1
|
Yuan C, Gao A, Xu Q, Zhang B, Xue R, Dou Y, Yu C. A multi-dosing regimen to enhance the spatial memory of normal rats with α5-containing GABA A receptor negative allosteric modulator L-655,708. Psychopharmacology (Berl) 2021; 238:3375-3389. [PMID: 34389882 DOI: 10.1007/s00213-021-05951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
RATIONALE AND OBJECTIVES The reported inconsistent effects of negative allosteric modulators of α5-containing GABAA receptors on learning and memory may be attributed to receptor selectivity, effective plasma concentration maintenance, and administration time. This study aimed to compare the effects of L-655,708 administered by single-dosing regimen versus multi-dosing regimen on spatial memory, signaling molecules, and brain functional connectivity. METHODS After comparing the maintenance time of the effective plasma concentration of L-655,708 between multi-dosing and single-dosing regimens, we further compared the effects of the administration of the two regimens at different phases (before-learning, during-learning, and before-probe) of the Morris water maze (MWM) test on the performance of learning and memory and the levels of signaling molecules related to learning and memory in hippocampal tissues. Functional connectivity analyses between hippocampal and cortical regions were performed to further clarify the effects of the multi-dosing regimen. RESULTS The multi-dosing regimen could maintain the effective plasma concentration of L-655,708 much longer than the single-dosing regimen. Only the multi-dosing regimen for L-655,708 administration during the learning period led to significant improvement in spatial memory in the MWM test and increases in levels of glutamate receptors and phosphorylated signaling molecules (p-PKAα, p-CaMKII, and p-CREB-1). Compared with the vehicle control, the multi-dosing regimen increased the functional connectivity of the left hippocampal CA1 with cingulate and motor cortices. CONCLUSIONS A multi-dosing regimen for L-655,708 administered during the learning period is an effective strategy to improve spatial memory, increase signaling molecule levels, and enhance the functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Congcong Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - An Gao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Rui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
2
|
Haidar M, Metheni M, Batteux F, Langsley G. TGF-β2, catalase activity, H 2O 2 output and metastatic potential of diverse types of tumour. Free Radic Biol Med 2019; 134:282-287. [PMID: 30639613 DOI: 10.1016/j.freeradbiomed.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022]
Abstract
Theileria annulata is a protozoan parasite that infects and transforms bovine macrophages causing a myeloid-leukaemia-like disease called tropical theileriosis. TGF-β2 is highly expressed in many cancer cells and is significantly increased in Theileria-transformed macrophages, as are levels of Reactive Oxygen Species (ROS), notably H2O2. Here, we describe the interplay between TGF-β2 and ROS in cellular transformation. We show that TGF-β2 drives expression of catalase to reduce the amount of H2O2 produced by T. annulata-transformed bovine macrophages, as well as by human lung (A549) and colon cancer (HT-29) cell lines. Theileria-transformed macrophages attenuated for dissemination express less catalase and produce more H2O2, but regain both virulent migratory and matrigel traversal phenotypes when stimulated either with TGF-β2, or catalase to reduce H2O2 output. Increased H2O2 output therefore, underpins the aggressive dissemination phenotype of diverse tumour cell types, but in contrast, too much H2O2 can dampen dissemination.
Collapse
Affiliation(s)
- Malak Haidar
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris 75014 France; Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, France
| | - Mehdi Metheni
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris 75014 France; Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, France
| | - Frederic Batteux
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris 75014 France; Laboratoire de Stress Oxydant, Prolifération Cellulaire et Inflammation, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, France
| | - Gordon Langsley
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris 75014 France; Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, France.
| |
Collapse
|
3
|
The PKA-C3 catalytic subunit is required in two pairs of interneurons for successful mating of Drosophila. Sci Rep 2018; 8:2458. [PMID: 29410515 PMCID: PMC5802784 DOI: 10.1038/s41598-018-20697-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Protein kinase A (PKA) has been shown to play a role in a plethora of cellular processes ranging from development to memory formation. Its activity is mediated by the catalytic subunits whereby many species express several paralogs. Drosophila encodes three catalytic subunits (PKA-C1–3) and whereas PKA-C1 has been well studied, the functions of the other two subunits were unknown. PKA-C3 is the orthologue of mammalian PRKX/Pkare and they are structurally more closely related to each other than to other catalytic subunits within their species. PRKX is expressed in the nervous system in mice but its function is also unknown. We now show that the loss of PKA-C3 in Drosophila causes copulation defects, though the flies are active and show no defects in other courtship behaviours. This phenotype is specifically due to the loss of PKA-C3 because PKA-C1 cannot replace PKA-C3. PKA-C3 is expressed in two pairs of interneurons that send projections to the ventro-lateral protocerebrum and the mushroom bodies and that synapse onto motor neurons in the ventral nerve cord. Rescue experiments show that expression of PKA-C3 in these interneurons is sufficient for copulation, suggesting a role in relaying information from the sensory system to motor neurons to initiate copulation.
Collapse
|
4
|
Transforming growth factor β2 promotes transcription of COX2 and EP4, leading to a prostaglandin E2-driven autostimulatory loop that enhances virulence of Theileria annulata-transformed macrophages. Infect Immun 2015; 83:1869-80. [PMID: 25690101 DOI: 10.1128/iai.02975-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/13/2015] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is a pleiotropic cytokine known to regulate cell growth, differentiation, and motility and is a potent modulator of immune function. TGF-β consequently plays a central role in carcinogenesis, and a dampened TGF-β2 response by Theileria annulata-infected monocytes/macrophages underpins disease resistance to tropical theileriosis. Here, we show that concomitant with the loss of TGF-β2 production, there is ablated expression of COX2 and EP4, which leads to a drop in cyclic AMP (cAMP) levels and, consequently, reduced activation of protein kinase A (PKA) and EPAC. This ablated phenotype can be rescued in attenuated macrophages by the addition of exogenous TGF-β2, which reactivates the expression of COX2 and EP4 while repressing that of protein kinase inhibitor gamma (PKIG) to the levels in virulent macrophages. TGF-β2 therefore promotes the adhesion and invasiveness of virulent macrophages by modulating COX2, EP4, and PKIG transcription to initiate a prostaglandin E2 (PGE2)-driven autostimulatory loop that augments PKA and EPAC activities. A virulence phenotype stemming from the double activation of PKA and EPAC is the induction of a CREB-mediated transcriptional program and the upregulation of JAM-L- and integrin 4αβ1-mediated adhesion of Theileria-infected macrophages.
Collapse
|
5
|
Nonaka M, Fujii H, Kim R, Kawashima T, Okuno H, Bito H. Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130150. [PMID: 24298152 DOI: 10.1098/rstb.2013.0150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During learning and memory, it has been suggested that the coordinated electrical activity of hippocampal neurons translates information about the external environment into internal neuronal representations, which then are stored initially within the hippocampus and subsequently into other areas of the brain. A widely held hypothesis posits that synaptic plasticity is a key feature that critically modulates the triggering and the maintenance of such representations, some of which are thought to persist over time as traces or tags. However, the molecular and cell biological basis for these traces and tags has remained elusive. Here, we review recent findings that help clarify some of the molecular and cellular mechanisms critical for these events, by untangling a two-way signalling crosstalk route between the synapses and the neuronal soma. In particular, a detailed interrogation of the soma-to-synapse delivery of immediate early gene product Arc/Arg3.1, whose induction is triggered by heightened synaptic activity in many brain areas, teases apart an unsuspected 'inverse' synaptic tagging mechanism that likely contributes to maintaining the contrast of synaptic weight between strengthened and weak synapses within an active ensemble.
