1
|
Abstract
There is a renewed enthusiasm for therapeutic vaccination as a viable treatment for patients with cancer. Early tumor vaccines were comprised of whole tumor cells, fragments of tumor cells, or protein lysate from tumor cells. Limited results with these approaches led investigators to begin developing the next generation of cancer vaccines based on defined tumor-associated antigens (TAAs). Defining and characterizing TAAs for human cancer, development of new approaches for identifying TAAs, and novel strategies to deliver the antigens as potent therapeutic vaccines have all been the focus of intense research in the past decade and will continue to be the focus for decades to come.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Department of Microbiology and Immunology and the Southwest Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
2
|
Abstract
Intragenomic conflict occurs when some elements within the genome produce effects that enhance their own probability of replication or transmission at the expense of other elements within the same genome. Here it is proposed that mutations involved in intragenomic conflict are particularly likely to be co-opted by evolving lineages of cancer cells, and hence should be associated with the occurrence of cancer. We discuss several types of intragenomic conflict that are associated with various forms of cancer.
Collapse
Affiliation(s)
- K Summers
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | | | |
Collapse
|
3
|
Abstract
Because oncogenic DNA viruses establish persistent infections in humans, continuous immunosurveillance for neoplastic cells is required to prevent virus-induced tumors. Antigen-specific CD8+ T lymphocytes are critical in vivo effectors for eliminating virus-infected and virus-transformed cells. Investigation into the induction, regulation, and maintenance of CD8+ T cells specific for these viruses is hindered by the lack of tractable animal models that mimic natural infection. Resistance to tumors induced by polyoma virus, a persistent natural mouse DNA virus, is mediated by polyoma-specific CD8+ T cells. Mice susceptible to polyoma virus tumorigenesis mount a smaller, albeit still considerable, expansion of anti-polyoma CD8+ T cells; importantly, these antiviral CD8+ T cells lack cytotoxic activity while retaining the phenotype of cytotoxic T lymphocyte (CTL) effectors. In this review, we will discuss potential in vivo mechanisms that regulate the functional competence of anti-polyoma CD8+ T cells, particularly in the context of chronic antigenic stimulation provided by persistent viral infections and tumors.
Collapse
Affiliation(s)
- J M Moser
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
4
|
Lukacher AE, Moser JM, Hadley A, Altman JD. Visualization of Polyoma Virus-Specific CD8+ T Cells In Vivo During Infection and Tumor Rejection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
T cells are critical for clearing infection and preventing tumors induced by polyoma virus, a natural murine papovavirus. We previously identified the immunodominant epitope for polyoma virus-specific CTL in tumor-resistant H-2k mice as the Dk-restricted peptide, MT389–397, derived from the polyoma middle T oncoprotein. In this study, we developed tetrameric Dk complexes containing the MT389–397 peptide to directly visualize and enumerate MT389–397-specific CTL during polyoma virus infection. We found that Dk/MT389 tetramer+CD8+ T cells undergo a massive expansion during primary infection such that by day 7 postinfection these Ag-specific CD8+ T cells constitute ∼20% of the total and ∼40% of the activated CD8+ T cells in the spleen. This expansion of Dk/MT389 tetramer+CD8+ T cells parallels the emergence of MT389–397-specific ex vivo cytolytic activity and clearance of polyoma virus. Notably, Dk/MT389 tetramer+CD8+ T cells are maintained in memory at very high levels. The frequencies of Dk/MT389 tetramer+CD8+ effector and memory T cells in vivo match those of CD8+ T cells producing intracellular IFN-γ after 6-h in vitro stimulation by MT389–397 peptide. Consistent with preferential Vβ6 expression by MT389–397-specific CD8+CTL lines and clones, Dk/MT389 tetramer+CD8+ T cells exhibit biased expression of this Vβ gene segment. Finally, we show that Dk/MT389 tetramer+CD8+ T cells efficiently infiltrate a polyoma tumor challenge to virus-immune mice. Taken together, these findings strongly implicate virus-induced MT389–397-specific CD8+ T cells as essential effectors in eliminating polyoma-infected and polyoma-transformed cells in vivo.
Collapse
Affiliation(s)
| | | | | | - John D. Altman
- †Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
5
|
García AM, Ortíz-Navarrete VF, Mora-García ML, Flores-Borja F, Diaz-Quiñonez A, Isibasi-Araujo A, Trejo-Becerril C, Chacón-Salinas R, Hernández-Montes J, Granados-Arreola J, de Leo C, Weiss-Steider B. Identification of peptides presented by HLA class I molecules on cervical cancer cells with HPV-18 infection. Immunol Lett 1999; 67:167-77. [PMID: 10369123 DOI: 10.1016/s0165-2478(98)00188-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work we eluted peptides from purified class I MHC molecules, isolated from a novel human cervical carcinoma cell line (INBL), generated in our laboratory and positive for HPV-18 infection. A fraction of these peptides was capable of stimulating T lymphocytes obtained from a donor matched for HLA-Cw4 and who was also HPV-18+. Direct N-terminal Edman degradation of these peptides, revealed the sequence (XQFPIFLQF) that matched 85% with the sequence NVFPIFLQM localized in between the 54 and 62 residues of the HPV-18 L1 protein. After stimulation with the synthetic peptide NVFPIFLQM, T lymphocytes from the donor were capable to lyse INBL cells. Our results provide evidence of the existence of naturally occurring viral epitopes presented on cervical cancer cells by the HLA-Cw4 allele, that could be useful for immunotherapy on this type of patient.
