1
|
Zheng Z, Hu J, Sun D, Huang K, Li X, Sun J, Bai W. Structural and functional properties of common natural organic cations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156662. [PMID: 40138773 DOI: 10.1016/j.phymed.2025.156662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Natural products have emerged as a critical focus in modern scientific research due to their structural diversity and therapeutic potential. Among these are natural organic cations-a distinct class of nitrogen- and oxygen-containing compounds. Despite their pharmacological relevance, the literature lacks a systematic synthesis of structure-activity relationships for natural organic cations (NOC). This gap hinders the rational development of NOC-based therapies as sustainable alternatives to synthetic compounds. METHODS Literature was searched and collected using databases, including PubMed, Science Direct, and Web of Science. The search terms used included "natural organic cation", "alkaloid", "anthocyanin", "structure-activity relationship", "charge interaction", "π-cation interaction", "biological activity", "antimicrobial", "antioxidant", "anticancer", "neuroprotection", "anti-inflammatory", "berberine", "coptisine", "palmatine", "cyanidin", "delphinidin", "pelargonidin", "free radical scavenging", "gut microbiota metabolism", "NF-κB pathway", "G-quadruplex DNA", "isoquinoline alkaloid", "protoberberine", "benzophenanthridine", "planar conjugated system", "charge delocalization", "methylenedioxy group", and several combinations of these words. RESULTS The bioactivity of NOC is underestimated. This review uncovers the structure-activity relationships of NOC. Firstly, planar conjugated systems and substituents control target binding: N⁺ in alkaloids enhances DNA/protein affinity, while O⁺ in anthocyanins enables free radical scavenging and enzyme inhibition. Secondly, cationic species outperform neutral analogs in antimicrobial potency, antioxidant capacity, and target selectivity. NOC bind to biomolecules via π-cation/π-π stacking and electrostatic binding. Charge localization in conjugated systems enhances stability and bioactivity. CONCLUSION This review consolidates evidence that NOC represent promising candidates for replacing synthetic compounds in therapies for cancer, neurodegeneration, metabolic disorders, etc. Key findings highlight the superiority of cationic species in target engagement and bioactivity, driven by planar conjugated systems and substituent effects. However, clinical translation requires addressing gaps in bioavailability and long-term safety. Future research must prioritize structural optimization and mechanistic validation. By bridging these gaps, NOC could advance as sustainable, low-toxicity agents in precision medicine and functional nutrition.
Collapse
Affiliation(s)
- Zipeng Zheng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jun Hu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Dawei Sun
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510632, China
| | - Kuanchen Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China; The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Sapkal PR, Tatiya AU, Firke SD, Redasani VK, Gurav SS, Ayyanar M, Jamkhande PG, Surana SJ, Mutha RE, Kalaskar MG. Phytochemical profile, antioxidant, cytotoxic and anti-inflammatory activities of stem bark extract and fractions of Ailanthus excelsa Roxb.: In vitro, in vivo and in silico approaches. Heliyon 2023; 9:e15952. [PMID: 37187902 PMCID: PMC10176067 DOI: 10.1016/j.heliyon.2023.e15952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to assess the phytochemical composition, in vitro antioxidant, cytotoxicity, and in vivo anti-inflammatory activities of the methanolic extract of Ailanthus excelsa (Simaroubaceae) stem bark and its fractions. Quantitative phytochemical analysis revealed that methanolic extract and all fractions contained a high level of flavonoids (20.40-22.91 mg/g QE), phenolics (1.72-7.41 mg/g GAE), saponins (33.28-51.87 mg/g DE), and alkaloids (0.21-0.33 mg/g AE). The antioxidant potential was evaluated in vitro using a range of assays, i.e., DPPH•, ABTS radical scavenging ability, and total antioxidant capacity. The chloroform and ethyl acetate fractions showed stronger antioxidant activity than the methanol extract. In vitro cytotoxic activity was investigated in three human tumor cell lines (A-549, MCF7 and HepG2) using the SRB assay. In addition, the in vivo anti-inflammatory effect was assessed by carrageenan-induced paw edema in rats. The chloroform fraction showed a more pronounced effect by effectively controlling the growth with the lowest GI50 and TGI concentrations. The human lung cancer cell line (A-549) was found to be more sensitive to the chloroform fraction. Furthermore, the chloroform fraction exhibited significant anti-inflammatory activity at a dose of 200 mg/kg in the latter phase of inflammation. Besides, methanol extract and ethyl acetate fraction revealed a significant cytotoxic and anti-inflammatory effects. The chloroform fraction of stem bark showed a strong anti-inflammatory effect in experimental animals and significant COX-2 inhibitory potential in the in vitro experiments. GC-MS analysis of chloroform fraction identified the phytochemicals like caftaric acid, 3,4-dihydroxy phenylacetic acid, arachidonic acid, cinnamic acid, 3-hydroxyphenylvaleric acid, caffeic acid, hexadeconoic acid, and oleanolic acid. The in-silico results suggest that identified compounds have better affinity towards the selected targets, viz. the BAX protein (PDB ID: 1F16), p53-binding protein Mdm-2 (PDB ID: 1YCR), and topoisomerase II (PDB ID: 1QZR). Amongst all, caftaric acid exhibited the best binding affinity for all three targets. Thus, it can be concluded that caftaric acid in combination with other phenolic compounds, might be responsible for the studied activity. Additional in vivo and in vitro studies are required to establish their exact molecular mechanisms and consider them as lead molecules in developing of valuable drugs for treating oxidative stress-induced disorders, cancers, and inflammations.
Collapse
Affiliation(s)
- Priyanka R. Sapkal
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Anilkumar U. Tatiya
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Sandip D. Firke
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Vivek K. Redasani
- Yashoda Technical Campus, Faculty of Pharmacy, Satara, Maharashtra 412 802, India
| | - Shailendra S. Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa 403 001, India
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, Tamil Nadu 613 503, India
| | - Prasad G. Jamkhande
- Centre for Research in Pharmaceutical Sciences, Sharda Bhavan Education Society's Nanded Pharmacy College, Nanded, Maharashtra, 431605, India
| | - Sanjay J. Surana
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Rakesh E. Mutha
- H. R. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Mohan G. Kalaskar
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
- Corresponding author.
| |
Collapse
|
3
|
Plazas E, Avila M MC, Muñoz DR, Cuca S LE. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol Res 2022; 177:106126. [DOI: 10.1016/j.phrs.2022.106126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
4
|
Vásquez-Espinal A, Yañez O, Osorio E, Areche C, García-Beltrán O, Ruiz LM, Cassels BK, Tiznado W. Structure–antioxidant activity relationships in boldine and glaucine: a DFT study. NEW J CHEM 2021. [DOI: 10.1039/d0nj04028b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations indicate that boldine and glaucine exhibit direct antioxidant activity through the HAT and SPLET (at high pH values) mechanisms.