Collapse
Affiliation(s)
- Mio Nonaka
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, , Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Bazyan AS, van Luijtelaar G. Neurochemical and behavioral features in genetic absence epilepsy and in acutely induced absence seizures. ISRN NEUROLOGY 2013; 2013:875834. [PMID: 23738145 PMCID: PMC3664506 DOI: 10.1155/2013/875834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/08/2023]
Abstract
The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be due to an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic I h pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes. It also enhances GABAA receptor activity in the striatum, globus pallidus, and reticular thalamic nucleus, causing a rise of SWD activity in the cortico-thalamo-cortical networks. One of the reasons for the occurrence of absences is that several genes coding of GABAA receptors are mutated. The question arises: what the role of DA receptors is. Two mechanisms that cause an infringement of the function of DA receptors in this genetic absence epilepsy model are proposed.
Collapse
Affiliation(s)
- A. S. Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia
| | - G. van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
7
|
Hippocampal PKA/CREB pathway is involved in the improvement of memory induced by spermidine in rats. Neurobiol Learn Mem 2011; 96:324-32. [DOI: 10.1016/j.nlm.2011.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 01/25/2023]
|
8
|
Abstract
Calcyon regulates activity-dependent internalization of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors and long-term depression of excitatory synapses. Elevated levels of calcyon are consistently observed in brains from schizophrenic patients, and the calcyon gene is associated with attention-deficit hyperactivity disorder. Executive function deficits are common to both disorders, and at least for schizophrenia, the etiology appears to involve both heritable and neurodevelopmental factors. Here, we show with calcyon-overexpressing Cal(OE) transgenic mice that lifelong calcyon upregulation impairs executive functions including response inhibition and working memory, without producing learning and memory deficits in general. As response inhibition and working memory, as well as the underlying neural circuitry, continue to mature into early adulthood, we functionally silenced the transgene during postnatal days 28-49, a period corresponding to adolescence. Remarkably, the response inhibition and working memory deficits including perseverative behavior were absent in adult Cal(OE) mice with the transgene silenced in adolescence. Suppressing the calcyon transgene in adulthood only partially rescued the deficits, suggesting calcyon upregulation in adolescence irreversibly alters development of neural circuits supporting mature response inhibition and working memory. Brain regional immunoblots revealed a prominent downregulation of AMPA GluR1 subunits in hippocampus and GluR2/3 subunits in hippocampus and prefrontal cortex of the Cal(OE) mice. Silencing the transgene in adolescence prevented the decrease in hippocampal GluR1, further implicating altered fronto-hippocampal connectivity in the executive function deficits observed in the Cal(OE) mice. Treatments that mitigate the effects of high levels of calcyon during adolescence could preempt adult deficits in executive functions in individuals at risk for serious mental illness.
Collapse
|
9
|
Stratton P, Wiles J. Self-sustained non-periodic activity in networks of spiking neurons: The contribution of local and long-range connections and dynamic synapses. Neuroimage 2010; 52:1070-9. [DOI: 10.1016/j.neuroimage.2010.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 01/05/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022] Open
|
10
|
|
11
|
|
12
|
Up-regulation of calcyon results in locomotor hyperactivity and reduced anxiety in mice. Behav Brain Res 2008; 189:244-9. [PMID: 18295356 DOI: 10.1016/j.bbr.2007.12.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/21/2007] [Accepted: 12/28/2007] [Indexed: 11/23/2022]
Abstract
Gene linkage and association studies have implicated the region of chromosome 10q containing the calcyon locus with attention deficit hyperactivity disorder (ADHD), bipolar disorder, and schizophrenia susceptibility. In addition, levels of calcyon protein and transcripts are also significantly increased in postmortem tissue from schizophrenic brains. But whether altered calcyon expression might be part of the disease etiology or merely a patho-physiological side effect is not known. To begin to address this issue, we generated a transgenic mouse line (Cal(OE)) using the human calcyon cDNA in which calcyon expression is up-regulated in a number of forebrain structures including the hippocampus, prefrontal cortex (PFC), striatum, and amygdala. Compared to control littermates, the Cal(OE) mice display a range of abnormal behaviors including spontaneous hyperactivity, reduced anxiety, and/or impaired restraint (harm avoidance) that would indicate that calcyon up-regulation leads to deficits in control over behavioral output.
Collapse
|
13
|
Abstract
When adult rats are pretreated with a 48-h-long 'repetitive nonreinforced sound exposure', performance in two-sound discriminative operant conditioning transiently improves. We have already proven that this 'sound exposure-enhanced discrimination' is dependent upon enhancement of the perceptual capacity of the auditory cortex. This study investigated principles governing decay of sound exposure-enhanced discrimination decay. Sound exposure-enhanced discrimination disappeared within approximately 72 h if animals were deprived of environmental sounds after sound exposure, and that shortened to less than approximately 60 h if they were exposed to environmental sounds in the animal room. Sound-deprivation itself exerted no clear effects. These findings suggest that the memory of a passively exposed behaviorally irrelevant sound signal does not merely pass along the intrinsic lifetime but also gets deteriorated by other incoming signals.
Collapse
Affiliation(s)
- Masashi Sakai
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
14
|
Cameron NM, Carey P, Erskine MS. Medullary noradrenergic neurons release norepinephrine in the medial amygdala in females in response to mating stimulation sufficient for pseudopregnancy. Brain Res 2006; 1022:137-47. [PMID: 15353223 DOI: 10.1016/j.brainres.2004.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2004] [Indexed: 11/17/2022]
Abstract
In the female rat, stimuli from the uterine cervix and vagina are carried to the brain areas involved in the mating-induced pseudopregnancy (PSP) response via the ventral noradrenergic bundle. Noradrenergic neurons projecting through this tract synapse in many forebrain areas including the amygdala, and neurons in the posterodorsal medial amygdala (MePD) are activated following mating. The goal of this experiment was to investigate whether norepinephrine (NE) is released into the MePD after mating using microdialysis and to determine the origin of this release. Ovariectomized estrogen- and progesterone-treated rats were implanted unilaterally with guide cannulae aimed at the MePD. Females were placed with males until they received 15 intromissions (15I), 5 intromissions (5I) or 15 mounts-without-intromission (MO). Dialysate samples collected every 20 min for 2 h before to 3 h after mating were analyzed for NE using HPLC with electrochemical detection. A significant increase in mean NE release in the MePD was seen at 80 min after mating onset in females receiving 15I, and no increase was seen in animals receiving 5I or MO. The time of peak NE release varied in 15I animals from 60 to 160 min after mating. Mean baseline levels of NE did not differ between groups. The retrograde tracer FluoroGold (FG), administered through the probe after cessation of dialysis sampling, was observed within identified noradrenergic cells primarily within the A1 and A2 cell groups. Infusion of anti-dopamine-beta-hydroxylase-saporin (DBH-SAP) into the MePD lesioned noradrenergic neurons located in the A1 and A2 cell groups. Because high levels of NE release occurred in the MePD only after the females received a number of intromissions sufficient to induce PSP, these results suggest that NE release within the MePD may be important for the establishment of PSP.
