- Protein Isoforms/genetics
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P O Angrand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, C.U. de Strasbourg, F-67404, France.
| | | | | | | | | | | |
Collapse
|
28
|
O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 2001; 21:4330-6. [PMID: 11390661 PMCID: PMC87093 DOI: 10.1128/mcb.21.13.4330-4336.2001] [Citation(s) in RCA: 697] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polycomb-group (Pc-G) genes are required for the stable repression of the homeotic selector genes and other developmentally regulated genes, presumably through the modulation of chromatin domains. Among the Drosophila Pc-G genes, Enhancer of zeste [E(z)] merits special consideration since it represents one of the Pc-G genes most conserved through evolution. In addition, the E(Z) protein family contains the SET domain, which has recently been linked with histone methyltransferase (HMTase) activity. Although E(Z)-related proteins have not (yet) been directly associated with HMTase activity, mammalian Ezh2 is a member of a histone deacetylase complex. To investigate its in vivo function, we generated mice deficient for Ezh2. The Ezh2 null mutation results in lethality at early stages of mouse development. Ezh2 mutant mice either cease developing after implantation or initiate but fail to complete gastrulation. Moreover, Ezh2-deficient blastocysts display an impaired potential for outgrowth, preventing the establishment of Ezh2-null embryonic stem cells. Interestingly, Ezh2 is up-regulated upon fertilization and remains highly expressed at the preimplantation stages of mouse development. Together, these data suggest an essential role for Ezh2 during early mouse development and genetically link Ezh2 with eed and YY1, the only other early-acting Pc-G genes.
Collapse
Affiliation(s)
- D O'Carroll
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
29
|
Barnett MW, Seville RA, Nijjar S, Old RW, Jones EA. Xenopus Enhancer of Zeste (XEZ); an anteriorly restricted polycomb gene with a role in neural patterning. Mech Dev 2001; 102:157-67. [PMID: 11287189 DOI: 10.1016/s0925-4773(01)00304-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have identified the Xenopus homologue of Drosophila Enhancer of Zeste using a differential display strategy designed to identify genes involved in early anterior neural differentiation. XEZ codes for a protein of 748 amino acids that is very highly conserved in evolution and is 96% identical to both human and mouse EZ(H)2. In common with most other Xenopus Pc-G genes and unlike mammalian Pc-G genes, XEZ is anteriorly restricted. Zygotic expression of XEZ commences during gastrulation, much earlier than other anteriorly localized Pc-G genes; expression is restricted to the anterior neural plate and is confined later to the forebrain, eyes and branchial arches. XEZ is induced in animal caps overexpressing noggin; up-regulation of XEZ therefore represents a response to inhibition of BMP signalling in ectodermal cells. We show that the midbrain/hindbrain junction marker En-2,and hindbrain marker Krox-20, are target genes of XEZ and that XEZ functions to repress these anteroposterior marker genes. Conversely, XEZ does not repress the forebrain marker Otx-2. XEZ overexpression results in a greatly thickened floor of the forebrain. These results implicate an important role for XEZ in the patterning of the nervous system.
Collapse
Affiliation(s)
- M W Barnett
- Cell and Molecular Development Group, Department of Biological Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | | | | | | | | |
Collapse
|
30
|
Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A 2000; 97:10637-42. [PMID: 10962025 PMCID: PMC27077 DOI: 10.1073/pnas.170292997] [Citation(s) in RCA: 330] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2000] [Indexed: 11/18/2022] Open
Abstract
The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to beta-glucuronidase (GUS) to study their activity pattern. The FIS2GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEAGUS has a pattern of activity similar to that of FIS2GUS, but FIEGUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2GUS, MEAGUS, and FIEGUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.