Collapse
Affiliation(s)
- Alejandro Vásquez-Espinal
- Computational and Theoretical Chemistry Group
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas
- Universidad de Ibagué
- Carrera 22 calle 67
- Ibagué
- Colombia
| | - Carlos Areche
- Departamento de Química
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas
- Universidad de Ibagué
- Carrera 22 calle 67
- Ibagué
- Colombia
| | - Lina M. Ruiz
- Instituto de Ciencias Biomédicas
- Facultad Ciencias de la Salud
- Universidad Autónoma de Chile
- Santiago
- Chile
| | - Bruce K. Cassels
- Departamento de Química
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile
| | - William Tiznado
- Computational and Theoretical Chemistry Group
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
| |
Collapse
|
5
|
Llauradó Maury G, Méndez Rodríguez D, Hendrix S, Escalona Arranz JC, Fung Boix Y, Pacheco AO, García Díaz J, Morris-Quevedo HJ, Ferrer Dubois A, Aleman EI, Beenaerts N, Méndez-Santos IE, Orberá Ratón T, Cos P, Cuypers A. Antioxidants in Plants: A Valorization Potential Emphasizing the Need for the Conservation of Plant Biodiversity in Cuba. Antioxidants (Basel) 2020; 9:E1048. [PMID: 33121046 PMCID: PMC7693031 DOI: 10.3390/antiox9111048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Plants are phytochemical hubs containing antioxidants, essential for normal plant functioning and adaptation to environmental cues and delivering beneficial properties for human health. Therefore, knowledge on the antioxidant potential of different plant species and their nutraceutical and pharmaceutical properties is of utmost importance. Exploring this scientific research field provides fundamental clues on (1) plant stress responses and their adaptive evolution to harsh environmental conditions and (2) (new) natural antioxidants with a functional versatility to prevent and treat human pathologies. These natural antioxidants can be valorized via plant-derived foods and products. Cuba contains an enormously rich plant biodiversity harboring a great antioxidant potential. Besides opening new avenues for the implementation of sustainable agroecological practices in crop production, it will also contribute to new strategies to preserve plant biodiversity and simultaneously improve nature management policies in Cuba. This review provides an overview on the beneficial properties of antioxidants for plant protection and human health and is directed to the valorization of these plant antioxidants, emphasizing the need for biodiversity conservation.
Collapse
Affiliation(s)
- Gabriel Llauradó Maury
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Daniel Méndez Rodríguez
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Julio César Escalona Arranz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Yilan Fung Boix
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Ania Ochoa Pacheco
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Jesús García Díaz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Humberto J. Morris-Quevedo
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Albys Ferrer Dubois
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Elizabeth Isaac Aleman
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Natalie Beenaerts
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Isidro E. Méndez-Santos
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
| | - Teresa Orberá Ratón
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| |
Collapse
|
6
|
Rodríguez-Arce E, Cancino P, Arias-Calderón M, Silva-Matus P, Saldías M. Oxoisoaporphines and Aporphines: Versatile Molecules with Anticancer Effects. Molecules 2019; 25:E108. [PMID: 31892146 PMCID: PMC6983244 DOI: 10.3390/molecules25010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease that involves impaired genome stability with a high mortality index globally. Since its discovery, many have searched for effective treatment, assessing different molecules for their anticancer activity. One of the most studied sources for anticancer therapy is natural compounds and their derivates, like alkaloids, which are organic molecules containing nitrogen atoms in their structure. Among them, oxoisoaporphine and sampangine compounds are receiving increased attention due to their potential anticancer effects. Boldine has also been tested as an anticancer molecule. Boldine is the primary alkaloid extract from boldo, an endemic tree in Chile. These compounds and their derivatives have unique structural properties that potentially have an anticancer mechanism. Different studies showed that this molecule can target cancer cells through several mechanisms, including reactive oxygen species generation, DNA binding, and telomerase enzyme inhibition. In this review, we summarize the state-of-art research related to oxoisoaporphine, sampangine, and boldine, with emphasis on their structural characteristics and the relationship between structure, activity, methods of extraction or synthesis, and anticancer mechanism. With an effective cancer therapy still lacking, these three compounds are good candidates for new anticancer research.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| | - Patricio Cancino
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile;
| | - Manuel Arias-Calderón
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Paul Silva-Matus
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
| | - Marianela Saldías
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| |
Collapse
|
7
|
Cassels BK, Fuentes-Barros G, Castro-Saavedra S. Boldo, Its Secondary Metabolites and their Derivatives. CURRENT TRADITIONAL MEDICINE 2019. [DOI: 10.2174/2215083804666181113112928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Boldo leaves (Boldo folium, from Peumus boldus Mol.) are very frequently used as a medicinal herb in Chile and are exported to many countries to be used in teas or as extracts included in herbal remedies, primarily as an aid to digestion and as a mild sedative. Scientific support for these uses is scanty, and boldine, an alkaloid viewed as characteristic of the tree and present in high concentration in the bark, is extracted by specialized companies and sold as the supposed main active constituent. Consequently, boldine has been the subject of a considerable number of research papers, while some of the other alkaloids present to a greater extent in the leaves have been relatively neglected except when found in large amounts in other species. These studies range from assays of antioxidant activity to anti-inflammatory, antineoplastic and other medical applications. The essential oil, usually containing a large percentage of the toxic ascaridole, was once used as a vermifuge and is now regarded with caution, but is still of interest as a possible natural insecticide, fungicide, antiparasitic and herbicide. The last decade has seen an explosive increase in papers pointing to possible uses of boldo and its constituents. This review attempts to bring these publications together in a comprehensive way with the purpose of stimulating and orienting further research into the useful properties of this Chilean endemic tree.
Collapse
Affiliation(s)
- Bruce K. Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
8
|
Sharma V, Jaiswal PK, Kumar S, Mathur M, Swami AK, Yadav DK, Chaudhary S. Discovery of Aporphine Analogues as Potential Antiplatelet and Antioxidant Agents: Design, Synthesis, Structure-Activity Relationships, Biological Evaluations, and in silico Molecular Docking Studies. ChemMedChem 2018; 13:1817-1832. [PMID: 30088331 DOI: 10.1002/cmdc.201800318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Indexed: 12/24/2022]
Abstract
To explore the potential of aporphine alkaloids, a novel series of functionalized aporphine analogues with alkoxy (OCH3 , OC2 H5 , OC3 H7 ) functional groups at C1/C2 of ring A and an acyl (COCH3 and COPh) or phenylsulfonyl (SO2 Ph and SO2 C6 H4 -3-CH3 ) functionality at the N6 position of ring B of the aporphine scaffold were synthesized and evaluated for their arachidonic acid (AA)-induced antiplatelet aggregation inhibitory activity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging antioxidant activity, with acetylsalicylic acid and ascorbic acid as standard references, respectively. The preliminary structure-activity relationship related to AA-induced platelet aggregation inhibitory activity results showed that the aporphine analogues 1-[1,2,9,10-tetramethoxy-6a,7-dihydro-4H-dibenzo[de,g]quinolin-6(5H)-yl]ethanone and 1-[2-(benzyloxy)-1,9,10-trimethoxy-6a,7-dihydro-4H-dibenzo[de,g]quinolin-6(5H)-yl]ethanone to be the best compounds of the series. Moreover, the DPPH free-radical-scavenging antioxidant activity results demonstrated that the aporphine analogues 1,2,9,10-tetramethoxy-6-(methylsulfonyl)-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline, 2-ethoxy-1,9,10-trimethoxy-6-(methylsulfonyl)-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline, 1-ethoxy-2,9,10-trimethoxy-6-(methylsulfonyl)-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline, 2,9,10-trimethoxy-6-(methylsulfonyl)-1-propoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline, and 1-(benzyloxy)-2,9,10-trimethoxy-6-(methylsulfonyl)-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline were the best compounds of the series. Moreover, in silico molecular docking simulation studies of the active analogues were also performed.
