1
|
Liu X, Wang M, Cheng A, Yang Q, Tian B, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Jia R, Chen S, Liu M, Zhu D. Functions of the UL51 protein during the herpesvirus life cycle. Front Microbiol 2024; 15:1457582. [PMID: 39252835 PMCID: PMC11381400 DOI: 10.3389/fmicb.2024.1457582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The herpesvirus UL51 protein is a multifunctional tegument protein involved in the regulation of multiple aspects of the viral life cycle. This article reviews the biological characteristics of the UL51 protein and its functions in herpesviruses, including participating in the maintenance of the viral assembly complex (cVAC) during viral assembly, affecting the production of mature viral particles and promoting primary and secondary envelopment, as well as its positive impact on viral cell-to-cell spread (CCS) through interactions with multiple viral proteins and its key role in the proliferation and pathogenicity of the virus in the later stage of infection. This paper discusses how the UL51 protein participates in the life cycle of herpesviruses and provides new ideas for further research on UL51 protein function.
Collapse
Affiliation(s)
- Xiaolan Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Carlin CR, Ngalula S. Loss of EGF receptor polarity enables homeostatic imbalance in epithelial-cell models. Mol Biol Cell 2023; 34:ar116. [PMID: 37647145 PMCID: PMC10846618 DOI: 10.1091/mbc.e23-04-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
The polarized distribution of membrane proteins into apical and basolateral domains provides the basis for specialized functions of epithelial tissues. The EGF receptor (EGFR) plays important roles in embryonic development, adult-epithelial tissue homeostasis, and growth and survival of many carcinomas. Typically targeted to basolateral domains, there is also considerable evidence of EGFR sorting plasticity but very limited knowledge regarding domain-specific EGFR substrates. Here we have investigated effects of selective EGFR mistargeting because of inactive-basolateral sorting signals on epithelial-cell homeostatic responses to growth-induced stress in MDCK cell models. Aberrant EGFR localization was associated with multilayer formation, anchorage-independent growth, and upregulated expression of the intermediate filament-protein vimentin characteristically seen in cells undergoing epithelial-to-mesenchymal transition. EGFRs were selectively retained following their internalization from apical membranes, and a signaling pathway involving the signaling adaptor Gab1 protein and extracellular signal-regulated kinase ERK5 had an essential role integrating multiple responses to growth-induced stress. Our studies highlight the potential importance of cellular machinery specifying EGFR polarity in epithelial pathologies associated with homeostatic imbalance.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4970
- Case Western Reserve University Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970
| | - Syntyche Ngalula
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4970
| |
Collapse
|
3
|
Haque MS, Emi Y, Sakaguchi M. A conserved WXXE motif is an apical delivery determinant of ABC transporter C subfamily isoforms. Cell Struct Funct 2023; 48:71-82. [PMID: 36696993 PMCID: PMC10721954 DOI: 10.1247/csf.22049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
ATP-binding cassette transporter isoform C7 (ABCC7), also designated as cystic fibrosis transmembrane conductance regulator (CFTR), is exclusively targeted to the apical plasma membrane of polarized epithelial cells. Although the apical localization of ABCC7 in epithelia is crucial for the Cl- excretion into lumens, the mechanism regulating its apical localization is poorly understood. In the present study, an apical localization determinant was identified in the N-terminal 80-amino acid long cytoplasmic region of ABCC7 (NT80). In HepG2 cells, overexpression of NT80 significantly disturbed the apical expression of ABCC7 in a competitive manner, suggesting the presence of a sorting determinant in this region. Deletion analysis identified a potential sorting information within a 20-amino acid long peptide (aa 41-60) of NT80. Alanine scanning mutagenesis of this region in full-length ABCC7 further narrowed down the apical localization determinant to four amino acids, W57DRE60. This WDRE sequence was conserved among vertebrate ABCC7 orthologs. Site-directed mutagenesis showed that W57 and E60 were critical for the apical expression of ABCC7, confirming a novel apical sorting determinant of ABCC7. Furthermore, a WXXE motif (tryptophan and glutamic acid residues with two-amino acid spacing) was found to be conserved among the N-terminal regions of apically localized ABCC members with 12-TM configuration. The significance of the WXXE motif was demonstrated for proper trafficking of ABCC4 to the apical plasma membrane.Key words: apical plasma membrane, sorting, ATP-binding cassette transporter, CFTR, MRP4.
Collapse
Affiliation(s)
- Md Shajedul Haque
- Graduate School of Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| | - Yoshikazu Emi
- Graduate School of Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| | - Masao Sakaguchi
- Graduate School of Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| |
Collapse
|
4
|
Jiang L, Li Q, Liang W, Du X, Yang Y, Zhang Z, Xu L, Zhang J, Li J, Chen Z, Gu Z. Organ-On-A-Chip Database Revealed-Achieving the Human Avatar in Silicon. Bioengineering (Basel) 2022; 9:685. [PMID: 36421086 PMCID: PMC9687773 DOI: 10.3390/bioengineering9110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Organ-on-a-chip (OOC) provides microphysiological conditions on a microfluidic chip, which makes up for the shortcomings of traditional in vitro cellular culture models and animal models. It has broad application prospects in drug development and screening, toxicological mechanism research, and precision medicine. A large amount of data could be generated through its applications, including image data, measurement data from sensors, ~omics data, etc. A database with proper architecture is required to help scholars in this field design experiments, organize inputted data, perform analysis, and promote the future development of novel OOC systems. In this review, we overview existing OOC databases that have been developed, including the BioSystics Analytics Platform (BAP) developed by the University of Pittsburgh, which supports study design as well as data uploading, storage, visualization, analysis, etc., and the organ-on-a-chip database (Ocdb) developed by Southeast University, which has collected a large amount of literature and patents as well as relevant toxicological and pharmaceutical data and provides other major functions. We used examples to overview how the BAP database has contributed to the development and applications of OOC technology in the United States for the MPS consortium and how the Ocdb has supported researchers in the Chinese Organoid and Organs-On-A-Chip society. Lastly, the characteristics, advantages, and limitations of these two databases were discussed.
