1
|
Zhang Y, Liang C, Weng M, Zhang Z, Zhang L, Jiang X, Yue F. Intestinal alterations of mucosal barrier integrity, motility and enteric nerve in cynomolgus monkey model of Parkinson's disease. Exp Neurol 2025; 389:115256. [PMID: 40222722 DOI: 10.1016/j.expneurol.2025.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The most prevalent non-motor symptoms in individuals with Parkinson's disease (PD) such as constipation and bloating that significantly impact patients' quality of life. However, the pathophysiological mechanisms underlying these symptoms remain unclear. PD model with typical and stable symptoms was induced by individualized dosing of MPTP with Kurlan score increased to 10 or above and remained steady for three months or more. TH-positive neurons in the injured substantia nigra (SN) of the brain of PD monkeys showed up to 83.95 % reduction. Histopathological examination indicated severe damage to both enteric nerve and TH neurons, along with significant disruption of mucosal structure, intestinal barrier integrity and motility in PD monkeys across all four intestinal segments, including the duodenum, ileum, transverse colon, and rectum. The association between dopaminergic neuronal deficits in SN and these above mentioned intestinal disorders, that might be attributed to the abnormal regulation of gastrointestinal function due to the breakdown of the integrity of the nigrostriatal dopaminergic nervous system. Therefore, the abnormal alterations found in gut of PD monkeys and its triggered possible secondary pathophysiological cascade reactions might be a potential mechanism underlying the presence of constipation and other intestinal symptoms observed in PD patients. These findings in this study provide a valuable scientific basis for investigating the pathogenesis of gastrointestinal symptoms in PD patients and potential therapeutic approaches. (The graphical abstract is by Figdraw).
Collapse
Affiliation(s)
- Yuling Zhang
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Caiyan Liang
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Miaorong Weng
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | | | - Lin Zhang
- School of Medicine, Guangxi University, Nanning 530003, China
| | - Xue Jiang
- School of Medicine, Guangxi University, Nanning 530003, China.
| | - Feng Yue
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Chatterjee D, Kurup D, Smeyne RJ. Environmental exposures and familial background alter the induction of neuropathology and inflammation after SARS-CoV-2 infection. NPJ Parkinsons Dis 2025; 11:86. [PMID: 40268936 PMCID: PMC12019605 DOI: 10.1038/s41531-025-00925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Post-infection sequela of several viruses have been linked with Parkinson's disease (PD). Here, we investigated whether mice infected with SARS-CoV-2 alone or in combination with two putative Parkinsonian toxins, MPTP and paraquat, increased the susceptibility to develop Parkinsonian pathology. We also examined if G2019S LRRK2 mice had any change in sensitivity to SARS-CoV-2 as well as if vaccination against this virus altered any neuropathology. Infection with WA-1/2020 or Omicron B1.1.529 strains sensitized both WT and G2019S LRRK2 mice to the neuropathological effects of a subtoxic exposure to MPTP, but not paraquat. These neuropathologies were rescued in WT mice vaccinated with mRNA- or protein-based SARS-CoV-2 vaccines. However, G2019S LRRK2 mutant mice were only protected with the protein-based vaccine. These results highlight the role of both environmental exposures and familial background on the development of Parkinsonian pathology secondary to viral infection and the benefit of vaccines in reducing these risks.
Collapse
Affiliation(s)
- Debotri Chatterjee
- Department of Neurobiology, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA, 19107, USA
| | - Drishya Kurup
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA, 19107, USA
- Jefferson Center for Vaccines and Pandemic Preparedness, 233 S 10th Street, Philadelphia, PA, 19107, USA
| | - Richard Jay Smeyne
- Department of Neurobiology, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Tang X, Xue J, Chen R, Xing J, Lu X, Cui L. Behavioral, biochemical, and molecular characterization of MPTP/p-intoxicated mice. Exp Neurol 2025; 386:115168. [PMID: 39884331 DOI: 10.1016/j.expneurol.2025.115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model remains the most extensively utilized animal model for Parkinson's disease (PD). Treatment regimens are classified into three categories: acute, subacute, and chronic. Among these, the MPTP with probenecid (MPTP/p)-induced chronic mouse model is favored for its capacity to sustain long-term striatal dopamine depletion, though the resultant behavioral, biochemical, and molecular alterations require further validation. To systematically evaluate these abnormalities in the chronic MPTP/p mouse model, we conducted observations over a 12-month period. The results showed that these mice displayed reduced locomotor activity, minor gait abnormalities, and anxiety-like behavior within one week following the final MPTP/p injection. No significant motor disorders were observed from 1 to 12 months post-final injection, with exception of increased exploratory activity in the elevated plus maze from 2 to 8 months. One month after the final MPTP/p injection, there was a significant decrease in dopaminergic neurons in the ventral midbrain, which partially recovered after 12 months. A single MPTP/p injection temporarily increased striatal DA and its metabolites. Proteomics of ventral midbrain tissue indicated that the recovery of dopaminergic neurons might be linked to the upregulation of proteins like Bone morphogenetic protein type II receptor (Bmpr2) and Glutathione S-transferase mu 2 (Gstm2) once MPTP toxicity was removed. Our study indicated that the optimal time to evaluate behavioral abnormalities in chronic MPTP/p mouse model is within one week after modeling. Moreover, the upregulated expression of related proteins, such as Bmpr2 and Gstm2, in the ventral midbrain of the model mice after modeling may represent important targets for the future treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Xiaolu Tang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Human Anatomy, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jinhua Xue
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Rui Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jiawei Xing
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaying Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; The Marine Biomedical Research Institute of Guangdong, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524000, China.
