1
|
Chan C, Mukai K, Groisman EA. Infection-relevant conditions dictate differential versus coordinate expression of Salmonella chaperones and cochaperones. mBio 2025; 16:e0022725. [PMID: 40162747 PMCID: PMC12077118 DOI: 10.1128/mbio.00227-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Molecular chaperones are critical for protein homeostasis. In bacteria, chaperone trigger factor (TF) folds proteins co-translationally, and chaperone DnaK requires a J-domain cochaperone and nucleotide exchange factor GrpE to fold proteins largely post-translationally. However, when the pathogen Salmonella enterica serovar Typhimurium faces the infection-relevant condition of cytoplasmic Mg2+ starvation, DnaK reduces protein synthesis independently. This raises the possibility that bacteria differentially express chaperones and cochaperones. We now report that S. Typhimurium responds to cytoplasmic Mg2+ starvation by increasing mRNA amounts of dnaK while decreasing those of the TF-encoding gene tig and J-domain cochaperone genes dnaJ and djlA. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence PhoP, which increases dnaK mRNA amounts by lowering the ATP concentration, thereby hindering proteolysis of the alternative sigma factor RpoH responsible for dnaK transcription. We also establish that DnaK exerts negative feedback on the RpoH protein and RpoH-dependent transcripts independently of J-domain cochaperones. Thus, bacteria express chaperones and cochaperones coordinately or differentially depending on the specific stress perturbing protein homeostasis.IMPORTANCEMolecular chaperones typically require cochaperones to fold proteins and to prevent protein aggregation, and the corresponding genes are thus coordinately expressed. We have now identified an infection-relevant stress condition in which the genes specifying chaperone DnaK and cochaperone DnaJ are differentially expressed despite belonging to the same operon. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence in the pathogen Salmonella enterica serovar Typhimurium. Moreover, it likely reflects that Salmonella requires dnaK, but not J-domain cochaperone-encoding genes, for survival against cytoplasmic Mg2+ starvation and expresses genes only when needed. Thus, the specific condition impacting protein homeostasis determines the coordinate versus differential expression of molecular chaperones and cochaperones.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keiichiro Mukai
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Mahmoudi J, Kazmi S, Vatandoust S, Athari SZ, Sadigh-Eteghad S, Morsali S, Bahari L, Ahmadi M, Hosseini L, Farajdokht F. Coenzyme Q10 and vitamin E alleviate heat stress-induced mood disturbances in male mice: Modulation of inflammatory pathways and the HPA axis. Behav Brain Res 2025; 476:115259. [PMID: 39303989 DOI: 10.1016/j.bbr.2024.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Heat stress, as an environmental stressor, can lead to temperature dysregulation and neuroinflammation, causing depression and anxiety by disrupting brain physiology and functional connectivity. This study looked at how co-enzyme Q10 (Q10) and vitamin E (Vit E), alone and together, affected heat stress-caused anxiety and depression symptoms and inflammation in male mice. Five groups were utilized in the study: control, heat stress (NS), Q10, Vit E, and the combination group (Q10+Vit E). The mice were subjected for 15 min/day to a temperature of 43°C for 14 consecutive days, followed by daily treatments for two weeks with either normal saline, Q10 (500 mg/kg), Vit E (250 mg/kg), or their combination. The forced swimming test (FST) and tail suspension test (TST) were employed to evaluate despair behavior, whereas the elevated plus maze (EPM) and open field test (OFT) were used to assess anxious behaviors. Subsequently, the animals were sacrificed, and serum corticosterone levels, protein expression of inflammasome-related proteins, and hsp70 gene expression were evaluated in the prefrontal cortex (PFC). The study revealed that treatment with Vit E and Q10, alone or together, provided anxiolytic and antidepressant effects in the heat-stress-subjected animals. Also, giving Vit E and Q10 alone or together greatly lowered serum corticosterone levels. In the PFC, they also lowered the levels of hsp70 mRNA and NF-κB, caspase 1, NLRP3, and IL-1β proteins. It is speculated that treatment with Q10 and Vit E can attenuate heat stress-associated anxious and depressive responses by inhibiting the inflammatory pathways and modulating the hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Bahari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Trif C, Vunduk J, Parcharoen Y, Bualuang A, Marks RS. Bioluminescent Whole-Cell Bioreporter Bacterial Panel for Sustainable Screening and Discovery of Bioactive Compounds Derived from Mushrooms. BIOSENSORS 2024; 14:558. [PMID: 39590017 PMCID: PMC11592261 DOI: 10.3390/bios14110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
This study presents a rapid and comprehensive method for screening mushroom extracts for the putative discovery of bioactive molecules, including those exhibiting antimicrobial activity. This approach utilizes a panel of bioluminescent bacteria, whose light production is a sensitive indicator of various cellular effects triggered by the extracts, including disruption of bacterial communication (quorum sensing), protein and DNA damage, fatty acid metabolism alterations, and oxidative stress induction. The bioassay's strength is its ability to efficiently analyze a large number of extracts simultaneously while also assessing several different mechanisms of toxicity, significantly reducing screening time. All samples analyzed exhibited more than one cellular effect, as indicated by the reporter bacteria. Four samples (C. cornucopioides, F. fomentarius, I. obliquus, and M. giganteus) displayed the highest number (six) of possible mechanisms of antibacterial activity. Additionally, combining extraction and purification protocols with a bioluminescent bacterial panel enables simultaneous improvement of the desired antimicrobial properties of the extracts. The presented approach offers a valuable tool for uncovering the diverse antimicrobial mechanisms of mushroom extracts.
Collapse
Affiliation(s)
- Calin Trif
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of Negev, Beer Sheva 84105, Israel;
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia
| | - Yardnapar Parcharoen
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (Y.P.)
| | - Aporn Bualuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (Y.P.)
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of Negev, Beer Sheva 84105, Israel;
| |
Collapse
|
4
|
Al Amaz S, Shahid MAH, Jha R, Mishra B. Prehatch thermal manipulation of embryos and posthatch baicalein supplementation increased liver metabolism, and muscle proliferation in broiler chickens. Poult Sci 2024; 103:104155. [PMID: 39216265 PMCID: PMC11402044 DOI: 10.1016/j.psj.2024.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The exposure of broiler chickens to high ambient temperatures causes heat stress (HS), negatively affecting their health and production performance. To mitigate heat stress in broilers, various strategies, including dietary, managerial, and genetic interventions, have been extensively tested with varying degrees of efficacy. For sustainable broiler production, it is imperative to develop an innovative approach that effectively mitigates the adverse effects of HS. Our previous studies have provided valuable insights into the effects of prehatch embryonic thermal manipulation (TM) and posthatch baicalein supplementation on embryonic thermotolerance, metabolism, and posthatch growth performance. This follow-up study investigated the effect of these interventions on gluconeogenesis and lipid metabolism in the liver, as well as muscle proliferation and regeneration capacity in heat-stressed broiler chickens. A total of six-hundred fertile Cobb 500 eggs were incubated for 21 d. After candling, 238 eggs were subjected to TM at 38.5°C with 55% relative humidity (RH) from embryonic day (ED) 12 to 18. These eggs were transferred to the hatcher and kept at a standard temperature (37.5°C) from ED 19 to 21, while 236 eggs were incubated at a controlled temperature (37.5°C) till hatch. After hatching, 180 day-old chicks from both groups were raised in 36 pens treatment (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) Control heat stress (CHS), 4) Thermal manipulation heat stress (TMHS), 5) Control heat stress supplement (CHSS), and 6) Thermal manipulation heat stress supplement (TMHSS). Baicalein was added to the treatment group diets starting from d 1. All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 ⁰C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24⁰C) environment was maintained in the Control and TM groups. RH was constant (50 ± 5%) throughout the trial. In the liver, TM significantly increased (P < 0.05) IGF2 expression. Baicalein supplementation significantly increased (P < 0.05) HSF3, HSP70, SOD1, SOD2, TXN, PRARα, and GHR expression. Moreover, the combination of TM and baicalein supplementation significantly increased (P < 0.05) the expression of HSPH1, HSPB1, HSP90, LPL, and GHR. In the muscle, TM significantly increased (P < 0.05) HSF3 and Myf5 gene expression. TM and baicalein supplementation significantly increased (P < 0.05) the expression of MyoG and significantly (P < 0.05) decreased mTOR and PAX7. In conclusion, the prehatch TM of embryos and posthatch baicalein supplementation mitigated the deleterious effects of HS on broiler chickens by upregulating genes related to liver gluconeogenesis, lipid metabolism, and muscle proliferation.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Md Ahosanul Haque Shahid
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822.