Collapse
Affiliation(s)
- Lincao Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Weicheng Liang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xuan Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Yi Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Zilin Zhang
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Lili Xu
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Jing Zhang
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Jian Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| |
Collapse
|
5
|
Lee SH, Jun BH. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
MacDonald E, Brown L, Selvais A, Liu H, Waring T, Newman D, Bithell J, Grimes D, Urbé S, Clague MJ, Zech T. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J Cell Biol 2018; 217:2549-2564. [PMID: 29891722 PMCID: PMC6028553 DOI: 10.1083/jcb.201710051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Transmembrane proteins in the sorting endosome are either recycled to their point of origin or destined for lysosomal degradation. Lysosomal sorting is mediated by interaction of ubiquitylated transmembrane proteins with the endosomal sorting complex required for transport (ESCRT) machinery. In this study, we uncover an alternative role for the ESCRT-0 component hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) in promoting the constitutive recycling of transmembrane proteins. We find that endosomal localization of the actin nucleating factor Wiscott-Aldrich syndrome protein and SCAR homologue (WASH) requires HRS, which occupies adjacent endosomal subdomains. Depletion of HRS results in defective constitutive recycling of epidermal growth factor receptor and the matrix metalloproteinase MT1-MMP, leading to their accumulation in internal compartments. We show that direct interactions with endosomal actin are required for efficient recycling and use a model system of chimeric transferrin receptor trafficking to show that an actin-binding motif can counteract an ubiquitin signal for lysosomal sorting. Directed receptor recycling is used by cancer cells to achieve invasive migration. Accordingly, abrogating HRS- and actin-dependent MT1-MMP recycling results in defective matrix degradation and invasion of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Ewan MacDonald
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Arnaud Selvais
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Daniel Newman
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Douglas Grimes
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Sylvie Urbé
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Michael J Clague
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| |
Collapse
|
7
|
Dietz AN, Villinger C, Becker S, Frick M, von Einem J. A Tyrosine-Based Trafficking Motif of the Tegument Protein pUL71 Is Crucial for Human Cytomegalovirus Secondary Envelopment. J Virol 2018; 92:e00907-17. [PMID: 29046458 PMCID: PMC5730796 DOI: 10.1128/jvi.00907-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) tegument protein pUL71 is required for efficient secondary envelopment and accumulates at the Golgi compartment-derived viral assembly complex (vAC) during infection. Analysis of various C-terminally truncated pUL71 proteins fused to enhanced green fluorescent protein (eGFP) identified amino acids 23 to 34 as important determinants for its Golgi complex localization. Sequence analysis and mutational verification revealed the presence of an N-terminal tyrosine-based trafficking motif (YXXΦ) in pUL71. This led us to hypothesize a requirement of the YXXΦ motif for the function of pUL71 in infection. Mutation of both the tyrosine residue and the entire YXXΦ motif resulted in an altered distribution of mutant pUL71 at the plasma membrane and in the cytoplasm during infection. Both YXXΦ mutant viruses exhibited similarly decreased focal growth and reduced virus yields in supernatants. Ultrastructurally, mutant-virus-infected cells exhibited impaired secondary envelopment manifested by accumulations of capsids undergoing an envelopment process. Additionally, clusters of capsid accumulations surrounding the vAC were observed, similar to the ultrastructural phenotype of a UL71-deficient mutant. The importance of endocytosis and thus the YXXΦ motif for targeting pUL71 to the Golgi complex was further demonstrated when clathrin-mediated endocytosis was inhibited either by coexpression of the C-terminal part of cellular AP180 (AP180-C) or by treatment with methyl-β-cyclodextrin. Both conditions resulted in a plasma membrane accumulation of pUL71. Altogether, these data reveal the presence of a functional N-terminal endocytosis motif that is an important determinant for intracellular localization of pUL71 and that is furthermore required for the function of pUL71 during secondary envelopment of HCMV capsids at the vAC.IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of birth defects among congenital virus infections and can lead to life-threatening infections in immunocompromised hosts. Current antiviral treatments target viral genome replication and are increasingly overcome by viral mutations. Therefore, identifying new targets for antiviral therapy is important for future development of novel treatment options. A detailed molecular understanding of the complex virus morphogenesis will identify potential viral as well as cellular targets for antiviral intervention. Secondary envelopment is an important viral process through which infectious virus particles are generated and which involves the action of several viral proteins, such as tegument protein pUL71. Targeting of pUL71 to the site of secondary envelopment appears to be crucial for its function during this process and is regulated by utilizing host trafficking mechanisms that are commonly exploited by viral glycoproteins. Thus, intracellular trafficking, if targeted, might present a novel target for antiviral therapy.
Collapse
Affiliation(s)
- Andrea N Dietz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Clarissa Villinger
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Stefan Becker
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
O'Donovan KJ. Intrinsic Axonal Growth and the Drive for Regeneration. Front Neurosci 2016; 10:486. [PMID: 27833527 PMCID: PMC5081384 DOI: 10.3389/fnins.2016.00486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/10/2016] [Indexed: 02/01/2023] Open
Abstract
Following damage to the adult nervous system in conditions like stroke, spinal cord injury, or traumatic brain injury, many neurons die and most of the remaining spared neurons fail to regenerate. Injured neurons fail to regrow both because of the inhibitory milieu in which they reside as well as a loss of the intrinsic growth capacity of the neurons. If we are to develop effective therapeutic interventions that promote functional recovery for the devastating injuries described above, we must not only better understand the molecular mechanisms of developmental axonal growth in hopes of re-activating these pathways in the adult, but at the same time be aware that re-activation of adult axonal growth may proceed via distinct mechanisms. With this knowledge in hand, promoting adult regeneration of central nervous system neurons can become a more tractable and realistic therapeutic endeavor.
Collapse
Affiliation(s)
- Kevin J O'Donovan
- Department of Chemistry and Life Science, United States Military Academy West Point, NY, USA
| |
Collapse
|
9
|
Abstract
Galectin-4, a tandem repeat member of the β-galactoside-binding proteins, possesses two carbohydrate-recognition domains (CRD) in a single peptide chain. This lectin is mostly expressed in epithelial cells of the intestinal tract and secreted to the extracellular. The two domains have 40% similarity in amino acid sequence, but distinctly binding to various ligands. Just because the two domains bind to different ligands simultaneously, galectin-4 can be a crosslinker and crucial regulator in a large number of biological processes. Recent evidence shows that galectin-4 plays an important role in lipid raft stabilization, protein apical trafficking, cell adhesion, wound healing, intestinal inflammation, tumor progression, etc. This article reviews the physiological and pathological features of galectin-4 and its important role in such processes.
Collapse
|
10
|
Wang C, de Jong E, Sjollema KA, Zuhorn IS. Entry of PIP3-containing polyplexes into MDCK epithelial cells by local apical-basal polarity reversal. Sci Rep 2016; 6:21436. [PMID: 26899207 PMCID: PMC4761886 DOI: 10.1038/srep21436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/22/2016] [Indexed: 02/08/2023] Open
Abstract
The polarized architecture of epithelium presents a barrier to therapeutic drug/gene carriers, which is mainly due to a limited (apical) internalization of the carrier systems. The bacterium Pseudomonas aeruginosa invades epithelial cells by inducing production of apical phosphatidylinositol-3, 4, 5-triphosphate (PIP3), which results in the recruitment of basolateral receptors to the apical membrane. Since basolateral receptors are known receptors for gene delivery vectors, apical PIP3 may improve the internalization of such vectors into epithelial cells. PIP3 and nucleic acids were complexed by the cationic polymer polyethylenimine (PEI), forming PEI/PIP3 polyplexes. PEI/PIP3 polyplexes showed enhanced internalization compared to PEI polyplexes in polarized MDCK cells, while basolateral receptors were found to redistribute and colocalize with PEI/PIP3 polyplexes at the apical membrane. Following their uptake via endocytosis, PEI/PIP3 polyplexes showed efficient endosomal escape. The effectiveness of the PIP3-containing delivery system to generate a physiological effect was demonstrated by an essentially complete knock down of GFP expression in 30% of GFP-expressing MDCK cells following anti-GFP siRNA delivery. Here, we demonstrate that polyplexes can be successfully modified to mimic epithelial entry mechanisms used by Pseudomonas aeruginosa. These findings encourage the development of pathogen-inspired drug delivery systems to improve drug/gene delivery into and across tissue barriers.