| |
Collapse
|
4
|
Ning J, Glausier JR, Warshamanage R, Gunther-Cummins L, Burnley T, Palmer CM, Gonzalez-Burgos G, Miyamae T, Wang J, Carlisle D, Hsieh C, Schmelzer T, Buck SA, Franks J, Hampton CM, Stauffer WR, Lewis DA, Friedlander RM, Macaluso FP, Winn M, Marko M, Freyberg Z. Uncovering synaptic and cellular nanoarchitecture of brain tissue via seamless in situ trimming and milling for cryo-electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642162. [PMID: 40161621 PMCID: PMC11952431 DOI: 10.1101/2025.03.09.642162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cell-cell communication underlies all emergent properties of the brain, including cognition, learning and memory. The physical basis for these communications is the synapse, a multi-component structure requiring coordinated interactions between diverse cell types. However, many aspects of three-dimensional (3D) synaptic organization remain poorly understood. Here, we developed an approach, seamless in situ trimming and milling (SISTM), to reliably fabricate sufficiently thin lamellae for mapping of the 3D nanoarchitecture of synapses in mouse, monkey and human brain tissue under near-native conditions via cryo-electron tomography (cryo-ET). We validated SISTM in a mouse model of Huntington's disease, demonstrating distinct 3D alterations to synaptic vesicles and mitochondria. By successfully applying SISTM to macaque brain, we described the 3D architecture of a tripartite synapse within the cortex. Subtomogram averaging (STA) enabled spatial mapping of astrocyte-neuron contacts within the tripartite synapse, revealing neurexin-neuroligin complexes as potential constituents that tether the two cell types. Finally, we showed that the defining features of synaptic nanoarchitecture were conserved across species and evident in human brain tissue obtained postmortem. Combining SISTM with cryo-ET and STA is a starting point for a new understanding of brain organization, disease-induced structural alterations and the development of rational, structure-guided therapeutics.
Collapse
Affiliation(s)
- Jiying Ning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rangana Warshamanage
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, UK
| | | | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Colin M. Palmer
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, UK
| | | | - Takeaki Miyamae
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jing Wang
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR, 97124, USA
| | - Diane Carlisle
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Chyongere Hsieh
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | - Silas A. Buck
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cheri M. Hampton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- BlueHalo, Dayton, OH 45432, USA
| | - William R. Stauffer
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert M. Friedlander
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Frank P. Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Michael Marko
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Nie S, Li B, Wang M, Chen Z, Ren J, Li Z, Xu X, Qian Z, Xie Z, Han J, Zhang Z, Zhang Z, Zhu Y, Chen Z, Yang X, Ye K. Sox6 and ALDH1A1 Truncation by Asparagine Endopeptidase Defines Selective Neuronal Vulnerability in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409477. [PMID: 39573918 PMCID: PMC11727119 DOI: 10.1002/advs.202409477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/24/2024] [Indexed: 01/14/2025]
Abstract
Dopaminergic neurons in the substantia nigra pars compacta (SNpc) demonstrate regionally selective susceptibility in Parkinson's disease (PD) compared to those in the ventral tegmental area (VTA). However, the molecular mechanism for this distinct vulnerability remains unclear. Here, it is shown that Legumain, also known as asparagine endopeptidase (AEP), is activated in a subgroup of SRY-box transcription factor 6 /Aldehyde dehydrogenase 1 family member A1, (Sox6+/ALDH1A1+) neurons in the ventral tier of the SNpc and cleaves Sox6 and ALDH1A1, leading to repression of Special AT-rich sequence binding protein 1 (Satb1) that is a dimeric/tetrameric transcription factor specifically binding to AT-rich DNA sequences, and toxic dopamine metabolite accumulation. AEP cuts Sox6 and ALDH1A1 in dopaminergic neurons that project to the locus coeruleus (LC), abolishing Sox6's transcriptive and ALDH1A1's enzymatic activities. Co-expressing AEP-truncated Sox6 and ALDH1A1 fragments in 3-month-old A53T SNCA transgenic mice accelerates dopamine degeneration, whereas expressing AEP-resistant Sox6 N336A/N446A and ALDH1A1 N220A mutants alleviates rotenone-induced PD pathologies. Hence, different circuitries and intrinsic properties of dopaminergic neurons in the SNpc and VTA render differential predispositions in PD.