| |
Collapse
|
5
|
Liang Q, Huan S, Lin Y, Su Z, Yao X, Li C, Ji Z, Zhang X. Screening of heat stress-related biomarkers in chicken serum through label-free quantitative proteomics. Poult Sci 2024; 103:103340. [PMID: 38118221 PMCID: PMC10770749 DOI: 10.1016/j.psj.2023.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023] Open
Abstract
Heat stress (HS) can result in sudden death and is one of the most stressful and costly events in chicken. Currently, biomarkers used clinically to detect heat stress state in chickens are not optimal, especially for living ones. Analysis of changes in serum proteins of heat-stressed chickens can help to identify some novel convenient biomarkers for this. Twenty-four chickens were exposed to HS at 42°C ± 1°C with a relative humidity of 65% for continuous 5 h in a single day, and 10 birds were used as controls (Con). During HS, 15 dead chickens were categorized as heat stress death group (HSD), and 9 surviving ones served as heat stress survivor group (HSS). Label-free quantitative proteomics (LFQP) was used to analyze differentially expressed proteins (DEPs) in serum of tested animals. Candidate proteins associated with HS were validated by enzyme-linked immunosorbent assay (ELISA). Diagnostic value of candidate biomarkers was assessed using receiver operating characteristic (ROC) curve analysis. Source of the selected proteins was analyzed in liver tissues with immunohistochemistry and in cell culture supernatant of primary chicken hepatocytes (PCH) using ELISA. In this study, compared to Con, LFQP identified 123 and 53 significantly different serum proteins in HSD and HSS, respectively. Bioinformatics analysis showed that XDH, POSTN, and HSP90 were potential HS biomarkers in tested chickens, which was similar with results from serum ELISAs and immunohistochemistry in liver tissues. The ROC values of 0.793, 0.752, and 0.779 for XDH, POSTN, and HSP90, respectively, permitted the distinction of heat-stressed chickens from the control. Levels of 3 proteins above in the cell culture supernatant of PCH showed an increasing trend as HS time increased. Therefore, considering that mean concentration of POSTN in serum was higher than that of HSP90, XDH, and POSTN may be optimal biomarkers in serum for detecting HS level in chickens, and mainly secreted from hepatocytes. The former indicates that heat-stressed chickens are in a damaged state, and the latter implies that chickens can repair heat stress damage.
Collapse
Affiliation(s)
- Qijun Liang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Shuqian Huan
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Yiduo Lin
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Zhiqing Su
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Xu Yao
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Chengyun Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Zeping Ji
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Xiaohui Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China.
| |
Collapse
|
6
|
Wang W, Liu F, Ugalde MV, Pyle AM. A compact regulatory RNA element in mouse Hsp70 mRNA. NAR MOLECULAR MEDICINE 2024; 1:ugae002. [PMID: 38318492 PMCID: PMC10840451 DOI: 10.1093/narmme/ugae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Hsp70 (70 kDa heat shock protein) performs molecular chaperone functions by assisting the folding of newly synthesized and misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases, including neurodegenerative disorders and cancers. It is well established that, immediately after heat shock, Hsp70 gene expression is mediated by a canonical mechanism of cap-dependent translation. However, the molecular mechanism of Hsp70 expression during heat shock remains elusive. Intriguingly, the 5' end of Hsp70 messenger RNA (mRNA) appears to form a compact structure with the potential to regulate protein expression in a cap-independent manner. Here, we determined the minimal length of the mHsp70 5'-terminal mRNA sequence that is required for RNA folding into a highly compact structure. This span of this RNA element was mapped and the secondary structure characterized by chemical probing, resulting in a secondary structural model that includes multiple stable stems, including one containing the canonical start codon. All of these components, including a short stretch of the 5' open reading frame (ORF), were shown to be vital for RNA folding. This work provides a structural basis for future investigations on the role of translational regulatory structures in the 5' untranslated region and ORF sequences of Hsp70 during heat shock.
Collapse
Affiliation(s)
- Wenshuai Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Fei Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Maria Vera Ugalde
- Department of Biochemistry. McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Wang W, Liu F, Ugalde MV, Pyle AM. A compact regulatory RNA element in mouse Hsp70 mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529618. [PMID: 36865185 PMCID: PMC9980084 DOI: 10.1101/2023.02.22.529618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Hsp70 performs molecular chaperone functions by assisting in folding newly synthesized or misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases including neurodegenerative disorders and cancer. It is well established that Hsp70 upregulation during post-heat shock stimulus is mediated by cap-dependent translation. However, the molecular mechanisms of Hsp70 expression during heat shock stimulus remains elusive, even though the 5' end of Hsp70 mRNA may form a compact structure to positively regulate protein expression in the mode of cap-independent translation. The minimal truncation which can fold to a compact structure was mapped and its secondary structure was characterized by chemical probing. The predicted model revealed a highly compact structure with multiple stems. Including the stem where the canonical start codon is located, several stems were identified to be vital for RNA folding, thereby providing solid structural basis for future investigations on the function of this RNA structure on Hsp70 translation during heat shock.
Collapse
|
8
|
Cruvinel JM, Groff Urayama PM, Oura CY, de Lima Krenchinski FK, Dos Santos TS, de Souza BA, Kadri SM, Correa CR, Sartori JR, Pezzato AC. Pequi Oil ( Caryocar brasiliense Camb.) Attenuates the Adverse Effects of Cyclical Heat Stress and Modulates the Oxidative Stress-Related Genes in Broiler Chickens. Animals (Basel) 2023; 13:1896. [PMID: 37370405 DOI: 10.3390/ani13121896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The present study was conducted to determine the possible antioxidant protection of pequi oil (PO) against cyclic heat stress in broiler chickens and to highlight the application of PO as a promising additive in broiler feed. A total of 400 one-day-old male broiler chicks (Cobb 500) were randomly assigned to 2 × 5 factorially arranged treatments: two temperature-controlled rooms (thermoneutral-TN or heat stress-HS for 8 h/day) and five dietary PO levels (0, 1.5, 3.0, 4.5, or 6.0 g/kg diet) for 42 days. Each treatment consisted of eight replicates of five birds. The results showed that HS increased glucose (p = 0.006), triglycerides (p < 0.001), and HDL (p = 0.042) at 21 days and reduced (p = 0.005) serum total cholesterol at 42 days. The results also showed that HS increased the contents of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In contrast, PO linearly decreased AST (p = 0.048) and ALT (p = 0.020) at 21 and 42 days, respectively. The heterophil-to-lymphocyte ratio in the birds under HS was higher than in those in the TN environment (p = 0.046). Heat stress decreased (p = 0.032) the relative weight of their livers at 21 days. The superoxide dismutase activity increased (p = 0.010) in the HS treatments in comparison to the TN treatments, while the glutathione peroxidase activity in the liver decreased (p < 0.001) at 42 days; however, the activity of catalase had no significant effects. Meanwhile, increasing the dietary PO levels linearly decreased plasma malondialdehyde (p < 0.001) in the birds in the HS environment. In addition, PO reduced (p = 0.027) the expression of Hsp 70 in the liver by 92% when compared to the TN treatment without PO, mainly at the 6.0 g/kg diet level. The expression of Nrf2 was upregulated by 37% (p = 0.049) in response to PO with the 6.0 g/kg diet compared to the HS treatment without PO. In conclusion, PO supplementation alleviated the adverse effects of HS on broilers due to its antioxidant action and modulation of the genes related to oxidative stress, providing insights into its application as a potential feed additive in broiler production.