Collapse
Affiliation(s)
- M Luo
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra ACT 2601, Australia
| | | | | | | | | |
Collapse
|
31
|
Tomotsune D, Takihara Y, Berger J, Duhl D, Joo S, Kyba M, Shirai M, Ohta H, Matsuda Y, Honda BM, Simon J, Shimada K, Brock HW, Randazzo F. A novel member of murine Polycomb-group proteins, Sex comb on midleg homolog protein, is highly conserved, and interacts with RAE28/mph1 in vitro. Differentiation 1999; 65:229-39. [PMID: 10653359 DOI: 10.1046/j.1432-0436.1999.6540229.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Polycomb group of (PcG) genes were originally described in Drosophila, but many PcG genes have mammalian homologs. Genetic studies in flies and mice show that mutations in PcG genes cause posterior transformations caused by failure to maintain repression of homeotic loci, suggesting that PcG proteins have conserved functions. The Drosophila gene Sex comb on midleg (Scm) encodes an unusual PcG protein that shares motifs with the PcG protein polyhomeotic, and with a Drosophila tumor suppressor, lethal(3)malignant brain tumor (l(3)mbt). Expressed sequence tag (EST) databases were searched to recover putative mammalian Scm homologs, which were used to screen murine cDNA libraries. The recovered cDNA encodes two mbt repeats and the SPM domain that characterize Scm, but lacks the cysteine clusters and the serine/threonine-rich region found at the amino terminus of Scm. Accordingly, we have named the gene Sex comb on midleg homolog 1 (Scmh1). Like their Drosophila counterparts, Scmh1 and the mammalian polyhomeotic homolog RAE28/mph1 interact in vitro via their SPM domains. We analyzed the expression of Scmh1 and rae28/mph1 using northern analysis of embryos and adult tissues, and in situ hybridization to embryos. The expression of Scmh1 and rae28/mph1 is well correlated in most tissues of embryos. However, in adults, Scmh1 expression was detected in most tissues, whereas mph1/rae28 expression was restricted to the gonads. Scmh1 is strongly induced by retinoic acid in F9 and P19 embryonal carcinoma cells. Scmh1 maps to 4D1-D2.1 in mice. These data suggest that Scmh1 will have an important role in regulation of homeotic genes in embryogenesis and that the interaction with RAE28/mph1 is important in vivo.
Collapse
Affiliation(s)
- D Tomotsune
- Department of Medical Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xue H, O'Neill D, Wang X, Wolgemuth DJ, Bank A. HemT-3, an alternative transcript of mouse gene HemT specific to male germ cells. Gene 1999; 240:193-9. [PMID: 10564826 DOI: 10.1016/s0378-1119(99)00401-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of genes are known to be expressed primarily in hematopoietic cells and testis and are thought to function in the control of both blood cell and male germ cell differentiation. We have recently identified a mouse gene, HemT, that encodes two alternatively spliced transcripts specific to hematopoietic cells (HemT-1 and HemT-2) and kidney (HemT-2). We have now isolated a third HemT transcript, HemT-3, that is found only in testis by Northern blot analysis and RT-PCR. HemT-3 is alternatively spliced and may be initiated differently from HemT-1 and HemT-2. RNA in-situ hybridization of testis from wild-type and germ-cell-deficient adult mice, as well as from mice at different developmental stages, indicates that HemT-3 is expressed only in early spermatocytes. HemT-3 cDNA has a major open reading frame related to a human glycosylphosphatidylinositol (GPI)-anchored protein, GML. Using an antibody generated against a peptide derived from the HemT-3 open reading frame, we have detected a testis-specific 22kDa protein by Western blot analysis.