Collapse
Affiliation(s)
- A M García
- Laboratorio de Immunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer, Facultad de Estudios Superiores Zaragoza, UNAM, México City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Wölfel T. Identification of Tumor Antigens Defined by Cytolytic T Lymphocytes and Therapeutic Implications. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Starzl TE. The mother lode of liver transplantation, with particular reference to our new journal. LIVER TRANSPLANTATION AND SURGERY : OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES AND THE INTERNATIONAL LIVER TRANSPLANTATION SOCIETY 1998; 4:1-14. [PMID: 9457961 PMCID: PMC2993429 DOI: 10.1002/lt.500040101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T E Starzl
- Pittsburgh Transplantation Institute University of Pittsburgh Medical Center, PA, USA
| |
Collapse
|
9
|
Rowe DT, Qu L, Reyes J, Jabbour N, Yunis E, Putnam P, Todo S, Green M. Use of quantitative competitive PCR to measure Epstein-Barr virus genome load in the peripheral blood of pediatric transplant patients with lymphoproliferative disorders. J Clin Microbiol 1997; 35:1612-5. [PMID: 9163497 PMCID: PMC229802 DOI: 10.1128/jcm.35.6.1612-1615.1997] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A quantitative competitive PCR (QC-PCR) assay for Epstein-Barr virus (EBV) has been developed to provide accurate measurement of EBV genome load in pediatric transplant recipients at risk for developing posttransplant lymphoproliferative disorder (PTLD). The assay quantifies between 8 and 5,000 copies of the EBV genome in 10(5) lymphocytes after a 30-cycle amplification reaction. For 14 pediatric patients diagnosed with PTLD, the median EBV genome load was 4,000, and 13 of the 14 patients had values of >500 copies per 10(5) lymphocytes. Only 3 of 12 control transplant recipients not diagnosed with PTLD had detectable viral genome loads (median value, 40). This median was calculated by using the highest value obtained by PCR testing on each of these patients posttransplantation. PCR values of >500 copies per 10(5) lymphocytes appear to correlate with a diagnosis of PTLD. By a modified protocol, the EBV genome copy number in latently infected adults was estimated to be <0.1 copy per 10(5) lymphocytes.
Collapse
Affiliation(s)
- D T Rowe
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, The Childrens Hospital of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Panousis CG, Rowe DT. Epstein-Barr virus latent membrane protein 2 associates with and is a substrate for mitogen-activated protein kinase. J Virol 1997; 71:4752-60. [PMID: 9151869 PMCID: PMC191697 DOI: 10.1128/jvi.71.6.4752-4760.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The latent membrane protein 2 (LMP2) of Epstein-Barr virus interferes with B-lymphocyte signal transduction through the immunoglobulin (Ig) receptor. Two isoforms of LMP2 exist and differ only in that one isoform (LMP2a) contains an N-terminal cytoplasmic domain that the other isoform does not. LMP2a is a phosphoprotein that is phosphorylated on tyrosines and serines in the cytoplasmic domain. GST1-119, a glutathione S-transferase (GST) fusion protein containing the 119 amino acids of the cytoplasmic domain, affinity precipitated serine kinase activity from BJAB cell extracts. The affinity-precipitated kinase phosphorylated LMP2a sequences, and kinase activity was increased following induction. Probing of Western immunoblots of affinity-precipitated proteins showed that the Erk1 form of mitogen-activated protein kinase (MAPK) was present. Purified MAPK phosphorylated GST fusion proteins containing the cytoplasmic domain of LMP2a and mutational analyses were used to identify S15 and S102 as the sites of in vitro phosphorylation. A polyclonal rabbit antiserum was prepared against a maltose binding protein-LMP2a cytoplasmic domain fusion protein (MBP1-119) and used to immunoprecipitate LMP2a from the in vitro-immortalized lymphoblastoid B-cell line B95-8CR. LMP2a immunoprecipitates from B95-8CR contained MAPK as a coprecipitated protein. Cross-linking surface Ig on B95-8CR cells failed to induce MAPK activity within the cells. Treatment of B95-8CR with phorbol myristate acetate (PMA) was able to bypass the Ig receptor block and activate MAPK activity. Phosphorylation of LMP2a on serine residues increased after PMA induction. The possible role for LMP2a serine phosphorylation by MAPK in the control of latency is discussed.