Collapse
Affiliation(s)
- Vashundhra Sharma
- Laboratory of Organic & Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur, 302017, India
| | - Pradeep K Jaiswal
- Laboratory of Organic & Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur, 302017, India
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
| | - Manas Mathur
- Department of Advance Molecular Microbiology, Seminal Applied Sciences Pvt. Ltd., Jaipur, 302015, India
| | - Ajit K Swami
- Department of Advance Molecular Microbiology, Seminal Applied Sciences Pvt. Ltd., Jaipur, 302015, India
| | - Dharmendra K Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
| | - Sandeep Chaudhary
- Laboratory of Organic & Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur, 302017, India
| |
Collapse
|
9
|
Correlations between Antioxidant Activity and Alkaloids and Phenols of Maca (Lepidium meyenii). J FOOD QUALITY 2017. [DOI: 10.1155/2017/3185945] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The antioxidant capacity of maca has been considered to be the basis for other bioactivities, and revealing the active antioxidant compounds would help to elucidate a variety of bioactive compounds. In this study, the correlation between the antioxidant activity of maca and secondary metabolites, including ferric reducing antioxidant potential (FRAP), hydroxyl radical scavenging ability (HRSA), lipid peroxidation inhibition ability (LPIA), total phenolic contents (TPCs), total alkaloid contents (TACs), and total sterol contents (TSCs), was investigated by measuring. Chloroform was selected to be an efficient extraction solvent for antioxidant compounds in maca by polarity fractions test. The results showed that TPC exhibited significant linear correlations (P<0.05) to FRAP and LPIA, while TAC had significant linear correlations (P<0.05) to FRAP, HRSA, and LPIA. These results suggested that alkaloids and phenols were the most important substances for the antioxidation of maca, of which the antioxidant effect of alkaloids seemed to be higher than that of phenols.
Collapse
|
10
|
Foureau E, Carqueijeiro I, Dugé de Bernonville T, Melin C, Lafontaine F, Besseau S, Lanoue A, Papon N, Oudin A, Glévarec G, Clastre M, St-Pierre B, Giglioli-Guivarc'h N, Courdavault V. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells. Methods Enzymol 2016; 576:167-206. [PMID: 27480687 DOI: 10.1016/bs.mie.2016.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform.
Collapse
Affiliation(s)
- E Foureau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - I Carqueijeiro
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - T Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - C Melin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - F Lafontaine
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - S Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - A Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - N Papon
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France
| | - A Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - G Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - M Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - B St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - N Giglioli-Guivarc'h
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - V Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
11
|
Lau YS, Ling WC, Murugan D, Mustafa MR. Boldine Ameliorates Vascular Oxidative Stress and Endothelial Dysfunction: Therapeutic Implication for Hypertension and Diabetes. J Cardiovasc Pharmacol 2015; 65:522-31. [PMID: 25469805 PMCID: PMC4461386 DOI: 10.1097/fjc.0000000000000185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
Abstract
Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, are a rich source of antioxidants. Boldine [(S)-2,9-dihydroxy-1,10-dimethoxy-aporphine], an aporphine alkaloid, is a potent antioxidant found in the leaves and bark of the Chilean boldo tree. Boldine has been extensively reported as a potent "natural" antioxidant and possesses several health-promoting properties like anti-inflammatory, antitumor promoting, antidiabetic, and cytoprotective. Boldine exhibited significant endothelial protective effect in animal models of hypertension and diabetes mellitus. In isolated thoracic aorta of spontaneously hypertensive rats, streptozotocin-induced diabetic rats, and db/db mice, repeated treatment of boldine significantly improved the attenuated acetylcholine-induced endothelium-dependent relaxations. The endothelial protective role of boldine correlated with increased nitric oxide levels and reduction of vascular reactive oxygen species via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase subunits, p47 and nicotinamide adenine dinucleotide phosphate oxidase 2, and angiotensin II-induced bone morphogenetic protein-4 oxidative stress cascade with downregulation of angiotensin II type 1 receptor and bone morphogenetic protein-4 expression. Taken together, it seems that boldine may exert protective effects on the endothelium via several mechanisms, including protecting nitric oxide from degradation by reactive oxygen species as in oxidative stress-related diseases. The present review supports a complimentary therapeutic role of the phytochemical, boldine, against endothelial dysfunctions associated with hypertension and diabetes mellitus by interfering with the oxidative stress-mediated signaling pathway.
Collapse
Affiliation(s)
- Yeh Siiang Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
12
|
Lau YS, Tian XY, Mustafa MR, Murugan D, Liu J, Zhang Y, Lau CW, Huang Y. Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4-oxidative stress cascade. Br J Pharmacol 2014; 170:1190-8. [PMID: 23992296 DOI: 10.1111/bph.12350] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/29/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Boldine is a potent natural antioxidant present in the leaves and bark of the Chilean boldo tree. Here we assessed the protective effects of boldine on endothelium in a range of models of diabetes, ex vivo and in vitro. EXPERIMENTAL APPROACH Vascular reactivity was studied in mouse aortas from db/db diabetic and normal mice. Reactive oxygen species (ROS) production, angiotensin AT1 receptor localization and protein expression of oxidative stress markers in the vascular wall were evaluated by dihydroethidium fluorescence, lucigenin enhanced-chemiluminescence, immunohistochemistry and Western blot respectively. Primary cultures of mouse aortic endothelial cells, exposed to high concentrations of glucose (30 mmol L(-1) ) were also used. KEY RESULTS Oral treatment (20 mg kg(-1) day(-1) , 7 days) or incubation in vitro with boldine (1 μmol L(-1) , 12 h) enhanced endothelium-dependent aortic relaxations of db/db mice. Boldine reversed impaired relaxations induced by high glucose or angiotensin II (Ang II) in non-diabetic mouse aortas while it reduced the overproduction of ROS and increased phosphorylation of eNOS in db/db mouse aortas. Elevated expression of oxidative stress markers (bone morphogenic protein 4 (BMP4), nitrotyrosine and AT1 receptors) were reduced in boldine-treated db/db mouse aortas. Ang II-stimulated BMP4 expression was inhibited by boldine, tempol, noggin or losartan. Boldine inhibited high glucose-stimulated ROS production and restored the decreased phosphorylation of eNOS in mouse aortic endothelial cells in culture. CONCLUSIONS AND IMPLICATIONS Boldine reduced oxidative stress and improved endothelium-dependent relaxation in aortas of diabetic mice largely through inhibiting ROS overproduction associated with Ang II-mediated BMP4-dependent mechanisms.
Collapse
Affiliation(s)
- Yeh Siang Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity. Molecules 2014; 19:15866-90. [PMID: 25271427 PMCID: PMC6271642 DOI: 10.3390/molecules191015866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022] Open
Abstract
A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·−) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.
Collapse
|
14
|
Muthna D, Cmielova J, Tomsik P, Rezacova M. Boldine and Related Aporphines: From Antioxidant to Antiproliferative Properties. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plant and folk medicine represent nowadays a source of either new therapeutic substances or substrates for drug synthesis. One such promising group for possible further exploitation is the family of aporphine alkaloids containing boldine and related compounds. In this mini-review we focus on boldine and its newly described effects, which predominantly arise from its antioxidant properties. Moreover, we try to compare its antiproliferative properties with other better known members of the aporphine group.