Collapse
Affiliation(s)
- H Xue
- Department of Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | |
Collapse
|
33
|
Satijn DP, Otte AP. Polycomb group protein complexes: do different complexes regulate distinct target genes? BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:1-16. [PMID: 10500238 DOI: 10.1016/s0167-4781(99)00130-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D P Satijn
- E.C. Slater Instituut, University of Amsterdam, Plantage Muidergracht 12, 1018 TV, Amsterdam, The Netherlands
| | | |
Collapse
|
34
|
Berger J, Kurahashi H, Takihara Y, Shimada K, Brock HW, Randazzo F. The human homolog of Sex comb on midleg (SCMH1) maps to chromosome 1p34. Gene 1999; 237:185-91. [PMID: 10524249 DOI: 10.1016/s0378-1119(99)00285-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polycomb group genes were originally identified in Drosophila as repressors required to maintain the silenced state of homeotic loci. About ten Polycomb group genes have been cloned in Drosophila, and mammalian homologs have been identified for most of these. Here, we isolate cDNAs encoding two isoforms of a human homolog of Drosophila Sex comb on midleg (Scm), named Sex comb on midleg homolog-1 (SCMH1). Overall, SCMH1 has 94% identity to its mouse counterpart Scmh1, and 41% identity to Scm, and contains two 1(3)mbt domains, and the SPM domain that are characteristic of Scm. SCMH1 is widely expressed in adult tissues, and maps to chromosome 1p34.
Collapse
Affiliation(s)
- J Berger
- Chiron Corporation, Emeryville, CA 94608-2916, USA
| | | | | | | | | | | |
Collapse
|
35
|
Seydoux G, Strome S. Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 1999; 126:3275-83. [PMID: 10393107 DOI: 10.1242/dev.126.15.3275] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One hundred years after Weismann's seminal observations, the mechanisms that distinguish the germline from the soma still remain poorly understood. This review describes recent studies in Caenorhabditis elegans, which suggest that germ cells utilize unique mechanisms to regulate gene expression. In particular, mechanisms that repress the production of mRNAs appear to be essential to maintain germ cell fate and viability.
Collapse
Affiliation(s)
- G Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
36
|
Li H, Schrick JJ, Fewell GD, MacFarland KL, Witte DP, Bodenmiller DM, Hsieh-Li HM, Su CY, Potter SS. Novel strategy yields candidate Gsh-1 homeobox gene targets using hypothalamus progenitor cell lines. Dev Biol 1999; 211:64-76. [PMID: 10373305 DOI: 10.1006/dbio.1999.9304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the successful application of a strategy that potentially provides for an efficient and universal screen for downstream gene targets. We used the promoter of the Gsh-1 homeobox gene to drive expression of the SV40 T-antigen gene in transgenic mice. We have previously shown that the Gsh-1 homeobox gene is expressed in discrete domains of the ganglionic eminences, diencephalon, and hindbrain during brain development. Gsh-1-SV40 T transgenic mice showed cellular hyperplasia in regions of the brain coincident with Gsh-1 expression. The Gsh-1-SV40 T transgene was introduced, by breeding, into Gsh-1 homozygous mutant mice, and Gsh-1 -/- cell lines were made. Clonal cell lines were generated and analyzed by Northern blot hybridizations and Affymetrix GeneChip probe arrays to determine gene expression profiles. The results indicate that the cell lines remain representative of early developmental stages. Further, immunocytochemistry showed uniformly high levels of nestin expression, typical of central nervous system progenitor cells, and the absence of terminal differentiation markers of neuronal cells. One clonal cell line, No. 14, was then stably transfected with a tet-inducible Gsh-1 expression construct and subcloned. The starting clone 14, together with the uninduced and induced subclones, provided cell populations with varying levels of Gsh-1 expression. Differential display and Affymetrix GeneChip probe arrays were then used to identify transcript differences that represent candidate Gsh-1 target genes. Of particular interest, the drm and gas1 genes, which repress cell proliferation, were observed to be activated in Gsh-1-expressing cells. These observations support models predicting that homeobox genes function in the regulation of cell proliferation.
