1
|
Kim D, Ansari MM, Ghosh M, Heo Y, Choi KC, Son YO. Implications of obesity-mediated cellular dysfunction and adipocytokine signaling pathways in the pathogenesis of osteoarthritis. Mol Aspects Med 2025; 103:101361. [PMID: 40156972 DOI: 10.1016/j.mam.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, bone sclerosis, and chronic low-grade inflammation. Aging and injury play key roles in OA pathogenesis by triggering the release of proinflammatory factors from adipose tissue and other sources. Obesity and aging impair the function of endoplasmic reticulum (ER) chaperones, leading to ER stress, protein misfolding, and cellular apoptosis. Obesity also induces mitochondrial dysfunction in OA through oxidative stress and disrupts mitochondrial dynamics, exacerbating chondrocyte damage. These factors contribute to inflammation, matrix imbalance, and chondrocyte apoptosis. Adipocytes, the primary source of adipokines, release inflammatory mediators that affect joint cells. Several adipocytokines have a central role in the regulation of many aspects of inflammation. Adiponectin and leptin are the two most abundant adipocytokines that are strongly associated with OA progression. This literature review suggests that adipokines activate many signaling pathways to exert downstream effects and play significant roles in obesity-induced OA. Understanding this rapidly growing family of mainly adipocyte-derived mediators and obesity-mediated cellular dysfunction may be important in the development of new therapies for obesity-associated OA management.
Collapse
Affiliation(s)
- Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
Mutwalli H, Keeler JL, Chung R, Dalton B, Patsalos O, Hodsoll J, Schmidt U, Breen G, Treasure J, Himmerich H. Metabolic Signalling Peptides and Their Relation to Clinical and Demographic Characteristics in Acute and Recovered Females with Anorexia Nervosa. Nutrients 2025; 17:1341. [PMID: 40284205 PMCID: PMC12030328 DOI: 10.3390/nu17081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Recent research has established that metabolic factors may increase the vulnerability to develop anorexia nervosa (AN). The aim of this study was to explore the serum concentrations of leptin, insulin-like growth factor-1 (IGF-1), insulin and insulin receptor substrate (IRS-1) as possible state or trait biomarkers for AN in the acute and recovery (recAN) phases. Our secondary aim was to test associations between the tested markers and demographic and clinical characteristics. Methods: This cross-sectional study included data from 56 participants with AN, 24 recAN participants and 51 healthy controls (HCs). Enzyme-linked immunosorbent assays (ELISAs) were used to quantify serum concentrations of leptin, IGF-1, insulin and IRS-1. An analysis of covariance (ANCOVA) and linear regression models were utilised to test our results. Results: There were significant differences with a large effect size between the groups for serum leptin (p < 0.001; d = 0.80), whereby people with AN had lower leptin than those with recAN (p = 0.023; d = 0.35) and HCs (p < 0.001; d = 0.74). The between-group comparison of IGF-1 did not reach significance, although the effect size was moderate (d = 0.6) and was driven by lower levels of IGF-1 in people with acute AN compared to HCs (p = 0.036; d = 0.53). Serum insulin and IRS-1 did not differ between groups. Conclusions: Low leptin levels seen in individuals with AN may be due to starvation leading to fatty tissue depletion. Understanding the regulation of IGF-1 and insulin signalling over the course of the disorder requires further investigation.
Collapse
Affiliation(s)
- Hiba Mutwalli
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Johanna L. Keeler
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
| | - Raymond Chung
- NIHR BioResource Centre Maudsley, London WC2R 2LS, UK
- NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust (SLaM), London SE5 8AF, UK
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Bethan Dalton
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
| | - Olivia Patsalos
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
| | - John Hodsoll
- Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Ulrike Schmidt
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
- Adult Eating Disorders Service, South London and Maudsley NHS Foundation Trust (SLaM), London SE6 4RU, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Janet Treasure
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
- Adult Eating Disorders Service, South London and Maudsley NHS Foundation Trust (SLaM), London SE6 4RU, UK
| | - Hubertus Himmerich
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
- Adult Eating Disorders Service, South London and Maudsley NHS Foundation Trust (SLaM), London SE6 4RU, UK
| |
Collapse
|
3
|
Tong M, Homans C, Pelit W, Delikkaya B, de la Monte SM. Progressive Alcohol-Related Brain Atrophy and White Matter Pathology Are Linked to Long-Term Inhibitory Effects on mTOR Signaling. Biomolecules 2025; 15:413. [PMID: 40149949 PMCID: PMC11940526 DOI: 10.3390/biom15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) causes cognitive-behavioral impairments that can lead to dementia. White matter is a major target in ARBD. Additional research is needed to better understand the mechanisms of ARBD progression to advanced stages with permanent disability. Potential contributing factors include neuroinflammation and altered signaling through pathways that regulate cell survival, neuronal plasticity, myelin maintenance, and energy metabolism. OBJECTIVES This study characterizes the time course-related effects of chronic heavy ethanol feeding on white matter myelin protein expression, neuroinflammation, and molecules that mediate signaling through the mechanistic target of rapamycin (mTOR) pathways. METHODS Adult Long Evans rats (8-12/group) were fed with isocaloric liquid diets containing 0% (control) or 36% ethanol. Experimental endpoints spanned from 1 day to 8 weeks. The frontal lobes were used for histopathology and molecular and biochemical analyses. RESULTS Chronic ethanol feeding caused significant brain atrophy that was detected within 4 weeks and sustained over the course of the study. Early exposure time points, i.e., 2 weeks or less, were associated with global increases in the expression of non-myelinating, myelinating, and astrocyte markers, whereas at 6 or 8 weeks, white matter oligodendrocyte/myelin/glial protein expression was reduced. These effects were not associated with shifts in neuroinflammatory markers. Instead, the early stages of ARBD were accompanied by increases in several mTOR proteins and phosphoproteins, while later phases were marked by inhibition of downstream mTOR signaling through P70S6K. CONCLUSIONS Short-term versus long-term ethanol exposures differentially altered white matter glial protein expression and signaling through mTOR's downstream mediators that have known roles in myelin maintenance. These findings suggest that strategic targeting of mTOR signaling dysregulation may be critical for maintaining the functional integrity of white matter and ultimately preventing long-term ARBD-related cognitive impairment.
Collapse
Affiliation(s)
- Ming Tong
- Department of Medicine, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Camilla Homans
- Molecular Pharmacology, Physiology, and Biotechnology Graduate Program, Brown University, Providence, RI 02903, USA
| | - William Pelit
- Department of Chemistry, Brown University, Providence, RI 02903, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
- Departments of Neurosurgery and Neurology, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
4
|
de la Monte SM, Tong M, Delikkaya B. Differential Early Mechanistic Frontal Lobe Responses to Choline Chloride and Soy Isoflavones in an Experimental Model of Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:7595. [PMID: 37108779 PMCID: PMC10145811 DOI: 10.3390/ijms24087595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of neurodevelopmental defects, and white matter is a major target of ethanol neurotoxicity. Therapeutic interventions with choline or dietary soy could potentially supplement public health preventive measures. However, since soy contains abundant choline, it would be important to know if its benefits are mediated by choline or isoflavones. We compared early mechanistic responses to choline and the Daidzein+Genistein (D+G) soy isoflavones in an FASD model using frontal lobe tissue to assess oligodendrocyte function and Akt-mTOR signaling. Long Evans rat pups were binge administered 2 g/Kg of ethanol or saline (control) on postnatal days P3 and P5. P7 frontal lobe slice cultures were treated with vehicle (Veh), Choline chloride (Chol; 75 µM), or D+G (1 µM each) for 72 h without further ethanol exposures. The expression levels of myelin oligodendrocyte proteins and stress-related molecules were measured by duplex enzyme-linked immunosorbent assays (ELISAs), and mTOR signaling proteins and phosphoproteins were assessed using 11-plex magnetic bead-based ELISAs. Ethanol's main short-term effects in Veh-treated cultures were to increase GFAP and relative PTEN phosphorylation and reduce Akt phosphorylation. Chol and D+G significantly modulated the expression of oligodendrocyte myelin proteins and mediators of insulin/IGF-1-Akt-mTOR signaling in both control and ethanol-exposed cultures. In general, the responses were more robust with D+G; the main exception was that RPS6 phosphorylation was significantly increased by Chol and not D+G. The findings suggest that dietary soy, with the benefits of providing complete nutrition together with Choline, could be used to help optimize neurodevelopment in humans at risk for FASD.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
5
|
Fu J, Yu L, Yu Q, Yu N, Xu F, Li S. Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation. J Ginseng Res 2023; 47:274-282. [PMID: 36926615 PMCID: PMC10014182 DOI: 10.1016/j.jgr.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jing Fu
- Department of Rehabilitation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Liang Yu
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qian Yu
- Department of Rehabilitation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Nengwei Yu
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Fei Xu
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Suping Li
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
6
|
Lee WH, Kim GE, Hong KJ, Kim HS, Lee GR. Insulin Receptor Substrate 1 Signaling Inhibits Foxp3 Expression and Suppressive Functions in Treg Cells through the mTORC1 Pathway. Int J Mol Sci 2023; 24:2551. [PMID: 36768873 PMCID: PMC9917118 DOI: 10.3390/ijms24032551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Regulatory T (Treg) cells play an important role in immune homeostasis by inhibiting cells within the innate and adaptive immune systems; therefore, the stability and immunosuppressive function of Treg cells need to be maintained. In this study, we found that the expression of insulin receptor substrate 1 (IRS1) by Treg cells was lower than that by conventional CD4 T cells. IRS1-overexpressing Treg cells showed the downregulated expression of FOXP3, as well as Treg signature markers CD25 and CTLA4. IRS1-overexpressing Treg cells also showed diminished immunosuppressive functions in an in vitro suppression assay. Moreover, IRS1-overexpressing Treg cells were unable to suppress the pathogenic effects of conventional T cells in a transfer-induced colitis model. IRS1 activated the mTORC1 signaling pathway, a negative regulator of Treg cells. Moreover, IRS1 destabilized Treg cells by upregulating the expression of IFN-γ and Glut1. Thus, IRS1 acts as a negative regulator of Treg cells by downregulating the expression of FOXP3 and disrupting stability.