Collapse
Affiliation(s)
- Cuifeng Wang
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Edwin de Jong
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Klaas A. Sjollema
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Inge S. Zuhorn
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
11
|
Yang J, Yao W, Qian G, Wei Z, Wu G, Wang G. Rab5-mediated VE-cadherin internalization regulates the barrier function of the lung microvascular endothelium. Cell Mol Life Sci 2015; 72:4849-66. [PMID: 26112597 PMCID: PMC4827161 DOI: 10.1007/s00018-015-1973-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
The small GTPase Rab5 has been well defined to control the vesicle-mediated plasma membrane protein transport to the endosomal compartment. However, its function in the internalization of vascular endothelial (VE)-cadherin, an important component of adherens junctions, and as a result regulating the endothelial cell polarity and barrier function remain unknown. Here, we demonstrated that lipopolysaccharide (LPS) simulation markedly enhanced the activation and expression of Rab5 in human pulmonary microvascular endothelial cells (HPMECs), which is accompanied by VE-cadherin internalization. In parallel, LPS challenge also induced abnormal cell polarity and dysfunction of the endothelial barrier in HPMECs. LPS stimulation promoted the translocation of VE-cadherin from the plasma membrane to intracellular compartments, and intracellularly expressed VE-cadherin was extensively colocalized with Rab5. Small interfering RNA (siRNA)-mediated depletion of Rab5a expression attenuated the disruption of LPS-induced internalization of VE-cadherin and the disorder of cell polarity. Furthermore, knockdown of Rab5 inhibited the vascular endothelial hyperpermeability and protected endothelial barrier function from LPS injury, both in vitro and in vivo. These results suggest that Rab5 is a critical mediator of LPS-induced endothelial barrier dysfunction, which is likely mediated through regulating VE-cadherin internalization. These findings provide evidence, implicating that Rab5a is a potential therapeutic target for preventing endothelial barrier disruption and vascular inflammation.
Collapse
Affiliation(s)
- Junjun Yang
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Wei Yao
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Guisheng Qian
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhenghua Wei
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, 30912, USA.
| | - Guansong Wang
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
12
|
Fölsch H. Analyzing the role of AP-1B in polarized sorting from recycling endosomes in epithelial cells. Methods Cell Biol 2015; 130:289-305. [PMID: 26360041 DOI: 10.1016/bs.mcb.2015.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial cells polarize their plasma membrane into apical and basolateral domains where the apical membrane faces the luminal side of an organ and the basolateral membrane is in contact with neighboring cells and the basement membrane. To maintain this polarity, newly synthesized and internalized cargos must be sorted to their correct target domain. Over the last ten years, recycling endosomes have emerged as an important sorting station at which proteins destined for the apical membrane are segregated from those destined for the basolateral membrane. Essential for basolateral sorting from recycling endosomes is the tissue-specific adaptor complex AP-1B. This chapter describes experimental protocols to analyze the AP-1B function in epithelial cells including the analysis of protein sorting in LLC-PK1 cells lines, immunoprecipitation of cargo proteins after chemical crosslinking to AP-1B, and radioactive pulse-chase experiments in MDCK cells depleted of the AP-1B subunit μ1B.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
Ben-Tov D, Abraham Y, Stav S, Thompson K, Loraine A, Elbaum R, de Souza A, Pauly M, Kieber JJ, Harpaz-Saad S. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells. PLANT PHYSIOLOGY 2015; 167:711-24. [PMID: 25583925 PMCID: PMC4347734 DOI: 10.1104/pp.114.240671] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/24/2014] [Indexed: 05/17/2023]
Abstract
Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation.
Collapse
Affiliation(s)
- Daniela Ben-Tov
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Yael Abraham
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Shira Stav
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Kevin Thompson
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Ann Loraine
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Rivka Elbaum
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Amancio de Souza
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Markus Pauly
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Joseph J Kieber
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Smadar Harpaz-Saad
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel (D.B.-T., Y.A., R.E., S.H.-S.);Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, North Carolina 28081 (S.S., K.T., A.L.);Energy Biosciences Institute (A.d.S., M.P.) and Department of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720; andBiology Department, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| |
Collapse
|
14
|
Nakatsu F, Hase K, Ohno H. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond. MEMBRANES 2014; 4:747-63. [PMID: 25387275 PMCID: PMC4289864 DOI: 10.3390/membranes4040747] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Abstract
The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn's disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, BCMM237, New Haven, CT 06510, USA.
| | - Koji Hase
- Department of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa 230-0045, Japan.
| |
Collapse
|
15
|
Galmes R, Delaunay JL, Maurice M, Aït-Slimane T. Oligomerization is required for normal endocytosis/transcytosis of a GPI-anchored protein in polarized hepatic cells. J Cell Sci 2013; 126:3409-16. [PMID: 23750006 DOI: 10.1242/jcs.126250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Targeting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) in polarized epithelial cells depends on their association with detergent-resistant membrane microdomains called rafts. In MDCK cells, GPI-APs associate with rafts in the trans-Golgi network and are directly delivered to the apical membrane. It has been shown that oligomerization is required for their stabilization in rafts and their apical targeting. In hepatocytes, GPI-APs are first delivered to the basolateral membrane and secondarily reach the apical membrane by transcytosis. We investigated whether oligomerization is required for raft association and apical sorting of GPI-APs in polarized HepG2 cells, and at which step of the pathway oligomerization occurs. Model proteins were wild-type GFP-GPI and a double cysteine GFP-GPI mutant, in which GFP dimerization was impaired. Unlike wild-type GFP-GPI, which was efficiently endocytosed and transcytosed to the apical surface, the double cysteine mutant was basolaterally internalized, but massively accumulated in early endosomes, and reached the bile canaliculi with delayed kinetics. The double cysteine mutant was less resistant to Triton X-100 extraction, and formed fewer high molecular weight complexes. We conclude from these results that, in hepatocytes, oligomerization plays a key role in targeting GPI-APs to the apical membrane, by increasing their affinity for rafts and allowing their transcytosis.
Collapse
Affiliation(s)
- Romain Galmes
- INSERM, UMR_S938, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | | |
Collapse
|
16
|
Abstract
Highly pathogenic Nipah virus (NiV) infections are transmitted via airway secretions and urine, commonly via the respiratory route. Epithelial surfaces represent important replication sites in both primary and systemic infection phases. NiV entry and spread from polarized epithelial cells therefore determine virus entry and dissemination within a new host and influence virus shedding via mucosal surfaces in the respiratory and urinary tract. To date, there is no knowledge regarding the entry and exit sites of NiV in polarized epithelial cells. In this report, we show for the first time that NiV can infect polarized kidney epithelial cells (MDCK) from both cell surfaces, while virus release is primarily restricted to the apical plasma membrane. Substantial amounts of basolateral infectivity were detected only after infection with high virus doses, at time points when the integrity of the cell monolayer was largely disrupted as a result of cell-to-cell fusion. Confocal immunofluorescence analyses of envelope protein distribution at early and late infection stages suggested that apical virus budding is determined by the polarized sorting of the NiV matrix protein, M. Studies with stably M-expressing and with monensin-treated cells furthermore demonstrated that M protein transport is independent from the glycoproteins, implying that the M protein possesses an intrinsic apical targeting signal.
Collapse
|
17
|
Cotton CU, Hobert ME, Ryan S, Carlin CR. Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells. Traffic 2012. [PMID: 23205726 DOI: 10.1111/tra.12032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial-specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)-dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell-cell junctional complexes. The AP1B-dependent pathway does not override a PKC-resistant T654A mutation, and conversely AP1B-defective EGFRs sort basolaterally by a PKC-dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three-dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different basolateral sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders.