Collapse
Affiliation(s)
- H Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
García E, Marcos-Gutiérrez C, del Mar Lorente M, Moreno JC, Vidal M. RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. EMBO J 1999; 18:3404-18. [PMID: 10369680 PMCID: PMC1171420 DOI: 10.1093/emboj/18.12.3404] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The products of the Polycomb group (PcG) of genes are necessary for the maintenance of transcriptional repression of a number of important developmental genes, including the homeotic genes. A two-hybrid screen was used to search for putative new members of the PcG of genes in mammals. We have identified a new Zn finger protein, RYBP, which interacts directly with both Ring1 proteins (Ring1A and Ring1B) and with M33, two mutually interacting sets of proteins of the mammalian Polycomb complex. Ring1 binds RYBP and M33 through the same C-terminal domain, whereas the RYBP-M33 interaction takes place through an M33 domain not involved in Ring1 binding. RYBP also interacts directly with YY1, a transcription factor partially related to the product of the Drosophila pleiohomeotic gene. In addition, we show here that RYBP acts as a transcriptional repressor in transiently transfected cells. Finally, RYBP shows a dynamic expression pattern during embryogenesis which initially overlaps partially that of Ring1A in the central nervous system, and later becomes ubiquitous. Taken together, these data suggest that RYBP may play a relevant role in PcG function in mammals.
Collapse
Affiliation(s)
- E García
- Centro de Investigaciones Biológicas, Department of Developmental and Cell Biology, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Denisenko O, Shnyreva M, Suzuki H, Bomsztyk K. Point mutations in the WD40 domain of Eed block its interaction with Ezh2. Mol Cell Biol 1998; 18:5634-42. [PMID: 9742080 PMCID: PMC109149 DOI: 10.1128/mcb.18.10.5634] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/1998] [Accepted: 07/06/1998] [Indexed: 01/08/2023] Open
Abstract
The Polycomb group proteins are involved in maintenance of the silenced state of several developmentally regulated genes. These proteins form large aggregates with different subunit compositions. To explore the nature of these complexes and their function, we used the full-length Eed (embryonic ectoderm development) protein, a mammalian homolog of the Drosophila Polycomb group protein Esc, as a bait in the yeast two-hybrid screen. Several strongly interacting cDNA clones were isolated. The cloned cDNAs all encoded the 150- to 200-amino-acid N-terminal fragment of the mammalian homolog of the Drosophila Enhancer of zeste [E(z)] protein, Ezh2. The full-length Ezh2 bound strongly to Eed in vitro, and Eed coimmunoprecipitated with Ezh2 from murine 70Z/3 cell extracts, confirming the interaction between these proteins observed in yeast. Mutations T1031A and T1040C in one of the WD40 repeats of Eed, which account for the hypomorphic and lethal phenotype of eed in mouse development, blocked binding of Ezh2 to Eed in a two-hybrid interaction in yeast and in mammalian cells. These mutations also blocked the interaction between these proteins in vitro. In mammalian cells, the Gal4-Eed fusion protein represses the activity of a promoter bearing Gal4 DNA elements. The N-terminal fragment of the Ezh2 protein abolished the transcriptional repressor activity of Gal4-Eed protein when they were coexpressed in mammalian cells. Eed and Ezh2 were also found to bind RNA in vitro, and RNA altered the interaction between these proteins. These findings suggest that Polycomb group proteins Eed and Ezh2 functionally interact in mammalian cells, an interaction that is mediated by the WD40-containing domain of Eed protein.
Collapse
Affiliation(s)
- O Denisenko
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
39
|
Bel S, Coré N, Djabali M, Kieboom K, Van der Lugt N, Alkema MJ, Van Lohuizen M. Genetic interactions and dosage effects of Polycomb group genes in mice. Development 1998; 125:3543-51. [PMID: 9716520 DOI: 10.1242/dev.125.18.3543] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila and mouse, Polycomb group genes are involved in the maintenance of homeotic gene expression patterns throughout development. Here we report the skeletal phenotypes of compound mutants for two Polycomb group genes bmi1 and M33. We show that mice deficient for both bmi1 and M33 present stronger homeotic transformations of the axial skeleton as compared to each single Polycomb group mutant, indicating strong dosage interactions between those two genes. These skeletal transformations are accompanied with an enhanced shift of the anterior limit of expression of several Hox genes in the somitic mesoderm. Our results demonstrate that in mice the Polycomb group genes act in synergy to control the nested expression pattern of some Hox genes in somitic mesodermal tissues during development.