Collapse
Affiliation(s)
- Nicole M Cameron
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | |
Collapse
|
15
|
Schimanski LA, Nguyen PV. Multidisciplinary approaches for investigating the mechanisms of hippocampus-dependent memory: a focus on inbred mouse strains. Neurosci Biobehav Rev 2004; 28:463-83. [PMID: 15465135 DOI: 10.1016/j.neubiorev.2004.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/19/2004] [Accepted: 04/23/2004] [Indexed: 11/26/2022]
Abstract
Inbred mouse strains differ in genetic makeup and display diverse learning and memory phenotypes. Mouse models of memory impairment can be identified by examining hippocampus-dependent memory in multiple strains. These mouse models may be used to establish the genetic, molecular, and cellular correlates of deficits in learning or memory. In this article, we review research that has characterized hippocampal learning and memory in inbred mouse strains. We focus on two well-established behavioral tests, contextual fear conditioning and the Morris water maze (MWM). Selected cellular and molecular correlates of good and poor memory performance in inbred strains are highlighted. These include hippocampal long-term potentiation, a type of synaptic plasticity that can influence hippocampal learning and memory. Further methods that might help to pinpoint the anatomical loci, and genetic and cellular/molecular factors that contribute to memory impairments in inbred mice, are also discussed. Characterization of inbred mouse strains, using multidisciplinary approaches that combine cellular, genetic, and behavioral techniques, can complement directed mutagenesis to help identify molecular mechanisms for normal and abnormal memory functions.
Collapse
Affiliation(s)
- L A Schimanski
- Department of Physiology, University of Alberta, School of Medicine, Edmonton, Alta., T6G 2H7, Canada
| | | |
Collapse
|
16
|
Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 2003; 71:401-37. [PMID: 15013227 DOI: 10.1016/j.pneurobio.2003.12.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 12/02/2003] [Indexed: 11/17/2022]
Abstract
Protein kinases critically regulate synaptic plasticity in the mammalian hippocampus. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of long-term potentiation (LTP), long-term depression (LTD), and hippocampal long-term memory. We review the roles of PKA in activity-dependent forms of hippocampal synaptic plasticity by highlighting particular themes that have emerged in ongoing research. These include the participation of distinct isoforms of PKA in specific types of synaptic plasticity, modification of the PKA-dependence of LTP by multiple factors such as distinct patterns of imposed activity, environmental enrichment, and genetic manipulation of signalling molecules, and presynaptic versus postsynaptic mechanisms for PKA-dependent LTP. We also discuss many of the substrates that have been implicated as targets for PKA's actions in hippocampal synaptic plasticity, including CREB, protein phosphatases, and glutamatergic receptors. Future prospects for shedding light on the roles of PKA are also described from the perspective of specific aspects of synaptic physiology and brain function that are ripe for investigation using incisive genetic, cell biological, and electrophysiological approaches.
Collapse
Affiliation(s)
- P V Nguyen
- Departments of Physiology and Psychiatry, Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alta., Canada T6G 2H7.
| | | |
Collapse
|
17
|
Blockade of NMDA receptors in prelimbic cortex induces an enduring amnesia for odor-reward associative learning. J Neurosci 2003. [PMID: 12843246 DOI: 10.1523/jneurosci.23-13-05472.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The competitive antagonist 2-amino-5-phosphonoeptanoic acid (APV) was injected intracerebroventricularly to determine the involvement of NMDA receptors in different stages of memory consolidation. Subsequent experiments used local injections to determine possible sites of drug action. Rats were trained in a rapidly learned olfactory task to find palatable food in a hole in a sponge impregnated with the target odor in the presence of two other sponges with nonrewarded odors. APV injections were made intracerebroventricularly 5 min or 2 hr after the end of the training, and a retention test was given 48 hr later. The results showed that blockade of NMDA receptors immediately after training induces a profound and enduring amnesia with no effect when the treatment is delayed at 2 hr after training. To address the question of the effective sites of action of the intracerebroventricular treatment, APV injections into the hippocampus and into the prelimblic region of the frontal cortex (PLC) were made. Blockade of NMDA receptors into the PLC but not into the hippocampus impaired memory formation of the odor-reward association. The amnesia is not transient, because the retention tests were made 48 hr after training. These results underlie the role of NMDA receptors in the early stage of consolidation of a simple odor-reward associative memory and confirm the role of the PLC in the consolidation of long-term memory.
Collapse
|
18
|
Bazyan AS, Mel'nik VI, Bikbulatova LS, Karpova MN. The pentylenetetrazole allosteric component of the GABAA receptor plasticity. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2002; 386:400-3. [PMID: 12469399 DOI: 10.1023/a:1020745730228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A S Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, ul. Butlerova 5a, Moscow, Russia
| | | | | | | |
Collapse
|
19
|
Wright JW, Reichert JR, Davis CJ, Harding JW. Neural plasticity and the brain renin-angiotensin system. Neurosci Biobehav Rev 2002; 26:529-52. [PMID: 12367589 DOI: 10.1016/s0149-7634(02)00019-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The brain renin-angiotensin system mediates several classic physiologies including body water balance, maintenance of blood pressure, cyclicity of reproductive hormones and sexual behaviors, and regulation of pituitary gland hormones. In addition, angiotensin peptides have been implicated in neural plasticity and memory. The present review initially describes the extracellular matrix (ECM) and the roles of cell adhesion molecules (CAMs), matrix metalloproteinases, and tissue inhibitors of metalloproteinases in the maintenance and degradation of the ECM. It is the ECM that appears to permit synaptic remodeling and thus is critical to the plasticity that is presumed to underlie mechanisms of memory consolidation and retrieval. The interrelationship among long-term potentiation (LTP), CAMs, and synaptic strengthening is described, followed by the influence of angiotensins on LTP. There is strong support for an inhibitory influence by angiotensin II (AngII) and a facilitory role by angiotensin IV (AngIV), on LTP. Next, the influences of AngII and IV on associative and spatial memories are summarized. Finally, the impact of sleep deprivation on matrix metalloproteinases and memory function is described. Recent findings indicate that sleep deprivation-induced memory impairment is accompanied by a lack of appropriate changes in matrix metalloproteinases within the hippocampus and neocortex as compared with non-sleep deprived animals. These findings generally support an important contribution by angiotensin peptides to neural plasticity and memory consolidation.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology and Program in Neuroscience, Washington State University, PO Box 644820, Pullman, WA 99164-4820, USA.
| | | | | | | |
Collapse
|
20
|
Korke R, Rink A, Seow TK, Chung MCM, Beattie CW, Hu WS. Genomic and proteomic perspectives in cell culture engineering. J Biotechnol 2002; 94:73-92. [PMID: 11792453 DOI: 10.1016/s0168-1656(01)00420-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the last few years, the number of biologics produced by mammalian cells have been steadily increasing. The advances in cell culture engineering science have contributed significantly to this increase. A common path of product and process development has emerged in the last decade and the host cell lines frequently used have converged to only a few. Selection of cell clones, their adaptation to a desired growth environment, and improving their productivity has been key to developing a new process. However, the fundamental understanding of changes during the selection and adaptation process is still lacking. Some cells may undergo irreversible alteration at the genome level, some may exhibit changes in their gene expression pattern, while others may incur neither genetic reconstruction nor gene expression changes, but only modulation of various fluxes by changing nutrient/metabolite concentrations and enzyme activities. It is likely that the selection of cell clones and their adaptation to various culture conditions may involve alterations not only in cellular machinery directly related to the selected marker or adapted behavior, but also those which may or may not be essential for selection or adaptation. The genomic and proteomic research tools enable one to globally survey the alterations at mRNA and protein levels and to unveil their regulation. Undoubtedly, a better understanding of these cellular processes at the molecular level will lead to a better strategy for 'designing' producing cells. Herein the genomic and proteomic tools are briefly reviewed and their impact on cell culture engineering is discussed.