Collapse
Affiliation(s)
- Darina Muthna
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 500 38, Czech Republic
| | - Jana Cmielova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 500 38, Czech Republic
| | - Pavel Tomsik
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 500 38, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 500 38, Czech Republic
| |
Collapse
|
15
|
Lei Y, Tan J, Wink M, Ma Y, Li N, Su G. An isoquinoline alkaloid from the Chinese herbal plant Corydalis yanhusuo W.T. Wang inhibits P-glycoprotein and multidrug resistance-associate protein 1. Food Chem 2012. [PMID: 23194502 DOI: 10.1016/j.foodchem.2012.09.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Overexpression of P-glycoprotein (P-gp) and multidrug resistance-associate protein 1 (MRP1) is a major mechanism leading to multidrug resistance (MDR) of cancer cells. These transporters expel anti-cancer drugs and greatly impair therapeutic efficacy of chemotherapy. A Chinese herbal plant Yanhusuo (Corydalis yanhusuo W.T. Wang, YHS) is frequently used in functional food and traditional Chinese medicine to improve the efficacy of chemotherapy. The objective of this work was to study effects of glaucine, an alkaloid component of YHS, on P-gp and MRP1 in resistant cancer cells. The resistant cancer cell line, MCF-7/ADR and corresponding parental sensitive cells were employed to determine reversal properties of glaucine. Glaucine inhibits P-gp and MRP1-mediated efflux and activates ATPase activities of the transporters, indicating that it is a substrate and inhibits P-gp and MRP1 competitively. Furthermore, glaucine suppresses expression of ABC transporter genes. It reverses the resistance of MCF-7/ADR to adriamycin and mitoxantrone effectively.
Collapse
Affiliation(s)
- Yu Lei
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
16
|
Amino acid derivatives of aporphinic alkaloid glaucine and their antioxidant activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:267-8. [PMID: 19400187 DOI: 10.1007/978-0-387-73657-0_120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Lazarova M, Dimitrov K. Selective Recovery of Alkaloids fromGlaucium Flavum CrantzUsing Integrated Process Extraction-Pertraction. SEP SCI TECHNOL 2009. [DOI: 10.1080/01496390802391197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Wang SJ, Chou SH, Kuo YC, Chou SSP, Tzeng WF, Leu JY, Huang RFS, Liew YF. HDT-1, a new synthetic compound, inhibits glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Acta Pharmacol Sin 2008; 29:1289-95. [PMID: 18954522 DOI: 10.1111/j.1745-7254.2008.00882.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Excessive glutamate release has been proposed to be involved in the pathogenesis of several neurological diseases. In this study, we investigated the effect of HDT-1 (3, 4, 4a, 5, 8, 8a-hexahydro-6,7-dimethyl-4a-(phenylsulfonyl)- 2-tosylisoquinolin-1(2H)-one), a novel synthetic compound, on glutamate release in rat cerebrocortical nerve terminals and explored the possible mechanism. METHODS The release of glutamate was evoked by the K+ channel blocker 4-aminopyridine (4-AP) or the high external [K+] and measured by one-line enzyme-coupled fluorometric assay. We also determined the loci at which HDT-1 impinges on cerebrocortical nerve terminals by using membrane potentialsensitive dye to assay nerve terminal excitability and depolarization, and Ca2+ indicator Fura-2 to monitor Ca2+ influx. RESULTS HDT-1 inhibited the release of glutamate evoked by 4-AP and KCl in a concentration-dependent manner. HDT-1 did not alter the resting synaptosomal membrane potential or 4-APevoked depolarization. Examination of the effect of HDT-1 on cytosolic [Ca2+] revealed that the diminution of glutamate release could be attributed to reduction in voltage-dependent Ca2+ influx. Consistent with this, the HDT-1-mediated inhibition of glutamate release was significantly prevented in synaptosomes pretreated with the N- and P/Q-type Ca2+ channel blocker omega-conotoxin MVIIC. CONCLUSION In rat cerebrocortical nerve terminals, HDT-1 inhibits glutamate release through a reduction of voltage-dependent Ca2+ channel activity and subsequent decrease of Ca2+ influx into nerve terminals, rather than any upstream effect on nerve terminal excitability.
Collapse
Affiliation(s)
- Su-jane Wang
- School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan 24205, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 2008; 4:564-73. [PMID: 18690217 DOI: 10.1038/nchembio.105] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/08/2008] [Indexed: 11/08/2022]
Abstract
The benzylisoquinoline alkaloids (BIAs) are a diverse class of metabolites that exhibit a broad range of pharmacological activities and are synthesized through plant biosynthetic pathways comprised of complex enzyme activities and regulatory strategies. We have engineered yeast to produce the key intermediate reticuline and downstream BIA metabolites from a commercially available substrate. An enzyme tuning strategy was implemented that identified activity differences between variants from different plants and determined optimal expression levels. By synthesizing both stereoisomer forms of reticuline and integrating enzyme activities from three plant sources and humans, we demonstrated the synthesis of metabolites in the sanguinarine/berberine and morphinan branches. We also demonstrated that a human P450 enzyme exhibits a novel activity in the conversion of (R)-reticuline to the morphinan alkaloid salutaridine. Our engineered microbial hosts offer access to a rich group of BIA molecules and associated activities that will be further expanded through synthetic chemistry and biology approaches.
Collapse
|
20
|
Cassels BK, Asencio M. Monoaminergic, Ion Channel and Enzyme Inhibitory Activities of Natural Aporphines, their Analogues and Derivatives. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aporphine alkaloids constitute the second-largest group of isoquinoline alkaloids. Nevertheless, only a relatively small number of natural aporphines and their derivatives have been studied from a pharmacological viewpoint. Here we review the pharmacological data available for these compounds as related to their dopaminergic, noradrenergic and serotonergic activities, and also some results pertaining to their effects on ion channels and enzymes.