Collapse
Affiliation(s)
- S Bel
- Centre d'immunologie INSERM-CNRS de Marseille Luminy, Case 906, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Tie F, Furuyama T, Harte PJ. The Drosophila Polycomb Group proteins ESC and E(Z) bind directly to each other and co-localize at multiple chromosomal sites. Development 1998; 125:3483-96. [PMID: 9693151 DOI: 10.1242/dev.125.17.3483] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Polycomb Group gene esc encodes an evolutionarily conserved protein required for transcriptional silencing of the homeotic genes. Unlike other Polycomb Group genes, esc is expressed and apparently required only during early embryogenesis, suggesting it is required for the initial establishment of silencing but not for its subsequent maintenance. We present evidence that the ESC protein interacts directly with E(Z), another Polycomb Group protein required for silencing of the homeotic genes. We show that the most highly conserved region of ESC, containing seven WD motifs that are predicted to fold into a beta-propeller structure, mediate its binding to a conserved N-terminal region of E(Z). Mutations in the WD region that perturb ESC silencing function in vivo also perturb binding to E(Z) in vitro. The entire WD region forms a trypsin-resistant structure, like known beta -propeller domains, and mutations that would affect the predicted ESC beta-propeller perturb its trypsin-resistance, while a putative structure-conserving mutation does not. We show by co-immunoprecipitation that ESC and E(Z) are directly associated in vivo and that they also co-localize at many chromosomal binding sites. Since E(Z) is required for binding of other Polycomb Group proteins to chromosomes, these results suggest that formation of an E(Z):ESC complex at Polycomb Response Elements may be an essential prerequisite for the establishment of silencing.
Collapse
Affiliation(s)
- F Tie
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955, USA
| | | | | |
Collapse
|
41
|
Tate P, Lee M, Tweedie S, Skarnes WC, Bickmore WA. Capturing novel mouse genes encoding chromosomal and other nuclear proteins. J Cell Sci 1998; 111 ( Pt 17):2575-85. [PMID: 9701556 DOI: 10.1242/jcs.111.17.2575] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The burgeoning wealth of gene sequences contrasts with our ignorance of gene function. One route to assigning function is by determining the sub-cellular location of proteins. We describe the identification of mouse genes encoding proteins that are confined to nuclear compartments by splicing endogeneous gene sequences to a promoterless betageo reporter, using a gene trap approach. Mouse ES (embryonic stem) cell lines were identified that express betageo fusions located within sub-nuclear compartments, including chromosomes, the nucleolus and foci containing splicing factors. The sequences of 11 trapped genes were ascertained, and characterisation of endogenous protein distribution in two cases confirmed the validity of the approach. Three novel proteins concentrated within distinct chromosomal domains were identified, one of which appears to be a serine/threonine kinase. The sequence of a gene whose product co-localises with splicesome components suggests that this protein may be an E3 ubiquitin-protein ligase. The majority of the other genes isolated represent novel genes. This approach is shown to be a powerful tool for identifying genes encoding novel proteins with specific sub-nuclear localisations and exposes our ignorance of the protein composition of the nucleus. Motifs in two of the isolated genes suggest new links between cellular regulatory mechanisms (ubiquitination and phosphorylation) and mRNA splicing and chromosome structure/function.
Collapse
Affiliation(s)
- P Tate
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK
| | | | | | | | | |
Collapse
|
42
|
Holdeman R, Nehrt S, Strome S. MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. Development 1998; 125:2457-67. [PMID: 9609829 DOI: 10.1242/dev.125.13.2457] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A unique and essential feature of germ cells is their immortality. In Caenorhabditis elegans, germline immortality requires the maternal contribution from four genes, mes-2, mes-3, mes-4 and mes-6. We report here that mes-2 encodes a protein similar to the Drosophila Polycomb group protein, Enhancer of zeste, and in the accompanying paper that mes-6 encodes another Polycomb group protein. The Polycomb group is responsible for maintaining proper patterns of expression of the homeotic and other genes in Drosophila. It is thought that Polycomb group proteins form heteromeric complexes and control gene expression by altering chromatin conformation of target genes. As predicted from its similarity to a Polycomb group protein, MES-2 localizes to nuclei. MES-2 is found in germline nuclei in larval and adult worms and in all nuclei in early embryos. By the end of embryogenesis, MES-2 is detected primarily in the two primordial germ cells. The correct distribution of MES-2 requires the wild-type functions of mes-3 and mes-6. We hypothesize that mes-2 encodes a maternal regulator of gene expression in the early germline; its function is essential for normal early development and viability of germ cells.