Collapse
Affiliation(s)
- Jéssica Moraes Cruvinel
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Doutor Walter Mauricio Correa s/n, Botucatu 18618-681, SP, Brazil
| | - Priscila Michelin Groff Urayama
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Doutor Walter Mauricio Correa s/n, Botucatu 18618-681, SP, Brazil
| | - Cássio Yutto Oura
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Doutor Walter Mauricio Correa s/n, Botucatu 18618-681, SP, Brazil
| | - Fernanda Kaiser de Lima Krenchinski
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Doutor Walter Mauricio Correa s/n, Botucatu 18618-681, SP, Brazil
| | - Tatiane Souza Dos Santos
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Doutor Walter Mauricio Correa s/n, Botucatu 18618-681, SP, Brazil
| | - Beatriz Alves de Souza
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Doutor Walter Mauricio Correa s/n, Botucatu 18618-681, SP, Brazil
| | - Samir Moura Kadri
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Camila Renata Correa
- Department of Pathology and Experimental Research Unit (UNIPEX), Medical School, São Paulo State University (UNESP), Distrito Rubião Jr., Botucatu 18618-970, SP, Brazil
| | - José Roberto Sartori
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Doutor Walter Mauricio Correa s/n, Botucatu 18618-681, SP, Brazil
| | - Antonio Celso Pezzato
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Doutor Walter Mauricio Correa s/n, Botucatu 18618-681, SP, Brazil
| |
Collapse
|
9
|
Zhang T, Chen F, Li M, Jing L, Luan P, Hu G, Shu Y. In silico
analysis of Hsp70 genes in
Ctenopharyngodon idella
and their expression profiles in response to environmental stresses. BIOTECHNOL BIOTEC EQ 2023; 37. [DOI: 10.1080/13102818.2023.2245900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/03/2025] Open
Affiliation(s)
- Tianxiang Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
- Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Harbin, Heilongjiang, China
| | - Feng Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
- Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Harbin, Heilongjiang, China
| | - Manman Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| | - Legang Jing
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| | - Peixian Luan
- Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Harbin, Heilongjiang, China
| | - Guo Hu
- Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Harbin, Heilongjiang, China
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
HSP70 mediates a crosstalk between the estrogen and the heat shock response pathways. J Biol Chem 2023; 299:102872. [PMID: 36610605 PMCID: PMC9926311 DOI: 10.1016/j.jbc.2023.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Cells respond to multiple signals from the environment simultaneously, which often creates crosstalk between pathways affecting the capacity to adapt to the changing environment. Chaperones are an important component in the cellular integration of multiple responses to environmental signals, often implicated in negative feedback and inactivation mechanisms. These mechanisms include the stabilization of steroid hormone nuclear receptors in the cytoplasm in the absence of their ligand. Here, we show using immunofluorescence, chromatin immunoprecipitation, and nascent transcripts production that the heat shock protein 70 (HSP70) chaperone plays a central role in a new crosstalk mechanism between the steroid and heat shock response pathways. HSP70-dependent feedback mechanisms are required to inactivate the heat shock factor 1 (HSF1) after activation. Interestingly, a steroid stimulation leads to faster accumulation of HSF1 in inactive foci following heat shock. Our results further show that in the presence of estrogen, HSP70 accumulates at HSF1-regulated noncoding regions, leading to deactivation of HSF1 and the abrogation of the heat shock transcriptional response. Using an HSP70 inhibitor, we demonstrate that the crosstalk between both pathways is dependent on the chaperone activity. These results suggest that HSP70 availability is a key determinant in the transcriptional integration of multiple external signals. Overall, these results offer a better understanding of the crosstalk between the heat shock and steroid responses, which are salient in neurodegenerative disorders and cancers.
Collapse
|
11
|
Durosaro SO, Iyasere OS, Ilori BM, Oyeniran VJ, Ozoje MO. Molecular regulation, breed differences and genes involved in stress control in farm animals. Domest Anim Endocrinol 2023; 82:106769. [PMID: 36244194 DOI: 10.1016/j.domaniend.2022.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Stress is a state of disturbed homeostasis evoking a multiplicity of somatic and mental adaptive reactions resulting from any of the 5 freedoms of animals being violated. Many environmental forces disrupt homeostasis in farm animals, such as extreme temperatures, poor nutrition, noise, hunger, and thirst. During stressful situations, neuronal circuits in the limbic system and prefrontal cortex are activated, which lead to the release of adrenalin and noradrenalin. The hormones released during stress are needed for adaptation to acute stress and are regulated by many genes. This review examined molecular regulation, breed differences, and genes involved in stress control in farm animals. Major molecular regulation of stress, such as oxidative, cytosolic heat shock, unfolded protein, and hypoxic responses, were discussed. The responses of various poultry, ruminant, and pig breeds to different stress types were also discussed. Gene expressions and polymorphisms in the neuroendocrine and neurotransmitter pathways were also elucidated. The information obtained from this review will help farmers mitigate stress in farm animals through appropriate breed and gene-assisted selection. Also, information obtained from this review will add to the field of stress genetics since stress is a serious welfare issue in farm animals.
Collapse
Affiliation(s)
- S O Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - O S Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - B M Ilori
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - V J Oyeniran
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - M O Ozoje
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
12
|
Oladokun S, Adewole DI. Biomarkers of heat stress and mechanism of heat stress response in Avian species: Current insights and future perspectives from poultry science. J Therm Biol 2022; 110:103332. [DOI: 10.1016/j.jtherbio.2022.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
13
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
14
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
15
|
Liu M, Sun X, Zhu L, Zhu M, Deng K, Nie X, Mo H, Du T, Huang B, Hu L, Liang L, Wang D, Luo Y, Yi J, Zhang J, Zhong X, Cao C, Chen H. Long Noncoding RNA RP11-115N4.1 Promotes Inflammatory Responses by Interacting With HNRNPH3 and Enhancing the Transcription of HSP70 in Unexplained Recurrent Spontaneous Abortion. Front Immunol 2021; 12:717785. [PMID: 34484222 PMCID: PMC8414257 DOI: 10.3389/fimmu.2021.717785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Unexplained recurrent spontaneous abortion (URSA) is a common pregnancy complication and the etiology is unknown. URSA-associated lncRNAs are expected to be potential biomarkers for diagnosis, and might be related to the disease pathogenesis. Objective To investigate differential lncRNAs in peripheral blood of non-pregnant URSA patients and matched healthy control women and to explore the possible mechanism of differential lncRNAs leading to URSA. Methods We profiled lncRNAs expression in peripheral blood from 5 non-pregnant URSA patients and 5 matched healthy control women by lncRNA microarray analysis. Functions of URSA-associated lncRNAs were further investigated in vitro. Results RP11-115N4.1 was identified as the most differentially expressed lncRNA which was highly upregulated in peripheral blood of non-pregnant URSA patients (P = 3.63E-07, Fold change = 2.96), and this dysregulation was further validated in approximately 26.67% additional patients (4/15). RP11-115N4.1 expression was detected in both lymphocytes and monocytes of human peripheral blood, and in vitro overexpression of RP11-115N4.1 decreased cell proliferation in K562 cells significantly. Furthermore, heat-shock HSP70 genes (HSPA1A and HSPA1B) were found to be significantly upregulated upon RP11-115N4.1 overexpression by transcriptome analysis (HSPA1A (P = 4.39E-08, Fold change = 4.17), HSPA1B (P = 2.26E-06, Fold change = 2.99)). RNA pull down and RNA immunoprecipitation assay (RIP) analysis demonstrated that RP11-115N4.1 bound to HNRNPH3 protein directly, which in turn activate heat-shock proteins (HSP70) analyzed by protein-protein interaction and HNRNPH3 knockdown assays. Most importantly, the high expression of HSP70 was also verified in the serum of URSA patients and the supernatant of K562 cells with RP11-115N4.1 activation, and HSP70 in supernatant can exacerbate inflammatory responses in monocytes by inducing IL-6, IL-1β, and TNF-α and inhibit the migration of trophoblast cells, which might associate with URSA. Conclusion Our results demonstrated that the activation of RP11-115N4.1 can significantly increase the protein level of HSP70 via binding to HNRNPH3, which may modulate the immune responses and related to URSA. Moreover, RP11-115N4.1 may be a novel etiological biomarker and a new therapeutic target for URSA.