Collapse
Affiliation(s)
- Shuke Nie
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Bowei Li
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Shenzhen Institute of Advanced TechnologyUniversity of Chinese Academy of ScienceShenzhenGuangdong518055China
| | - Mengmeng Wang
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Zijun Chen
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Shenzhen Key Laboratory of Drug AddictionShenzhen Neher Neural Plasticity LaboratoryBCBDISIATChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhen518055China
| | - Jiayan Ren
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Zixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Xinli Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Zhengjiang Qian
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Zhongyun Xie
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Jianxin Han
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | | | - Zhaohui Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug AddictionShenzhen Neher Neural Plasticity LaboratoryBCBDISIATChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhen518055China
| | - Zuxin Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of ShenzhenShenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenGuangdong518055China
| | - Keqiang Ye
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Faculty of Life and Health SciencesShenzhen University of Advanced Technology (SUAT)ShenzhenGuangdong518107China
| |
Collapse
|
6
|
Chatterjee D, Kurup D, Smeyne RJ. Environmental exposures and familial background alter the induction of neuropathology and inflammation after SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626375. [PMID: 39677638 PMCID: PMC11642758 DOI: 10.1101/2024.12.02.626375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Basal ganglia disease has been reported as a post-infection sequela of several viruses, with documentation of this phenomenon from the H1N1 Spanish flu to the recent COVID-19 (SARS-CoV-2) pandemic. SARS-CoV-2 infection leads to multisystem deficits, including those affecting the nervous system. Here, we investigated whether a SARS-CoV-2 infection alone increases the susceptibility to develop parkinsonian phenotypes in C57BL/6J mice expressing the human ACE2 receptor, or in addition to two well-known toxin exposures, MPTP and paraquat. Additionally, we examined mice carrying a G2019S mutation in the LRRK2 gene. We also examined if vaccination with either an mRNA- or protein-based vaccine can alter any observed neuropathology. We find that the infection with the WA-1/2020 (alpha) or omicron B1.1.529 strains in ACE2 and G2019S LRRK2 mice both synergize with a subtoxic exposure to the mitochondrial toxin MPTP to induce neurodegeneration and neuroinflammation in the substantia nigra. This synergy appears toxin-dependent since we do not observe this following exposure to the direct redox-inducing compound paraquat. This synergistic neurodegeneration and neuroinflammation is rescued in WT mice that were vaccinated using either mRNA- and protein- based vaccines directed against the Spike protein of the SARS-CoV-2 virus. However, in the G2019S LRRK2 mutant mice, we find that only the protein-based vaccine but not the mRNA- based vaccine resulted in a rescue of the SARS-CoV-2 mediated neuropathology. Taken together, our results highlight the role of both environmental exposures and familial background on the development of parkinsonian pathology secondary to viral infection and the benefit of vaccines in reducing these risks.
Collapse
|
7
|
García-Revilla J, Ruiz R, Espinosa-Oliva AM, Santiago M, García-Domínguez I, Camprubí-Ferrer L, Bachiller S, Deierborg T, Joseph B, de Pablos RM, Rodríguez-Gómez JA, Venero JL. Dopaminergic neurons lacking Caspase-3 avoid apoptosis but undergo necrosis after MPTP treatment inducing a Galectin-3-dependent selective microglial phagocytic response. Cell Death Dis 2024; 15:625. [PMID: 39223107 PMCID: PMC11369297 DOI: 10.1038/s41419-024-07014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc). Apoptosis is thought to play a critical role in the progression of PD, and thus understanding the effects of antiapoptotic strategies is crucial for developing potential therapies. In this study, we developed a unique genetic model to selectively delete Casp3, the gene encoding the apoptotic protein caspase-3, in dopaminergic neurons (TH-C3KO) and investigated its effects in response to a subacute regime of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, which is known to trigger apoptotic loss of SNpc dopaminergic neurons. We found that Casp3 deletion did not protect the dopaminergic system in the long term. Instead, we observed a switch in the cell death pathway from apoptosis in wild-type mice to necrosis in TH-C3KO mice. Notably, we did not find any evidence of necroptosis in our model or in in vitro experiments using primary dopaminergic cultures exposed to 1-methyl-4-phenylpyridinium in the presence of pan-caspase/caspase-8 inhibitors. Furthermore, we detected an exacerbated microglial response in the ventral mesencephalon of TH-C3KO mice in response to MPTP, which mimicked the microglia neurodegenerative phenotype (MGnD). Under these conditions, it was evident the presence of numerous microglial phagocytic cups wrapping around apparently viable dopaminergic cell bodies that were inherently associated with galectin-3 expression. We provide evidence that microglia exhibit phagocytic activity towards both dead and stressed viable dopaminergic neurons through a galectin-3-dependent mechanism. Overall, our findings suggest that inhibiting apoptosis is not a beneficial strategy for treating PD. Instead, targeting galectin-3 and modulating microglial response may be more promising approaches for slowing PD progression.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden.