Collapse
Affiliation(s)
| | | | | | | | - Gap Ryol Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
7
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Zhang C, Lin Y, Yan CH, Zhang W. Adipokine Signaling Pathways in Osteoarthritis. Front Bioeng Biotechnol 2022; 10:865370. [PMID: 35519618 PMCID: PMC9062110 DOI: 10.3389/fbioe.2022.865370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease that affects millions of individuals. The pathogenesis of OA has not been fully elucidated. Obesity is a well-recognized risk factor for OA. Multiple studies have demonstrated adipokines play a key role in obesity-induced OA. Increasing evidence show that various adipokines may significantly affect the development or clinical course of OA by regulating the pro/anti-inflammatory and anabolic/catabolic balance, matrix remodeling, chondrocyte apoptosis and autophagy, and subchondral bone sclerosis. Several signaling pathways are involved but still have not been systematically investigated. In this article, we review the cellular and molecular mechanisms of adipokines in OA, and highlight the possible signaling pathways. The review suggested adipokines play important roles in obesity-induced OA, and exert downstream function via the activation of various signaling pathways. In addition, some pharmaceuticals targeting these pathways have been applied into ongoing clinical trials and showed encouraging results. However, these signaling pathways are complex and converge into a common network with each other. In the future work, more research is warranted to further investigate how this network works. Moreover, more high quality randomised controlled trials are needed in order to investigate the therapeutic effects of pharmaceuticals against these pathways for the treatment of OA. This review may help researchers to better understand the pathogenesis of OA, so as to provide new insight for future clinical practices and translational research.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yunzhi Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chun Hoi Yan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Falsetti L, Viticchi G, Zaccone V, Guerrieri E, Moroncini G, Luzzi S, Silvestrini M. Shared Molecular Mechanisms among Alzheimer’s Disease, Neurovascular Unit Dysfunction and Vascular Risk Factors: A Narrative Review. Biomedicines 2022; 10:biomedicines10020439. [PMID: 35203654 PMCID: PMC8962428 DOI: 10.3390/biomedicines10020439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, affecting 24 million individuals. Clinical and epidemiological studies have found several links between vascular risk factors (VRF), neurovascular unit dysfunction (NVUd), blood-brain barrier breakdown (BBBb) and AD onset and progression in adulthood, suggesting a pathogenetic continuum between AD and vascular dementia. Shared pathways between AD, VRF, and NVUd/BBB have also been found at the molecular level, underlining the strength of this association. The present paper reviewed the literature describing commonly shared molecular pathways between adult-onset AD, VRF, and NVUd/BBBb. Current evidence suggests that VRF and NVUd/BBBb are involved in AD neurovascular and neurodegenerative pathology and share several molecular pathways. This is strongly supportive of the hypothesis that the presence of VRF can at least facilitate AD onset and progression through several mechanisms, including NVUd/BBBb. Moreover, vascular disease and several comorbidities may have a cumulative effect on VRF and worsen the clinical manifestations of AD. Early detection and correction of VRF and vascular disease by improving NVUd/BBBd could be a potential target to reduce the overall incidence and delay cognitive impairment in AD.
Collapse
Affiliation(s)
- Lorenzo Falsetti
- Internal and Subintensive Medicine Department, Azienda Ospedaliero-Universitaria “Ospedali Riuniti” di Ancona, 60100 Ancona, Italy;
- Correspondence: ; Tel.: +39-071-596-5269
| | - Giovanna Viticchi
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| | - Vincenzo Zaccone
- Internal and Subintensive Medicine Department, Azienda Ospedaliero-Universitaria “Ospedali Riuniti” di Ancona, 60100 Ancona, Italy;
| | - Emanuele Guerrieri
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | | | - Simona Luzzi
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| | - Mauro Silvestrini
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| |
Collapse
|
10
|
Therapeutic Potential of Thymoquinone in Triple-Negative Breast Cancer Prevention and Progression through the Modulation of the Tumor Microenvironment. Nutrients 2021; 14:nu14010079. [PMID: 35010954 PMCID: PMC8746460 DOI: 10.3390/nu14010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.
Collapse
|
11
|
Montt-Guevara MM, Finiguerra M, Marzi I, Fidecicchi T, Ferrari A, Genazzani AD, Simoncini T. D-Chiro-Inositol Regulates Insulin Signaling in Human Adipocytes. Front Endocrinol (Lausanne) 2021; 12:660815. [PMID: 33859622 PMCID: PMC8042392 DOI: 10.3389/fendo.2021.660815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
D-Chiro-Inositol (D-Chiro-Ins) is a secondary messenger in the insulin signaling pathway. D-Chiro-Ins modulates insulin secretion, the mitochondrial respiratory chain, and glycogen storage. Due to these actions D-Chiro-Ins has been proposed to correct defective insulin function in a variety of conditions characterized by metabolic dysfunction, such as polycystic ovary syndrome (PCOS), obesity, gestational diabetes and fat accumulation at menopause. Since it is unclear whether D-Chiro-Ins directly acts on adipocytes, we aimed to study D-Chiro-Ins's actions on adipocyte viability, proliferation, differentiation, and insulin-related protein expression using a human adipocyte cell line derived from Simpson-Golabi-Behmel Syndrome (SGBS) which fully differentiates to mature adipocytes. Throughout differentiation, cells were treated with D-Chiro-Ins, 17β-estradiol (E2) or Insulin. Cell viability and proliferation were not affected by D-Chiro-Ins, then D-Chiro-Ins promoted cell differentiation only during the final days of the process, while E2 enhanced it from the first phases. D-Chiro-Ins stimulated lipid storage and the production of big lipid droplets, thus reducing the content of free fatty acids. We also found that D-Chiro-Ins, either alone or in combination with insulin and E2 increased the expression and activation of insulin receptor substrate-1 (IRS1) and glucose transporter type 4 (GLUT4). In conclusion, this work shows that D-Chiro-Ins plays a direct role in the differentiation and in the function of human adipocytes, where it synergizes with insulin and estrogen through the recruitment of signal transduction pathways involved in lipid and glucose storage. These findings give clear insights to better understand the actions of D-Chiro-Ins on fat metabolism in women in physiology and in a variety of diseases.