Collapse
Affiliation(s)
- Bruce K. Cassels
- Department of Chemistry, Faculty of Sciences, and Millennium Institute for Cell Dynamics and Biotechnology, University of Chile, Casilla 653, Santiago, Chile
| | - Marcelo Asencio
- Department of Chemistry, Faculty of Sciences, and Millennium Institute for Cell Dynamics and Biotechnology, University of Chile, Casilla 653, Santiago, Chile
| |
Collapse
|
21
|
Lee JJ, Jin CM, Kim YK, Ryu SY, Lim SC, Lee MK. Effects of anonaine on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells. Molecules 2008; 13:475-87. [PMID: 18305432 PMCID: PMC6245076 DOI: 10.3390/molecules13020475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/16/2022] Open
Abstract
The effects of anonaine, an aporphine isoquinoline alkaloid, on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells were investigated. Anonaine at concentration ranges of 0.01-0.2 microM showed a significant inhibition of dopamine content at 24 h, with an IC(50) value of 0.05 microM. Anonaine at 0.05 microM inhibited tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) activities to 38.4-40.2% and 78.4-90.2% of control levels at 12-24 h and 3-6 h, respectively. TH activity was more influenced than AADC activity. Anonaine also decreased intracellular cyclic AMP levels, but not intracellular Ca(2+) concentrations. In addition, anonaine (0.05 microM) reduced L-DOPA (50 microM and 100 microM)-induced increases in dopamine content at 24 h. However, anonaine (0.05 microM) did not enhance L-DOPA (50 microM and 100 microM)-induced cell death after 24 h. These results suggest that anonaine inhibits dopamine biosynthesis by mainly reducing TH activity without aggravating L-DOPA-induced cytotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Jae Joon Lee
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 12, Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea; E-mail: (Jae Joon Lee); (Chun Mei Jin); (Sung Cil Lim)
| | - Chun Mei Jin
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 12, Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea; E-mail: (Jae Joon Lee); (Chun Mei Jin); (Sung Cil Lim)
| | - Young Kyoon Kim
- College of Forest Science, Kookmin University, Seoul 136-702, Korea; E-mail: (Young Kyoon Kim)
| | - Shi Yong Ryu
- Korea Research Institute of Chemical Technology, Taejeon 305-606, Korea; E-mail: (Shi Yong Ryu)
| | | | - Myung Koo Lee
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 12, Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea; E-mail: (Jae Joon Lee); (Chun Mei Jin); (Sung Cil Lim)
- Author to whom correspondence should be addressed. E-Mail: ; Tel: +82-43-262-2822, Fax: +82-43-276-2754
| |
Collapse
|
22
|
Jin CM, Lee JJ, Yang YJ, Kim YM, Kim YK, Ryu SY, Lee MK. Liriodenine inhibits dopamine biosynthesis and L-DOPA-induced dopamine content in PC12 cells. Arch Pharm Res 2007; 30:984-90. [PMID: 17879752 DOI: 10.1007/bf02993967] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory effects of liriodenine, an aporphine isoquinoline alkaloid, on dopamine biosynthesis and L-DOPA-induced dopamine content increases in PC12 cells were investigated. Treatment of PC12 cells with 5-10 microM liriodenine significantly decreased the intracellular dopamine content in a concentration-dependent manner (IC50 value, 8.4 microM). Liriodenine was not cytotoxic toward PC12 cells at concentrations up to 20 microM. Tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) activities were inhibited by 10 microM liriodenine to 20-70% and 10-14% of control levels at 3-12 h, respectively; TH activity was more influenced than AADC activity. The levels of TH mRNA, intracellular cyclic AMP and basal Ca2+ concentration were also decreased by 10 microM liriodenine. In addition, 10 microM liriodenine reduced L-DOPA (20-100 microM)-induced increases in dopamine content. However, 10 microM liriodenine resulted in a protective effect against L-DOPA (50-100 microM)-induced cytotoxicity. These results suggest that liriodenine regulates dopamine biosynthesis by partially reducing TH activity and TH gene expression and has protective effects against L-DOPA-induced cytotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Chun Mei Jin
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Silva E, Jopia M, Edwards AM, Lemp E, Fuente JR, Lissi E. Protective Effect of Boldo and Tea Infusions on the Visible Light-mediated Pro-oxidant Effects of Vitamin B2, Riboflavin¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750585peobat2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Iturriaga-Vásquez P, Pérez EG, Slater EY, Bermúdez I, Cassels BK. Aporphine metho salts as neuronal nicotinic acetylcholine receptor blockers. Bioorg Med Chem 2007; 15:3368-72. [PMID: 17391965 DOI: 10.1016/j.bmc.2007.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/24/2007] [Accepted: 03/08/2007] [Indexed: 11/26/2022]
Abstract
(S)-Aporphine metho salts with the 1,2,9,10 oxygenation pattern displaced radioligands from recombinant human alpha7 and alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChR) at low micromolar concentrations. The affinity of the nonphenolic glaucine methiodide (4) (vs [(3)H]cytisine) was the lowest at alpha4beta2 nAChR (K(i)=10 microM), and predicentrine methiodide (2) and xanthoplanine iodide (3), with free hydroxyl groups at C-2 or C-9, respectively, had the highest affinity at these receptors (K(i) approximately 1 microM), while the affinity of the diphenolic boldine methiodide (1) was intermediate between these values. At homomeric alpha7 nAChR, xanthoplanine had the highest affinity (K(i)=10 microM) vs [(125)I]alpha-bungarotoxin while the other three compounds displaced the radioligand with K(i) values between 15 and 21 microM. At 100 microM, all four compounds inhibited the responses of these receptors to EC(50) concentrations of ACh. The effects of xanthoplanine iodide (3) were studied in more detail. Xanthoplanine fully inhibited the EC(50) ACh responses of both alpha7 and alpha4beta2 nACh receptors with estimated IC(50) values of 9+/-3 microM (alpha7) and 5+/-0.8 microM (alpha4beta2).
Collapse
|
25
|
Speisky H, Rocco C, Carrasco C, Lissi EA, López-Alarcón C. Antioxidant screening of medicinal herbal teas. Phytother Res 2006; 20:462-7. [PMID: 16619353 DOI: 10.1002/ptr.1878] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Herbal tea consumption is deeply and widely rooted amongst South-American populations. In view of the involvement of oxygen- and nitrogen-reactive species in the ethiogenesis of several diseases, the antioxidant properties of some of the herbal teas most commonly consumed in the southern regions was assessed in vitro. Around one-third of the 13 examined herbs, displayed a substantially higher ability to scavenge ABTS(+.) radicals (TEAC assay), and to quench the pro-oxidant species, hypochlorite (HClO) and peroxynitrite (ONOO(-)). Amongst the tested herbs, teas prepared from Haplopappus baylahuen, Rosa moschata and Peumus boldus showed the highest TEAC and HClO-quenching activities. These herbs were around 5- to 7-fold more potent than the least active herbs. Based on the TEAC assay, 150 mL of tea prepared from H. baylahuen, R. moschata and P. boldus would be equivalent to around 200 mg of Trolox). Teas from H. baylahuen and P. boldus were also found to be particularly potent in quenching HClO. In the ONOO(-) assay, H. baylahuen and Buddleia globosa showed the highest activities. The results obtained suggest that the regular consumption of teas prepared from some of these herbs may be useful potentially to provide the organism with molecules capable of protecting the gastrointestinal tract against certain pathologically relevant oxidant species.
Collapse
Affiliation(s)
- Hernán Speisky
- Micronutrients Unit, Nutrition and Food Technology Institute and Faculty Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
26
|
Zhao Q, Zhao Y, Wang K. Antinociceptive and free radical scavenging activities of alkaloids isolated from Lindera angustifolia Chen. JOURNAL OF ETHNOPHARMACOLOGY 2006; 106:408-13. [PMID: 16513307 DOI: 10.1016/j.jep.2006.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Revised: 01/16/2006] [Accepted: 01/24/2006] [Indexed: 05/06/2023]
Abstract
Lindera angustifolia Chen is a folk medicine used for the treatment of contusions-induced swelling, rheumatic pains and bellyache in south and the middle part of China. Phytochemical studies showed that aporphine and benzyltetrahydroisoquinoline alkaloids are the characteristic constituents of this plant. In this study, we evaluated the antinociceptive and free radical scavenging properties of six aporphine and two benzyltetrahydroisoquinoline alkaloids isolated from the root of Lindera angustifolia. All alkaloids except magnocurarine exhibited remarkable radical scavenging effects (36-90% scavenging at 25-100microg/ml) in DPPH radical scavenging test, among them norisocorydine showed the hightest activity (SC(50): 14.1microg/ml). Antinociceptive activities were tested by using acetic acid-induced writhing and formalin test at dose of 20mg/kg. Norisocorydine exhibited the highest antinociceptive ability with 83.5% writhing inhibition. Boldine, norboldine showed significant antinociceptive activity with 76.3% and 74.6% writhing inhibition respectively. Indomethacin was used as positive control, which showed 67.8% writhing inhibition at dose of 10mg/kg. Most of the compounds, except N-ethoxycarbonyllaurotetanine and magnocurarine, could significantly inhibit the phase I reaction (P<0.01), and all of them inhibited the phase II reaction (P<0.001) in the formalin tests (indomethacin and morphine were used as positive drugs). The antinociceptive effects exhibited a structure-activity relationship similar to that of the free radical scavenging activities. Above results suggested that the alkaloids from the root of Lindera angustifolia possess both free radical scavenging and antinociceptive activities, and the antinociceptive activity seems to be related to the free radical scavenging effect.