Collapse
Affiliation(s)
- Calvin U Cotton
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
18
|
Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments. J Virol 2012; 87:403-14. [PMID: 23077321 DOI: 10.1128/jvi.02465-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE(-), gI(-), or US9(-) mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE(-)/US9(-) double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons.
Collapse
|
19
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Romdhan IBB, Fendri A, Frikha F, Gargouri A, Belghith H. Purification, physico-chemical and kinetic properties of the deglycosylated Talaromyces thermophilus lipase. Int J Biol Macromol 2012; 51:892-900. [PMID: 22766036 DOI: 10.1016/j.ijbiomac.2012.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
The Talaromyces thermophilus strain produces only one form of lipase called TTLI. When the culture medium was concentrated and stored at 4°C during a few days, we noticed the appearance of a second short form of lipase named TTLII. This second form was purified to homogeneity using gel filtration and FPLC-Anion exchange chromatography. The NH(2)-terminal 24 amino acid residues were found to be identical to those of TTLI. The treatment of the TTLI with endoglycosidase H decreased its apparent molecular weight from 39 to 30kDa which corresponds to the molecular weight of TTLII. This difference was mostly attributed to the N-glycosylation of the enzyme. In fact, the glycan chain content and concavaline A-Sepharose affinity column confirmed that the TTLII was completely deglycosylated. Compared to TTLI, the TTLII activity was completely decreased over a broad range of temperature and pH. Furthermore, the deglycosylation of the enzyme reduced its specific activity by 50% toward different substrates; strongly suggest that the N-glycans are determinants for optimal catalytic activity and thermal stability of this enzyme. Covalent immobilization of the enzymes on supports suggests the involvement of the glycan moiety in enzyme-polymer interactions. In the case of TTLI the glycan moiety can constitute an extra site for the covalent linkage of the enzyme on the carrier.
Collapse
Affiliation(s)
- Ines belhaj-ben Romdhan
- Laboratoire de Valorisation de la Biomasse et Production des Protéines chez les Eucaryotes, Centre de Biotechnologies de Sfax, BP «1177» 3018 Sfax, University of Sfax, Tunisia
| | | | | | | | | |
Collapse
|
21
|
Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol 2012; 44:1422-35. [PMID: 22652318 DOI: 10.1016/j.biocel.2012.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- A Qin
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Emi Y, Yasuda Y, Sakaguchi M. A cis-acting five-amino-acid motif controls targeting of ABCC2 to the apical plasma membrane domain. J Cell Sci 2012; 125:3133-43. [PMID: 22454528 DOI: 10.1242/jcs.099549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette transporter isoform C2 (ABCC2) is exclusively targeted to the apical plasma membrane of polarized cells. Although apical localization of ABCC2 in hepatocytes is crucial for the biliary excretion of a variety of metabolites, the mechanism regulating its apical targeting is poorly understood. In the present study, an apical targeting signal was identified in the first cytoplasmic loop domain (CLD1) of ABCC2 in HepG2 cells. Overexpression of CLD1 significantly disturbed the apical targeting of FLAG-ABCC2 in a competitive manner, suggesting the presence of a saturable sorting machinery in HepG2 cells. Next, deletion analysis identified a potential targeting sequence within a 20-amino-acid long peptide (aa 272-291) of CLD1. Alanine scanning mutagenesis of this region in full-length ABCC2 further narrowed down the apical targeting determinant to five amino acids, S(283)QDAL(287). Of these, S(283) and L(287) were found to be conserved among vertebrate ABCC2 orthologs. Site-directed mutagenesis showed that both S(283) and L(287) were crucial for the targeting specificity of ABCC2. Introducing this apical targeting sequence into the corresponding region of ABCC1, an exclusively basolateral protein, caused the hybrid ABCC1 to partially localize in the apical membrane. Thus, the CLD1 of ABCC2 contains a novel apical sorting determinant, and a saturable sorting machinery is present in polarized HepG2 cells.
Collapse
Affiliation(s)
- Yoshikazu Emi
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo, Japan.
| | | | | |
Collapse
|
23
|
Dolganiuc A. Role of lipid rafts in liver health and disease. World J Gastroenterol 2011; 17:2520-35. [PMID: 21633657 PMCID: PMC3103810 DOI: 10.3748/wjg.v17.i20.2520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.
Collapse
|
24
|
Kang RS, Fölsch H. ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells. J Cell Biol 2011; 193:51-60. [PMID: 21444685 PMCID: PMC3082197 DOI: 10.1083/jcb.201012121] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/07/2011] [Indexed: 02/07/2023] Open
Abstract
The autosomal recessive hypercholesterolemia protein (ARH) is well known for its role in clathrin-mediated endocytosis of low-density lipoprotein receptors (LDLRs). During uptake, ARH directly binds to the FxNPxY signal in the cytoplasmic tail of LDLR. Interestingly, the same FxNPxY motif is used in basolateral exocytosis of LDLR from recycling endosomes (REs), which is facilitated by the epithelial-specific clathrin adaptor AP-1B. However, AP-1B directly interacts with neither the FxNPxY motif nor the second more distally located YxxØ sorting motif of LDLR. Here, we show that ARH colocalizes and cooperates with AP-1B in REs. Knockdown of ARH in polarized epithelial cells leads to specific apical missorting of truncated LDLR, which encodes only the FxNPxY motif (LDLR-CT27). Moreover, a mutation in ARH designed to disrupt the interaction of ARH with AP-1B specifically abrogates exocytosis of LDLR-CT27. We conclude that in addition to its role in endocytosis, ARH cooperates with AP-1B in basolateral exocytosis of LDLR from REs.