Collapse
Affiliation(s)
- Meilan Liu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Menglan Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kewen Deng
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolu Nie
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hanjie Mo
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Du
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingqian Huang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lihao Hu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liuhong Liang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongyan Wang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yinger Luo
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinling Yi
- Department of Gynecology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xingming Zhong
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China.,Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Karunanayake C, Page RC. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Exp Biol Med (Maywood) 2021; 246:1419-1434. [PMID: 33730888 PMCID: PMC8243209 DOI: 10.1177/1535370221999812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
17
|
Ambrose AJ, Chapman E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J Med Chem 2021; 64:7060-7082. [PMID: 34009983 DOI: 10.1021/acs.jmedchem.0c02091] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hsp70s are among the most highly conserved proteins in all of biology. Through an iterative binding and release of exposed hydrophobic residues on client proteins, Hsp70s can prevent aggregation and promote folding to the native state of their client proteins. The human proteome contains eight canonical Hsp70s. Because Hsp70s are relatively promiscuous they play a role in folding a large proportion of the proteome. Hsp70s are implicated in disease through their ability to regulate protein homeostasis. In recent years, researchers have attempted to develop selective inhibitors of Hsp70 isoforms to better understand the role of individual isoforms in biology and as potential therapeutics. Selective inhibitors have come from rational design, forced localization, and serendipity, but the development of completely selective inhibitors remains elusive. In the present review, we discuss the Hsp70 structure and function, the known Hsp70 client proteins, the role of Hsp70s in disease, and current efforts to discover Hsp70 modulators.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Davis JE, Kolozsvary MB, Pajerowska-Mukhtar KM, Zhang B. Toward a Universal Theoretical Framework to Understand Robustness and Resilience: From Cells to Systems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.579098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Research across a range of biological subdisciplines and scales, ranging from molecular to ecosystemic, provides ample evidence that living systems generally exhibit both a degree of resistance to disruption and an ability to recover following disturbance. Not only do mechanisms of robustness and resilience exist across and between systems, but those mechanisms exhibit ubiquitous and scalable commonalities in pattern and function. Mechanisms such as redundancy, plasticity, interconnectivity, and coordination of subunits appear to be crucial internal players in the determination of stability. Similarly, factors external to the system such as the amplitude, frequency, and predictability of disruptors, or the prevalence of key limiting resources, may constrain pathways of response. In the face of a rapidly changing environment, there is a pressing need to develop a common framework for describing, assessing, and predicting robustness and resilience within and across living systems.
Collapse
|
19
|
Abstract
The heat shock response (HSR) is a gene expression program that protects cells from heat and proteotoxic stressors. In this issue, Feder et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202005165) show that subcellular relocalization of the cochaperone Sis1 drives the HSR by de-suppressing the transcription factor Hsf1.
Collapse
Affiliation(s)
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA
| |
Collapse
|
20
|
Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers. Poult Sci 2020; 100:100908. [PMID: 33518339 PMCID: PMC7936158 DOI: 10.1016/j.psj.2020.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of this work was to evaluate the impacts of feeding different levels of postbiotic RI11 on antioxidant enzyme activity, physiological stress indicators, and cytokine and gut barrier gene expression in broilers under heat stress. A total of 252 male broilers Cobb 500 were allocated in cages in environmentally controlled chambers. All the broilers received the same basal diet from 1 to 21 d. On day 22, the broilers were weighed and grouped into 7 treatment groups and exhibited to cyclic high temperature at 36 ± 1°C for 3 h per day until the end of the experiment. From day 22 to 42, broilers were fed with one of the 7 following diets: negative control, basal diet (0.0% RI11) (NC group); positive control, NC diet + 0.02% (w/w) oxytetracycline (OTC group); antioxidant control, NC diet + 0.02% (w/w) ascorbic acid. The other 4 other groups were as follows: NC diet + 0.2% cell-free supernatant (postbiotic RI11) (v/w), NC diet + 0.4% cell-free supernatant (postbiotic RI11) (v/w), NC diet + 0.6% cell-free supernatant (postbiotic RI11) (v/w), and NC diet + 0.8% cell-free supernatant (postbiotic RI11) (v/w). Supplementation of different levels (0.4, 0.6, and 0.8%) of postbiotic RI11 increased plasma glutathione peroxidase, catalase, and glutathione enzyme activity. Postbiotic RI11 groups particularly at levels of 0.4 and 0.6% upregulated the mRNA expression of IL-10 and downregulated the IL-8, tumor necrosis factor alpha, heat shock protein 70, and alpha-1-acid glycoprotein levels compared with the NC and OTC groups. Feeding postbiotic RI11, particularly at the level of 0.6%, upregulated ileum zonula occludens-1 and mucin 2 mRNA expressions. However, no difference was observed in ileum claudin 1, ceruloplasmin, IL-6, IL-2, and interferon expression, but downregulation of occludin expression was observed as compared with the NC group. Supplementation of postbiotic RI11 at different levels quadratically increased plasma glutathione peroxidase, catalase and glutathione, IL-10, mucin 2, and zonula occludens-1 mRNA expression and reduced plasma IL-8, tumor necrosis factor alpha, alpha-1-acid glycoprotein, and heat shock protein 70 mRNA expression. The results suggested that postbiotics produced from Lactiplantibacillus plantarum RI11 especially at the level of 0.6% (v/w) could be used as an alternative to antibiotics and natural sources of antioxidants in poultry feeding.
Collapse
|
21
|
Degradation of Lon in Caulobacter crescentus. J Bacteriol 2020; 203:JB.00344-20. [PMID: 33020222 DOI: 10.1128/jb.00344-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Protein degradation is an essential process in all organisms. This process is irreversible and energetically costly; therefore, protein destruction must be tightly controlled. While environmental stresses often lead to upregulation of proteases at the transcriptional level, little is known about posttranslational control of these critical machines. In this study, we show that in Caulobacter crescentus levels of the Lon protease are controlled through proteolysis. Lon turnover requires active Lon and ClpAP proteases. We show that specific determinants dictate Lon stability with a key carboxy-terminal histidine residue driving recognition. Expression of stabilized Lon variants results in toxic levels of protease that deplete normal Lon substrates, such as the replication initiator DnaA, to lethally low levels. Taken together, results of this work demonstrate a feedback mechanism in which ClpAP and Lon collaborate to tune Lon proteolytic capacity for the cell.IMPORTANCE Proteases are essential, but unrestrained activity can also kill cells by degrading essential proteins. The quality-control protease Lon must degrade many misfolded and native substrates. We show that Lon is itself controlled through proteolysis and that bypassing this control results in toxic consequences for the cell.
Collapse
|
22
|
Ma F, Luo L. Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress. PeerJ 2020; 8:e10022. [PMID: 33150058 PMCID: PMC7587057 DOI: 10.7717/peerj.10022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (Hsps) play an important role in many biological processes. However, as a typical cold water fish, the systematic identification of Hsp70/110 gene family of rainbow trout (Oncorhynchus mykiss) has not been reported, and the role of Hsp70/110 gene in the evolution of rainbow trout has not been described systematically. In this study, bioinformatics methods were used to analyze the Hsp70/110 gene family of rainbow trout. A total of 16 hsp70/110 genes were identified and classified into ten subgroups. The 16 Hsp70/110 genes were all distributed on chromosomes 2, 4, 8 and 13. The molecular weight is ranged from 78.93 to 91.39 kD. Gene structure and motif composition are relatively conserved in each subgroup. According to RNA-seq analysis of rainbow trout liver and head kidney, a total of four out of 16 genes were significantly upregulated in liver under heat stress, and a total of seven out of 16 genes were significantly upregulated in head kidney. RT-qPCR was carried out on these gene, and the result were consistent with those of RNA-seq. The significantly regulated expressions of Hsp70/110 genes under heat stress indicats that Hsp70/110 genes are involved in heat stress response in rainbow trout. This systematic analysis provided valuable information about the diverse roles of Hsp70/110 in the evolution of teleost, which will contribute to the functional characterization of Hsp70/110 genes in further research.