Collapse
Affiliation(s)
- Rashmi Korke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
21
|
Urban NN, Henze DA, Barrionuevo G. Revisiting the role of the hippocampal mossy fiber synapse. Hippocampus 2002; 11:408-17. [PMID: 11530845 DOI: 10.1002/hipo.1055] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mossy fiber pathway has long been considered to provide the major source of excitatory input to pyramidal cells of hippocampal area CA3. In this review we describe anatomical and physiological properties of this pathway that challenge this view. We argue that the mossy fiber pathway does not provide the main input to CA3 pyramidal cells, and that the short-term plasticity and amplitude variance of mossy fiber synapses may be more important features than their long-term plasticity or absolute input strength.
Collapse
Affiliation(s)
- N N Urban
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
22
|
Wright JW, Kramár EA, Meighan SE, Harding JW. Extracellular matrix molecules, long-term potentiation, memory consolidation and the brain angiotensin system. Peptides 2002; 23:221-46. [PMID: 11814638 DOI: 10.1016/s0196-9781(01)00599-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considerable evidence now suggests an interrelationship among long-term potentiation (LTP), extracellular matrix (ECM) reconfiguration, synaptogenesis, and memory consolidation within the mammalian central nervous system. Extracellular matrix molecules provide the scaffolding necessary to permit synaptic remodeling and contribute to the regulation of ionic and nutritional homeostasis of surrounding cells. These molecules also facilitate cellular proliferation, movement, differentiation, and apoptosis. The present review initially focuses on characterizing the ECM and the roles of cell adhesion molecules (CAMs), matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), in the maintenance and degradation of the ECM. The induction and maintenance of LTP is described. Debate continues over whether LTP results in some form of synaptic strengthening and in turn promotes memory consolidation. Next, the contribution of CAMs and TIMPs to the facilitation of LTP and memory consolidation is discussed. Finally, possible roles for angiotensins, MMPs, and tissue plasminogen activators in the facilitation of LTP and memory consolidation are described. These enzymatic pathways appear to be very important to an understanding of dysfunctional memory diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and infections.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA 99164-4820, USA.
| | | | | | | |
Collapse
|
23
|
Gerlai R. Gene targeting: technical confounds and potential solutions in behavioral brain research. Behav Brain Res 2001; 125:13-21. [PMID: 11682088 DOI: 10.1016/s0166-4328(01)00282-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene targeting allows one to create null mutations in mice and to analyze how the mutant organism responds to the lack of a single gene product. This has facilitated the molecular dissection of such complex characteristics as mammalian brain function and behavior, including learning, memory, aggression, and maternal behavior to mention a few. However, the interpretation of the phenotypical changes that arise in null mutant mice has been questioned. The possibility that genes other than the targeted one may contribute to phenotypical alterations has been raised and the importance of compensatory mechanisms has been brought to attention. This review focuses on recent advances in the literature that illustrate the caveats associated with gene targeting and also presents an overview of potential solutions for the discussed problems.
Collapse
Affiliation(s)
- R Gerlai
- Lilly Research Laboratories, Lilly Corporate Center, Drop Code 0510, Indianapolis, IN 46285, USA.
| |
Collapse
|
24
|
Son LZ, Yanai K, Mobarakeh JI, Kuramasu A, Li ZY, Sakurai E, Hashimoto Y, Watanabe T, Watanabe T. Histamine H1 receptor-mediated inhibition of potassium-evoked release of 5-hydroxytryptamine from mouse forebrains. Behav Brain Res 2001; 124:113-20. [PMID: 11640963 DOI: 10.1016/s0166-4328(01)00220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The release of endogenous serotonin and dopamine from slices of mouse forebrains induced by high extracellular K(+) was examined in histamine H1 receptor knockout mice. The release of 5-hydroxytryptamine (5-HT) evoked by 30 mM K(+) significantly decreased in the presence of 10-50 microM histamine in wild-type mice, but was not inhibited in the mutant mice. Histamine H1 receptor-mediated inhibition of serotonin release in wild-type mice was also observed in the presence of thioperamide, an H3 antagonist. From these data, we postulate that endogenous histamine indirectly inhibits the release of 5-HT through H1 receptors in addition to H3 receptors. The treatment of 2 microM tetrodotoxin could partly abolish the effects of histamine on K(+)-evoked 5-HT release. Bicuculline, a GABA(A) antagonist, could reverse the histamine-induced inhibition of 5-HT release in wild-type mice, suggesting that H1 receptors facilitate the release of GABA, which in turn inhibits 5-HT release through GABA(A) receptors. The difference in the effects of d- and l-chlorpheniramine on K(+)-evoked 5-HT release in wild-type mice further supports the evidence of the function of H1 receptor modulating 5-HT release.
Collapse
Affiliation(s)
- L Z Son
- Department of Pharmacology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The discovery of the first neurotransmitter--acetylcholine--was soon followed by the discovery of its hydrolysing enzyme, acetylcholinesterase. The role of acetylcholinesterase in terminating acetylcholine-mediated neurotransmission made it the focus of intense research for much of the past century. But the complexity of acetylcholinesterase gene regulation and recent evidence for some of the long-suspected 'non-classical' actions of this enzyme have more recently driven a profound revolution in acetylcholinesterase research. Although our understanding of the additional roles of acetylcholinesterase is incomplete, the time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions.
Collapse
|
26
|
Abstract
The entire DNA sequence for human chromosome 21 is now complete, and it is predicted to contain only about 225 genes, which is approximately three-fold fewer than the number initially predicted just 10 years ago. Despite this remarkable achievement, very little is known about the mechanism(s) whereby increased gene copy number (gene dosage) results in the characteristic phenotype of Down syndrome. Although many of the phenotypic traits show large individual variation, neuromotor dysfunction and cognitive and language impairment are observed in virtually all individuals. Currently, there are no efficacious biomedical treatments for these central nervous system-associated impairments. To develop novel therapeutic strategies, the effects of gene dosage imbalance need to be understood within the framework of those critical biological events that regulate brain organization and function.
Collapse
Affiliation(s)
- G T Capone
- Department of Pediatrics, Johns Hopkins University School of Medicine, and Kennedy Krieger Institute, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Võikar V, Kõks S, Vasar E, Rauvala H. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav 2001; 72:271-81. [PMID: 11240006 DOI: 10.1016/s0031-9384(00)00405-4] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study was aimed at establishing behavioral differences between three inbred mouse strains (129S2/SvHsd, C57BL/6JOlaHsd, FVB/NHsd) and two F1 hybrid lines derived from them (129 x C57BL/6 and 129 x FVB). The choice of the given strains was based on the frequent use of these mice in transgenic research. For the behavioral phenotyping, we employed a test battery consisting of the following models: elevated plus-maze (EPM), open field (OF), light-dark exploration, spontaneous locomotor activity, rota-rod (RR), Porsolt's forced-swimming test (FST), and Morris water task. Significant variations between the strains were established in all tests. Anxiety-like behavior was more pronounced in the 129S2/Sv and 129 x C57BL/6 mice, the FVB/N mice were spontaneously hyperactive, the best coordination ability was demonstrated by the C57BL/6 and 129 x C57BL/6 groups. A good performance in the learning test was established in both hybrid lines and the 129S2/Sv mice, whereas the well-known visual impairment of the FVB strain was confirmed by low performance in spatial and non-spatial tasks. Differences related to the gender were revealed occasionally; most importantly, 129 x C57BL/6 males had a higher anxiety level than their female counterparts in the EPM. Several other gender dissociations suggest the strain and task specificity. In conclusion, we would like to highlight the importance of the genetic background and gender of mice for the molecular biological and pharmacological studies and also the need for well-established testing protocols to obtain wide information at the first stage of behavioral screening of genetically modified mice.