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Irene García-Domínguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Faculty of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Sara Bachiller
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José A Rodríguez-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
8
|
Sikora J, Dovero S, Kinet R, Arotcarena ML, Bohic S, Bezard E, Fernagut PO, Dehay B. Nigral ATP13A2 depletion induces Parkinson's disease-related neurodegeneration in a pilot study in non-human primates. NPJ Parkinsons Dis 2024; 10:141. [PMID: 39090150 PMCID: PMC11294619 DOI: 10.1038/s41531-024-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Lysosomal impairment is strongly implicated in Parkinson's disease (PD). Among the several PD-linked genes, the ATP13A2 gene, associated with the PARK9 locus, encodes a transmembrane lysosomal P5-type ATPase. Mutations in the ATP13A2 gene were primarily identified as the cause of Kufor-Rakeb syndrome (KRS), a juvenile-onset form of PD. Subsequently, an increasing list of several mutations has been described. These mutations result in truncation of the ATP13A2 protein, leading to a loss of function but surprisingly causing heterogeneity and variability in the clinical symptoms associated with different brain pathologies. In vitro studies show that its loss compromises lysosomal function, contributing to cell death. To understand the role of ATP13A2 dysfunction in disease, we disrupted its expression through a viral vector-based approach in nonhuman primates. Here, in this pilot study, we injected bilaterally into the substantia nigra of macaques, a lentiviral vector expressing an ATP13A2 small hairpin RNA. Animals were terminated five months later, and brains were harvested and compared with historical non-injected control brains to evaluate cerebral pathological markers known to be affected in KRS and PD. We characterised the pattern of dopaminergic loss in the striatum and the substantia nigra, the regional distribution of α-synuclein immunoreactivity in several brain structures, and its pathological status (i.e., S129 phosphorylation), the accumulation of heavy metals in nigral sections and occurrence of lysosomal dysfunction. This proof-of-concept experiment highlights the potential value of lentivirus-mediated ATP13A2 silencing to induce significant and ongoing degeneration in the nigrostriatal pathway, α-synuclein pathology, and iron accumulation in nonhuman primates.
Collapse
Affiliation(s)
- Joanna Sikora
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
- Univ. De Poitiers, INSERM, LNEC, Poitiers, France
| | | | - Rémi Kinet
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
| | | | - Sylvain Bohic
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE), Grenoble, France
| | | | | | | |
Collapse
|
9
|
Semenova EI, Rudenok MM, Rybolovlev IN, Shulskaya MV, Lukashevich MV, Partevian SA, Budko AI, Nesterov MS, Abaimov DA, Slominsky PA, Shadrina MI, Alieva AK. Effects of Age and MPTP-Induced Parkinson's Disease on the Expression of Genes Associated with the Regulation of the Sleep-Wake Cycle in Mice. Int J Mol Sci 2024; 25:7721. [PMID: 39062963 PMCID: PMC11276692 DOI: 10.3390/ijms25147721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.
Collapse
Affiliation(s)
- Ekaterina I. Semenova
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Margarita M. Rudenok
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Ivan N. Rybolovlev
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Marina V. Shulskaya
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria V. Lukashevich
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Suzanna A. Partevian
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Alexander I. Budko
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maxim S. Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, 119435 Krasnogorsk, Russia;
| | - Denis A. Abaimov
- Research Center of Neurology, Volokolamskoye Shosse 80, 125367 Moscow, Russia;
| | - Petr A. Slominsky
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria I. Shadrina
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Anelya Kh. Alieva
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| |
Collapse
|
10
|
Saponjic J, Mejías R, Nikolovski N, Dragic M, Canak A, Papoutsopoulou S, Gürsoy-Özdemir Y, Fladmark KE, Ntavaroukas P, Bayar Muluk N, Zeljkovic Jovanovic M, Fontán-Lozano Á, Comi C, Marino F. Experimental Models to Study Immune Dysfunction in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:4330. [PMID: 38673915 PMCID: PMC11050170 DOI: 10.3390/ijms25084330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.
Collapse
Affiliation(s)
- Jasna Saponjic
- Department of Neurobiology, Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Rebeca Mejías
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences–National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Asuman Canak
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | | | - Kari E. Fladmark
- Department of Biological Science, University of Bergen, 5020 Bergen, Norway;
| | - Panagiotis Ntavaroukas
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | - Nuray Bayar Muluk
- Department of Otorhinolaryngology, Faculty of Medicine, Kirikkale University, Kirikkale 71450, Turkey;
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
| | - Ángela Fontán-Lozano
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Franca Marino
- Center for Research in Medical Pharmacology, School of Medicine, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
11
|
Ayerra L, Abellanas MA, Basurco L, Tamayo I, Conde E, Tavira A, Trigo A, Vidaurre C, Vilas A, San Martin-Uriz P, Luquin E, Clavero P, Mengual E, Hervás-Stubbs S, Aymerich MS. Nigrostriatal degeneration determines dynamics of glial inflammatory and phagocytic activity. J Neuroinflammation 2024; 21:92. [PMID: 38610019 PMCID: PMC11015575 DOI: 10.1186/s12974-024-03091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Glial cells are key players in the initiation of innate immunity in neurodegeneration. Upon damage, they switch their basal activation state and acquire new functions in a context and time-dependent manner. Since modulation of neuroinflammation is becoming an interesting approach for the treatment of neurodegenerative diseases, it is crucial to understand the specific contribution of these cells to the inflammatory reaction and to select experimental models that recapitulate what occurs in the human disease. Previously, we have characterized a region-specific activation pattern of CD11b+ cells and astrocytes in the α-synuclein overexpression mouse model of Parkinson´s disease (PD). In this study we hypothesized that the time and the intensity of dopaminergic neuronal death would promote different glial activation states. Dopaminergic degeneration was induced with two administration regimens of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subacute (sMPTP) and chronic (cMPTP). Our results show that in the sMPTP mouse model, the pro-inflammatory phenotype of striatal CD11b+ cells was counteracted by an anti-inflammatory astrocytic profile. In the midbrain the roles were inverted, CD11b+ cells exhibited an anti-inflammatory profile and astrocytes were pro-inflammatory. The overall response generated resulted in decreased CD4 T cell infiltration in both regions. Chronic MPTP exposure resulted in a mild and prolonged neuronal degeneration that generated a pro-inflammatory response and increased CD4 T cell infiltration in both regions. At the onset of the neurodegenerative process, microglia and astrocytes cooperated in the removal of dopaminergic terminals. With time, only microglia maintained the phagocytic activity. In the ventral midbrain, astrocytes were the main phagocytic mediators at early stages of degeneration while microglia were the major phagocytic cells in the chronic state. In this scenario, we questioned which activation pattern recapitulates better the features of glial activation in PD. Glial activation in the cMPTP mouse model reflects many pathways of their corresponding counterparts in the human brain with advanced PD. Altogether, our results point toward a context-dependent cooperativity of microglia/myeloid cells and astrocytes in response to neuronal damage and the relevance of selecting the right experimental models for the study of neuroinflammation.