Collapse
Affiliation(s)
- Fang Ma
- College of Biological Engineering and Technology, Tianshui Normal University, Tianshui, Qinzhou District, China
| | - Lintong Luo
- College of Biological Engineering and Technology, Tianshui Normal University, Tianshui, Qinzhou District, China
| |
Collapse
|
23
|
Roushdy EM, Zaglool AW, Hassan FAM. Thermal stress consequences on growth performance, immunological response, antioxidant status, and profitability of finishing broilers: transcriptomic profile change of stress-related genes. Trop Anim Health Prod 2020; 52:3685-3696. [PMID: 32978744 DOI: 10.1007/s11250-020-02405-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023]
Abstract
The current study was conducted to investigate the impact of thermal stress on growth performance, blood biomarkers, metabolic hormones, immunological response, antioxidant activity, and expression of stress-related genes in broilers. One hundred and fifty one-day-old chicks (Ross 308) were utilized in this work. On the 21st day of age, birds were subjected to three environmentally controlled treatments with five replicate pens of 10 birds per each, representing an initial density of 10 birds/m2-control: reared in a thermoneutral condition; THS1 and THS2: exposed to 4 and 6 h of daily thermal stress at 40 ± 1 °C, respectively, until the 42 days of age. The results demonstrated that thermal stress for 4 and 6 h significantly reduced (P < 0.001) daily weight gain, daily feed intake, blood leukocyte and lymphocyte counts, serum immunoglobulins (IgM, IgA, IgG), and insulin-like growth factor-1 (IGF-1), while serum levels of aspartate aminotransferase, alanine aminotransferase, glucose, cholesterol, low-density lipoprotein, and lactate dehydrogenase were elevated relative to the thermoneutral group. Additionally, the corticosterone level and the ratio of heterophil:lymphocyte increased significantly (P < 0.001) in thermal-stressed groups. The antioxidant enzymes were affected by thermal stress as represented by a significant decrease in the activity of serum catalase (CAT) and glutathione peroxidase (GSH-Px) along with an increase in malonaldehyde concentration. Thermal stress affected gene expression by upregulating heat shock protein 70, heat shock factors 1 and 3, nuclear factor kappa B, interleukin-4, and uncoupling protein, and downregulating GSH-Px, CAT, and IGF-1 transcript levels. However, no changes were observed in interleukin-2 expression levels. It can be concluded that thermal stress destructively influences productivity, physiological status, and gene expression by upregulating heat shock protein 70, heat shock factors 1 and 3, nuclear factor kappa B, interleukin-4, and uncoupling protein, and downregulating GSH-Px, CAT, and IGF-1 transcript levels of broiler chickens.
Collapse
Affiliation(s)
- Elshimaa M Roushdy
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Asmaa W Zaglool
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Fardos A M Hassan
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
24
|
Gonçalves D, Santiago A, Morano KA. When pH comes to the rescue. eLife 2020; 9:62022. [PMID: 32915136 PMCID: PMC7486117 DOI: 10.7554/elife.62022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
In starving yeast exposed to thermal stress, a transient drop in intracellular pH helps to trigger the heat shock response.
Collapse
Affiliation(s)
- Davi Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, United States
| | - Alec Santiago
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, United States.,MD Anderson UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, United States
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, United States
| |
Collapse
|
25
|
Masser AE, Ciccarelli M, Andréasson C. Hsf1 on a leash - controlling the heat shock response by chaperone titration. Exp Cell Res 2020; 396:112246. [PMID: 32861670 DOI: 10.1016/j.yexcr.2020.112246] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
Abstract
Heat shock factor 1 (Hsf1) is an ancient transcription factor that monitors protein homeostasis (proteostasis) and counteracts disturbances by triggering a transcriptional programme known as the heat shock response (HSR). The HSR is transiently activated and upregulates the expression of core proteostasis genes, including chaperones. Dysregulation of Hsf1 and its target genes are associated with disease; cancer cells rely on a constitutively active Hsf1 to promote rapid growth and malignancy, whereas Hsf1 hypoactivation in neurodegenerative disorders results in formation of toxic aggregates. These central but opposing roles highlight the importance of understanding the underlying molecular mechanisms that control Hsf1 activity. According to current understanding, Hsf1 is maintained latent by chaperone interactions but proteostasis perturbations titrate chaperone availability as a result of chaperone sequestration by misfolded proteins. Liberated and activated Hsf1 triggers a negative feedback loop by inducing the expression of key chaperones. Until recently, Hsp90 has been highlighted as the central negative regulator of Hsf1 activity. In this review, we focus on recent advances regarding how the Hsp70 chaperone controls Hsf1 activity and in addition summarise several additional layers of activity control.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
26
|
Iserman C, Desroches Altamirano C, Jegers C, Friedrich U, Zarin T, Fritsch AW, Mittasch M, Domingues A, Hersemann L, Jahnel M, Richter D, Guenther UP, Hentze MW, Moses AM, Hyman AA, Kramer G, Kreysing M, Franzmann TM, Alberti S. Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production. Cell 2020; 181:818-831.e19. [PMID: 32359423 PMCID: PMC7237889 DOI: 10.1016/j.cell.2020.04.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/16/2019] [Accepted: 04/06/2020] [Indexed: 11/24/2022]
Abstract
Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.
Collapse
Affiliation(s)
- Christiane Iserman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Christine Desroches Altamirano
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Ceciel Jegers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Ulrike Friedrich
- Center for Molecular Biology of the University of Heidelberg, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Anatol W Fritsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Matthäus Mittasch
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Antonio Domingues
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Ulf-Peter Guenther
- DKMS Life Science Lab GmbH, St. Petersburger Str. 2, 01069 Dresden, Germany
| | - Matthias W Hentze
- EMBL Heidelberg, Director's Research Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Günter Kramer
- Center for Molecular Biology of the University of Heidelberg, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany.
| |
Collapse
|
27
|
de Souza RB, Moreira-de-Sousa C, Ansoar-Rodríguez Y, Coelho MPM, de Souza CP, Bueno OC, Fontanetti CS. Histopatology and HSP70 analysis of the midgut of Rhinocricus padbergi (Diplopoda) in the evaluation of the toxicity of two new metallic-insecticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3023-3033. [PMID: 31838689 DOI: 10.1007/s11356-019-07203-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Millipedes are organisms of the edaphic fauna and have been used as bioindicators for the evaluation of pollutants in the environment, as they are in constant contact with the soil. This study used the millipede Rhinocricus padbergi as surrogate to evaluate the toxicity of two metallic-insecticides that has been developed for leaf-cutting ants management. Millipedes were exposed in terrariums containing different concentrations of the metallic-insecticides and, after periods of 21 and 90 days, three individuals from each terrarium were dissected in order to remove the midgut, the organ where absorption of nutrients and, consequently, toxic substances occurs. The toxic action of the metallic-insecticides was analyzed through qualitative and semi-quantitative analysis of morphophysiological alterations and by quantitative analysis of the HSP70 stress protein. The results showed that the metallic-insecticides may increase HSP70 labeling, although not at all concentrations and periods of exposure. Histopathological alterations were not significant at any concentration, indicating that the cytoprotective action of HSP70 is able to prevent severe damage to the midgut. It is therefore suggested that the metallic-insecticides are not toxic to the species studied here as no toxicity was observed under the conditions tested. In addition, stress protein localization in midgut helps understand how morphophysiological processes can potentially be affected by pesticide exposure.
Collapse
Affiliation(s)
- Raphael B de Souza
- Institute of Bioscience, UNESP - São Paulo State University, Rio Claro, São Paulo, Brazil.
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil.
| | | | | | | | | | - Odair Correa Bueno
- Institute of Bioscience, UNESP - São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Carmem S Fontanetti
- Institute of Bioscience, UNESP - São Paulo State University, Rio Claro, São Paulo, Brazil
| |
Collapse
|
28
|
Hajati H, Zaghari M, Oliveira HC. Arthrospira (Spirulina) Platensis Can Be Considered as a Probiotic Alternative to Reduce Heat Stress in Laying Japanese Quails. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2018-0977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
González-Aravena M, Kenny NJ, Osorio M, Font A, Riesgo A, Cárdenas CA. Warm temperatures, cool sponges: the effect of increased temperatures on the Antarctic sponge Isodictya sp. PeerJ 2019; 7:e8088. [PMID: 31824760 PMCID: PMC6896943 DOI: 10.7717/peerj.8088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Although the cellular and molecular responses to exposure to relatively high temperatures (acute thermal stress or heat shock) have been studied previously, only sparse empirical evidence of how it affects cold-water species is available. As climate change becomes more pronounced in areas such as the Western Antarctic Peninsula, both long-term and occasional acute temperature rises will impact species found there, and it has become crucial to understand the capacity of these species to respond to such thermal stress. Here, we use the Antarctic sponge Isodictya sp. to investigate how sessile organisms (particularly Porifera) can adjust to acute short-term heat stress, by exposing this species to 3 and 5 °C for 4 h, corresponding to predicted temperatures under high-end 2080 IPCC-SRES scenarios. Assembling a de novo reference transcriptome (90,188 contigs, >93.7% metazoan BUSCO genes) we have begun to discern the molecular response employed by Isodictya to adjust to heat exposure. Our initial analyses suggest that TGF-β, ubiquitin and hedgehog cascades are involved, alongside other genes. However, the degree and type of response changed little from 3 to 5 °C in the time frame examined, suggesting that even moderate rises in temperature could cause stress at the limits of this organism’s capacity. Given the importance of sponges to Antarctic ecosystems, our findings are vital for discerning the consequences of short-term increases in Antarctic ocean temperature on these and other species.