Collapse
Affiliation(s)
- Qizhi Zhao
- Institute of Pharmacology and Toxicology, Academy for Military Medical Science, Beijing 100850, China
| | | | | |
Collapse
|
27
|
O'Brien P, Carrasco-Pozo C, Speisky H. Boldine and its antioxidant or health-promoting properties. Chem Biol Interact 2006; 159:1-17. [PMID: 16221469 DOI: 10.1016/j.cbi.2005.09.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/08/2005] [Accepted: 09/09/2005] [Indexed: 11/18/2022]
Abstract
The increasing recognition of the participation of free radical-mediated oxidative events in the initiation and/or progression of cardiovascular, tumoural, inflammatory and neurodegenerative disorders, has given rise to the search for new antioxidant molecules. An important source of such molecules has been plants for which there is an ethno-cultural base for health promotion. An important example of this is boldo (Peumus boldus Mol.), a chilean tree whose leaves have been traditionally employed in folk medicine and is now widely recognized as a herbal remedy by a number of pharmacopoeias. Boldo leaves are rich in several aporphine-like alkaloids, of which boldine is the most abundant one. Research conducted during the early 1990s led to the discovery that boldine is one of the most potent natural antioxidants. Prompted by the latter, a large and increasing number of studies emerged, which have focused on characterizing some of the pharmacological properties that may arise from the free radical-scavenging properties of boldine. The present review attempts to exhaustively cover and discuss such studies, placing particular attention on research conducted during the last decade. Mechanistic aspects and structure-activity data are discussed. The review encompasses pharmacological actions, which arise from its antioxidant properties (e.g., cyto-protective, anti-tumour promoting, anti-inflammatory, anti-diabetic and anti-atherogenic actions), as well as those that do not seem to be associated with such activity (e.g., vasorelaxing, anti-trypanocidal, immuno- and neuro-modulator, cholagogic and/or choleretic actions). Based on the pharmacological and toxicological data now available, further research needs and recommendations are suggested to define the actual potential of boldine for its use in humans.
Collapse
Affiliation(s)
- Peter O'Brien
- Graduate Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ont., Canada
| | | | | |
Collapse
|
28
|
Santanam N, Penumetcha M, Speisky H, Parthasarathy S. A novel alkaloid antioxidant, Boldine and synthetic antioxidant, reduced form of RU486, inhibit the oxidation of LDL in-vitro and atherosclerosis in vivo in LDLR(-/-) mice. Atherosclerosis 2004; 173:203-10. [PMID: 15064093 DOI: 10.1016/j.atherosclerosis.2003.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
A corollary to the oxidation hypothesis of atherosclerosis is that the consumption of antioxidants is beneficial. However, the literature is divided in support of this conclusion. In this study, Boldine, an alkaloid of Peumus boldus and reduced form of RU486, was tested for their antioxidant potency both in, in vitro oxidation system and in mouse models. Boldine decreased the ex-vivo oxidation of low-density lipoprotein (LDL). Two different in vivo studies were performed to study the effect of these compounds on the atherosclerotic lesion formation in LDLR(-/-) mice. In study I, three groups of LDLR(-/-) mice (N = 12 each) were fed an atherogenic diet. Group 1 was given vehicle and group 2 and 3 were given 1mg of Boldine or Red RU per day for 12 weeks. In study II, two groups of LDLR(-/-) mice N = 10 each) were fed an atherogenic diet. Group 1 was given vehicle and group 2 was given 5mg of Boldine per day. The results indicated that there was a decrease in lesion formation reaching a 40% reduction due to Boldine and 45% reduction by Red RU compared to controls. The in vivo tolerance of Boldine in humans (has been used as an herbal medicine in other diseases) should make it an attractive alternative to Vitamin E.
Collapse
Affiliation(s)
- N Santanam
- Department of Pathology, LSU Health Science Center, 533 Bolivar St, New Oreleans, LA 70112, USA
| | | | | | | |
Collapse
|
29
|
del Valle J, Godoy C, Asencio M, Aguilera J. Recovery of antioxidants from boldo (Peumus boldus M.) by conventional and supercritical CO2 extraction. Food Res Int 2004. [DOI: 10.1016/j.foodres.2003.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Loghin F, Chagraoui A, Asencio M, Comoy E, Speisky H, Cassels BK, Protais P. Effects of some antioxidative aporphine derivatives on striatal dopaminergic transmission and on MPTP-induced striatal dopamine depletion in B6CBA mice. Eur J Pharm Sci 2003; 18:133-40. [PMID: 12594006 DOI: 10.1016/s0928-0987(02)00253-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
(S)-(+)-boldine, an aporphine alkaloid displaying antioxidative and dopaminergic properties, and six of its derivatives (glaucine, 3-bromoboldine, 3-iodoboldine, 8-aminoboldine, 8-nitrosoboldine and 2,9-O,O'-dipivaloylboldine) were tested for these properties in comparison with their parent compound. All the tested compounds displayed in vitro antioxidative properties equal to or slightly weaker than those of boldine, and equal to or stronger than (+/-)-6-hydroxy-2,5,7,8,-tetramethylchromane-2-carboxylic acid (Trolox), a water-soluble vitamin E analogue, used as a reference compound. All the aporphine compounds tested displaced [3H]SCH 23390 and [3H]raclopride from their specific binding sites in rat striatum. When tested on dopamine (DA) metabolism in the striatum of B6CBA mice, all the compounds, except 8-aminoboldine, increased striatal levels of DOPAC and HVA, and the HVA/DA ratio, indicating that they cross the blood-brain barrier and that they seem to act as dopamine antagonists in vivo. B6CBA mice were sensitive to the neurotoxic action of MPTP on dopaminergic neurons as indicated by the strongly decreased striatal levels of DA, DOPAC and HVA following administration of MPTP (20 mg/kg, i.p.). Among these aporphine derivatives, only 3-bromoboldine was able to reduce the MPTP-induced decrease of striatal levels of DA and DOPAC, whereas (R)-apomorphine (5 mg/kg, s.c.) and acetylsalicylic acid (100 mg/kg, i.p.), used as reference compounds, were very active. These data suggest that potent in vitro antioxidative properties and the ability to cross the blood-brain barrier are not sufficient criteria to predict the inhibition of neuronal degeneration induced by MPTP.