Collapse
Affiliation(s)
- Richard S Kang
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
25
|
Padilla-Benavides T, Roldán ML, Larre I, Flores-Benitez D, Villegas-Sepúlveda N, Contreras RG, Cereijido M, Shoshani L. The polarized distribution of Na+,K+-ATPase: role of the interaction between {beta} subunits. Mol Biol Cell 2010; 21:2217-25. [PMID: 20444976 PMCID: PMC2893986 DOI: 10.1091/mbc.e10-01-0081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Na+,K+-ATPase polarity depends on the interaction between the β subunits of Na+,K+-ATPases located on neighboring cells. In the present work, we use energy transfer methods (FRET), in vivo to demonstrate that these β subunits interact directly at the intercellular space of epithelial cells. The very existence of higher metazoans depends on the vectorial transport of substances across epithelia. A crucial element of this transport is the membrane enzyme Na+,K+-ATPase. Not only is this enzyme distributed in a polarized manner in a restricted domain of the plasma membrane but also it creates the ionic gradients that drive the net movement of glucose, amino acids, and ions across the entire epithelium. In a previous work, we have shown that Na+,K+-ATPase polarity depends on interactions between the β subunits of Na+,K+-ATPases located on neighboring cells and that these interactions anchor the entire enzyme at the borders of the intercellular space. In the present study, we used fluorescence resonance energy transfer and coprecipitation methods to demonstrate that these β subunits have sufficient proximity and affinity to permit a direct interaction, without requiring any additional extracellular molecules to span the distance.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Physiology Biophysics and Neurosciences, and Department of Molecular Biomedicine, Center for Research and Advanced Studies, CINVESTAV-IPN, Mexico DF 07300, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Buscher K, Riese SB, Shakibaei M, Reich C, Dernedde J, Tauber R, Ley K. The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow. J Biol Chem 2010; 285:13490-7. [PMID: 20212041 DOI: 10.1074/jbc.m110.102640] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During inflammation and immune surveillance, initial contacts (tethering) between free-flowing leukocytes and the endothelium are vitally dependent on the presentation of the adhesion receptor L-selectin on leukocyte microvilli. Determinants that regulate receptor targeting to microvilli are, however, largely elusive. Therefore, we systematically swapped the extracellular (EC), transmembrane (TM), and intracellular (IC) domains of L-selectin and CD44, a hyaluronan receptor expressed on the cell body and excluded from microvilli. Electron microscopy of transfected human myeloid K562 cells showed that the highly conserved TM domains are responsible for surface positioning. The TM segment of L-selectin forced chimeric molecules to microvilli, and the CD44 TM domain evoked expression on the cell body, whereas the IC and EC domains hardly influenced surface localization. Transfectants with microvillus-based chimeras showed a significantly higher adhesion rate under flow but not under static conditions compared with cells with cell body-expressed receptors. Substitution of the IC domain of L-selectin caused diminished tethering but no change in surface distribution, indicating that both microvillus positioning and cytoskeletal anchoring contribute to leukocyte tethering. These findings demonstrate that TM domains of L-selectin and CD44 play a crucial role in cell adhesion under flow by targeting receptors to microvilli or the cell body, respectively.
Collapse
Affiliation(s)
- Konrad Buscher
- Central Department of Laboratory Medicine and Pathobiochemistry, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 2010; 122:4253-66. [PMID: 19923269 DOI: 10.1242/jcs.032615] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.
Collapse
Affiliation(s)
- Ora A Weisz
- Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
28
|
Gonzalez A, Rodriguez-Boulan E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett 2009; 583:3784-95. [PMID: 19854182 DOI: 10.1016/j.febslet.2009.10.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/12/2022]
Abstract
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.
Collapse
Affiliation(s)
- Alfonso Gonzalez
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Centro de Regulación Celular y Patología and Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile.
| | | |
Collapse
|
29
|
Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009; 66:2873-96. [PMID: 19499185 PMCID: PMC11115599 DOI: 10.1007/s00018-009-0053-z] [Citation(s) in RCA: 1077] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/06/2009] [Accepted: 05/18/2009] [Indexed: 11/28/2022]
Abstract
Nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various drugs and drug candidates, including the promising therapeutic biomacromolecules (i.e., nucleic acids, proteins). There are various mechanisms of nanocarrier cell internalization that are dramatically influenced by nanoparticles' physicochemical properties. Depending on the cellular uptake and intracellular trafficking, different pharmacological applications may be considered. This review will discuss these opportunities, starting with the phagocytosis pathway, which, being increasingly well characterized and understood, has allowed several successes in the treatment of certain cancers and infectious diseases. On the other hand, the non-phagocytic pathways encompass various complicated mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis, which are more challenging to control for pharmaceutical drug delivery applications. Nevertheless, various strategies are being actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes.
Collapse
Affiliation(s)
- Hervé Hillaireau
- School of Engineering and Applied Sciences, Harvard University, 40 Oxford Street, Cambridge, MA 02138 USA
| | - Patrick Couvreur
- Faculté de Pharmacie, UMR CNRS 8612, Université Paris-Sud 11, IFR 141, 5 rue J.B. Clément, 92296 Châtenay Malabry, France
| |
Collapse
|
30
|
Morelle W, Stechly L, André S, Van Seuningen I, Porchet N, Gabius HJ, Michalski JC, Huet G. Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking. Biol Chem 2009; 390:529-44. [PMID: 19426135 DOI: 10.1515/bc.2009.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously reported that galectin-4, a tandem repeat-type galectin, regulates the raft-dependent delivery of glycoproteins to the apical brush border membrane of enterocyte-like HT-29 cells. N-Acetyllactos-amine-containing glycans, known as galectin ligands, were found enriched in detergent-resistant membranes. Here, we analyzed the potential contribution of N- and/or O-glycans in this mechanism. Structural studies were carried out on the brush border membrane-enriched fraction using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and nano-ESI-QTOF-MS/MS. The pattern of N-glycans was very heterogeneous, with the presence of high mannose- and hybrid-type glycans as well as a multitude of complex-type glycans. In contrast, the pattern of O-glycans was very simple with the presence of two major core type 1 O-glycans, sialylated and bisialylated T-antigen structures [Neu5Acalpha2-3Galbeta1-3GalNAc-ol and Neu5Acalpha2- 3Galbeta1-3(Neu5Acalpha2-6)GalNAc-ol]. Thus, N-glycans rather than O-glycans contain the N-acetyllactosamine recognition signals for the lipid raft-based galectin-4-dependent apical delivery. In the presence of 1-deoxymannojirimycin, a drug which inhibits the generation of hybrid-type or complex type N-glycans, the extensively O-glycosylated mucin-like MUC1 glycoprotein was not delivered to the apical brush border but accumulated inside the cells. Altogether, our data demonstrate the crucial role of complex N-glycans in the galectin-4-dependent delivery of glycoproteins to the apical brush border membrane of enterocytic HT-29 cells.
Collapse
Affiliation(s)
- Willy Morelle
- UMR CNRS 8576, Unité de Glycobiologie Structurale et Fonctionnelle, IFR 147, F-59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Luton F, Hexham MJ, Zhang M, Mostov KE. Identification of a cytoplasmic signal for apical transcytosis. Traffic 2009; 10:1128-42. [PMID: 19522755 DOI: 10.1111/j.1600-0854.2009.00941.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polarized epithelial cells contain apical and basolateral surfaces with distinct protein compositions. To establish and maintain this asymmetry, newly made plasma membrane proteins are sorted in the trans Golgi network for delivery to apical or basolateral surfaces. Signals for basolateral sorting are generally located in the cytoplasmic domain of the protein, whereas signals for apical sorting can be in any part of the protein and can depend on N-linked glycosylation of the protein. Signals for constitutive transcytosis to the apical surface have not been reported. In this study, we used the polymeric immunoglobulin receptor (pIgR), which is biosynthetically delivered to the basolateral surface. There the pIgR can bind a ligand and, with or without bound ligand, the pIgR can then be transcytosed to the apical surface. We found that the glycosylation of the pIgR did not affect the biosynthetic transport of the pIgR. However, glycosylation had an effect on pIgR apical transcytosis. Importantly, analysis of the cytoplasmic tail of the pIgR suggested that a short peptide segment was sufficient to transcytose the pIgR or a neutral reporter from the basolateral to the apical surface. This apical transcytosis sorting signal was not involved in polarized biosynthetic traffic of the pIgR.