Collapse
Affiliation(s)
| | - Nathan J Kenny
- Life Sciences, The Natural History Museum, London, London, UK.,Life Sciences, Oxford Brookes University, Oxford, UK
| | - Magdalena Osorio
- Departamento Científico, Instituto Antártico Chileno, Puntas Arenas, Chile
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Puntas Arenas, Chile
| | - Ana Riesgo
- Life Sciences, The Natural History Museum, London, London, UK
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Puntas Arenas, Chile
| |
Collapse
|
30
|
Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 2019; 20:e47865. [PMID: 31531937 PMCID: PMC6776902 DOI: 10.15252/embr.201947865] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Sabrina Büttner
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| |
Collapse
|
31
|
Masser AE, Kang W, Roy J, Mohanakrishnan Kaimal J, Quintana-Cordero J, Friedländer MR, Andréasson C. Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. eLife 2019; 8:47791. [PMID: 31552827 PMCID: PMC6779467 DOI: 10.7554/elife.47791] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here, we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1 DNA-binding activity. During heat shock, Hsp70 is out-titrated by misfolded proteins derived from ongoing translation in the cytosol. Pushing the boundaries of the regulatory system unveils a genetic hyperstress program that is triggered by proteostasis collapse and involves an enlarged Hsf1 regulon. The findings demonstrate how an apparently simple chaperone-titration mechanism produces diversified transcriptional output in response to distinct stress loads.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Wenjing Kang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Joydeep Roy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jany Quintana-Cordero
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
Hartanto S, Ko HS, Jee SH, Kang JU, Seo JS, Kang YH, Kim HN, Ohh SJ. Effect of dietary nutmeg oil on heat-stress tolerance-related parameters in Korean native chicken reared under hot temperature. J Anim Physiol Anim Nutr (Berl) 2019; 103:1160-1167. [PMID: 31050054 DOI: 10.1111/jpn.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
This study investigated the effect of dietary nutmeg oil (NO) on growth performance, blood parameters, lipid peroxidation and heat shock protein (HSP) 70 expression in Korean native chicken (KNC) reared under hot temperature. We allocated 273 meat-type KNCs (Hanhyup-3, 4-week-old, body weight [BW] = 539.93 ± 1.75 g) to the following three treatments with seven replicate pens (13 birds/pen) per treatment. Three treatment diets were as follows: (a) Control, basal diet without NO supplementation; (b) NO 250; and (c) NO 500, basal diet supplemented with 250 and 500 ppm NO respectively. Diets and water were provided ad libitum throughout the 6-week feeding trial. During overall period (0-6 weeks), no differences (p > 0.05) were observed in BW gain (BWG), feed intake (FI) and feed conversion rate (FCR) among treatments. However, the FI at 0-3 weeks decreased (p < 0.05) quadratically with increasing NO levels. Most blood parameters did not differ (p > 0.05) among treatments, although the monocyte level of the NO 500 group was considerably lower (p > 0.05) than that of the other groups. Furthermore, dietary NO did not affect serum triglyceride, cholesterol, total protein, albumin, calcium, phosphorus and alanine aminotransferase (ALT) levels (p > 0.05); however, it linearly decreased serum aspartate aminotransferase (AST) level (p < 0.05). Additionally, serum malondialdehyde (MDA) concentration decreased (p < 0.05) and heart MDA concentration was lower (p = 0.08) with increasing dietary NO supplementation. After a 3-hr heat (35°C) challenge, the rectal temperature (RT) reduced (p < 0.05) linearly with increasing NO levels. Dietary NO did not affect liver HSP70 (p > 0.05) gene expression. In conclusion, NO potentially enhanced the ability of chickens to alleviate heat stress. Furthermore, our findings suggest that lipid oxidation inhibition by dietary NO likely mediated the enhanced heat-stress tolerance of the chickens.
Collapse
Affiliation(s)
- Slamet Hartanto
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea.,Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, North Maluku, Indonesia
| | - Han Seo Ko
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Seung Hwan Jee
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Ji Ung Kang
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Jee Soo Seo
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Yu Hyun Kang
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Hee Na Kim
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Sang Jip Ohh
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
33
|
Kumar J, Yadav B, Madan AK, Kumar M, Sirohi R, Reddy AV. Dynamics of heat-shock proteins, metabolic and endocrine responses during increasing temperature humidity index (THI) in lactating Hariana (Zebu) cattle. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1566986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jitender Kumar
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, India
| | - Arun Kumar Madan
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, India
| | - Muneender Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, India
| | - Rajneesh Sirohi
- Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, India
| | - A. Vidyasagar Reddy
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, India
| |
Collapse
|
34
|
Rong H, Wang C, Yu X, Fan J, Jiang P, Wang Y, Gan X, Wang Y. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:616-623. [PMID: 29933131 DOI: 10.1016/j.ecoenv.2018.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) and heavy metals could be absorbed and bioaccumulated by agricultural crops, implicating ecological risks. Herein, the present study investigated the ecotoxicological effects and mechanisms of individual carboxylated MWCNTs (MWCNTs-COOH) (2.5, 5.0 and 10 mg/L) and their combination with 20 µM Pb and 5 µM Cd (shortened as Pb + Cd) on roots of Vicia faba L. seedlings after 20 days of exposure. The results showed that the tested MWCNTs-COOH induced imbalance of nutrient elements, enhanced isozymes and activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), resulting in accumulation of carbonylated proteins, elevation of endoproteases (EPs) isozymes, and reduction of HSP70 synthesis in the roots. However, the tested MWCNTs-COOH facilitated the enrichment of Cd, Pb and Na elements, contributing to the decrease of SOD, CAT and APX activities, and the reduction of HSP70 synthesis, whereas the elevation of carbonylated proteins, EP activities and cell necrosis in the roots when Pb + Cd was combined in comparison to the treatments of MWCNTs-COOH, or Pb + Cd alone. Thus, the tested MWCNTs-COOH not only caused oxidative stress, but also aggravated the oxidative damage in the roots exposed to Pb + Cd in the culture solution.
Collapse
Affiliation(s)
- Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China.
| | - Xiaorui Yu
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Jinbao Fan
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Pei Jiang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Yuchuan Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Xianqing Gan
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Yun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| |
Collapse
|
35
|
Alford BD, Brandman O. Quantification of Hsp90 availability reveals differential coupling to the heat shock response. J Cell Biol 2018; 217:3809-3816. [PMID: 30131327 PMCID: PMC6219726 DOI: 10.1083/jcb.201803127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/22/2018] [Accepted: 08/10/2018] [Indexed: 11/22/2022] Open
Abstract
The heat shock response (HSR) is a protective gene expression program that is activated by conditions that cause proteotoxic stress. While it has been suggested that the availability of free chaperones regulates the HSR, chaperone availability and the HSR have never been precisely quantified in tandem under stress conditions. Thus, how the availability of chaperones changes in stress conditions and the extent to which these changes drive the HSR are unknown. In this study, we quantified Hsp90 chaperone availability and the HSR under multiple stressors. We show that Hsp90-dependent and -independent pathways both regulate the HSR, and the contribution of each pathway varies greatly depending on the stressor. Moreover, stressors that regulate the HSR independently of Hsp90 availability do so through the Hsp70 chaperone. Thus, the HSR responds to diverse defects in protein quality by monitoring the state of multiple chaperone systems independently.