Collapse
Affiliation(s)
- Felicia Loghin
- Toxicology Laboratory, Faculty of Pharmacy, University of Medicine and Pharmacy, 3400 Cluj-Napoca, Romania
| | | | | | | | | | | | | |
Collapse
|
31
|
H. Perni R, R. Baxendale I, D. Davidson T, V. Ley S. Enantioselective Synthesis of the Tetrahydrobenzylisoquinoline Alkaloid (-)-Norarmepavine Using Polymer Supported Reagents. HETEROCYCLES 2003. [DOI: 10.3987/com-03-9892] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Silva E, Jopia M, Edwards AM, Lemp E, De la Fuente JR, Lissi E. Protective effect of Boldo and tea infusions on the visible light-mediated pro-oxidant effects of vitamin B2, riboflavin. Photochem Photobiol 2002; 75:585-90. [PMID: 12081319 DOI: 10.1562/0031-8655(2002)075<0585:peobat>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of Boldo and black tea infusions on the pro-oxidant effects of vitamin B2, riboflavin (RF), when exposed to the action of visible light was studied. The amounts of antioxidants present in Boldo and tea infusions were evaluated by a procedure based on the bleaching of preformed 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cations and were expressed as 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid equivalent concentrations. The quenching rate constants of singlet oxygen (1O2; [kq]Boldo = 6.0 x 10(7) M(-1) s(-1) and [kq]Tea = 3.2 x 10(7) M(-1) s(-1)) and triplet RF (3RF; [3RFkq]Boldo = 10 x 10(8) M(-1) s(-1) and [3RFkq]TEA = 3.2 x 10(8) M(-1) s(-1)) with Boldo and tea were determined by flash photolysis. These data allow a quantitative interpretation of the results obtained. Our data suggest that most of the oxygen consumption observed in the photolysis of RF in the presence of tea and Boldo infusions is caused by 1O2 reactions. The oxygen consumption quantum yield is considerably smaller than the fraction of RF triplets trapped by the additives (AH) present in the infusion, indicating that their interaction with 3RF does not lead to chemical reactions or that the AH*+ radical ions initially formed participate in secondary processes that do not consume oxygen. Boldo and tea infusions have a significant protective effect when a system containing RF and tryptophan (Trp) is exposed to visible light, not only by quenching the 1O2 and interfering with the Type-I mechanism but also by repairing the damage to Trp molecules associated with the latter mechanism.
Collapse
Affiliation(s)
- E Silva
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago.
| | | | | | | | | | | |
Collapse
|
33
|
Jiménez I, Garrido A, Bannach R, Gotteland M, Speisky H. Protective effects of boldine against free radical-induced erythrocyte lysis. Phytother Res 2000; 14:339-43. [PMID: 10925398 DOI: 10.1002/1099-1573(200008)14:5<339::aid-ptr585>3.0.co;2-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Boldine, an aporphine alkaloid extracted from the leaves and bark of boldo (Peumus boldus Mol.), has been shown to exhibit strong free-radical scavenger and antioxidant properties. Here, we report the in vitro ability of boldine to protect intact red cells against the haemolytic damage induced by the free radical initiator 2, 2'-azobis-(2-amidinopropane) (AAPH). Boldine concentration-dependently prevented the AAPH-induced leakage of haemoglobin into the extracellular medium. Substantial and similar cyto-protective effects of boldine were observed whether the antioxidant was added 1 h prior to, or simultaneously with, the azo-compound. The delayed addition of boldine, by 1 h relative to AAPH, diminished but did not abolish its cytoprotective effect. However, negligible effects of boldine were observed after its addition to erythrocytes previously incubated with AAPH for 2 h. The data presented demonstrate that, in addition to its well-established antioxidant effects, boldine also displays time-dependently strong cytoprotective properties against chemically induced haemolytic damage.
Collapse
Affiliation(s)
- I Jiménez
- Laboratory of Lipids and Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago
| | | | | | | | | |
Collapse
|
34
|
Ondo W, Hunter C, Almaguer M, Jankovic J. A novel sublingual apomorphine treatment for patients with fluctuating Parkinson's disease. Mov Disord 1999; 14:664-8. [PMID: 10435505 DOI: 10.1002/1531-8257(199907)14:4<664::aid-mds1017>3.0.co;2-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We tested a novel preparation of a sublingual apomorphine hydrochloride tablet (APO) in 10 patients with advanced Parkinson's disease complicated by motor fluctuations. After a dose titration, patients took either 40 mg APO three times per day alternating with levodopa doses (eight patients) or six doses of 20 mg APO taken concurrently with levodopa doses (two patients) for 3 months. Assessments included timed tapping and ambulation tests, Unified Parkinson's Disease Rating Scale (UPDRS), and patient diaries. Tapping speed while taking only APO (12 hours after stopping levodopa) was faster than while taking only levodopa (p <0.05). The daily levodopa dose decreased by 32.1% (p <0.01), yet the total "on" time increased from 73.5% +/- 10.2% to 81.5% +/- 7.5% of the day (p <0.01) after starting APO. "On" UPDRS part II scores (p <0.05) and "on" UPDRS part III (motor examination) scores (p <0.05) also improved. Adverse events such as nausea, orthostatic hypotension, and disagreeable taste did not limit the dose of APO in any case. The short-term benefit and tolerability demonstrated in this study warrant further study of this new APO preparation.
Collapse
Affiliation(s)
- W Ondo
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
35
|
Leitão GG, Simas NK, Soares SS, de Brito AP, Claros BM, Brito TB, Delle Monache F. Chemistry and pharmacology of Monimiaceae: a special focus on Siparuna and Mollinedia. JOURNAL OF ETHNOPHARMACOLOGY 1999; 65:87-102. [PMID: 10465659 DOI: 10.1016/s0378-8741(98)00233-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The chemistry and pharmacology of species of the family Monimiaceae are reviewed, with special attention given to the genera Mollinedia and Siparuna, the two most important and representative in Brazil. The isolation of benzylisoquinoline alkaloids and kaempferol derivatives from Siparuna apiosyce is reported, as well as the isolation of aporphines from the fruits of Siparuna arianeae. Cinnamic acid derivatives and a gamma-lactone were isolated from Mollinedia gilgiana and Mollinedia marliae.
Collapse
Affiliation(s)
- G G Leitão
- Universidade Federal do Rio de Janeiro, Núcleo de Pesquisas de Produtos Naturais, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Dajas-Bailador FA, Asencio M, Bonilla C, Scorza MC, Echeverry C, Reyes-Parada M, Silveira R, Protais P, Russell G, Cassels BK, Dajas F. Dopaminergic pharmacology and antioxidant properties of pukateine, a natural product lead for the design of agents increasing dopamine neurotransmission. GENERAL PHARMACOLOGY 1999; 32:373-9. [PMID: 10211594 DOI: 10.1016/s0306-3623(98)00210-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dopaminergic and antioxidant properties of pukateine [(R)-11-hydroxy-1,2-methylenedioxyaporphine, PUK], a natural aporphine derivative, were analyzed in the rat central nervous system. At dopamine (DA) D1 ([3H]-SCH 23390) and D2 ([3H]-raclopride) binding sites, PUK showed IC50 values in the submicromolar range (0.4 and 0.6 microM, respectively). When the uptake of tritiated dopamine was assayed by using a synaptosomal preparation, PUK showed an IC50 = 46 microM. In 6-hydroxydopamine unilaterally denervated rats, PUK (8 mg/kg but not 4 mg/kg) elicited a significant contralateral circling, a behavior classically associated with a dopaminergic agonist action. When perfused through a microdialysis probe inserted into the striatum, PUK (340 microM) induced a significant increase in dopamine levels. In vitro experiments with a crude rat brain mitochondrial suspension showed that PUK did not affect monoamine oxidase activities, at concentrations as high as 100 microM. PUK potently (IC50 = 15 microM) and dose-dependently inhibited the basal lipid peroxidation of a rat brain membrane preparation. As a whole, PUK showed a unique profile of action, comprising an increase in extracellular DA, an agonist-like interaction with DA receptors, and antioxidant activity. Thus, PUK may be taken as a lead compound for the development of novel therapeutic strategies for Parkinson disease.