Collapse
Affiliation(s)
- Frédéric Luton
- Department of Anatomy, and Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2140, USA
| | | | | | | |
Collapse
|
32
|
Sequence- or Position-Specific Mutations in the Carboxyl-Terminal FL Motif of the Kidney Sodium Bicarbonate Cotransporter (NBC1) Disrupt Its Basolateral Targeting and α-Helical Structure. J Membr Biol 2009; 228:111-24. [DOI: 10.1007/s00232-009-9164-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/18/2009] [Indexed: 12/22/2022]
|
33
|
Stechly L, Morelle W, Dessein AF, André S, Grard G, Trinel D, Dejonghe MJ, Leteurtre E, Drobecq H, Trugnan G, Gabius HJ, Huet G. Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 2009; 10:438-50. [PMID: 19192249 DOI: 10.1111/j.1600-0854.2009.00882.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously reported that silencing of galectin-4 expression in polarized HT-29 cells perturbed apical biosynthetic trafficking and resulted in a phenotype similar to the inhibitor of glycosylation, 1-benzyl-2-acetamido-2-deoxy-beta-d-galactopyranoside (GalNAcalpha-O-bn). We now present evidence of a lipid raft-based galectin-4-dependent mechanism of apical delivery of glycoproteins in these cells. First, galectin-4 recruits the apical glycoproteins in detergent-resistant membranes (DRMs) because these glycoproteins were depleted in DRMs isolated from galectin-4-knockdown (KD) HT-29 5M12 cells. DRM-associated glycoproteins were identified as ligands for galectin-4. Structural analysis showed that DRMs were markedly enriched in a series of complex N-glycans in comparison to detergent-soluble membranes. Second, in galectin-4-KD cells, the apical glycoproteins still exit the Golgi but accumulated inside the cells, showing that their recruitment within lipid rafts and their apical trafficking required the delivery of galectin-4 at a post-Golgi level. This lectin that is synthesized on free cytoplasmic ribosomes is externalized from HT-29 cells mostly in the apical medium and follows an apical endocytic-recycling pathway that is required for the apical biosynthetic pathway. Together, our data show that the pattern of N-glycosylation of glycoproteins serves as a recognition signal for endocytosed galectin-4, which drives the raft-dependent apical pathway of glycoproteins in enterocyte-like HT-29 cells.
Collapse
Affiliation(s)
- Laurence Stechly
- Centre de Recherche Jean-Pierre Aubert, Unité INSERM U837, Faculté de Médecine, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martín‐Belmonte F, Rodríguez‐Fraticelli AE. Chapter 3 Acquisition of Membrane Polarity in Epithelial Tube Formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:129-82. [DOI: 10.1016/s1937-6448(08)02003-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Donoso M, Cancino J, Lee J, van Kerkhof P, Retamal C, Bu G, Gonzalez A, Cáceres A, Marzolo MP. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol Biol Cell 2008; 20:481-97. [PMID: 19005208 DOI: 10.1091/mbc.e08-08-0805] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic recycling receptor with two cytoplasmic tyrosine-based basolateral sorting signals. Here we show that during biosynthetic trafficking LRP1 uses AP1B adaptor complex to move from a post-TGN recycling endosome (RE) to the basolateral membrane. Then it recycles basolaterally from the basolateral sorting endosome (BSE) involving recognition by sorting nexin 17 (SNX17). In the biosynthetic pathway, Y(29) but not N(26) from a proximal NPXY directs LRP1 basolateral sorting from the TGN. A N(26)A mutant revealed that this NPXY motif recognized by SNX17 is required for the receptor's exit from BSE. An endocytic Y(63)ATL(66) motif also functions in basolateral recycling, in concert with an additional endocytic motif (LL(86,87)), by preventing LRP1 entry into the transcytotic apical pathway. All this sorting information operates similarly in hippocampal neurons to mediate LRP1 somatodendritic distribution regardless of the absence of AP1B in neurons. LRP1 basolateral distribution results then from spatially and temporally segregation steps mediated by recognition of distinct tyrosine-based motifs. We also demonstrate a novel function of SNX17 in basolateral/somatodendritic recycling from a different compartment than AP1B endosomes.
Collapse
Affiliation(s)
- Maribel Donoso
- Centro de Regulación Celular y Patología , Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and the Millenium Institute for Fundamental and Applied Biology, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moyer KE, Jacobs JR. Varicose: a MAGUK required for the maturation and function of Drosophila septate junctions. BMC DEVELOPMENTAL BIOLOGY 2008; 8:99. [PMID: 18847477 PMCID: PMC2575209 DOI: 10.1186/1471-213x-8-99] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/10/2008] [Indexed: 01/08/2023]
Abstract
BACKGROUND Scaffolding proteins belonging to the membrane associated guanylate kinase (MAGUK) superfamily function as adapters linking cytoplasmic and cell surface proteins to the cytoskeleton to regulate cell-cell adhesion, cell-cell communication and signal transduction. We characterize here a Drosophila MAGUK member, Varicose (Vari), the homologue of vertebrate scaffolding protein PALS2. RESULTS Varicose localizes to pleated septate junctions (pSJs) of all embryonic, ectodermally-derived epithelia and peripheral glia. In vari mutants, essential SJ proteins NeurexinIV and FasciclinIII are mislocalized basally and epithelia develop a leaky paracellular seal. In addition, vari mutants display irregular tracheal tube diameters and have reduced lumenal protein accumulation, suggesting involvement in tracheal morphogenesis. We found that Vari is distributed in the cytoplasm of the optic lobe neuroepithelium, as well as in a subset of neuroblasts and differentiated neurons of the nervous system. We reduced vari function during the development of adult epithelia with a partial rescue, RNA interference and generation of genetically mosaic tissue. All three approaches demonstrate that vari is required for the patterning and morphogenesis of adult epithelial hairs and bristles. CONCLUSION Varicose is involved in scaffold assembly at the SJ and has a role in patterning and morphogenesis of adult epithelia.
Collapse
Affiliation(s)
- Katherine E Moyer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
37
|
Maday S, Anderson E, Chang HC, Shorter J, Satoh A, Sfakianos J, Fölsch H, Anderson JM, Walther Z, Mellman I. A PDZ-binding motif controls basolateral targeting of syndecan-1 along the biosynthetic pathway in polarized epithelial cells. Traffic 2008; 9:1915-24. [PMID: 18764819 DOI: 10.1111/j.1600-0854.2008.00805.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cell surface proteoglycan, syndecan-1, is essential for normal epithelial morphology and function. Syndecan-1 is selectively localized to the basolateral domain of polarized epithelial cells and interacts with cytosolic PDZ (PSD-95, discs large, ZO-1) domain-containing proteins. Here, we show that the polarity of syndecan-1 is determined by its type II PDZ-binding motif. Mutations within the PDZ-binding motif lead to the mislocalization of syndecan-1 to the apical surface. In contrast to previous examples, however, PDZ-binding motif-dependent polarity is not determined by retention at the basolateral surface but rather by polarized sorting prior to syndecan-1's arrival at the plasma membrane. Although none of the four known PDZ-binding partners of syndecan-1 appears to control basolateral localization, our results show that the PDZ-binding motif of syndecan-1 is decoded along the biosynthetic pathway establishing a potential role for PDZ-mediated interactions in polarized sorting.