Collapse
Affiliation(s)
- Brian D Alford
- Department of Biochemistry, Stanford University, Stanford, CA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA
| |
Collapse
|
36
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
37
|
Koike N, Hatano Y, Ushimaru T. Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet 2018; 64:907-917. [PMID: 29423676 DOI: 10.1007/s00294-018-0809-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
For maintenance of cytoplasmic protein quality control (PQC), cytoplasmic heat shock proteins (HSPs) negatively control heat shock transcriptional factor (HSF) in a negative feedback loop. However, how mitochondrial protein quality control (mtPQC) is maintained is largely unknown. Here we present evidence that HSF directly monitors mtPQC in the budding yeast Saccharomyces cerevisiae. Mitochondrial HSP70 (Ssc1) negatively regulated HSF activity. Importantly, HSF was localized not only in the nucleus but also on mitochondria. The mitochondrial localization of HSF was increased by heat shock and compromised by SSC1 overexpression. Furthermore, the mitochondrial protein translocation system downregulated HSF activity. Finally, mtPQC modulated the mtHSP genes SSC1 and MDJ1 via HSF, and SSC1 overexpression compromised mitochondrial function. These findings illustrate a model in which HSF directly monitors mtPQC.
Collapse
Affiliation(s)
- Naoki Koike
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Yuuki Hatano
- Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. .,Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan.
| |
Collapse
|
38
|
Srikanth K, Lee E, Kwan A, Lim Y, Lee J, Jang G, Chung H. Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1993-2008. [PMID: 28900747 DOI: 10.1007/s00484-017-1392-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
RNA-Seq analysis was used to characterize transcriptome response of Holstein calves to thermal stress. A total of eight animals aged between 2 and 3 months were randomly selected and subjected to thermal stress corresponding to a temperature humidity index of 95 in an environmentally controlled house for 12 h consecutively for 3 days. A set of 15,787 unigenes were found to be expressed and after a threshold of threefold change, and a Q value <0.05; 502, 394, and 376 genes were found to be differentially expressed on days 1, 2, and 3 out of which 343, 261 and 256 genes were upregulated and 159, 133, and 120 genes were downregulated. Only 356 genes out of these were expressed on all 3 days, and only they were considered as significantly differentially expressed. KEGG pathway analysis revealed that ten pathways were significantly enriched; the top two among them were protein processing in endoplasmic reticulum and MAPK signaling pathways. These results suggest that thermal stress triggered a complex response in Holstein calves and the animals adjusted their physiological and metabolic processes to survive. Many of the genes identified in this study have not been previously reported to be involved in thermal stress response. The results of this study extend our understanding of the animal's response to thermal stress and some of the identified genes may prove useful in the efforts to breed Holstein cattle with superior thermotolerance, which might help in minimizing production loss due to thermal stress.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Eunjin Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Anam Kwan
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Youngjo Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Junyep Lee
- Environmental Science Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Gulwon Jang
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Hoyoung Chung
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea.
| |
Collapse
|
39
|
Al Wakeel RA, Shukry M, Abdel Azeez A, Mahmoud S, Saad MF. Alleviation by gamma amino butyric acid supplementation of chronic heat stress-induced degenerative changes in jejunum in commercial broiler chickens. Stress 2017; 20:562-572. [PMID: 28911262 DOI: 10.1080/10253890.2017.1377177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
High ambient temperature adversely influences poultry production. In the present study, gamma amino butyric acid (GABA) supplementation was used to alleviate the adverse changes due to heat stress (HS) in a broiler chicken strain (Ross 308). At 21 days of age, the birds were divided into four groups of 13. Two groups were housed under normal room temperature, one group was given orally 0.2 ml 0.9% physiological saline (CN) daily, the other group received 0.2 ml of 0.5% GABA solution orally (GN). A third group was exposed to environmental HS (33 ± 1 °C lasting for 2 weeks) + physiological saline (CH) and a fourth group was exposed to HS + GABA supplementation (GH). GABA supplementation during HS significantly reduced the birds' increased body temperature (p <.0001) and increased their body weight gain (p <.0001). This effect was associated with increases in the heat stress-induced reductions in jejunal villus length, crypt depth and mucous membrane thickness, and decreases in the vascular changes occurred due to HS. Additionally, GABA supplementation significantly modulated HS-induced changes in glucose facilitated transporter 2 (GLUT2), peptide transporter 1 (PEPT1) and heat shock protein 70 (HSP70) mRNA expression in the jejunal mucosa (p < .0001). GABA supplementation also significantly elevated the triiodothyronine (T3) hormone level and hemoglobin levels and decreased the heterophil-lymphocyte ratio (H/L ratio) (p <.0001). Furthermore, it induced higher hepatic glutathione peroxidase enzyme (GSH-Px) activities and decreased the malondialdehyde dehydrogenase (MDA) content. These results indicate that GABA supplementation during HS may be used to alleviate HS-related changes in broiler chickens.
Collapse
Affiliation(s)
- Rasha A Al Wakeel
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| | - Mustafa Shukry
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| | - Ahmed Abdel Azeez
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| | - Shawky Mahmoud
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| | - Michel Fahmy Saad
- a Department of Physiology, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafr el- Sheikh, Egypt
| |
Collapse
|
40
|
The effect of kinetic heat shock on bovine oocyte maturation and subsequent gene expression of targeted genes. ZYGOTE 2017; 25:383-389. [PMID: 28592345 DOI: 10.1017/s0967199417000223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The exposure of oocytes to heat stress during the maturation process results in harmful effects to their internal organelles, low fertilization capability and higher embryonic losses. In the present experiment the effect of heat shock (HS) during the maturation process was assessed. In Assay 1, oocytes from winter (December-March; n = 100) and summer (June-September; n = 100) months were collected and matured to analyse their HS tolerance. Total RNA was extracted from matured oocytes and cDNA synthesis was performed, followed by qPCR for selected genes (Cx43, CDH1, DNMT1, HSPA14), compared with two reference genes (GAPDH and SDHA). In Assay 2, oocytes collected during the winter were subjected to kinetic HS by stressing them at 39.5°C for 6, 12, 18 or 24 h and were afterwards matured at control temperature (38.5°C), and subsequently subjected to the previously described gene analysis procedure. Results of Assay 1 show that summer-collected oocytes exhibited lower maturation rate than winter-collected oocytes, which may be due to the down-regulation of the HSPA 14 gene. Assay 2 showed that 6 h of HS had no effect on gene regulation. CDH1 and DNMT1 up-regulation was observed starting at 12 h, which may represent the effect of heat shock on oocyte development.
Collapse
|
41
|
Nguyen AD, DeNovellis K, Resendez S, Pustilnik JD, Gotelli NJ, Parker JD, Cahan SH. Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants. J Comp Physiol B 2017; 187:1107-1116. [DOI: 10.1007/s00360-017-1101-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
|
42
|
Cellular Proteomes Drive Tissue-Specific Regulation of the Heat Shock Response. G3-GENES GENOMES GENETICS 2017; 7:1011-1018. [PMID: 28143946 PMCID: PMC5345702 DOI: 10.1534/g3.116.038232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The heat shock response (HSR) is a cellular stress response that senses protein misfolding and restores protein folding homeostasis, or proteostasis. We previously identified an HSR regulatory network in Caenorhabditis elegans consisting of highly conserved genes that have important cellular roles in maintaining proteostasis. Unexpectedly, the effects of these genes on the HSR are distinctly tissue-specific. Here, we explore this apparent discrepancy and find that muscle-specific regulation of the HSR by the TRiC/CCT chaperonin is not driven by an enrichment of TRiC/CCT in muscle, but rather by the levels of one of its most abundant substrates, actin. Knockdown of actin subunits reduces induction of the HSR in muscle upon TRiC/CCT knockdown; conversely, overexpression of an actin subunit sensitizes the intestine so that it induces the HSR upon TRiC/CCT knockdown. Similarly, intestine-specific HSR regulation by the signal recognition particle (SRP), a component of the secretory pathway, is driven by the vitellogenins, some of the most abundant secretory proteins. Together, these data indicate that the specific protein folding requirements from the unique cellular proteomes sensitizes each tissue to disruption of distinct subsets of the proteostasis network. These findings are relevant for tissue-specific, HSR-associated human diseases such as cancer and neurodegenerative diseases. Additionally, we characterize organismal phenotypes of actin overexpression including a shortened lifespan, supporting a recent hypothesis that maintenance of the actin cytoskeleton is an important factor for longevity.