Collapse
Affiliation(s)
- F A Dajas-Bailador
- Division of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kogure K, Goto S, Abe K, Ohiwa C, Akasu M, Terada H. Potent antiperoxidation activity of the bisbenzylisoquinoline alkaloid cepharanthine: the amine moiety is responsible for its pH-dependent radical scavenge activity. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:133-42. [PMID: 9878710 DOI: 10.1016/s0304-4165(98)00146-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bisbenzylisoquinoline alkaloid cepharanthine, which has been considered to exhibit antiperoxidation activity due to its membrane stabilizing effect, was found to scavenge radicals such as .OH and DPPH (1,1-diphenyl-2-picrylhydrazyl) in solution, and to inhibit lipid peroxidation in mitochondria and liposomes by Fe2+/ADP. The antiperoxidation activity of cepharanthine in rat liver mitochondria initiated by Fe2+/ADP at pH 7.4 was much greater than that of alpha-tocopherol, its half-inhibitory concentration being about 23 microM. However, cepharanthine was effective only at neutral pH values such as pH 7.4, not in a moderately acidic pH region below pH 6.5. Accordingly, the neutral form of the deprotonated amine moiety in the tetrahydroisoquinoline ring is concluded to be responsible for the radical scavenging activity of cepharanthine. There are two amine moieties in the cepharanthine molecule, but we specified the effective amine moiety from the antiperoxidation activities of the imine analogs of cepharanthine.
Collapse
Affiliation(s)
- K Kogure
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima, 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Asencio M, Delaquerrière B, Cassels BK, Speisky H, Comoy E, Protais P. Biochemical and behavioral effects of boldine and glaucine on dopamine systems. Pharmacol Biochem Behav 1999; 62:7-13. [PMID: 9972839 DOI: 10.1016/s0091-3057(98)00096-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aporphine alkaloids boldine and glaucine have been reported to show "neuroleptic-like" actions in mice, suggesting that they may act as dopamine antagonists. We have found that in vitro boldine displaces specific striatal [3H]-SCH 23390 binding with IC50 = 0.4 microM and [3H]-raclopride binding with IC50 = 0.5 microM, while the affinities of glaucine at the same sites are an order of magnitude lower. In vivo, however, 40 mg/kg boldine (i.p.) did not modify specific striatal [3H]-raclopride binding and only decreased [3H]-SCH 23390 binding by 25%. On the other hand, 40 mg/kg glaucine (i.p.) displaced both radioligands by about 50%. Behaviors (climbing, sniffing, grooming) elicited in mice by apomorphine (0.75 mg/kg s.c.) were not modified by boldine at doses up to 40 mg/kg (i.p.) but were almost completely abolished by 40 mg/kg glaucine (i.p.). In the apomorphine-induced (0.1 mg/kg s.c.) rat yawning and penile erection model, boldine and glaucine appeared to be similarly effective, inhibiting both behaviors by more than 50% at 40 mg/kg (i.p.). Boldine and glaucine, injected i.p. at doses up to 40 mg/kg, were poor modifiers of dopamine metabolism in mouse and rat striatum. These data suggest that boldine does not display effective central dopaminergic antagonist activities in vivo in spite of its good binding affinity at D1- and D2-like receptors, and that glaucine, although less effective in vitro, does appear to exhibit some antidopaminergic properties in vivo.
Collapse
Affiliation(s)
- M Asencio
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago
| | | | | | | | | | | |
Collapse
|
39
|
Bannach R, Valenzuela A, Cassels BK, Nunez-Vergara LJ, Speisky H. Cytoprotective and antioxidant effects of boldine on tert-butyl hydroperoxide-induced damage to isolated hepatocytes. Cell Biol Toxicol 1996; 12:89-100. [PMID: 8738478 DOI: 10.1007/bf00143359] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Boldine, an aporphine alkaloid, was recently shown by us to exhibit potent antioxidant properties. We report here that boldine concentration-dependently inhibited the peroxidative (accumulation of thiobarbituric acid reactive substances) and lytic damage (trypan blue exclusion and lactate dehydrogenase leakage) to isolated rat hepatocytes induced by tert-butyl hydroperoxide (TBOOH). Boldine (200 micromol/L) fully cytoprotected and completely prevented the peroxidation induced by TBOOH at concentrations equal to or lower than 0.87 mmol/L. However, at a peroxide concentration of 0.91 mmol/L, although boldine completely inhibited lipid peroxidation it largely failed to afford cytoprotection against TBOOH. TBOOH alone (0.83 mmol/L) caused an early (within 60 s) sudden decline of reduced glutathione (by 50%) and an equivalent increase in the levels of oxidized glutathione. Neither of these effects was prevented by the simultaneous addition of a cytoprotective and antioxidant concentration of boldine (200 micromol/L). The delayed addition of boldine to the suspension (after 10 or 20 min), while effectively blocking any further increase in thiobarbituric acid reactive substances, totally failed to prevent the peroxide-induced loss in cell viability. Conversely, preincubation of the hepatocytes with boldine for 150 min (at which time no boldine could be detected in either intra- or extracellular spaces) prevented lipid peroxidation and was as effective in protecting the cells against the damage caused by the subsequent addition of TBOOH as the simultaneous addition of boldine and TBOOH to hepatocytes preincubated for 150 min under control conditions.
Collapse
Affiliation(s)
- R Bannach
- Unidad de Bioquímica Farmacológica y Lipidos, Instituto de Nurtición y Tecnología de los Alimentos, Santiago, Chile
| | | | | | | | | |
Collapse
|
40
|
Tomlinson AE, Poyner DR. Multiple receptors for calcitonin gene-related peptide and amylin on guinea-pig ileum and vas deferens. Br J Pharmacol 1996; 117:1362-8. [PMID: 8882637 PMCID: PMC1909800 DOI: 10.1111/j.1476-5381.1996.tb16737.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The responses of the electrically stimulated guinea-pig ileum and vas deferens to human and rat calcitonin gene-related peptide (CGRP) and amylin were investigated. 2. The inhibition of contraction of the ileum produced by human alpha CGRP was antagonized by human alpha CGRP8-37 (apparent pA2 estimated at 7.15 +/- 0.23) > human alpha CGRP19-37 (apparent pA2 estimated as 6.67 +/- 0.33) > [Tyr0]-human alpha CGRP28-37. The amylin antagonist, AC187, was three fold less potent than CGRP8-37 in antagonizing human alpha CGRP. 3. Both human beta- and rat alpha CGRP inhibited contractions of the ileum, but this was less sensitive to inhibition by CGRP8-37 than the effect of human alpha CGRP. However, CGRP19-37 was twenty times more effective in inhibiting the response to rat alpha CGRP (apparent pA2 estimated as 8.0 +/- 0.1) compared to human alpha CGRP. 4. Rat amylin inhibited contractions in about 10% of ileal preparations; this effect was not antagonized by any CGRP fragment. Human amylin had no action on this preparation. 5. Both human and rat alpha CGRP inhibited electrically stimulated contractions of the vas deferens, which were not antagonized by 3 microM CGRP8-37 or 10 microM AC187. 6. Rat amylin inhibited the stimulated contractions of the vas deferens (EC50 = 77 +/- 9 nM); human amylin was less potent (EC50 = 213 +/- 22 nM). The response to rat amylin was antagonized by 10 microM CGRP8-37 (EC50 = 242 +/- 25 nM) and 10 microM AC187 (EC50 = 610 +/- 22 nM). 7. It is concluded that human alpha CGRP relaxes the guinea-pig ileum via CGRP1-like receptors, but that human beta CGRP and rat alpha CGRP may use additional receptors. These are distinct CGRP2-like and amylin receptors on guinea-pig vas deferens.
Collapse
Affiliation(s)
- A E Tomlinson
- Department of Pharmaceutical and Biological Science, Aston University, Birmingham
| | | |
Collapse
|