Collapse
Affiliation(s)
- Sandra Maday
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Klunder B, Baron W, Schrage C, de Jonge J, de Vries H, Hoekstra D. Sorting signals and regulation of cognate basolateral trafficking in myelin biogenesis. J Neurosci Res 2008; 86:1007-16. [DOI: 10.1002/jnr.21556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Spiliotis ET, Hunt SJ, Hu Q, Kinoshita M, Nelson WJ. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. ACTA ACUST UNITED AC 2008; 180:295-303. [PMID: 18209106 PMCID: PMC2213583 DOI: 10.1083/jcb.200710039] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In epithelial cells, polarized growth and maintenance of apical and basolateral plasma membrane domains depend on protein sorting from the trans-Golgi network (TGN) and vesicle delivery to the plasma membrane. Septins are filamentous GTPases required for polarized membrane growth in budding yeast, but whether they function in epithelial polarity is unknown. Here, we show that in epithelial cells septin 2 (SEPT2) fibers colocalize with a subset of microtubule tracks composed of polyglutamylated (polyGlu) tubulin, and that vesicles containing apical or basolateral proteins exit the TGN along these SEPT2/polyGlu microtubule tracks. Tubulin-associated SEPT2 facilitates vesicle transport by maintaining polyGlu microtubule tracks and impeding tubulin binding of microtubule-associated protein 4 (MAP4). Significantly, this regulatory step is required for polarized, columnar-shaped epithelia biogenesis; upon SEPT2 depletion, cells become short and fibroblast-shaped due to intracellular accumulation of apical and basolateral membrane proteins, and loss of vertically oriented polyGlu microtubules. We suggest that septin coupling of the microtubule cytoskeleton to post-Golgi vesicle transport is required for the morphogenesis of polarized epithelia.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
40
|
Cancino J, Torrealba C, Soza A, Yuseff MI, Gravotta D, Henklein P, Rodriguez-Boulan E, González A. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol Biol Cell 2007; 18:4872-84. [PMID: 17881725 PMCID: PMC2096610 DOI: 10.1091/mbc.e07-06-0563] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/11/2007] [Indexed: 01/03/2023] Open
Abstract
The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.
Collapse
Affiliation(s)
- Jorge Cancino
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Carolina Torrealba
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Andrea Soza
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - María Isabel Yuseff
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Diego Gravotta
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Peter Henklein
- Institute of Biochemistry Faculty of Medicine, Humboldt University, 10117 Berlin, Germany; and
| | - Enrique Rodriguez-Boulan
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Alfonso González
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| |
Collapse
|
41
|
Pocard T, Le Bivic A, Galli T, Zurzolo C. Distinct v-SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. J Cell Sci 2007; 120:3309-20. [PMID: 17878240 DOI: 10.1242/jcs.007948] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SNARE [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor] proteins control the membrane-fusion events of eukaryotic membrane-trafficking pathways. Specific vesicular and target SNAREs operate in specific trafficking routes, but the degree of specificity of SNARE functions is still elusive. Apical fusion requires the polarized distribution at the apical surface of the t-SNARE syntaxin 3, and several v-SNAREs including TI-VAMP and VAMP8 operate at the apical plasma membrane in polarized epithelial cells. It is not known, however, whether specific v-SNAREs are involved in direct and indirect routes to the apical surface. Here, we used RNAi to assess the role of two tetanus-neurotoxin-insensitive v-SNAREs, TI-VAMP/VAMP7 and VAMP8, in the sorting of raft- and non-raft-associated apical markers that follow either a direct or a transcytotic delivery, respectively, in FRT or Caco2 cells. We show that TI-VAMP mediates the direct apical delivery of both raft- and non-raft-associated proteins. By contrast, sorting by means of the transcytotic pathway is not affected by TI-VAMP knockdown but does appear to be regulated by VAMP8. Together with the specific role of VAMP3 in basolateral transport, our results demonstrate a high degree of specificity in v-SNARE function in polarized cells.
Collapse
Affiliation(s)
- Thomas Pocard
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, 75724, Paris CEDEX 15, France
| | | | | | | |
Collapse
|
42
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
43
|
Sato T, Mushiake S, Kato Y, Sato K, Sato M, Takeda N, Ozono K, Miki K, Kubo Y, Tsuji A, Harada R, Harada A. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 2007; 448:366-369. [PMID: 17597763 DOI: 10.1038/nature05929] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 05/15/2007] [Indexed: 11/08/2022]
Abstract
A number of proteins are known to be involved in apical/basolateral transport of proteins in polarized epithelial cells. The small GTP-binding protein Rab8 was thought to regulate basolateral transport in polarized kidney epithelial cells through the AP1B-complex-mediated pathway. However, the role of Rab8 (Rab8A) in cell polarity in vivo remains unknown. Here we show that Rab8 is responsible for the localization of apical proteins in intestinal epithelial cells. We found that apical peptidases and transporters localized to lysosomes in the small intestine of Rab8-deficient mice. Their mislocalization and degradation in lysosomes led to a marked reduction in the absorption rate of nutrients in the small intestine, and ultimately to death. Ultrastructurally, a shortening of apical microvilli, an increased number of enlarged lysosomes, and microvillus inclusions in the enterocytes were also observed. One microvillus inclusion disease patient who shows an identical phenotype to Rab8-deficient mice expresses a reduced amount of RAB8 (RAB8A; NM_005370). Our results demonstrate that Rab8 is necessary for the proper localization of apical proteins and the absorption and digestion of various nutrients in the small intestine.
Collapse
Affiliation(s)
- Takashi Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellullar Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Murphy SJ, Shapira KE, Henis YI, Leof EB. A unique element in the cytoplasmic tail of the type II transforming growth factor-beta receptor controls basolateral delivery. Mol Biol Cell 2007; 18:3788-99. [PMID: 17634290 PMCID: PMC1995729 DOI: 10.1091/mbc.e06-10-0930] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor (TGF)-beta receptors stimulate diverse signaling processes that control a wide range of biological responses. In polarized epithelia, the TGFbeta type II receptor (T2R) is localized at the basolateral membranes. Sequential cytoplasmic truncations resulted in receptor missorting to apical surfaces, and they indicated an essential targeting element(s) near the receptor's C terminus. Point mutations in the full-length receptor confirmed this prediction, and a unique basolateral-targeting region was elucidated between residues 529 and 538 (LTAxxVAxxR) that was distinct, but colocalized within a clinically significant signaling domain essential for TGFbeta-dependent activation of the Smad2/3 cascade. Transfer of a terminal 84 amino-acid fragment, containing the LTAxxVAxxR element, to the apically sorted influenza hemagglutinin (HA) protein was dominant and directed basolateral HA expression. Although delivery to the basolateral surfaces was direct and independent of any detectable transient apical localization, fluorescence recovery after photobleaching demonstrated similar mobility for the wild-type receptor and a missorted mutant lacking the targeting motif. This latter finding excludes the possibility that the domain acts as a cell membrane retention signal, and it supports the hypothesis that T2R sorting occurs from an intracellular compartment.