Collapse
Affiliation(s)
- Maria Magdalena Montt-Guevara
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Finiguerra
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Marzi
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tiziana Fidecicchi
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Amerigo Ferrari
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro D. Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Tommaso Simoncini,
| |
Collapse
|
12
|
Li Y, Wang K, Zhang P, Huang J, Liu Y, Wang Z, Lu Y, Tan S, Yang F, Tan Y. Pyrosequencing analysis of IRS1 methylation levels in schizophrenia with tardive dyskinesia. Mol Med Rep 2020; 21:1702-1708. [PMID: 32319643 PMCID: PMC7057828 DOI: 10.3892/mmr.2020.10984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Tardive dyskinesia (TD) is a serious side effect of certain antipsychotic medications that are used to treat schizophrenia (SCZ) and other mental illnesses. The methylation status of the insulin receptor substrate 1 (IRS1) gene is reportedly associated with SCZ; however, no study, to the best of the authors' knowledge, has focused on the quantitative DNA methylation levels of the IRS1 gene using pyrosequencing in SCZ with or without TD. The present study aimed to quantify DNA methylation levels of 4 CpG sites in the IRS1 gene using a Chinese sample including SCZ patients with TD and without TD (NTD) and healthy controls (HCs). The general linear model (GLM) was used to detect DNA methylation levels among the 3 proposed groups (TD vs. NTD vs. HC). Mean DNA methylation levels of 4 CpG sites demonstrated normal distribution. Pearson's correlation analysis did not reveal any significant correlations between the DNA methylation levels of the 4 CpG sites and the severity of SCZ. GLM revealed significant differences between the 3 groups for CpG site 1 and the average of the 4 CpG sites (P=0.0001 and P=0.0126, respectively). Furthermore, the TD, NTD and TD + NTD groups demonstrated lower methylation levels in CpG site 1 (P=0.0003, P<0.0001 and P<0.0001, respectively) and the average of 4 CpG sites (P=0.0176, P=0.0063 and P=0.003, respectively) compared with the HC group. The results revealed that both NTD and TD patients had significantly decreased DNA methylation levels compared with healthy controls, which indicated a significant association between the DNA methylation levels of the IRS1 gene with SCZ and TD.
Collapse
Affiliation(s)
- Yanli Li
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Ping Zhang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Junchao Huang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| |
Collapse
|
13
|
Kaur S, Baldi B, Vuong J, O'Donoghue SI. A benchmark dataset for analyzing and visualizing the dynamic epiproteome. Data Brief 2019; 25:104000. [PMID: 31297408 PMCID: PMC6598866 DOI: 10.1016/j.dib.2019.104000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 01/25/2023] Open
Abstract
In this paper, we present a benchmark dataset to evaluate the currently available analysis methods and visualizations for epiproteomic data. The benchmark dataset is a subset of a high-throughput time-series study of phosphoevents occurring upon insulin stimulation. Our dataset is provided in multiple formats for use with four currently available tools. We also provide a file containing the kinase assignments for the sites, as well as a simple kappa model on phosphorylation changes in insulin signalling. A detailed description of the tools, their analysis methods, and the visualizations generated using the input files described here, are discussed in detail in the accompanying review titled “Visualization and analysis of epiproteome dynamics" [1].
Collapse
Affiliation(s)
- Sandeep Kaur
- University of New South Wales, Australia
- Garvan Institute of Medical Research, Australia
| | - Benedetta Baldi
- Garvan Institute of Medical Research, Australia
- Commonwealth Scientific and Industrial Research Organisation, Australia
| | - Jenny Vuong
- Garvan Institute of Medical Research, Australia
- Commonwealth Scientific and Industrial Research Organisation, Australia
| | - Seàn I. O'Donoghue
- University of New South Wales, Australia
- Garvan Institute of Medical Research, Australia
- Commonwealth Scientific and Industrial Research Organisation, Australia
- Corresponding author. Garvan Institute of Medical Research, Australia.
| |
Collapse
|
14
|
Identification of a Novel Invasion-Promoting Region in Insulin Receptor Substrate 2. Mol Cell Biol 2018; 38:MCB.00590-17. [PMID: 29685905 DOI: 10.1128/mcb.00590-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/15/2018] [Indexed: 12/13/2022] Open
Abstract
Although the insulin receptor substrate (IRS) proteins IRS1 and IRS2 share considerable homology and activate common signaling pathways, their contributions to breast cancer are distinct. IRS1 has been implicated in the proliferation and survival of breast tumor cells. In contrast, IRS2 facilitates glycolysis, invasion, and metastasis. To determine the mechanistic basis for IRS2-dependent functions, we investigated unique structural features of IRS2 that are required for invasion. Our studies revealed that the ability of IRS2 to promote invasion is dependent upon upstream insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor (IR) activation and the recruitment and activation of phosphatidylinositol 3-kinase (PI3K), functions shared with IRS1. In addition, a 174-amino-acid region in the IRS2 C-terminal tail, which is not conserved in IRS1, is also required for IRS2-mediated invasion. Importantly, this "invasion (INV) region" is sufficient to confer invasion-promoting ability when swapped into IRS1. However, the INV region is not required for the IRS2-dependent regulation of glucose uptake. Bone morphogenetic protein 2-inducible kinase (BMP2K) binds to the INV region and contributes to IRS2-dependent invasion. Taken together, our data advance the mechanistic understanding of how IRS2 regulates invasion and reveal that IRS2 functions important for cancer can be independently targeted without interfering with the metabolic activities of this adaptor protein.
Collapse
|
15
|
Diabetes Mellitus Induces Alzheimer's Disease Pathology: Histopathological Evidence from Animal Models. Int J Mol Sci 2016; 17:503. [PMID: 27058526 PMCID: PMC4848959 DOI: 10.3390/ijms17040503] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the major causative disease of dementia and is characterized pathologically by the accumulation of senile plaques (SPs) and neurofibrillary tangles (NFTs) in the brain. Although genetic studies show that β-amyloid protein (Aβ), the major component of SPs, is the key factor underlying AD pathogenesis, it remains unclear why advanced age often leads to AD. Interestingly, several epidemiological and clinical studies show that type II diabetes mellitus (DM) patients are more likely to exhibit increased susceptibility to AD. Moreover, growing evidence suggests that there are several connections between the neuropathology that underlies AD and DM, and there is evidence that the experimental induction of DM can cause cognitive dysfunction, even in rodent animal models. This mini-review summarizes histopathological evidence that DM induces AD pathology in animal models and discusses the possibility that aberrant insulin signaling is a key factor in the induction of AD pathology.
Collapse
|
16
|
El Tayebi HM, Abdelaziz AI. Epigenetic regulation of insulin-like growth factor axis in hepatocellular carcinoma. World J Gastroenterol 2016; 22:2668-2677. [PMID: 26973407 PMCID: PMC4777991 DOI: 10.3748/wjg.v22.i9.2668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/29/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway is an important pathway in the process of hepatocarcinogenesis, and the IGF network is clearly dysregulated in many cancers and developmental abnormalities. In hepatocellular carcinoma (HCC), only a minority of patients are eligible for curative treatments, such as tumor resection or liver transplant. Unfortunately, there is a high recurrence of HCC after surgical tumor removal. Recent research efforts have focused on targeting IGF axis members in an attempt to find therapeutic options for many health problems. In this review, we shed lights on the regulation of members of the IGF axis, mainly by microRNAs in HCC. MicroRNAs in HCC attempt to halt the aberrant expression of the IGF network, and a single microRNA can have multiple downstream targets in one or more signaling pathways. Targeting microRNAs is a relatively new approach for identifying an efficient radical cure for HCC.
Collapse
|
17
|
Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Anal Cell Pathol (Amst) 2015; 2015:975495. [PMID: 26258011 PMCID: PMC4518167 DOI: 10.1155/2015/975495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/05/2015] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease.