Collapse
Affiliation(s)
- C G Panousis
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
11
|
Starzl TE, Demetris AJ, Murase N, Trucco M, Thomson AW, Rao AS, Fung JJ. Chimerism after organ transplantation. Curr Opin Nephrol Hypertens 1997; 6:292-8. [PMID: 9263673 PMCID: PMC2955429 DOI: 10.1097/00041552-199705000-00015] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent evidence suggests that passenger leukocytes migrate after organ transplantation and produce persistent chimerism, which is essential for sustained survival of the allograft. Here, we describe how this hematolymphopoietic chimerism provides an important framework for interpretation of post-transplant phenomena and for initiation of therapeutically oriented transplantation research.
Collapse
Affiliation(s)
- T E Starzl
- Pittsburgh Transplantation Institute, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ressing ME, Offringa R, Toes RE, Ossendorp F, de Jong JH, Brandt RM, Kast WM, Melief CJ. Immunotherapy of cancer by peptide-based vaccines for the induction of tumor-specific T cell immunity. IMMUNOTECHNOLOGY : AN INTERNATIONAL JOURNAL OF IMMUNOLOGICAL ENGINEERING 1996; 2:241-51. [PMID: 9373306 DOI: 10.1016/s1380-2933(96)00057-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent progress in defining the molecular nature of antigens and in finding ways to manipulate T cell-mediated immune responses may provide new modalities for cancer treatment. In this report, we review preclinical studies as well as the first clinical trials with vaccination strategies aiming at the induction of anti-tumor immunity. In particular, we focus on the development of a vaccine against human papillomavirus-induced cervical carcinoma.
Collapse
Affiliation(s)
- M E Ressing
- Department of Immunohematology, University Hospital, Leiden, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- F Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
14
|
Abstract
Adoptive immunotherapy with tumor-specific cytotoxic T lymphocytes (CTLs) can induce tumor regressions in animals and in human cancer patients. Antigens recognized by CTLs from cancer patients are being sought as possible immunogens, a number of which have been identified during the past year. The ultimate result may be the development of novel peptide-based immunotherapies and a new understanding of the T-cell response to human cancer.
Collapse
Affiliation(s)
- C L Slingluff
- University of Virginia Health Sciences Center, Charlottesville
| | | | | |
Collapse
|
15
|
Nijman HW, Van der Burg SH, Vierboom MP, Houbiers JG, Kast WM, Melief CJ. p53, a potential target for tumor-directed T cells. Immunol Lett 1994; 40:171-8. [PMID: 8088874 DOI: 10.1016/0165-2478(94)90189-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell lineage-specific cellular proteins, oncogenes from viral or cellular origin and tumor suppressor genes encode tumor-specific/associated antigens. Such antigens can elicit an major compatibility complex (MHC) class I-restricted cytotoxic T lymphocyte (CTL) response, either naturally in cancer patients or following appropriate immunostimulation (in vitro or in vivo). The reported immune responses in humans to the melanoma-associated MAGE gene products, GP100 and tyrosinase, all self-proteins, support the idea to use wild-type p53 products as targets for T cells. An important step towards this goal is identification of potential p53 CTL epitopes. We identified the wild-type p53 peptides with the highest affinity to the HLA-A*0201 molecule using two assays: the previously described MHC peptide-binding assay and the peptide competition assay. We obtained CTL against four p53 peptides with a high affinity for the HLA-A*0201 molecule. These findings are discussed next to a short review concerning the p53 literature.
Collapse
Affiliation(s)
- H W Nijman
- Department of Immunohaematology and Blood Bank, University Hospital, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cytokines are soluble proteins that allow for communication between cells and the external environment. Interferon (IFN) alpha, the first cytokine to be produced by recombinant DNA technology, has emerged as an important regulator of growth and differentiation, affecting cellular communication and signal transduction pathways as well as immunological control. This review focuses on the biological and clinical activities of the cytokine. Originally discovered as an antiviral substance, the efficacy of IFN-alpha in malignant, viral, immunological, angiogenic, inflammatory, and fibrotic diseases suggests a spectrum of interrelated pathophysiologies. The principles learned from in vivo studies will be discussed, particularly hairy cell leukemia, chronic myelogenous leukemia, certain angiogenic diseases, and hepatitis. After the surprising discovery of activity in a rare B-cell neoplasm, IFN-alpha emerged as a prototypic tumor suppressor protein that represses the clinical tumorigenic phenotype in some malignancies capable of differentiation. Regulatory agencies throughout the world have approved IFN-alpha for treatment of 13 malignant and viral disorders. The principles established with this cytokine serve as a paradigm for future development of natural proteins for human disease.
Collapse
Affiliation(s)
- J U Gutterman
- Department of Clinical Immunology and Biological Therapy, University of Texas, M. D. Anderson Cancer Center, Houston 77030
| |
Collapse
|