Collapse
Affiliation(s)
- V Võikar
- Laboratory of Molecular Neurobiology, Institute of Biotechnology, University of Helsinki, PO Box 56, Viikinkaari 5, FIN-00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- S J Sara
- Department of Neuromodulation and Cognitive Processes, Institut des Neurosciences, Université Pierre & Marie Curie, 9 Quai St Bernard, 75005 Paris, France.
| |
Collapse
|
29
|
Woo NH, Duffy SN, Abel T, Nguyen PV. Genetic and pharmacological demonstration of differential recruitment of cAMP-dependent protein kinases by synaptic activity. J Neurophysiol 2000; 84:2739-45. [PMID: 11110804 DOI: 10.1152/jn.2000.84.6.2739] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) is believed to play a critical role in the expression of long-lasting forms of hippocampal long-term potentiation (LTP). Can distinct patterns of synaptic activity induce forms of LTP that require different isoforms of PKA? To address this question, we used transgenic mice that have genetically reduced hippocampal PKA activity, and a specific pharmacological inhibitor of PKA, Rp-cAMPS. Transgenic mice [R(AB) mice] that express an inhibitory form of a particular type of regulatory subunit of PKA (type-Ialpha) showed significantly reduced LTP in area CA1 of hippocampal slices as compared with slices from wild-type mice. This impairment of LTP expression was evident when LTP was induced by applying repeated, temporally spaced stimulation (4 1-s bursts of 100-Hz applied once every 5 min). In contrast, LTP induced by applying just 60 pulses in a theta-burst pattern was normal in slices from R(AB) mice as compared with slices from wild-type mice. We found that Rp-cAMPS blocked the expression of LTP induced by both spaced tetra-burst and compressed theta-burst stimulation in hippocampal slices of wild-type and R(AB) mice, respectively. Since Rp-cAMPS is a PKA inhibitor that is not selective for any particular isoform of PKA and these R(AB) mice show reduced hippocampal PKA activity resulting from genetic manipulation of a single isoform of PKA regulatory subunit, our data support the idea that distinct patterns of synaptic activity can produce different forms of LTP that significantly engage different isoforms of PKA. In particular, theta-burst LTP significantly recruits isoforms of PKA containing regulatory subunits other than the mutant RIalpha subunit, whereas tetra-burst LTP requires PKA isoforms containing the mutant RIalpha subunit. Thus, altering both the total amount of imposed synaptic activity and the temporal spacing between bursts of imposed activity may subtly modulate the PKA dependence of hippocampal LTP by engaging distinct isoforms of PKA. In a broader context, our findings suggest that synaptic plasticity in the mammalian brain might be importantly regulated by activity-dependent recruitment of different isoforms of key signal transduction molecules.
Collapse
Affiliation(s)
- N H Woo
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
30
|
Nguyen PV, Duffy SN, Young JZ. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J Neurophysiol 2000; 84:2484-93. [PMID: 11067991 DOI: 10.1152/jn.2000.84.5.2484] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic and knockout mice are used extensively to elucidate the molecular mechanisms of hippocampal synaptic plasticity. However, genetic and phenotypic variations between inbred mouse strains that are used to construct genetic models may confound the interpretation of cellular neurophysiological data derived from these models. Using in vitro slice stimulation and recording methods, we compared the membrane biophysical, cellular electrophysiological, and synaptoplastic properties of hippocampal CA1 neurons in four specific strains of inbred mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms/J. Hippocampal long-term potentiation (LTP) induced by theta-pattern stimulation, and by repeated multi-burst 100-Hz stimulation at various interburst intervals, was better maintained in area CA1 of slices from BL/6J mice than in slices from CBA and DBA mice. At an interburst interval of 20 s, maintenance of LTP was impaired in CBA and DBA slices, as compared with BL/6J slices. When the interburst interval was reduced to 3 s, induction of LTP was significantly enhanced in129/SvEms slices, but not in DBA and CBA slices. Long-term depression (LTD) was not significantly different between slices from these four strains. For the four strains examined, CA1 pyramidal neurons showed no significant differences in spike-frequency accommodation, membrane input resistance, and number of spikes elicited by current injection. Synaptically-evoked glutamatergic postsynaptic currents did not significantly differ among CA1 pyramidal neurons in these four strains. Since the observed LTP deficits resembled those previously seen in transgenic mice with reduced hippocampal cAMP-dependent protein kinase (PKA) activity, we searched for possible strain-dependent differences in cAMP-dependent synaptic facilitation induced by forskolin (an activator of adenylate cyclase) and IBMX (a phosphodiesterase inhibitor). We found that forskolin/IBMX-induced synaptic facilitation was deficient in area CA1 of DBA/2J and CBA/J slices, but not in BL/6J and 129/SvEms/J slices. These defects in cAMP-induced synaptic facilitation may underlie the deficits in memory, observed in CBA/J and DBA/2J mice, that have been previously reported. We conclude that hippocampal LTP is influenced by genetic background and by the temporal characteristics of the stimulation protocol. The plasticity of hippocampal synapses in some inbred mouse strains may be "tuned" to particular temporal patterns of synaptic activity. From a broader perspective, our data support the notion that strain-dependent variation in genetic background is an important factor that can influence the synaptoplastic phenotypes observed in studies that use genetically modified mice to explore the molecular bases of synaptic plasticity.
Collapse
Affiliation(s)
- P V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
31
|
Abstract
Microinjection of DNA constructs into pronuclei of zygotes has been the method of choice for the generation of transgenic livestock. However, this procedure is characterized by low efficiency (1-4% transgenic offspring), random integration and variable expression of the transgene as well as a considerable proportion of mosaicism. Furthermore, it is extremely time consuming and costly. As a consequence, commercial application has focused on the production of recombinant proteins in the mammary gland of transgenic animals and xenotransplantation, e.g. the use of porcine organs in human organ transplantation. In addition, transgenic pigs carrying a modified porcine growth hormone (hMt-pGH) construct show significant improvements in economically important traits without adverse side effects of a GH overproduction. Improvements of transgenic technology will likely come from the generation of appropriate cell lines suitable for transfection or even homologous recombination and their subsequent use in nuclear transfer. Additionally, in the mouse a number of sophisticated molecular tools have been developed that allow precise modifications of the genome. These include the application of artificial chromosomes from yeast (YAC) or bacteria (BAC) for position-independent and copy-number-dependent expression of a transgene, the Tet-system (tetracycline inducible) for a tight temporal control of transgene expression, as well as conditional mutagenesis by applying site-specific DNA recombinases (e.g. Cre, FLP). The successful adaptation of these molecular tools to livestock will enable the fulfillment of many of the promises originally thought to be achievable when transgenic livestock were first reported.
Collapse
Affiliation(s)
- H Niemann
- Department of Biotechnology, Institut für Tierzucht und Tierverhalten (FAL), Mariensee, Neustadt, Germany.
| | | |
Collapse
|
32
|
Abstract
A genetic screen using mice was performed to identify dominant loci affecting behavior. Mice were mutagenized with ENU, then bred to examine their G1 offspring for behavioral abnormalities. Potentially mutant G1 pups were screened through a variety of behavioral assays, including tests of learning and memory, sensorimotor gating, fear and anxiety, nociception (pain perception) and locomotor activity. Mice falling outside the normal performance distribution in these tests were considered potential behavioral mutants and were bred for further analysis. Outliers included both animals with very discrete defects and animals with abnormal performance across a range of tests. To date, we have identified two confirmed mutants affecting sensorimotor gating. These results provide further impetus for the use of random mutagenesis screens as a tool for dissecting the genetic basis of brain and behavior.