Collapse
|
43
|
Poli D, Fabbri E, Goffredo S, Airi V, Franzellitti S. Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa. PLoS One 2017; 12:e0171456. [PMID: 28199351 PMCID: PMC5310758 DOI: 10.1371/journal.pone.0171456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (hsp70) in the scleractinian coral Pocillopora verrucosa sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the P. verrucosa hsp70 transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in P. verrucosa. Corals exhibiting higher basal hsp70 levels may display enhanced tolerance towards environmental stressors.
Collapse
Affiliation(s)
- Davide Poli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
- * E-mail:
| |
Collapse
|
44
|
Arends J, Thomanek N, Kuhlmann K, Marcus K, Narberhaus F. In vivo trapping of FtsH substrates by label-free quantitative proteomics. Proteomics 2016; 16:3161-3172. [DOI: 10.1002/pmic.201600316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Arends
- Ruhr-Universität Bochum; Lehrstuhl Biologie der Mikroorganismen; Bochum Germany
| | - Nikolas Thomanek
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Katja Kuhlmann
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Katrin Marcus
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Franz Narberhaus
- Ruhr-Universität Bochum; Lehrstuhl Biologie der Mikroorganismen; Bochum Germany
| |
Collapse
|
45
|
Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:132635. [PMID: 26881084 PMCID: PMC4736001 DOI: 10.1155/2015/132635] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022]
Abstract
Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance.
Collapse
|
46
|
Hosseini SM, Afshar M, Ahani S, Vakili Azghandi M. Heat shock protein 70 mRNA expression and immune response of heat-stressed finishing broilers fed propolis (bee glue) supplementation. Arch Anim Breed 2015. [DOI: 10.5194/aab-58-407-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract. This 2×2 factorial experiment investigated the efficacy of propolis (bee glue; BG) in ameliorating heat-stress-induced impairment of growth performance, the hematological profile, intestinal morphology, and biomarkers of heat stress in broilers. Two hundred and forty 21-day old Ross 308 male broiler chicks were allocated to four experimental treatments in six replicates of 10 birds each. The main factors were composed of diet (basal diet or addition of 3 g kg−1 of BG) and temperature (thermoneutral or heat stress). Broilers subjected to heat stress had reduced average daily gain (ADG) and average daily feed intake (ADFI); a higher heterophil level and heterophil-to-lymphocyte ratio, and a lower lymphocyte level; upregulated mRNA expression of 70 kDa heat shock protein (HSP70) levels in heart, kidney, and breast muscle; and shorter jejunal villus height, deeper crypt depth, and a lower ratio of villus-height-to-crypt-depth compared with those broilers raised in thermoneutral conditions. Supplemental BG increased ADG, jejunal villus height, and the villus-height-to-crypt-depth ratio and decreased the feed-to-gain ratio and creatine kinase and lactate dehydrogenase levels in breast muscle compared with the birds who received control diets. The inclusion of BG in diets significantly decreased the mRNA expression of HSP70 levels in heart, kidney, and breast muscle in birds subjected to heat challenge. These results indicate that the BG-supplemented diet was effective in partially ameliorating adverse effects in resistance to heat stress in broiler chickens.
Collapse
|
47
|
Najafi P, Zulkifli I, Soleimani A, Kashiani P. The effect of different degrees of feed restriction on heat shock protein 70, acute phase proteins, and other blood parameters in female broiler breeders. Poult Sci 2015; 94:2322-9. [DOI: 10.3382/ps/pev246] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/12/2015] [Indexed: 01/09/2023] Open
|
48
|
Pérez-Landero S, Sandoval-Motta S, Martínez-Anaya C, Yang R, Folch-Mallol JL, Martínez LM, Ventura L, Guillén-Navarro K, Aldana-González M, Nieto-Sotelo J. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences. BMC SYSTEMS BIOLOGY 2015. [PMID: 26209979 PMCID: PMC4515323 DOI: 10.1186/s12918-015-0185-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background The cAMP-dependent protein kinase regulatory network (PKA-RN) regulates metabolism, memory, learning, development, and response to stress. Previous models of this network considered the catalytic subunits (CS) as a single entity, overlooking their functional individualities. Furthermore, PKA-RN dynamics are often measured through cAMP levels in nutrient-depleted cells shortly after being fed with glucose, dismissing downstream physiological processes. Results Here we show that temperature stress, along with deletion of PKA-RN genes, significantly affected HSE-dependent gene expression and the dynamics of the PKA-RN in cells growing in exponential phase. Our genetic analysis revealed complex regulatory interactions between the CS that influenced the inhibition of Hsf1/Skn7 transcription factors. Accordingly, we found new roles in growth control and stress response for Hsf1/Skn7 when PKA activity was low (cdc25Δ cells). Experimental results were used to propose an interaction scheme for the PKA-RN and to build an extension of a classic synchronous discrete modeling framework. Our computational model reproduced the experimental data and predicted complex interactions between the CS and the existence of a repressor of Hsf1/Skn7 that is activated by the CS. Additional genetic analysis identified Ssa1 and Ssa2 chaperones as such repressors. Further modeling of the new data foresaw a third repressor of Hsf1/Skn7, active only in theabsence of Tpk2. By averaging the network state over all its attractors, a good quantitative agreement between computational and experimental results was obtained, as the averages reflected more accurately the population measurements. Conclusions The assumption of PKA being one molecular entity has hindered the study of a wide range of behaviors. Additionally, the dynamics of HSE-dependent gene expression cannot be simulated accurately by considering the activity of single PKA-RN components (i.e., cAMP, individual CS, Bcy1, etc.). We show that the differential roles of the CS are essential to understand the dynamics of the PKA-RN and its targets. Our systems level approach, which combined experimental results with theoretical modeling, unveils the relevance of the interaction scheme for the CS and offers quantitative predictions for several scenarios (WT vs. mutants in PKA-RN genes and growth at optimal temperature vs. heat shock). Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0185-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio Pérez-Landero
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico.
| | - Santiago Sandoval-Motta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Claudia Martínez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Runying Yang
- Present Address: Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Jorge Luis Folch-Mallol
- Present Address: Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca, Mor., Mexico.
| | - Luz María Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Larissa Ventura
- Present Address: Grupo La Florida México, Tlalnepantla, 54170, Edo. de Méx., Mexico.
| | | | - Maximino Aldana-González
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Jorge Nieto-Sotelo
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico.
| |
Collapse
|
49
|
Richter C, Viergutz T, Schwerin M, Weitzel JM. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells. Cytometry A 2014; 87:61-7. [DOI: 10.1002/cyto.a.22595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/06/2014] [Accepted: 11/03/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Constanze Richter
- Institute of Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); Dummerstorf Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology; Leibniz Institute for Farm Animal Biology (FBN); Dummerstorf Germany
| | - Manfred Schwerin
- Institute of Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); Dummerstorf Germany
| | - Joachim M. Weitzel
- Institute of Reproductive Biology; Leibniz Institute for Farm Animal Biology (FBN); Dummerstorf Germany
| |
Collapse
|
50
|
Morano KA, Sistonen L, Mezger V. Heat shock in the springtime. Cell Stress Chaperones 2014; 19:753-61. [PMID: 25199949 PMCID: PMC4389858 DOI: 10.1007/s12192-014-0539-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 11/26/2022] Open
Abstract
A collaborative workshop dedicated to the discussion of heat shock factors in stress response, development, and disease was held on April 22-24, 2014 at the Université Paris Diderot in Paris, France. Recent years have witnessed an explosion of interest in these highly conserved transcription factors, with biological roles ranging from environmental sensing to human development and cancer.
Collapse
Affiliation(s)
- Kevin A. Morano
- />Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030 USA
| | - Lea Sistonen
- />Department of Biosciences, Åbo Akademi University, BioCity, 20520 Turku, Finland
| | - Valérie Mezger
- />UMR7216 Epigenetics and Cell Fate, CNRS, F-75205 Paris Cedex 13, France
- />University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
| |
Collapse
|