Collapse
Grants
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- FPU19/03255 Ministerio de Ciencia, Innovación y Universidades
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- FPU18/02244 Ministerio de Ciencia, Innovación y Universidades,Spain
- FPU21/01545 Ministerio de Ciencia, Innovación y Universidades,Spain
Collapse
Affiliation(s)
- Leyre Ayerra
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Miguel Angel Abellanas
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Leyre Basurco
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Ibon Tamayo
- CIMA-Universidad de Navarra, Pamplona, España
| | | | - Adriana Tavira
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Amaya Trigo
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Clara Vidaurre
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Amaia Vilas
- CIMA-Universidad de Navarra, Pamplona, España
| | | | - Esther Luquin
- Facultad de Medicina, Departamento de Patología, Anatomía y Fisiología, Universidad de Navarra, Pamplona, Spain
| | - Pedro Clavero
- Servicio de Neurología, Hospital Universitario de Navarra, Pamplona, Spain
| | - Elisa Mengual
- Facultad de Medicina, Departamento de Patología, Anatomía y Fisiología, Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- CIMA-Universidad de Navarra, Pamplona, España
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Maria S Aymerich
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain.
- CIMA-Universidad de Navarra, Pamplona, España.
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
12
|
Buchanan AM, Mena S, Choukari I, Vasa A, Crawford JN, Fadel J, Maxwell N, Reagan L, Cruikshank A, Best J, Nijhout HF, Reed M, Hashemi P. Serotonin as a biomarker of toxin-induced Parkinsonism. Mol Med 2024; 30:33. [PMID: 38429661 PMCID: PMC10908133 DOI: 10.1186/s10020-023-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/18/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.
Collapse
Affiliation(s)
- Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Iman Choukari
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Aditya Vasa
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jesseca N Crawford
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Jim Fadel
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Nick Maxwell
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Lawrence Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
- Columbia VA Health Care System, Columbia, SC, 29208, USA
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
13
|
Liu H, Gong Z, Li Z, Ye T, Cao A, He S, Lin S, Duan J, Lin X. Distribution, connection and function of ALDH1A1 +/TH + neurons in substantia nigra pars reticulata of mouse. Neurosci Lett 2024; 818:137555. [PMID: 37972684 DOI: 10.1016/j.neulet.2023.137555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The massive cell death of dopaminergic neurons (DANs) in substantia nigra pars compacta (SNC) is associated with motor diseases, such as Parkinson's disease. Moreover, as a subtype of DANs in SNC, ALDH1A1+ neurons show better resistance to PD related neurotoxin. DANs can also be found in the substantia nigra pars reticulata (SNR), however, whether they are ALDH1A1+ neurons are rarely reported, as well as their projection, function, and reaction in the PD pathology. We studied the distribution of ALDH1A1+ neurons and track their projection by injecting pAAV. We figured out that, in SNR, 87 % neurons are ALDH1A1+/TH+ in ALDH1A1+ cluster averagely, while ALDH1A1+/TH+: TH+ is 52 % averagely. There are two enrichment regions of ALDH1A1+/TH+ neurons at brgma -3.40 mm and brgma -3.70 mm in the SNR of the nTg mice. Nevertheless, in one type of PD-liked mice model, the proportion of ALDH1A1+/TH+: ALDH1A1+ neurons are 98 % averagely, while ALHD1A1+/TH+: TH+ is 57 %. Intriguingly, neuro-tracing discovered that there may be a previously unreported connection between SNR and anterior dorsal thalamus (ADT). The mouse received MPTP stereotactic injection to destroy TH+ neurons in SNR showed depression behavior, indicated the DANs death in SNR may contribute to depression behavior.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China; Department of Human Anatomy and physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China
| | - Zhuo Gong
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China; Department of Human Anatomy and physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China
| | - Zhao Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China; Department of Human Anatomy and physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China
| | - Tonglin Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China; Department of Human Anatomy and physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China
| | - Anqi Cao
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China; Department of Human Anatomy and physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China
| | - Shuaiying He
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China; Department of Human Anatomy and physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China
| | - Sijia Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China; Department of Human Anatomy and physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China
| | - Jinhai Duan
- Eastern Department of Neurology, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Xian Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China; Department of Human Anatomy and physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2(nd) Road, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
14
|