Collapse
Affiliation(s)
- R Holdeman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
43
|
Huang N, vom Baur E, Garnier JM, Lerouge T, Vonesch JL, Lutz Y, Chambon P, Losson R. Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBO J 1998; 17:3398-412. [PMID: 9628876 PMCID: PMC1170677 DOI: 10.1093/emboj/17.12.3398] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NSD1, a novel 2588 amino acid mouse nuclear protein that interacts directly with the ligand-binding domain (LBD) of several nuclear receptors (NRs), has been identified and characterized. NSD1 contains a SET domain and multiple PHD fingers. In addition to these conserved domains found in both positive and negative Drosophila chromosomal regulators, NSD1 contains two distinct NR interaction domains, NID-L and NID+L, that exhibit binding properties of NIDs found in NR corepressors and coactivators, respectively. NID-L, but not NID+L, interacts with the unliganded LBDs of retinoic acid receptors (RAR) and thyroid hormone receptors (TR), and this interaction is severely impaired by mutations in the LBD alpha-helix 1 that prevent binding of corepressors and transcriptional silencing by apo-NRs. NID+L, but not NID-L, interacts with the liganded LBDs of RAR, TR, retinoid X receptor (RXR), and estrogen receptor (ER), and this interaction is abrogated by mutations in the LBD alpha-helix 12 that prevent binding of coactivators of the ligand-induced transcriptional activation function AF-2. A novel variant (FxxLL) of the NR box motif (LxxLL) is present in NID+L and is required for the binding of NSD1 to holo-LBDs. Interestingly, NSD1 contains separate repression and activation domains. Thus, NSD1 may define a novel class of bifunctional transcriptional intermediary factors playing distinct roles in both the presence and absence of ligand.
Collapse
Affiliation(s)
- N Huang
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
van Lohuizen M, Tijms M, Voncken JW, Schumacher A, Magnuson T, Wientjens E. Interaction of mouse polycomb-group (Pc-G) proteins Enx1 and Enx2 with Eed: indication for separate Pc-G complexes. Mol Cell Biol 1998; 18:3572-9. [PMID: 9584197 PMCID: PMC108938 DOI: 10.1128/mcb.18.6.3572] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/1997] [Accepted: 03/09/1998] [Indexed: 02/07/2023] Open
Abstract
The Polycomb group (Pc-G) constitutes an important, functionally conserved group of proteins, required to stably maintain inactive homeobox genes repressed during development. Drosophila extra sex combs (esc) and its mammalian homolog embryonic ectoderm development (eed) are special Pc-G members, in that they are required early during development when Pc-G repression is initiated, a process that is still poorly understood. To get insight in the molecular function of Eed, we searched for Eed-interacting proteins, using the yeast two-hybrid method. Here we describe the specific in vivo binding of Eed to Enx1 and Enx2, two mammalian homologs of the essential Drosophila Pc-G gene Enhancer-of-zeste [E(z)]. No direct biochemical interactions were found between Eed/Enx and a previously characterized mouse Pc-G protein complex, containing several mouse Pc-G proteins including mouse polyhomeotic (Mph1). This suggests that different Pc-G complexes with distinct functions may exist. However, partial colocalization of Enx1 and Mph1 to subnuclear domains may point to more transient interactions between these complexes, in support of a bridging role for Enx1.