Collapse
|
18
|
Li Z, Wu Z, Chen H, Zhu Q, Gao G, Hu L, Negi H, Kamle S, Li D. Induction of anterior gradient 2 (AGR2) plays a key role in insulin-like growth factor-1 (IGF-1)-induced breast cancer cell proliferation and migration. Med Oncol 2015; 32:577. [PMID: 25956506 PMCID: PMC4451465 DOI: 10.1007/s12032-015-0577-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/08/2022]
Abstract
Anterior gradient 2 (AGR2) is a promising anti-tumor target associated with estrogen receptor expression and metastatic progression of breast cancer. Insulin-like growth factor-1 (IGF-1) is another potent factor that stimulates breast cancer progression and mediates anti-estrogen drug resistance. However, the precise mechanism and connections between these two factors in breast cancer drug resistance have not been fully elucidated. Here, for the first time, we decipher that IGF-1 remarkably induces AGR2 in the MCF7 cell line, through an estrogen response element (ERE) between −802 and −808 bp and a leucine zipper transcription factor-binding site located between −972 and −982 bp on the AGR2 promoter. We also found that the ERK1/2 and AKT pathways mediate estrogen receptor-α at the upstream of ERE and that the JNK pathway activates the leucine zipper site through the c-Jun/c-Fos complex. Additionally, our data suggest that knockdown of AGR2 reduces IGF-1-induced cell proliferation, migration and cell cycle progression. Therefore, we report that AGR2 is a key modulator involved in IGF-1-induced breast cancer development. We propose that the identification of the mechanism linking the IGF-1/insulin signal and AGR2 promoter activation is important, because it provides insights into the development of anti-breast cancer drugs.
Collapse
Affiliation(s)
- Zheqi Li
- School of Pharmacy, Shanghai Jiao Tong University, 308-Building#6, 800, Dongchuan Rd., Shanghai, 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang JY, Darbinyan A, White MK, Darbinian N, Reiss K, Amini S. Involvement of IRS-1 interaction with ADAM10 in the regulation of neurite extension. J Cell Physiol 2014; 229:1039-46. [PMID: 24648009 DOI: 10.1002/jcp.24528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/04/2013] [Indexed: 11/09/2022]
Abstract
The insulin-like growth factor-1 (IGF-1) signaling pathway plays an important role in neuronal cell differentiation. Recent studies have shown that IGF-1 has the capacity to counteract the retraction of neuronal processes in response to inflammatory cytokines such as TNF-α, which is a known factor for neuronal injury in the central nervous system. This event is thought to be mediated via interference of TNF-α-induced interaction of β1-integrin with insulin receptor substrate-1 (IRS-1). Here, we demonstrate the interaction of IRS-1 with disintegrin and metalloproteinase ADAM10 through the N-terminal domain of IRS-1 and that this is involved in the regulation of neurite extension and retraction by IGF-1 and TNF-α, respectively. PC12 cells expressing the N-terminal domain show enhanced neurite extension after IGF-1 treatment and reduced neurite depletion relative to control cells after TNF-α treatment. The level of ADAM10 was found to be increased in immunohistochemical studies of HIV encephalitis clinical samples and is present with TNF-α and TNFR1 in both astrocytes and neurons. Altogether, these observations suggest a role for ADAM10 in the mechanism for IGF1/IRS-1 signaling pathway in sustaining the stability of neuronal processes.
Collapse
Affiliation(s)
- Jin Ying Wang
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
20
|
Glaucoma – Diabetes of the brain: A radical hypothesis about its nature and pathogenesis. Med Hypotheses 2014; 82:535-46. [DOI: 10.1016/j.mehy.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
|
21
|
Abstract
Despite the critical importance of plasma lipoproteins in the development of atherosclerosis, varying degrees of evidence surround the causal associations of lipoproteins with coronary artery disease (CAD). These causal contributions can be assessed by employing genetic variants as unbiased proxies for lipid levels. A relatively large number of low-density lipoprotein cholesterol (LDL-C) variants strongly associate with CAD, confirming the causal impact of this lipoprotein on atherosclerosis. Although not as firmly established, genetic evidence supporting a causal role of triglycerides (TG) in CAD is growing. Conversely, high-density lipoprotein cholesterol (HDL-C) variants not associated with LDL-C or TG have not yet been shown to be convincingly associated with CAD, raising questions about the causality of HDL-C in atherosclerosis. Finally, genetic variants at the LPA locus associated with lipoprotein(a) [Lp(a)] are decisively linked to CAD, indicating a causal role for Lp(a). Translational investigation of CAD-associated lipid variants may identify novel regulatory pathways with therapeutic potential to alter CAD risk.
Collapse
|
22
|
Wakayama S, Haque A, Koide N, Kato Y, Odkhuu E, Bilegtsaikhan T, Naiki Y, Komatsu T, Yoshida T, Yokochi T. Lipopolysaccharide impairs insulin sensitivity via activation of phosphoinositide 3-kinase in adipocytes. Immunopharmacol Immunotoxicol 2014; 36:145-9. [PMID: 24506665 DOI: 10.3109/08923973.2014.887096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of lipopolysaccharide (LPS) on insulin sensitivity in adipocytes were examined by using differentiated 3T3-L1 adipocytes. Insulin-mediated activation of insulin receptor substrate (IRS) 1/2 was inhibited in LPS-pretreated adipocytes and IRS1/2-mediated Akt activation was also attenuated in those cells. LPS inhibited activation of glycogen synthase kinase 3 as a negative regulator of glycogenesis and impaired the glycogen synthesis in response to insulin. LPS-induced activation of phosphoinositide 3-kinase (PI3K) in adipocytes. Involvement of suppressor of cytokine signaling 3 (SOCS3) in LPS-induced IRS1/2 inhibition was excluded. Considering that both insulin and LPS were able to activate the PI3K/Akt signaling pathway, LPS was suggested to impair insulin sensitivity of adipocytes through down-regulating insulin-mediated PI3K/Akt activation.
Collapse
|
23
|
Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron 2014; 51:238-43. [DOI: 10.1016/j.bios.2013.07.063] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/11/2013] [Accepted: 07/21/2013] [Indexed: 11/22/2022]
|
24
|
Bloemer J, Bhattacharya S, Amin R, Suppiramaniam V. Impaired insulin signaling and mechanisms of memory loss. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:413-49. [PMID: 24373245 DOI: 10.1016/b978-0-12-800101-1.00013-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin is secreted from the β-cells of the pancreas and helps maintain glucose homeostasis. Although secreted peripherally, insulin also plays a profound role in cognitive function. Increasing evidence suggests that insulin signaling in the brain is necessary to maintain health of neuronal cells, promote learning and memory, decrease oxidative stress, and ultimately increase neuronal survival. This chapter summarizes the different facets of insulin signaling necessary for learning and memory and additionally explores the association between cognitive impairment and central insulin resistance. The role of impaired insulin signaling in the advancement of cognitive dysfunction is relevant to the current debate of whether the shared pathophysiological mechanisms between diabetes and cognitive impairment implicate a direct relationship. Here, we summarize a vast amount of literature that suggests a strong association between impaired brain insulin signaling and cognitive impairment.
Collapse
Affiliation(s)
- Jenna Bloemer
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Subhrajit Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Rajesh Amin
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
25
|
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front Endocrinol (Lausanne) 2014; 5:161. [PMID: 25346723 PMCID: PMC4191295 DOI: 10.3389/fendo.2014.00161] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022] Open
Abstract
Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the central nervous system, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition, and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name "type 3 diabetes" for this association. There are links between AD and T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein O-GlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of these disorders, mainly those focused on reducing brain insulin resistance, which is seems to be a common ground for both pathological entities.
Collapse
Affiliation(s)
- Enrique Blázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
- *Correspondence: Enrique Blázquez, Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid 28040, Spain e-mail:
| | - Esther Velázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Verónica Hurtado-Carneiro
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| |
Collapse
|
26
|
MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors. Proc Natl Acad Sci U S A 2013; 110:13410-5. [PMID: 23893300 DOI: 10.1073/pnas.1220710110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells.
Collapse
|
27
|
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33:981-1030. [PMID: 23065822 PMCID: PMC5393155 DOI: 10.1210/er.2011-1034] [Citation(s) in RCA: 1143] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.