Collapse
Affiliation(s)
- Stephen J. Murphy
- *Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Keren E. Shapira
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I. Henis
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edward B. Leof
- *Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| |
Collapse
|
45
|
Ramnarayanan SP, Cheng CA, Bastaki M, Tuma PL. Exogenous MAL reroutes selected hepatic apical proteins into the direct pathway in WIF-B cells. Mol Biol Cell 2007; 18:2707-15. [PMID: 17494867 PMCID: PMC1924826 DOI: 10.1091/mbc.e07-02-0096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Unlike simple epithelial cells that directly target newly synthesized glycophosphatidylinositol (GPI)-anchored and single transmembrane domain (TMD) proteins from the trans-Golgi network to the apical membrane, hepatocytes use an indirect pathway: proteins are delivered to the basolateral domain and then selectively internalized and transcytosed to the apical plasma membrane. Myelin and lymphocyte protein (MAL) and MAL2 have been identified as regulators of direct and indirect apical delivery, respectively. Hepatocytes lack endogenous MAL consistent with the absence of direct apical targeting. Does MAL expression reroute hepatic apical residents into the direct pathway? We found that MAL expression in WIF-B cells induced the formation of cholesterol and glycosphingolipid-enriched Golgi domains that contained GPI-anchored and single TMD apical proteins; polymeric IgA receptor (pIgA-R), polytopic apical, and basolateral resident distributions were excluded. Basolateral delivery of newly synthesized apical residents was decreased in MAL-expressing cells concomitant with increased apical delivery; pIgA-R and basolateral resident delivery was unchanged. These data suggest that MAL rerouted selected hepatic apical proteins into the direct pathway.
Collapse
Affiliation(s)
| | - Christina A. Cheng
- *Department of Biology, The Catholic University of America, Washington, DC 20064; and
| | - Maria Bastaki
- Graduate Environmental Studies Unit, The Evergreen State College, Olympia, WA 98505
| | - Pamela L. Tuma
- *Department of Biology, The Catholic University of America, Washington, DC 20064; and
| |
Collapse
|
46
|
Thompson A, Nessler R, Wisco D, Anderson E, Winckler B, Sheff D. Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. Mol Biol Cell 2007; 18:2687-97. [PMID: 17494872 PMCID: PMC1924834 DOI: 10.1091/mbc.e05-09-0873] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B-dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.
Collapse
Affiliation(s)
| | - Randy Nessler
- Imaging Core Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Dolora Wisco
- Department of Neuroscience, University of Virginia Medical School, Charlottesville, VA 22908; and
| | - Eric Anderson
- Department of Cell Biology, Yale School of Medicine and Ludwig Institute for Cancer Research, New Haven, CT 06520
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Medical School, Charlottesville, VA 22908; and
| | | |
Collapse
|
47
|
Delaunay JL, Breton M, Goding JW, Trugnan G, Maurice M. Differential detergent resistance of the apical and basolateral NPPases: relationship with polarized targeting. J Cell Sci 2007; 120:1009-16. [PMID: 17311850 DOI: 10.1242/jcs.002717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Targeting of glycosylphosphatidylinositol-anchored proteins to the apical surface of epithelial cells involves clustering in Triton X-100-resistant membrane microdomains or rafts. The role of these microdomains in sorting transmembrane proteins is more questionable because, unlike glycosylphosphatidylinositol-anchored proteins, apical transmembrane proteins are rather soluble in Triton X-100. They are, however, resistant to milder detergents such as Lubrol WX or Tween 20. It has been proposed that specific membrane microdomains, defined by resistance to these detergents, would carry transmembrane proteins to the apical surface. We have used MDCK cells stably transfected with the apical and basolateral pyrophosphatases/phosphodiesterases, NPP3 and NPP1, to examine the relationship between detergent resistance and apical targeting. The apically expressed wild-type NPP3 was insoluble in Lubrol WX whereas wild-type NPP1, which is expressed basolaterally, was essentially soluble. By using tail mutants and chimeric constructs that combine the cytoplasmic, transmembrane and extracellular domains of NPP1 and NPP3, we show that there is not a strict correlation between detergent resistance and apical targeting. Lubrol resistance is an intrinsic property of NPP3, which is acquired early during the biosynthetic process irrespective of its final destination, and depends on positively charged residues in its cytoplasmic tail.
Collapse
|
48
|
Wakabayashi Y, Chua J, Larkin JM, Lippincott-Schwartz J, Arias IM. Four-dimensional imaging of filter-grown polarized epithelial cells. Histochem Cell Biol 2007; 127:463-72. [PMID: 17308935 DOI: 10.1007/s00418-007-0274-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2007] [Indexed: 12/20/2022]
Abstract
Understanding how epithelial cells generate and maintain polarity and function requires live cell imaging. In order for cells to become fully polarized, it is necessary to grow them on a permeable membrane filter; however, the translucent filter obstructs the microscope light path required for quantitative live cell imaging. Alternatively, the membrane filter may be excised but this eliminates selective access to apical and basolateral surfaces. Conversely, epithelial cells cultured directly on glass exhibit different phenotypes and functions from filter grown cells. Here, we describe a new method for culturing polarized epithelial cells on a Transwell filter insert that allows superior live cell imaging with spatial and temporal image resolution previously unachievable using conventional methods. Cells were cultured on the underside of a filter support. Epithelial cells grown in this inverted configuration exhibit a fully polarized architecture, including the presence of functional tight junctions. This new culturing system permits four-dimensional (three spatial dimension over time) imaging of endosome and Golgi apparatus dynamics, and permits selective manipulation of the apical and basolateral surfaces. This new technique has wide applicability for visualization and manipulation of polarized epithelial cells.
Collapse
Affiliation(s)
- Yoshiyuki Wakabayashi
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
49
|
Schuck S, Gerl MJ, Ang A, Manninen A, Keller P, Mellman I, Simons K. Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic 2006; 8:47-60. [PMID: 17132146 DOI: 10.1111/j.1600-0854.2006.00506.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sorting of newly synthesized membrane proteins to the cell surface is an important mechanism of cell polarity. To identify more of the molecular machinery involved, we investigated the function of the small GTPase Rab10 in polarized epithelial Madin-Darby canine kidney cells. We find that GFP-tagged Rab10 localizes primarily to the Golgi during early cell polarization. Expression of an activated Rab10 mutant inhibits biosynthetic transport from the Golgi and missorts basolateral cargo to the apical membrane. Depletion of Rab10 by RNA interference has only mild effects on biosynthetic transport and epithelial polarization, but simultaneous inhibition of Rab10 and Rab8a more strongly impairs basolateral sorting. These results indicate that Rab10 functions in trafficking from the Golgi at early stages of epithelial polarization, is involved in biosynthetic transport to the basolateral membrane and may co-operate with Rab8.
Collapse
Affiliation(s)
- Sebastian Schuck
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Arnold DB. Polarized targeting of ion channels in neurons. Pflugers Arch 2006; 453:763-9. [PMID: 17091311 DOI: 10.1007/s00424-006-0155-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/04/2006] [Indexed: 12/22/2022]
Abstract
Since the time of Cajal it has been understood that axons and dendrites perform distinct electrophysiological functions that require unique sets of proteins [Cajal SR Histology of the nervous system, Oxford University Press, New York, (1995)]. To establish and maintain functional polarity, neurons localize many proteins specifically to either the axonal or the somatodendritic compartment. In particular, ion channels, which are the major regulators of electrical activity in neurons, are often distributed in a polarized fashion. Recently, the ability to introduce tagged proteins into neurons in culture has allowed the molecular mechanisms underlying axon- and dendrite-specific targeting of ion channels to be explored. These investigations have identified peptide signals from voltage-gated Na(+) and K(+) channels that direct trafficking to either axonal or dendritic compartments. In this article we will discuss the molecular mechanisms underlying polarized targeting of voltage-gated ion channels from the Kv4, Kv1, and Na(v)1 families.
Collapse
Affiliation(s)
- Don B Arnold
- Department of Biology, Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|