Troshev D, Kolacheva A, Pavlova E, Blokhin V, Ugrumov M. Application of OpenArray Technology to Assess Changes in the Expression of Functionally Significant Genes in the Substantia Nigra of Mice in a Model of Parkinson's Disease. Genes (Basel) 2023; 14:2202. [PMID: 38137024 PMCID: PMC10742853 DOI: 10.3390/genes14122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Studying the molecular mechanisms of the pathogenesis of Parkinson's disease (PD) is critical to improve PD treatment. We used OpenArray technology to assess gene expression in the substantia nigra (SN) cells of mice in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD and in controls. Among the 11 housekeeping genes tested, Rps27a was taken as the reference gene due to its most stable expression in normal and experimental conditions. From 101 genes encoding functionally significant proteins of nigrostriatal dopaminergic neurons, 57 highly expressed genes were selected to assess their expressions in the PD model and in the controls. The expressions of Th, Ddc, Maoa, Comt, Slc6a3, Slc18a2, Drd2, and Nr4a2 decreased in the experiment compared to the control, indicating decreases in the synthesis, degradation, and transport of dopamine and the impaired autoregulation of dopaminergic neurons. The expressions of Tubb3, Map2, Syn1, Syt1, Rab7, Sod1, Cib1, Gpx1, Psmd4, Ubb, Usp47, and Ctsb genes were also decreased in the MPTP-treated mice, indicating impairments of axonal and vesicular transport and abnormal functioning of the antioxidant and ubiquitin-proteasome systems in the SN. The detected decreases in the expressions of Snca, Nsf, Dnm1l, and Keap1 may serve to reduce pathological protein aggregation, increase dopamine release in the striatum, prevent mitophagy, and restore the redox status of SN cells.
Collapse
Affiliation(s)
| | | | | | | | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; (D.T.); (A.K.); (E.P.); (V.B.)
| |
Collapse
|
15
|
Mendes-Pinheiro B, Campos J, Marote A, Soares-Cunha C, Nickels SL, Monzel AS, Cibrão JR, Loureiro-Campos E, Serra SC, Barata-Antunes S, Duarte-Silva S, Pinto L, Schwamborn JC, Salgado AJ. Treating Parkinson's Disease with Human Bone Marrow Mesenchymal Stem Cell Secretome: A Translational Investigation Using Human Brain Organoids and Different Routes of In Vivo Administration. Cells 2023; 12:2565. [PMID: 37947643 PMCID: PMC10650433 DOI: 10.3390/cells12212565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder, characterized by the progressive loss of dopaminergic neurons from the nigrostriatal system. Currently, there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Mesenchymal stem cells (MSCs) are one of the most extensively studied cell sources for regenerative medicine applications, particularly due to the release of soluble factors and vesicles, known as secretome. The main goal of this work was to address the therapeutic potential of the secretome collected from bone-marrow-derived MSCs (BM-MSCs) using different models of the disease. Firstly, we took advantage of an optimized human midbrain-specific organoid system to model PD in vitro using a neurotoxin-induced model through 6-hydroxydopamine (6-OHDA) exposure. In vivo, we evaluated the effects of BM-MSC secretome comparing two different routes of secretome administration: intracerebral injections (a two-site single administration) against multiple systemic administration. The secretome of BM-MSCs was able to protect from dopaminergic neuronal loss, these effects being more evident in vivo. The BM-MSC secretome led to motor function recovery and dopaminergic loss protection; however, multiple systemic administrations resulted in larger therapeutic effects, making this result extremely relevant for potential future clinical applications.
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sarah L. Nickels
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Anna S. Monzel
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| |
Collapse
|
16
|
Novikov NI, Brazhnik ES, Kitchigina VF. Pathological Correlates of Cognitive Decline in Parkinson's Disease: From Molecules to Neural Networks. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1890-1904. [PMID: 38105206 DOI: 10.1134/s0006297923110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the death of dopaminergic neurons in the substantia nigra and appearance of protein aggregates (Lewy bodies) consisting predominantly of α-synuclein in neurons. PD is currently recognized as a multisystem disorder characterized by severe motor impairments and various non-motor symptoms. Cognitive decline is one of the most common and worrisome non-motor symptoms. Moderate cognitive impairments (CI) are diagnosed already at the early stages of PD, usually transform into dementia. The main types of CI in PD include executive dysfunction, attention and memory decline, visuospatial impairments, and verbal deficits. According to the published data, the following mechanisms play an essential role demonstrates a crucial importance in the decline of the motor and cognitive functions in PD: (1) changes in the conformational structure of transsynaptic proteins and protein aggregation in presynapses; (2) synaptic transmission impairment; (3) neuroinflammation (pathological activation of the neuroglia); (4) mitochondrial dysfunction and oxidative stress; (5) metabolic disorders (hypometabolism of glucose, dysfunction of glycolipid metabolism; and (6) functional rearrangement of neuronal networks. These changes can lead to the death of dopaminergic cells in the substantia nigra and affect the functioning of other neurotransmitter systems, thus disturbing neuronal networks involved in the transmission of information related to the regulation of motor activity and cognitive functions. Identification of factors causing detrimental changes in PD and methods for their elimination will help in the development of new approaches to the therapy of PD. The goal of this review was to analyze pathological processes that take place in the brain and underlie the onset of cognitive disorders in PD, as well as to describe the impairments of cognitive functions in this disease.