Collapse
|
28
|
Purushothaman A, Babitz SK, Sanderson RD. Heparanase enhances the insulin receptor signaling pathway to activate extracellular signal-regulated kinase in multiple myeloma. J Biol Chem 2012; 287:41288-96. [PMID: 23048032 DOI: 10.1074/jbc.m112.391417] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ERK signaling regulates proliferation, survival, drug resistance, and angiogenesis in cancer. Although the mechanisms regulating ERK activation are not fully understood, we previously demonstrated that ERK phosphorylation is elevated by heparanase, an enzyme associated with aggressive behavior of many cancers. In the present study, myeloma cell lines expressing either high or low levels of heparanase were utilized to determine how heparanase stimulates ERK signaling. We discovered that the insulin receptor was abundant on cells expressing either high or low levels of heparanase, but the receptor was highly phosphorylated in heparanase-high cells compared with heparanase-low cells. In addition, protein kinase C activity was elevated in heparanase-high cells, and this enhanced expression of insulin receptor substrate-1 (IRS-1), the principle intracellular substrate for phosphorylation by the insulin receptor. Blocking insulin receptor function with antibody or a small molecule inhibitor or knockdown of IRS-1 expression using shRNA diminished heparanase-mediated ERK activation in the tumor cells. In addition, up-regulation of the insulin signaling pathway by heparanase and the resulting ERK activation were dependent on heparanase retaining its enzyme activity. These results reveal a novel mechanism whereby heparanase enhances activation of the insulin receptor signaling pathway leading to ERK activation and modulation of myeloma behavior.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
29
|
Amato S, Man HY. AMPK signaling in neuronal polarization: Putting the brakes on axonal traffic of PI3-Kinase. Commun Integr Biol 2012; 5:152-5. [PMID: 22808319 PMCID: PMC3376050 DOI: 10.4161/cib.18968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuronal polarization, the process by which neurons form multiple dendrites and an axon from the soma, is the first critical step in the formation and function of neural networks. Polarization begins with the rapid extension of a single neurite to produce an axon of impressive size and complex geometry, while the remaining sister neurites differentiate into dendrites. The extensive biosynthesis required to produce an axon therefore necessitates coordination with cellular energy status to ensure an ample energy supply. Our recent work shows that activity of the AMP-activated protein kinase (AMPK), the bio-energy sensor responsible for maintaining cellular energy homeostasis in all eukaryotic cells, plays an important role in the initiation of axonal growth. AMPK phosphorylates the cargo-binding light chain of the Kif5 motor protein, leading to dissociation of the phosphatidylinositol 3-Kinase (PI3K) from the motor complex. The mislocation of PI3K, which is normally enriched at the axonal tip for extension and differentiation, results in a lack of neurite specification and neuron polarization. These findings reveal a link between cellular bioenergy homeostasis and neuron morphogenesis, and suggest a novel cellular mechanism underlying the long-term neurological abnormalities as a consequence of bioenergy deficiency during early brain development.
Collapse
Affiliation(s)
- Stephen Amato
- Department of Biology; Boston University; Boston, MA USA
| | | |
Collapse
|
30
|
Amato S, Man HY. Bioenergy sensing in the brain: the role of AMP-activated protein kinase in neuronal metabolism, development and neurological diseases. Cell Cycle 2012; 10:3452-60. [PMID: 22067656 DOI: 10.4161/cc.10.20.17953] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioenergy homeostasis constitutes one of the most crucial foundations upon which other cellular and organismal processes may be executed. AMP-activated protein kinase (AMPK) has been shown to be the key player in the regulation of energy metabolism, and thus is becoming the focus of research on obesity, diabetes and other metabolic disorders. However, its role in the brain, the most energy-consuming organ in our body, has only recently been studied and appreciated. Widely expressed in the brain, AMPK activity is tightly coupled to the energy status at both neuronal and whole-body levels. Importantly, AMPK signaling is intimately implicated in multiple aspects of brain development and function including neuronal proliferation, migration, morphogenesis and synaptic communication, as well as in pathological conditions such as neuronal cell death, energy depletion and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephen Amato
- Department of Biology, Boston University, Boston, MA, USA
| | | |
Collapse
|
31
|
Davison Z, de Blacquière GE, Westley BR, May FEB. Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: implications for therapy. Neoplasia 2011; 13:504-15. [PMID: 21677874 PMCID: PMC3114244 DOI: 10.1593/neo.101590] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/18/2022]
Abstract
Triple-negative breast cancers have a poor prognosis and are not amenable to endocrine- or HER2-targeted therapies. The prevailing view is that targeting the insulin-like growth factor (IGF) signal transduction pathway will not be beneficial for triple-negative breast cancers because their growth is not IGF-responsive. The present study investigates the importance of IGFs in the proliferation and survival of triple-negative breast cancer cells. Estrogen and progesterone receptors, HER2, type I IGF, and insulin receptors were measured by Western transfer analysis. The effects of IGF-1 on proliferation were assessed by DNA quantitation and on cell survival by poly (ADP-ribose) polymerase cleavage. The effect of IGF-1 on phosphorylation of the IGF receptors, Akt and mitogen-activated protein kinase, was measured by Western transfer analysis. Seven cell lines were identified as models of triple-negative breast cancer and shown to express IGF receptors at levels similar to those present in estrogen-responsive cell lines known to respond to IGFs. IGF-1 increased the proliferation and cell survival of all triple-negative cell lines. Proliferation was attenuated after reduction of type I IGF receptor expression. Cells that express higher levels of receptor were more sensitive to subnanomolar IGF-1 concentrations, but the magnitude of the effects was not correlated simply with the absolute amount or phosphorylation of the IGF receptors, Akt or mitogen-activated protein kinase. These results show that IGFs stimulate cell proliferation and promote cell survival in triple-negative breast cancer cells and warrant investigation of the IGF signal transduction pathway as a therapeutic target for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Zoë Davison
- Northern Institute for Cancer Research, Faculty of Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
32
|
Kashyap AS, Hollier BG, Manton KJ, Satyamoorthy K, Leavesley DI, Upton Z. Insulin-like growth factor-I:vitronectin complex-induced changes in gene expression effect breast cell survival and migration. Endocrinology 2011; 152:1388-401. [PMID: 21303956 DOI: 10.1210/en.2010-0897] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent studies have demonstrated that IGF-I associates with vitronectin (VN) through IGF-binding proteins (IGFBP), which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment, and migration. Because IGFs play important roles in transformation and progression of breast tumors, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of phosphoinositide 3-kinase/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and phosphoinositide 3-kinase pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion, and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue ([L(24)][A(31)]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of extracellular matrix and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.
Collapse
Affiliation(s)
- Abhishek S Kashyap
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, 4059, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Fernández-Alvarez A, Soledad Alvarez M, Cucarella C, Casado M. Characterization of the human insulin-induced gene 2 (INSIG2) promoter: the role of Ets-binding motifs. J Biol Chem 2010; 285:11765-74. [PMID: 20145255 DOI: 10.1074/jbc.m109.067447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced gene 2 (INSIG2) and its homolog INSIG1 encode closely related endoplasmic reticulum proteins that regulate the proteolytic activation of sterol regulatory element-binding proteins, transcription factors that activate the synthesis of cholesterol and fatty acids in animal cells. Several studies have been carried out to identify INSIG2 genetic variants associated with metabolic diseases. However, few data have been published regarding the regulation of INSIG2 gene expression. Two Insig2 transcripts have been described in rodents through the use of different promoters that produce different noncoding first exons that splice into a common second exon. Herein we report the cloning and characterization of the human INSIG2 promoter and the detection of an INSIG2-specific transcript homologous to the Insig2b mouse variant in human liver. Deletion analyses on 3 kb of 5'-flanking DNA of the human INSIG2 gene revealed the functional importance of a 350-bp region upstream of the transcription start site. Mutated analyses, chromatin immunoprecipitation assays, and RNA interference analyses unveiled the significance of an Ets-consensus motif in the proximal region and the interaction of the Ets family member SAP1a (serum response factor (SRF) accessory protein-1a) with this region of the human INSIG2 promoter. Moreover, our findings suggest that insulin activated the human INSIG2 promoter in a process mediated by phosphorylated SAP1a. Overall, these results map the functional elements in the human INSIG2 promoter sequence and suggest an unexpected regulation of INSIG2 gene expression in human liver.