Collapse
Affiliation(s)
- D M Sayah
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, 23-120 CHS, Box 951735, Los Angeles, CA 90095-1735, USA
| | | | | | | |
Collapse
|
33
|
Nguyen PV, Abel T, Kandel ER, Bourtchouladze R. Strain-dependent differences in LTP and hippocampus-dependent memory in inbred mice. Learn Mem 2000; 7:170-9. [PMID: 10837506 PMCID: PMC311331 DOI: 10.1101/lm.7.3.170] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many studies have used "reverse" genetics to produce "knock-out" and transgenic mice to explore the roles of various molecules in long-term potentiation (LTP) and spatial memory. The existence of a variety of inbred strains of mice provides an additional way of exploring the genetic bases of learning and memory. We examined behavioral memory and LTP expression in area CA1 of hippocampal slices prepared from four different inbred strains of mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms-+(Ter?)/J. We found that LTP induced by four 100-Hz trains of stimulation was robust and long-lasting in C57BL/6J and DBA/2J mice but decayed in CBA/J and 129/SvEms-+(Ter?)/J mice. LTP induced by one 100-Hz train was significantly smaller after 1 hr in the 129/SvEms-+(Ter?)/J mice than in the other three strains. Theta-burst LTP was shorter lasting in CBA/J, DBA/2J, and 129/SvEms-+(Ter?)/J mice than in C57BL/6J mice. We also observed specific memory deficits, among particular mouse strains, in spatial and nonspatial tests of hippocampus-dependent memory. CBA/J mice showed defective learning in the Morris water maze, and both DBA/2J and CBA/J strains displayed deficient long-term memory in contextual and cued fear conditioning tests. Our findings provide strong support for a genetic basis for some forms of synaptic plasticity that are linked to behavioral long-term memory and suggest that genetic background can influence the electrophysiological and behavioral phenotypes observed in genetically modified mice generated for elucidating the molecular bases of learning, memory, and LTP.
Collapse
Affiliation(s)
- P V Nguyen
- Department of Physiology and Division of Neuroscience, University of Alberta School of Medicine, Edmonton, Canada, T6G 2H7.
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- S J Sara
- Neuromodulation and Cognitive Processes, Institut des Neurosciences, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7624, 75005 Paris, France.
| |
Collapse
|
35
|
Escobar ML, Bermúdez-Rattoni F. Long-term potentiation in the insular cortex enhances conditioned taste aversion retention. Brain Res 2000; 852:208-12. [PMID: 10661514 DOI: 10.1016/s0006-8993(99)02134-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-lasting changes in synaptic strength, such as long-term potentiation (LTP), are thought to underlie memory formation. Recent studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and retention of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce LTP in the IC of adult rats in vivo, as well as, that blockade of N-methyl-D-aspartate (NMDA) receptors disrupts CTA and IC-LTP induction in vivo. Here, we present experimental data showing that induction of LTP in the Bla-IC projection previous to CTA training enhances the retention of this task. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying neocortical LTP may contribute to memory related functions performed by the IC.
Collapse
Affiliation(s)
- M L Escobar
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico.
| | | |
Collapse
|
36
|
Steele RJ, Morris RG. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 1999; 9:118-36. [PMID: 10226773 DOI: 10.1002/(sici)1098-1063(1999)9:2<118::aid-hipo4>3.0.co;2-8] [Citation(s) in RCA: 446] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated the role of NMDA receptors in memory encoding and retrieval. A delayed matching-to-place (DMP) paradigm in the watermaze was used to examine 1-trial spatial memory in rats. Over periods of up to 21 days, 4 daily trials were given to an escape platform hidden in a new location each day, with the memory interval (ITI) varying from 15 sec to 2 hours between trials 1 and 2, but always at 15 sec for the remaining ITIs. Using chronic i.c.v. infusions of D-AP5, acute intrahippocampal infusions, ibotenate hippocampus + dentate lesions and relevant aCSF or sham surgery control groups, we established: (1) the DMP task is hippocampal-dependent; (2) D-AP5 causes a delay-dependent impairment of memory in which the Groups x Delay interaction was significant on two separate measures of performance; (3) this memory impairment also occurs with acute intrahippocampal infusions; (4) the impairment occurs irrespective of whether the animals stay in or are removed from the training context during the memory delay interval; and (5) D-AP5 affects neither the retrieval of information about the spatial layout of the environment, nor memory of where the escape platform had been located on the last day before the start of chronic D-AP5 infusion. LTP in vivo in the dentate gyrus was blocked in the chronically-infused D-AP5 rats and HPLC measurements at sacrifice revealed appropriate intrahippocampal levels. Acute intrahippocampal infusion of radiolabelled D-AP5 revealed relatively restricted diffusion and was used to estimate whole-tissue hippocampal drug concentrations. These results indicate that (1) short-term memory for spatial information is independent of NMDA receptors; (2) the rapid consolidation of spatial information into long-term memory requires activation of hippocampal NMDA receptors; (3) NMDA receptors are not involved in memory retrieval; and (4) the delay-related effects of NMDA receptor antagonists on performance of this task cannot be explained in terms of sensorimotor disturbances. The findings relate to the idea that hippocampal synaptic plasticity is involved in event-memory (Morris and Frey, Phil Trans R Soc Lond B 1997;352:1489-1503) and to a computational model of one-trial DMP performance of Foster et al. (unpublished data).
Collapse
Affiliation(s)
- R J Steele
- Department and Centre for Neuroscience, University of Edinburgh Medical School, Scotland
| | | |
Collapse
|
37
|
Morioka M, Hamada J, Ushio Y, Miyamoto E. Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol 1999; 58:1-30. [PMID: 10321795 DOI: 10.1016/s0301-0082(98)00073-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Calcineurin belongs to the family of Ca2+/calmodulin-dependent protein phosphatase, protein phosphatase 2B. Calcineurin is the only protein phosphatase which is regulated by a second messenger, Ca2+. Furthermore, calcineurin is highly localized in the central nervous system, especially in those neurons vulnerable to ischemic and traumatic insults. For these reasons, calcineurin is considered to play important roles in neuron-specific functions. Recently, on the basis of the finding that FK506 and cyclosporin A serve as calcineurin-specific inhibitors, this enzyme has become the subject of much study. It is clear that calcineurin is involved in many neuronal (or non-neuronal) functions such as neurotransmitter release, regulation of receptor functions, signal transduction systems, neurite outgrowth, gene expression and neuronal cell death. In this review, we describe the calcineurin functions, functions of the substrates, and the pathogenesis of traumatic and ischemic insults, and we discuss the potential role of calcineurin. There are many similarities in traumatic and ischemic pathogenesis of the brain in which the release of excessive glutamate is followed by an intracellular Ca2+ increase. However, the intracellular cascade which leads to neuronal cell death after the release of excess Ca2+ is unclear. Although calcineurin is thought to be a key toxic enzyme on the basis of studies using immunosuppressants (FK506 or cyclosporin A), many of the functions of the substrates for calcineurin protect against neuronal cell death. We concluded that calcineurin is a bi-directional enzyme for neuronal cell death, having protective and toxic actions, and the balance of the bi-directional effects may be important in ischemic and traumatic pathogenesis.