Collapse
Affiliation(s)
- M van Lohuizen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Sewalt RG, van der Vlag J, Gunster MJ, Hamer KM, den Blaauwen JL, Satijn DP, Hendrix T, van Driel R, Otte AP. Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes. Mol Cell Biol 1998; 18:3586-95. [PMID: 9584199 PMCID: PMC108940 DOI: 10.1128/mcb.18.6.3586] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Drosophila melanogaster, the Polycomb-group (PcG) and trithorax-group (trxG) genes have been identified as repressors and activators, respectively, of gene expression. Both groups of genes are required for the stable transmission of gene expression patterns to progeny cells throughout development. Several lines of evidence suggest a functional interaction between the PcG and trxG proteins. For example, genetic evidence indicates that the enhancer of zeste [E(z)] gene can be considered both a PcG and a trxG gene. To better understand the molecular interactions in which the E(z) protein is involved, we performed a two-hybrid screen with Enx1/EZH2, a mammalian homolog of E(z), as the target. We report the identification of the human EED protein, which interacts with Enx1/EZH2. EED is the human homolog of eed, a murine PcG gene which has extensive homology with the Drosophila PcG gene extra sex combs (esc). Enx1/EZH2 and EED coimmunoprecipitate, indicating that they also interact in vivo. However, Enx1/EZH2 and EED do not coimmunoprecipitate with other human PcG proteins, such as HPC2 and BMI1. Furthermore, unlike HPC2 and BMI1, which colocalize in nuclear domains of U-2 OS osteosarcoma cells, Enx1/EZH2 and EED do not colocalize with HPC2 or BMI1. Our findings indicate that Enx1/EZH2 and EED are members of a class of PcG proteins that is distinct from previously described human PcG proteins.
Collapse
Affiliation(s)
- R G Sewalt
- E. C. Slater Instituut, BioCentrum Amsterdam, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jones CA, Ng J, Peterson AJ, Morgan K, Simon J, Jones RS. The Drosophila esc and E(z) proteins are direct partners in polycomb group-mediated repression. Mol Cell Biol 1998; 18:2825-34. [PMID: 9566901 PMCID: PMC110661 DOI: 10.1128/mcb.18.5.2825] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 02/05/1998] [Indexed: 02/07/2023] Open
Abstract
The extra sex combs (esc) and Enhancer of zeste [E(z)] proteins are members of the Drosophila Polycomb group (Pc-G) of transcriptional repressors. Here we present evidence for direct physical interaction between the esc and E(z) proteins using yeast two-hybrid and in vitro binding assays. In addition, coimmunoprecipitation from embryo extracts demonstrates association of esc and E(z) in vivo. We have delimited the esc-binding domain of E(z) to an N-terminal 33-amino-acid region. Furthermore, we demonstrate that site-directed mutations in the esc protein previously shown to impair esc function in vivo disrupt esc-E(z) interactions in vitro. We also show an in vitro interaction between the heed and EZH1 proteins, which are human homologs of esc and E(z), respectively. These results suggest that the esc-E(z) molecular partnership has been conserved in evolution. Previous studies suggested that esc is primarily involved in the early stages of Pc-G-mediated silencing during embryogenesis. However, E(z) is continuously required in order to maintain chromosome binding by other Pc-G proteins. In light of these earlier observations and the molecular data presented here, we discuss how esc-E(z) protein complexes may contribute to transcriptional silencing by the Pc-G.
Collapse
Affiliation(s)
- C A Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hashimoto N, Brock HW, Nomura M, Kyba M, Hodgson J, Fujita Y, Takihara Y, Shimada K, Higashinakagawa T. RAE28, BMI1, and M33 are members of heterogeneous multimeric mammalian Polycomb group complexes. Biochem Biophys Res Commun 1998; 245:356-65. [PMID: 9571155 DOI: 10.1006/bbrc.1998.8438] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Polycomb group loci in Drosophila encode chromatin proteins required for repression of homeotic loci in embryonic development. We show that mouse Polycomb group homologues, RAE28, BMI1 and M33, have overlapping but not identical expression patterns during embryogenesis and in adult tissues. These three proteins coimmunoprecipitate from embryonic nuclear extracts. Gel filtration analysis of embryonic extracts indicates that RAE28, BMI1 and M33 exist in large multimeric complexes. M33 and RAE28 coimmunoprecipitate and copurify as members of large complexes from F9 cells, which express BMI1 at very low levels, suggesting that different Polycomb group complexes can form in different cells. RAE28, BMI1 and M33 interact homotypically, and both RAE28 and M33 interact with BMI1, but not with each other. The domains required for interaction were localized. Together, these studies indicate that murine Polycomb group proteins are developmentally regulated and function as members of multiple, heterogeneous complexes.