Collapse
Affiliation(s)
- Ana Fernández-Alvarez
- Instituto de Biomedicina de Valencia (Consejo Superior de Investigaciones Científicas), Valencia, Spain
| | | | | | | |
Collapse
|
34
|
Monostory K, Pascussi JM, Kóbori L, Dvorak Z. Hormonal regulation of CYP1A expression. Drug Metab Rev 2009; 41:547-72. [DOI: 10.1080/03602530903112284] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
URBANSKA KATARZYNA, PANNIZZO PAOLA, LASSAK ADAM, GUALCO ELISA, SURMACZ EVA, CROUL SIDNEY, VALLE LUISDEL, KHALILI KAMEL, REISS KRZYSZTOF. Estrogen receptor beta-mediated nuclear interaction between IRS-1 and Rad51 inhibits homologous recombination directed DNA repair in medulloblastoma. J Cell Physiol 2009; 219:392-401. [PMID: 19117011 PMCID: PMC2679153 DOI: 10.1002/jcp.21683] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In medulloblastomas, which are highly malignant cerebellar tumors of the childhood genotoxic treatments such as cisplatin or gamma-irradiation are frequently associated with DNA damage, which often associates with unfaithful DNA repair, selection of new adaptations and possibly tumor recurrences. Therefore, better understanding of molecular mechanisms which control DNA repair fidelity upon DNA damage is a critical task. Here we demonstrate for the first time that estrogen receptor beta (ERbeta) can contribute to the development of genomic instability in medulloblastomas. Specifically, ERbeta was found highly expressed and active in mouse and human medulloblastoma cell lines. Nuclear ERbeta was also present in human medulloblastoma clinical samples. Expression of ERbeta coincided with nuclear translocation of insulin receptor substrate 1 (IRS-1), which was previously reported to interfere with the faithful component of DNA repair when translocated to the nucleus. We demonstrated that ERbeta and IRS-1 bind each other, and the interaction involves C-terminal domain of IRS-1 (aa 931-1233). Following cisplatin-induced DNA damage, nuclear IRS-1 localized at the sites of damaged DNA, and interacted with Rad51--an enzymatic component of homologous recombination directed DNA repair (HRR). In medulloblastoma cells, engineered to express HRR-DNA reporter plasmid, ER antagonist, ICI 182,780, or IRS mutant (931-1233) significantly increased DNA repair fidelity. These data strongly suggest that both molecular and pharmacological interventions are capable of preventing ERbeta-mediated IRS-1 nuclear translocation, which in turn improves DNA repair fidelity and possibly counteracts accumulation of malignant mutations in actively growing medulloblastomas.
Collapse
Affiliation(s)
- KATARZYNA URBANSKA
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Department of Cell Biology, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - PAOLA PANNIZZO
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - ADAM LASSAK
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - ELISA GUALCO
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - EVA SURMACZ
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania
| | - SIDNEY CROUL
- Department of Laboratory Medicine and Pathology, Toronto University, Toronto, Ontario, Canada
| | - LUIS DEL VALLE
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - KAMEL KHALILI
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - KRZYSZTOF REISS
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Boura-Halfon S, Zick Y. Serine kinases of insulin receptor substrate proteins. VITAMINS AND HORMONES 2009; 80:313-49. [PMID: 19251043 DOI: 10.1016/s0083-6729(08)00612-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling of insulin and insulin-like growth factor-I (IGF-1) at target tissues is essential for growth, development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative-feedback control mechanism, whereby downstream components inhibit upstream elements along the insulin and IGF-1 signaling pathway or by signals from other pathways that inhibit insulin/IGF-1 signaling thus leading to insulin/IGF-1 resistance. Phosphorylation of insulin receptor substrates (IRS) proteins on serine residues has emerged as a key step in these control processes both under physiological and pathological conditions. The list of IRS kinases is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on selected domains. The specificity of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin/IGF-1 signaling, insulin/IGF-1 resistance and diabetes, an emerging epidemic of the twenty-first century are outlined.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
37
|
Abstract
Alzheimer's disease (AD) has characteristic histopathological, molecular, and biochemical abnormalities, including cell loss; abundant neurofibrillary tangles; dystrophic neurites; amyloid precursor protein, amyloid-beta (APP-Abeta) deposits; increased activation of prodeath genes and signaling pathways; impaired energy metabolism; mitochondrial dysfunction; chronic oxidative stress; and DNA damage. Gaining a better understanding of AD pathogenesis will require a framework that mechanistically interlinks all these phenomena. Currently, there is a rapid growth in the literature pointing toward insulin deficiency and insulin resistance as mediators of AD-type neurodegeneration, but this surge of new information is riddled with conflicting and unresolved concepts regarding the potential contributions of type 2 diabetes mellitus (T2DM), metabolic syndrome, and obesity to AD pathogenesis. Herein, we review the evidence that (1) T2DM causes brain insulin resistance, oxidative stress, and cognitive impairment, but its aggregate effects fall far short of mimicking AD; (2) extensive disturbances in brain insulin and insulin-like growth factor (IGF) signaling mechanisms represent early and progressive abnormalities and could account for the majority of molecular, biochemical, and histopathological lesions in AD; (3) experimental brain diabetes produced by intracerebral administration of streptozotocin shares many features with AD, including cognitive impairment and disturbances in acetylcholine homeostasis; and (4) experimental brain diabetes is treatable with insulin sensitizer agents, i.e., drugs currently used to treat T2DM. We conclude that the term "type 3 diabetes" accurately reflects the fact that AD represents a form of diabetes that selectively involves the brain and has molecular and biochemical features that overlap with both type 1 diabetes mellitus and T2DM.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA.
| | | |
Collapse
|
38
|
Breuhahn K, Schirmacher P. Reactivation of the insulin-like growth factor-II signaling pathway in human hepatocellular carcinoma. World J Gastroenterol 2008; 14:1690-8. [PMID: 18350600 PMCID: PMC2695909 DOI: 10.3748/wjg.14.1690] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Constitutive activation of the insulin-like growth factor (IGF)-signaling axis is frequently observed in human hepatocellular carcinoma (HCC). Especially the overexpression of the fetal growth factor IGF-II, IGF-Ireceptor (IGF-IR), and cytoplasmic downstream effectors such as insulin-receptor substrates (IRS) contribute to proliferation, anti-apoptosis, and invasive behavior. This review focuses on the relevant alterations in this signaling pathway and independent in vivo models that support the central role IGF-II signaling during HCC development and progression. Since this pathway has become the center of interest as a target for potential anti-cancer therapy in many types of malignancies, various experimental strategies have been developed, including neutralizing antibodies and selective receptor kinase inhibitors, with respect to the specific and efficient reduction of oncogenic IGF-II/IGF-IR-signaling.
Collapse
|
39
|
|
40
|
Abstract
UNLABELLED Chronic ethanol consumption may produce hepatic injury and impair the ability of the liver to regenerate principally through its action on insulin signaling. These effects are mediated by insulin receptor substrate-1 (IRS-1) via the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/Erk) pathway and by survival signals through phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt). Because a protein phosphatase, phosphatase tensin homolog deleted on chromosome 10 (PTEN), has been reported to block insulin signaling through PI3K, we explored acute ethanol effects on signaling in the context of PTEN function. We measured upstream components of the insulin signal transduction pathway and Akt phosphorylation as an indicator of signaling through PI3K, including the generation of survival signals via glycogen synthase kinase 3beta (GSK3beta) and Bcl-2-associated death promoter (BAD). In addition, the physical association between PTEN and PI3K regulatory (p85alpha) and catalytic (p110alpha) subunits was evaluated both in vitro and in vivo. In Huh-7 cells, there was no effect of acute ethanol exposure on tyrosyl phosphorylation of the insulin receptor, IRS-1, and the association of IRS-1 with PI3K. However, Akt phosphorylation was impaired. The association of PTEN with the PI3K p85alpha subunit was substantially increased and led to the inhibition of downstream insulin-mediated survival signals through Akt, GSK3beta, and BAD; the ethanol effect was reversed by PTEN knockdown with small interfering RNA. These results were confirmed in the liver. CONCLUSION Short-term ethanol exposure rapidly attenuates insulin signaling. The major cellular mechanism involves the increased association of PTEN with the PI3K p85alpha subunit, which results in reduced phospho-Akt formation and impaired downstream survival signaling. These findings may have relevance to acute toxic effects of ethanol on the liver.