Collapse
Affiliation(s)
- M Morioka
- Department of Neurosurgery, Kumamoto University School of Medicine, Japan.
| | | | | | | |
Collapse
|
38
|
Steel M, Moss J, Clark KA, Kearns IR, Davies CH, Morris RG, Skarnes WC, Lathe R. Gene-trapping to identify and analyze genes expressed in the mouse hippocampus. Hippocampus 1998; 8:444-57. [PMID: 9825957 DOI: 10.1002/(sici)1098-1063(1998)8:5<444::aid-hipo5>3.0.co;2-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mice harboring random gene-trap insertions of a lacZ (beta-galactosidase)-neomycin resistance fusion cassette (beta-geo) were analyzed for expression in the hippocampus. In 4 of 15 lines reporter gene activity was observed in the hippocampal formation. In the obn line, enzyme activity was detected in the CA1-3 hippocampal subfields, in hpk expression was restricted to CA1, but in both lines reporter activity was also present in other brain regions. In the third line, kin, reporter activity was robustly expressed throughout the stratum pyrimidale of CA1-3, with only low-level expression elsewhere. The final line (glnC) displayed ubiquitous expression of the reporter and was not analyzed further. Fusion transcripts for the first three lines were characterized; all encode polypeptides with features of membrane-associated signalling proteins. The obn fusion identified a human cDNA (B2-1) encoding a pleckstrin homology (PH) domain, while hpk sequences matched the Epstein-Barr Virus (EBV) inducible G-protein coupled receptor, EBI-1. kin identified an alternative form of the abl-related nonreceptor tyrosine kinase c-arg. Electrophysiological studies on mice homozygous for the insertions revealed normal synaptic transmission, paired pulse facilitation and paired-pulse depression at Schaffer collateral-commissural CA1 synapses, and normal long-term potentiation (LTP) in obn and kin. hpk mice displayed an increase in hippocampal CA1 long-term potentiation (LTP), suggesting a role for this receptor in synaptic plasticity.
Collapse
Affiliation(s)
- M Steel
- Centre for Genome Research, University of Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yanai K, Son LZ, Endou M, Sakurai E, Nakagawasai O, Tadano T, Kisara K, Inoue I, Watanabe T, Watanabe T. Behavioural characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience 1998; 87:479-87. [PMID: 9740406 DOI: 10.1016/s0306-4522(98)00167-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Behavioural assessments were made of mutant mice lacking histamine H1 receptors to reveal the function of H1 receptors in the behaviour of mice. Exploratory behaviour of mice in a new environment was examined to discover whether the absence of H1 receptors in mice affects actions relating to their emotions. The H1 receptor-deficient mice showed a significant decrease in ambulation in an open field and on an activity wheel. Cognitive functions and anxiety were examined using passive avoidance response test and the elevated plus-maze test, respectively. The passive avoidance test did not show any change in latency. The elevated plus-maze test revealed that the transfer latency of the mutant mice was significantly prolonged, indicating that H1 receptors are partly associated with the control of anxiety. Aggressive behaviour was examined by a resident-intruder aggression test. When confronted with an intruder, the mutant mice attacked the intruder significantly slower and less frequently than did wild-type mice after a six-month isolation period. A formalin test and a forced swimming test were used to evaluate the nociceptive response and depressive or despairing state, respectively, of both groups. The mutant mice showed a significant decrease of nociceptive response in the late phase without affecting the early phase. There was no significant difference in the forced swimming test between the two groups. The brain content of monoamines and their metabolites was measured in the H1 receptor null and wild-type mice. The turnover rate of 5-hydroxytryptamine defined by the ratio of 5-hydroxyindoleacetic acid and 5-hydroxytryptamine was significantly increased in the cerebral cortex and hippocampus of H1 receptor null mice. These results support the previous pharmacological findings that histamine modulates various neurophysiological functions such as locomotor activity, emotion, memory and learning, nociception and aggressive behaviour through H1 receptors.
Collapse
Affiliation(s)
- K Yanai
- Department of Pharmacology I, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Picciotto MR, Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 1998; 78:1131-63. [PMID: 9790572 DOI: 10.1152/physrev.1998.78.4.1131] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reverse genetics, in which detailed knowledge of a gene of interest permits in vivo modification of its expression or function, provides a powerful method for examining the physiological relevance of any protein. Transgenic and knockout mouse models are particularly useful for studies of complex neurobiological problems. The primary aims of this review are to familiarize the nonspecialist with the techniques and limitations of mouse mutagenesis, to describe new technologies that may overcome these limitations, and to illustrate, using representative examples from the literature, some of the ways in which genetically altered mice have been used to analyze central nervous system function. The goal is to provide the information necessary to evaluate critically studies in which mutant mice have been used to study neurobiological problems.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
41
|
Davies BJ, Pickard BS, Steel M, Morris RG, Lathe R. Serine proteases in rodent hippocampus. J Biol Chem 1998; 273:23004-11. [PMID: 9722524 DOI: 10.1074/jbc.273.36.23004] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain serine proteases are implicated in developmental processes, synaptic plasticity, and in disorders including Alzheimer's disease. The spectrum of the major enzymes expressed in brain has not been established previously. We now present a systematic study of the serine proteases expressed in adult rat and mouse hippocampus. Using a combination of techniques including polymerase chain reaction amplification and Northern blotting we show that tissue-type plasminogen activator (t-PA) is the major species represented. Unexpectedly, the next most abundant species were RNK-Met-1, a lymphocyte protease not reported previously in brain, and two new family members, BSP1 (brain serine protease 1) and BSP2. We report full-length sequences of the two new proteases; homologies indicate that these are of tryptic specificity. Although BSP2 is expressed in several brain regions, BSP1 expression is strikingly restricted to hippocampus. Other enzymes represented, but at lower levels, included elastase IV, proteinase 3, complement C2, chymotrypsin B, chymotrypsin-like protein, and Hageman factor. Although thrombin and urokinase-type plasminogen activator were not detected in the primary screen, low level expression was confirmed using specific polymerase chain reaction primers. In contrast, and despite robust expression of t-PA, the usual t-PA substrate plasminogen was not expressed at detectable levels.
Collapse
Affiliation(s)
- B J Davies
- Center for Genome Research, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Jun K, Choi G, Yang SG, Choi KY, Kim H, Chan GC, Storm DR, Albert C, Mayr GW, Lee CJ, Shin HS. Enhanced Hippocampal CA1 LTP but Normal Spatial Learning in Inositol 1,4,5-trisphosphate 3-kinase(A)-Deficient Mice. Learn Mem 1998. [DOI: 10.1101/lm.5.4.317] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To define the physiological role of IP33-kinase(A) in vivo, we have generated a mouse strain with a null mutation of the IP33-kinase(A) locus by gene targeting. Homozygous mutant mice were fully viable, fertile, apparently normal, and did not show any morphological anomaly in brain sections. In the mutant brain, the IP4 level was significantly decreased whereas the IP3 level did not change, demonstrating a major role of IP33-kinase(A) in the generation of IP4. Nevertheless, no significant difference was detected in the hippocampal neuronal cells of the wild-type and the mutant mice in the kinetics of Ca2+ regulation after glutamate stimulation. Electrophysiological analyses carried out in hippocampal slices showed that the mutation significantly enhanced the LTP in the hippocampal CA1 region, but had no effect on the LTP in dentate gyrus (DG). No difference was noted, however, between the mutant and the wild-type mice in the Morris water maze task. Our results indicate that IP33-kinase(A) may play an important role in the regulation of LTP in hippocampal CA1 region through the generation of IP4, but the enhanced LTP in the hippocampal CA1 does not affect spatial learning and memory.