Collapse
Affiliation(s)
- N Hashimoto
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ogawa M, Hiraoka Y, Taniguchi K, Aiso S. Cloning and expression of a human/mouse Polycomb group gene, ENX-2/Enx-2. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1395:151-8. [PMID: 9473645 DOI: 10.1016/s0167-4781(97)00156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Drosophila Polycomb group (Pc-G) genes encode transcriptional factors involved in development. Little is known about members of the vertebrate Pc-G genes. In this study, we have isolated a cDNA encoding a human Pc-G protein and the mouse equivalent. The human and mouse genes, which were named ENX-2 and Enx-2, encode 702 and 750 amino acids, respectively. ENX-2/Enx-2 protein exhibits a high homology (53-55% identity) to Drosophila Enhancer of zeste [E(z)] protein belonging to the Pc-G. The expression of Enx-2 was observed in mouse kidney, adrenal gland, testis and brain at high levels by Northern blot analysis. A cell line of mouse neuroblastoma, Neuro-2a, also expresses Enx-2 mRNA and its level is elevated by induction of neuronal differentiation of the cell.
Collapse
Affiliation(s)
- M Ogawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
49
|
Schoorlemmer J, Marcos-Gutiérrez C, Were F, Martínez R, García E, Satijn DP, Otte AP, Vidal M. Ring1A is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. EMBO J 1997; 16:5930-42. [PMID: 9312051 PMCID: PMC1170224 DOI: 10.1093/emboj/16.19.5930] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Drosophila, the products of the Polycomb group (Pc-G) of genes act as chromatin-associated multimeric protein complexes that repress expression of homeotic genes. Vertebrate Pc-G homologues have been identified, but the nature of the complexes they form and the mechanisms of their action are largely unknown. The Polycomb homologue M33 is implicated in mesoderm patterning in the mouse and here we show that it acts as a transcriptional repressor in transiently transfected cells. Furthermore, we have identified two murine proteins, Ring1A and Ring1B, that interact directly with the repressor domain of M33. Ring1A and Ring1B display blocks of similarity throughout their sequences, including an N-terminal RING finger domain. However, the interaction with M33 occurs through a region at the C-terminus. Ring1A represses transcription through sequences not involved in M33 binding. Ring1A protein co-localizes in nuclear domains with M33 and other Pc-G homologues, such as Bmi1. The expression of Ring1A at early stages of development is restricted to the neural tube, whereas M33 is expressed ubiquitously. Within the neural tube, Ring1A RNA is located at the rhombomere boundaries of the hindbrain. Taken together, these data suggest that Ring1A may contribute to a tissue-specific function of Pc-G-protein complexes during mammalian development.
Collapse
Affiliation(s)
- J Schoorlemmer
- Centro de Investigaciones Biológicas, Department of Developmental and Cell Biology, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Genes of the Polycomb and trithorax groups (PcG and trxG) are part of a cellular memory system that maintains inactive and active states of homeotic gene expression in Drosophila. Recent genetic evidence indicates that several related loci in mammals are also involved in the regulation of Hox genes. Like their Drosophila counterparts, the vertebrate gene products are components of multiprotein complexes that regulate transcriptional activation, repression and aspects of chromatin structure. Initial indications suggest the existence of a large mammalian PcG and trxG family, with a potential to encode multiple specialised functions in cell fate and cell-cycle control.
Collapse
Affiliation(s)
- A Gould
- MRC National Institute for Medical Research, London, UK.
| |
Collapse
|