Collapse
Affiliation(s)
- Jiman He
- Liver Research Center, Department of Medicine and Pathology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
41
|
Sisci D, Morelli C, Cascio S, Lanzino M, Garofalo C, Reiss K, Garcia M, Russo A, Andò S, Surmacz E. The estrogen receptor alpha:insulin receptor substrate 1 complex in breast cancer: structure-function relationships. Ann Oncol 2007; 18 Suppl 6:vi81-5. [PMID: 17591841 DOI: 10.1093/annonc/mdm232] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insulin receptor substrate 1 (IRS-1) is a signaling molecule that exerts a key role in mediating cross talk between estrogen receptor alpha (ERalpha) and insulin-like growth factor 1 (IGF-1) in breast cancer cells. Previously, we demonstrated that a fraction of IRS-1 binds ERalpha, translocates to the nucleus, and modulates ERalpha-dependent transcription at estrogen response elements (ERE). Here, we studied structure-function relationships of the ERalpha:IRS-1 complex under IGF-1 and/or estradiol (E2) stimulation. MATERIALS AND METHODS ERalpha and IRS-1 deletion mutants were used to analyze structural and functional ERalpha/IRS-1 interactions. IRS-1 binding to ERE and IRS-1 role in ERalpha-dependent ERE transcription was examined by chromatin immunoprecipitation and gene reporter analysis, respectively. The requirement for IRS-1 in ERalpha function was tested with RNAi technology. RESULTS Nuclear translocation of IRS-1 was induced by E2, IGF-1, and a combination of both stimuli. ERalpha/IRS-1 binding was direct and involved the activation function-1 (AF-1)/DNA binding domain (DBD) region of ERalpha and two discrete regions of IRS-1 (the N-terminal pleckstrin homology domain and a region within the C-terminus). IRS-1 knock down abrogated IGF-1-dependent transcriptional activity of unliganded ERalpha, but induced the activity of liganded ERalpha. CONCLUSIONS ERalpha/IRS-1 interactions are direct and involve the ERalpha AF-1/DBD domain and IRS-1 domains mapping within N- and C-terminus. IRS-1 may act as a repressor of liganded ERalpha and coactivator of unliganded ERalpha.
Collapse
Affiliation(s)
- D Sisci
- Dipartimento Farmaco Biologico, University of Calabria, Arcavacata di Rende, Cosenza.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim SK, Novak RF. The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther 2006; 113:88-120. [PMID: 17097148 PMCID: PMC1828071 DOI: 10.1016/j.pharmthera.2006.07.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 12/28/2022]
Abstract
Endogenous factors, including hormones, growth factors and cytokines, play an important role in the regulation of hepatic drug metabolizing enzyme expression in both physiological and pathophysiological conditions. Diabetes, fasting, obesity, protein-calorie malnutrition and long-term alcohol consumption produce changes in hepatic drug metabolizing enzyme gene and protein expression. This difference in expression alters the metabolism of xenobiotics, including procarcinogens, carcinogens, toxicants and therapeutic agents, potentially impacting the efficacy and safety of therapeutic agents, and/or resulting in drug-drug interactions. Although the mechanisms by which xenobiotics regulate drug metabolizing enzymes have been studied intensively, less is known regarding the cellular signaling pathways and components which regulate drug metabolizing enzyme gene and protein expression in response to hormones and cytokines. Recent findings, however, have revealed that several cellular signaling pathways are involved in hormone- and growth factor-mediated regulation of drug metabolizing enzymes. Our laboratory has reported that insulin and growth factors regulate drug metabolizing enzyme gene and protein expression, including cytochromes P450 (CYP), glutathione S-transferases (GST) and microsomal epoxide hydrolase (mEH), through receptors which are members of the large receptor tyrosine kinase (RTK) family, and by downstream effectors such as phosphatidylinositol 3-kinase, mitogen activated protein kinase (MAPK), Akt/protein kinase B (PKB), mammalian target of rapamycin (mTOR), and the p70 ribosomal protein S6 kinase (p70S6 kinase). Here, we review current knowledge of the signaling pathways implicated in regulation of drug metabolizing enzyme gene and protein expression in response to insulin and growth factors, with the goal of increasing our understanding of how disease affects these signaling pathways, components, and ultimately gene expression and translational control.
Collapse
Affiliation(s)
- Sang K. Kim
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
- College of Pharmacy and Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 305-764, South Korea
| | - Raymond F. Novak
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
| |
Collapse
|
43
|
Muller D, Huang GC, Amiel S, Jones PM, Persaud SJ. Identification of insulin signaling elements in human beta-cells: autocrine regulation of insulin gene expression. Diabetes 2006; 55:2835-42. [PMID: 17003350 DOI: 10.2337/db06-0532] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although many studies using rodent islets and insulinoma cell lines have been performed to determine the role of insulin in the regulation of islet function, the autocrine effect of insulin on insulin gene expression is still controversial, and no consensus has yet been achieved. Because very little is known about the insulin signaling pathway in human islets, we used single-cell RT-PCR to profile the expression of genes potentially involved in the insulin signaling cascade in human beta-cells. The detection of mRNAs for insulin receptor (IR)A and IRB; insulin receptor substrate (IRS)-1 and IRS-2; phosphoinositide 3-kinase (PI3K) catalytic subunits p110alpha, p110beta, PI3KC2alpha, and PI3KC2gamma; phosphoinositide-dependent protein kinase-1; protein kinase B (PKB)alpha, PKBbeta, and PKBgamma in the beta-cell population suggests the presence of a functional insulin signaling cascade in human beta-cells. Small interfering RNA-induced reductions in IR expression in human islets completely suppressed glucose-stimulated insulin gene expression, suggesting that insulin regulates its own gene expression in human beta-cells. Defects in this regulation may accentuate the metabolic dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- Dany Muller
- Beta Cell Development & Function Group, Division of Reproduction and Endocrinology, School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
44
|
Tups A, Helwig M, Stöhr S, Barrett P, Mercer JG, Klingenspor M. Photoperiodic regulation of insulin receptor mRNA and intracellular insulin signaling in the arcuate nucleus of the Siberian hamster,Phodopus sungorus. Am J Physiol Regul Integr Comp Physiol 2006; 291:R643-50. [PMID: 16601260 DOI: 10.1152/ajpregu.00807.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the last 5 years it has been well established that photoperiod-induced changes in body weight in the seasonal hamster, Phodopus sungorus, are accompanied by a marked seasonal cycle in leptin sensitivity. In the present study, we investigated the possible involvement of insulin signaling in seasonal body weight regulation. We analyzed the expression pattern and relative intensity of insulin receptor (IR), phosphatidylinositol 3-kinase (PI3-kinase), and protein tyrosine phosphatase 1B (PTP1B) mRNAs by in situ hybridization in the brains of juvenile female hamsters acclimated to either long- (LD) or short-day length (SD) for 8 wk, with or without superimposed food deprivation for 48 h. Furthermore, the hypothalamic concentration and distribution of phospho-AKT, a marker of PI3-kinase activity was determined by immunoblotting and immunohistochemistry. Eight weeks of acclimation to SD led to a substantial downregulation of IR, PTP1B gene expression, and phospho-AKT concentration in this brain region, whereas PI3-kinase mRNA was unchanged. Food deprivation induced a decrease in PTP1B and a trend toward lowered IR gene expression in LD but not in SD. Additionally, a striking increase in PTP1B gene expression in the thalamus was observed after food deprivation in both photoperiods. The direction of change in neuronal insulin signaling contrasts to the central catabolic nature of this pathway described in other species. SD-induced reduction in insulin signaling may be due to decline in body fat stores mediated by enhanced central leptin sensitivity. Increased anorexigenic tone of leptin may overwrite central insulin signaling to prevent catabolic overdrive.