Collapse
|
43
|
Chen J, Kelz MB, Zeng G, Sakai N, Steffen C, Shockett PE, Picciotto MR, Duman RS, Nestler EJ. Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol 1998; 54:495-503. [PMID: 9730908 DOI: 10.1124/mol.54.3.495] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several inducible gene expression systems have been developed in vitro in recent years to overcome limitations with traditional transgenic mice. One of these, the tetracycline-regulated system, has been used successfully in vivo. Nevertheless, concerns remain about the ability of this system to direct high levels of transgene expression in vivo and to enable such expression to be turned on and off effectively. We report here the generation, using a modified tetracycline-regulated system under the control of the neuron-specific enolase promoter, of several lines of mice that direct transgene expression to specific brain regions, including the striatum, cerebellum, CA1 region of the hippocampus, or deep layers of cerebral neocortex. Transgene expression in these mice can be turned off completely with low doses of doxycycline (a tetracycline derivative) and driven to very high levels in the absence of doxycycline. We demonstrate this tissue-specific, inducible expression for three transgenes: those that encode luciferase (a reporter protein) or DeltaFosB or the cAMP-response element binding protein (CREB) (two transcription factors). The various lines of transgenic mice demonstrate an inducible system that generates high levels of transgene expression in specific brain regions and represent novel and powerful tools with which to study the functioning of these (or potentially any other) genes in the brain.
Collapse
Affiliation(s)
- J Chen
- Laboratory of Molecular Psychiatry and Center for Genes and Behavior, Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kempermann G, Brandon EP, Gage FH. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr Biol 1998; 8:939-42. [PMID: 9707406 DOI: 10.1016/s0960-9822(07)00377-6] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New neurons are continuously born in the dentate gyrus of the adult mouse hippocampus, and regulation of adult neurogenesis is influenced by both genetic and environmental determinants. Mice of the 129/SvJ strain have significantly less hippocampal neurogenesis than other inbred mouse strains [1] and do not perform well in learning tasks. Here, the impact of environmental stimuli on brain plasticity during adulthood of 129/SvJ mice was studied using 'enriched environments' where mice receive complex inanimate and social stimulation [2,3]. In contrast to our earlier reports on mice of the C57BL/6 strain - which are competent in learning tasks and in which environmental stimulation did not influence cell proliferation [4,5] - environmentally stimulated 129/SvJ mice were found to have twice as many proliferating cells in the dentate gyrus compared with mice in standard housing. Environmental stimulation fostered the survival of newborn cells in 129/SvJ mice; this effect had also been seen in C57BL/6 mice. Phenotypic analysis of the surviving cells revealed that environmental stimulation resulted in 67% more new neurons. In combination with our earlier results, these data indicate a differential impact of inheritable traits on the environmental regulation of adult hippocampal neurogenesis. In addition, we observed behavioral changes in environmentally stimulated 129/SvJ mice.
Collapse
Affiliation(s)
- G Kempermann
- The Salk Institute for Biological Studies Laboratory of Genetics 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | |
Collapse
|
45
|
Trenkner E, El Idrissi A, Dumas R, Rabe A. Functional consequences of calcium uptake modulation by taurine in vivo and in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 442:277-84. [PMID: 9635042 DOI: 10.1007/978-1-4899-0117-0_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E Trenkner
- New York State Institute for Basic Research and Developmental Disabilities, Staten Island 10314, USA
| | | | | | | |
Collapse
|
46
|
Abel T, Kandel E. Positive and negative regulatory mechanisms that mediate long-term memory storage. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:360-78. [PMID: 9651552 DOI: 10.1016/s0165-0173(97)00050-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The protein kinase A pathway and the cyclic AMP-response element binding protein (CREB) appear to play a critical role in the consolidation of short-term changes in neuronal activity into long-term memory storage in a variety of systems ranging from the gill and siphon withdrawal reflex in Aplysia to olfactory conditioning in Drosophila to spatial and contextual learning in mice. In this review we describe the molecular machinery that mediates memory consolidation in each of these systems. One of the surprising findings to emerge, particularly from studies of long-term facilitation in Aplysia, is that memory storage is mediated by not only positive but also negative regulatory mechanisms, in much the same way as cell division is controlled by the proteins encoded by oncogenes and tumor suppressor genes. This suggests the interesting possibility that there are memory suppressor genes whose protein products impede memory storage.
Collapse
Affiliation(s)
- T Abel
- Howard Hughes Medical Institute, Center for Neurobiology and Behavior, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
47
|
Abstract
After a short review of trends in the research on localization of memory, a hypothesis is presented in which DNA is the basis for acquired long-term memory in neurons. This is conceivable as neurons do not divide. As an example, the possible storage capacity in DNA is calculated using the coding of action potentials into DNA sequences. Such a record of a human lifetime of action potentials would not occupy more than a fraction of the available DNA in the cell nucleus.
Collapse
Affiliation(s)
- R Bergin
- Department for Medical Informatics and Educational Development, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
48
|
Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice. J Neurosci 1998. [PMID: 9482797 DOI: 10.1523/jneurosci.18-06-02108.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Developing sensory systems are sculpted by an activity-dependent strengthening and weakening of connections. Long-term potentiation (LTP) and depression (LTD) in vitro have been proposed to model this experience-dependent circuit refinement. We directly compared LTP and LTD induction in vitro with plasticity in vivo in the developing visual cortex of a mouse mutant of protein kinase A (PKA), a key enzyme implicated in the plasticity of a diverse array of systems. In mice lacking the RIbeta regulatory subunit of PKA, we observed three abnormalities of synaptic plasticity in layer II/III of visual cortex in vitro. These included an absence of (1) extracellularly recorded LTP, (2) depotentiation or LTD, and (3) paired-pulse facilitation. Potentiation was induced, however, by pairing low-frequency stimulation with direct depolarization of individual mutant pyramidal cells. Together these findings suggest that the LTP defect in slices lacking PKA RIbeta lies in the transmission of sufficient net excitation through the cortical circuit. Nonetheless, functional development and plasticity of visual cortical responses in vivo after monocular deprivation did not differ from normal. Moreover, the loss of all responsiveness to stimulation of the originally deprived eye in most cortical cells could be restored by reverse suture of eyelids during the critical period in both wild-type and mutant mice. Such an activity-dependent increase in response would seem to require a mechanism like potentiation in vivo. Thus, the RIbeta isoform of PKA is not essential for ocular dominance plasticity, which can proceed despite defects in several common in vitro models of neural plasticity.
Collapse
|
49
|
Abstract
Genetic approaches have been used to investigate increasingly complex biological systems. Here we review the current state of genetic analysis of learning and memory in the fruitfly, Drosophila melanogaster. Emerging findings support two main themes. First, discovery and manipulation of genes involved with behavioral plasticity in genetically accessible systems such as D. melanogaster enables dissection of the biochemical, cellular, anatomical, and behavioral pathways of learning and memory. Second, because core cellular mechanisms of simple forms of learning are evolutionarily conserved, biological pathways discovered in invertebrates are likely to be conserved in vertebrate systems as well.
Collapse
Affiliation(s)
- J Dubnau
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
50
|
Abstract
The cAMP responsive element binding protein (CREB) is a nuclear protein that modulates the transcription of genes with cAMP responsive elements in their promoters. Increases in the concentration of either calcium or cAMP can trigger the phosphorylation and activation of CREB. This transcription factor is a component of intracellular signaling events that regulate a wide range of biological functions, from spermatogenesis to circadian rhythms and memory. Here we review the key features of CREB-dependent transcription, as well as the involvement of CREB in memory formation. Evidence from Aplysia, Drosophila, mice, and rats shows that CREB-dependent transcription is required for the cellular events underlying long-term but not short-term memory. While the work in Aplysia and Drosophila only involved CREB function in very simple forms of conditioning, genetic and pharmacological studies in mice and rats demonstrate that CREB is required for a variety of complex forms of memory, including spatial and social learning, thus indicating that CREB may be a universal modulator of processes required for memory formation.
Collapse
Affiliation(s)
- A J Silva
- Cold Spring Harbor Laboratory, Harbor, New York 11724, USA.
| | | | | | | |
Collapse
|