Collapse
Affiliation(s)
- Nikolai I Novikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena S Brazhnik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
17
|
Li M, Jiang H, Wang Y, Xu Z, Xu H, Chen Y, Zhu J, Lin Z, Zhang M. Effect of arctigenin on neurological diseases: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116642. [PMID: 37236381 DOI: 10.1016/j.jep.2023.116642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L. is a common specie of Asteraceae. Its main active ingredient, Arctigenin (AG), in mature seeds exerts pharmacological effects on the Central Nervous System (CNS). AIM OF THE STUDY To review studies on the specific effects of the AG mechanism on various CNS diseases and elucidate signal transduction mechanisms and their pharmacological actions. MATERIALS AND METHODS This investigation reviewed the essential role of AG in treating neurological disorders. Basic information on Arctium lappa L. was retrieved from the Pharmacopoeia of the People's Republic of China. The related articles from 1981 to 2022 on the network database (including CNKI, PubMed, and Wan Fang and so on) were reviewed using AG and CNS diseases-related terms such as Arctigenin and Epilepsy. RESULTS It was confirmed that AG has a therapeutic effect on Alzheimer's disease, Glioma, infectious CNS diseases (such as Toxoplasma and Japanese Encephalitis Virus), Parkinson's disease, Epilepsy, etc. In these diseases, related experiments such as a Western blot analysis revealed that AG could alter the content of some key factors (such as the reduction of Aβ in Alzheimer's disease). However, in-vivo AG's metabolic process and possible metabolites are still undetermined. CONCLUSION Based on this review, the existing pharmacological research has indeed made objective progress to elucidate how AG prevents and treats CNS diseases, especially senile degenerative disease such as Alzheimer's diseases. It was revealed that AG could be used as a potential nervous system drug as it has a wide range of effects in theory with markedly high application value, especially in the elder group. However, the existing studies are limited to in-vitro experiments; therefore, little is known about how AG metabolizes and functions in-vivo, limiting its clinical application and requiring further research.
Collapse
Affiliation(s)
- Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
18
|
Buck SA, Rubin SA, Kunkhyen T, Treiber CD, Xue X, Fenno LE, Mabry SJ, Sundar VR, Yang Z, Shah D, Ketchesin KD, Becker-Krail DD, Vasylieva I, Smith MC, Weisel FJ, Wang W, Erickson-Oberg MQ, O’Leary EI, Aravind E, Ramakrishnan C, Kim YS, Wu Y, Quick M, Coleman JA, MacDonald WA, Elbakri R, De Miranda BR, Palladino MJ, McCabe BD, Fish KN, Seney ML, Rayport S, Mingote S, Deisseroth K, Hnasko TS, Awatramani R, Watson AM, Waddell S, Cheetham CEJ, Logan RW, Freyberg Z. Sexually dimorphic mechanisms of VGLUT-mediated protection from dopaminergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560584. [PMID: 37873436 PMCID: PMC10592912 DOI: 10.1101/2023.10.02.560584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1β as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.
Collapse
Affiliation(s)
- Silas A. Buck
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sophie A. Rubin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christoph D. Treiber
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Lief E. Fenno
- Departments of Psychiatry and Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Samuel J. Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Varun R. Sundar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zilu Yang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Divia Shah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kyle D. Ketchesin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Darius D. Becker-Krail
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Iaroslavna Vasylieva
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Megan C. Smith
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Florian J. Weisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wenjia Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - M. Quincy Erickson-Oberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emma I. O’Leary
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eshan Aravind
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yanying Wu
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Matthias Quick
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jonathan A. Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Rania Elbakri
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Briana R. De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael J. Palladino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brian D. McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY 10031, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Thomas S. Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Alan M. Watson
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | | | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
20
|
Seo MH, Yeo S. The Effects of Serping1 siRNA in α-Synuclein Regulation in MPTP-Induced Parkinson's Disease. Biomedicines 2023; 11:1952. [PMID: 37509591 PMCID: PMC10377285 DOI: 10.3390/biomedicines11071952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Our understanding of the gastrointestinal system in the pathophysiology of Parkinson's disease (PD) has grown considerably over the last two decades. Patients with PD experience notable gastrointestinal symptoms, including constipation. In this study, the effects of knocked-down serping1, associated with the contraction and relaxation of smooth muscle and inflammation responses, by applying the serping1 siRNA were investigated in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced PD mice in an α-syn change aspect. In the result, serping1 expression was knocked down by the treatment of serping1 siRNA, and decreased serping1 induced the decrease α-syn in the colon. Furthermore, the changes in α-syn aggregation were also examined in the brain, and alleviated α-syn aggregation was also observed in an serping1 siRNA treatment group. The results indicated that serping1 siRNA could ease synucleinopathy related to the gastrointestinal system in PD. This study also raises the possibility that serping1 siRNA could alleviate α-syn aggregation in striatum and substantia nigra regions of the brain.