Collapse
Affiliation(s)
- Alexander Tups
- Division of Obesity and Metabolic Health, Rowett Research Institute, Aberdeen Centre for Energy Regulation and Obesity, Scotland.
| | | | | | | | | | | |
Collapse
|
45
|
Sisci D, Morelli C, Garofalo C, Romeo F, Morabito L, Casaburi F, Middea E, Cascio S, Brunelli E, Andò S, Surmacz E. Expression of nuclear insulin receptor substrate 1 in breast cancer. J Clin Pathol 2006; 60:633-41. [PMID: 16882697 PMCID: PMC1955087 DOI: 10.1136/jcp.2006.039107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Insulin receptor substrate 1 (IRS-1), a cytoplasmic protein transmitting signals from the insulin and insulin-like growth factor 1 receptors, has been implicated in breast cancer. Previously, it was reported that IRS-1 can be translocated to the nucleus and modulate oestrogen receptor alpha (ERalpha) activity in vitro. However, the expression of nuclear IRS-1 in breast cancer biopsy specimens has never been examined. AIMS To assess whether nuclear IRS-1 is present in breast cancer and non-cancer mammary epithelium, and whether it correlates with other markers, especially ERalpha. Parallel studies were carried out for the expression of cytoplasmatic IRS-1. METHODS IRS-1 and ERalpha expression was assessed by immunohistochemical analysis. Data were evaluated using Pearson's correlation, linear regression and receiver operating characteristic analysis. RESULTS Median nuclear IRS-1 expression was found to be low in normal mammary epithelial cells (1.6%) and high in benign tumours (20.5%), ductal grade 2 carcinoma (11.0%) and lobular carcinoma (approximately 30%). Median ERalpha expression in normal epithelium, benign tumours, ductal cancer grade 2 and 3, and lobular cancer grade 2 and 3 were 10.5, 20.5, 65.0, 0.0, 80 and 15%, respectively. Nuclear IRS-1 and ERalpha positively correlated in ductal cancer (p<0.001) and benign tumours (p<0.01), but were not associated in lobular cancer and normal mammary epithelium. In ductal carcinoma, both nuclear IRS-1 and ERalpha negatively correlated with tumour grade, size, mitotic index and lymph node involvement. Cytoplasmic IRS-1 was expressed in all specimens and positively correlated with ERalpha in ductal cancer. CONCLUSIONS A positive association between nuclear IRS-1 and ERalpha is a characteristic for ductal breast cancer and marks a more differentiated, non-metastatic phenotype.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Estrogen Receptor alpha/metabolism
- Female
- Humans
- Immunoenzyme Techniques
- Insulin Receptor Substrate Proteins
- Mammary Glands, Human/metabolism
- Microscopy, Confocal
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Proteins/metabolism
- Phosphoproteins/metabolism
Collapse
Affiliation(s)
- Diego Sisci
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
de la Monte SM, Tamaki S, Cantarini MC, Ince N, Wiedmann M, Carter JJ, Lahousse SA, Califano S, Maeda T, Ueno T, D'Errico A, Trevisani F, Wands JR. Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness. J Hepatol 2006; 44:971-83. [PMID: 16564107 DOI: 10.1016/j.jhep.2006.01.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 12/20/2005] [Accepted: 01/25/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS We measured aspartyl (asparaginyl)-beta-hydroxylase (AAH) gene expression in human hepatocelluar carcinoma and surrounding uninvolved liver at both the mRNA and protein level and examined the regulation and function of this enzyme. METHODS Since growth of HCC is mediated by signaling through the insulin-receptor substrate, type 1 (IRS-1), we examined-if AAH is a downstream gene regulated by insulin and IGF-1 in HCC cells. In addition, IRS-1 regulation of AAH was examined in a transgenic (Tg) mouse model in which the human (h) IRS-1 gene was over-expressed in the liver, and an in vitro model in which a C-terminus truncated dominant-negative hIRS-1 cDNA (hIRS-DeltaC) was over-expressed in FOCUS HCC cells. The direct effects of AAH on motility and invasiveness were examined in AAH-transfected HepG2 cells. RESULTS Insulin and IGF-1 stimulation increased AAH mRNA and protein expression and motility in FOCUS and Hep-G2 cells. These effects were mediated by signaling through the Erk MAPK and PI3 kinase-Akt pathways. Over-expression of hIRS-1 resulted in high levels of AAH in Tg mouse livers, while over-expression of hIRS-DeltaC reduced AAH expression, motility, and invasiveness in FOCUS cells. Finally, over-expression of AAH significantly increased motility and invasiveness in HepG2 cells, whereas siRNA inhibition of AAH expression significantly reduced directional motility in FOCUS cells. CONCLUSIONS The results suggest that enhanced AAH gene activity is a common feature of human HCC and growth factor signaling through IRS-1 regulates AAH expression and increases motility and invasion of HCC cells. Therefore, AAH may represent an important target for regulating tumor growth in vivo.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Medicine and Pathology, Brown Medical School, Liver Research Center, Rhode Island Hospital, 55 Claverick Street, 4th Floor, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Mark Branda
- Liver Research Center, Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence 02903, USA
| | | |
Collapse
|
48
|
Maines MD. New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology (Bethesda) 2006; 20:382-9. [PMID: 16287987 DOI: 10.1152/physiol.00029.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biliverdin reductase (BVR) functions in cell signaling through three distinct tracks: a dual-specificity kinase that functions in the insulin receptor/MAPK pathways (25, 29, 51); a bzip-type transcription factor for ATF-2/CREB and HO-1 regulation (1, 25); and a reductase that catalyzes the conversion of biliverdin to bilirubin (27). These, together with the protein's primary and secondary features, intimately link BVR to the entire spectrum of cell-signaling cascades.
Collapse
Affiliation(s)
- Mahin D Maines
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, New York, USA.
| |
Collapse
|
49
|
Reiss K, Khalili K, Giordano A, Trojanek J. JC virus large T-antigen and IGF-I signaling system merge to affect DNA repair and genomic integrity. J Cell Physiol 2005; 206:295-300. [PMID: 15991250 DOI: 10.1002/jcp.20455] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The progression of cancer is often associated with genomic instability, which may develop as a result of compromised defense mechanisms responsible for the maintenance of chromosomal integrity. These include defects in telomere preservation, chromosomal segregation, and DNA repair. In this review, we discuss molecular interactions between viral and cellular signaling components, which interfere with DNA repair mechanisms, and possibly contribute to the development of a mutagenic phenotype. Our studies indicate that large T-antigen from the human polyomavirus JC (JCV T-antigen) inhibits homologous recombination directed DNA repair (HRR)-causing accumulation of mutations in the affected cells (JCP 2005, in press). Surprisingly, T-antigen does not operate directly, but utilizes insulin receptor substrate 1 (IRS-1), which is the major signaling molecule for insulin-like growth factor I receptor (IGF-IR). Following T-antigen-mediated nuclear translocation, IRS-1 binds Rad51 at the site of damaged DNA. This T-antigen-mediated inhibition of HRR does not function in cells lacking IRS-1, and can be reproduced in the absence of T-antigen by IRS-1 with an artificial nuclear localization signal. The interplay described between the IGF-IR signaling system and JCV T-antigen in the process of DNA repair could be relevant, since nearly 90% of the human population is seropositive for JC virus, JCV T-antigen transforms cells in vitro, is tumorigenic in experimental animals, and the presence of JC virus has been shown in an increasing number of biopsies of human cancer.
Collapse
Affiliation(s)
- Krzysztof Reiss
- Center for Neurovirology and Cancer Biology, Temple University, 1900 North 12th Street, Biology Life Science Building, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | |
Collapse
|
50
|
Lerner-Marmarosh N, Shen J, Torno MD, Kravets A, Hu Z, Maines MD. Human biliverdin reductase: a member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity. Proc Natl Acad Sci U S A 2005; 102:7109-14. [PMID: 15870194 PMCID: PMC1088173 DOI: 10.1073/pnas.0502173102] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Indexed: 01/06/2023] Open
Abstract
We describe here the tyrosine kinase activity of human biliverdin reductase (BVR) and its potential role in the insulin-signaling pathway. BVR is both a substrate for insulin receptor (IR) tyrosine kinase (IRK) activity and a kinase for serine phosphorylation of IR substrate 1 (IRS-1). Our previous studies have revealed serine/threonine kinase activity of BVR. Y198, in the YMKM motif found in the C-terminal domain of BVR, is shown to be a substrate for insulin-activated IRK. This motif in IRS proteins provides a docking site for proteins that contain a Src homology 2 domain. Additionally, Y228 in the YLSF sequence and Y291 are IRK substrates; the former sequence provides optimum recognition motif in the tyrosine phosphatase, SHP-1, and for SHC (Src homology 2 domain containing transfroming protein 1). BVR autophosphorylates N-terminal tyrosines Y72 and Y83. Serine residues in IRS-1 are targets for BVR phosphorylation, and point mutation of serine residues in the kinase domain of the reductase inhibits phosphotransferase activity. Because tyrosine phosphorylation of IRS-1 activates the insulin signaling pathway and serine phosphorylation of IRS-1 blocks insulin action, our findings that insulin increases BVR tyrosine phosphorylation and that there is an increase in glucose uptake in response to insulin when expression of BVR is "knocked down" by small interfering RNA suggest a potential role for BVR in the insulin signaling pathway.
Collapse
Affiliation(s)
- Nicole Lerner-Marmarosh
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14624, USA
| | | | | | | | | | | |
Collapse
|