Collapse
Affiliation(s)
- Min Hyung Seo
- Department of Meridian and Acupoint, College of Korean Medicine, Sang Ji University, Wonju 26339, Republic of Korea
| | - Sujung Yeo
- Research Institute of Korean Medicine, Sang Ji University, #83 Sangjidae-Gil, Wonju 26339, Republic of Korea
| |
Collapse
|
21
|
Montanari M, Imbriani P, Bonsi P, Martella G, Peppe A. Beyond the Microbiota: Understanding the Role of the Enteric Nervous System in Parkinson's Disease from Mice to Human. Biomedicines 2023; 11:1560. [PMID: 37371655 DOI: 10.3390/biomedicines11061560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The enteric nervous system (ENS) is a nerve network composed of neurons and glial cells that regulates the motor and secretory functions of the gastrointestinal (GI) tract. There is abundant evidence of mutual communication between the brain and the GI tract. Dysfunction of these connections appears to be involved in the pathophysiology of Parkinson's disease (PD). Alterations in the ENS have been shown to occur very early in PD, even before central nervous system (CNS) involvement. Post-mortem studies of PD patients have shown aggregation of α-synuclein (αS) in specific subtypes of neurons in the ENS. Subsequently, αS spreads retrogradely in the CNS through preganglionic vagal fibers to this nerve's dorsal motor nucleus (DMV) and other central nervous structures. Here, we highlight the role of the ENS in PD pathogenesis based on evidence observed in animal models and using a translational perspective. While acknowledging the putative role of the microbiome in the gut-brain axis (GBA), this review provides a comprehensive view of the ENS not only as a "second brain", but also as a window into the "first brain", a potentially crucial element in the search for new therapeutic approaches that can delay and even cure the disease.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Neuroscience, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Clinical Neuroscience, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Antonella Peppe
- Clinical Neuroscience, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
22
|
Huh S, Yu HS, Kang N, Ahn YM, Kim YS, Kim SH. Electroconvulsive Seizure Normalizes Motor Deficits and Induces Autophagy Signaling in the MPTP-Induced Parkinson Disease Mouse Model. Psychiatry Investig 2023; 20:273-283. [PMID: 36990671 PMCID: PMC10064206 DOI: 10.30773/pi.2022.0327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/11/2022] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVE Electroconvulsive seizure (ECS) is a potent treatment modality for various neuropsychiatric diseases, including Parkinson disease (PD). Recent animal studies showed that repeated ECS activates autophagy signaling, the impairment of which is known to be involved in PD. However, the effectiveness of ECS on PD and its therapeutic mechanisms have not yet been investigated in detail. METHODS Systemic injection of a neurotoxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), which destroys dopaminergic neurons in the substantia nigra compacta (SNc), in mice was utilized to induce an animal model of PD. Mice were treated with ECS 3 times per week for 2 weeks. Behavioral changes were measured with a rotarod test. Molecular changes related to autophagy signaling in midbrain including SNc, striatum, and prefrontal cortex were analyzed with immunohistochemistry and immunoblot analyses. RESULTS Repeated ECS treatments normalized the motor deficits and the loss of dopamiergic neurons in SNc of the MPTP PD mouse model. In the mouse model, LC3-II, an autophagy marker, was increased in midbrain while decreased in prefrontal cortex, both of which were reversed by repeated ECS treatments. In the prefrontal cortex, ECS-induced LC3-II increase was accompanied with AMP-activated protein kinase (AMPK)-Unc-51-like kinase 1-Beclin1 pathway activation and inhibition of mamalian target of rapamycin signaling which promotes autophagy initiation. CONCLUSION The findings revealed the therapeutic effects of repeated ECS treatments on PD, which could be attributed to the neuroprotective effect of ECS mediated by AMPK-autophagy signaling.
Collapse
Affiliation(s)
- Seonghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nuree Kang
- Department of Psychiatry, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Yong Min Ahn
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, Nowon Eulji Meical Center, Eulji University, Seoul, Republic of Korea
| | - Se Hyun Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Neal ML, Beier EE, Hossain MM, Boyle A, Zheng J, Kim C, Mhatre-Winters I, Wu LJ, Richardson JR. Voltage-Gated Proton Channel Hv1 Regulates Neuroinflammation and Dopaminergic Neurodegeneration in Parkinson's Disease Models. Antioxidants (Basel) 2023; 12:582. [PMID: 36978830 PMCID: PMC10044828 DOI: 10.3390/antiox12030582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Although the precise mechanisms for neurodegeneration in Parkinson's disease (PD) are unknown, evidence suggests that neuroinflammation is a critical factor in the pathogenic process. Here, we sought to determine whether the voltage-gated proton channel, Hv1 (HVCN1), which is expressed in microglia and regulates NADPH oxidase, is associated with dopaminergic neurodegeneration. We utilized data mining to evaluate the mRNA expression of HVCN1 in the brains of PD patients and controls and uncovered increased expression of the gene encoding Hv1, HVCN1, in the brains of PD patients compared to controls, specifically in male PD patients. In an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 16 mg/kg) mouse model of PD, Hvcn1 gene expression was increased 2-fold in the striatum. MPTP administration to wild-type (WT) mice resulted in a ~65% loss of tyrosine hydroxylase positive neurons (TH+) in the substantia nigra (SN), while a ~39% loss was observed in Hv1 knockout (KO) mice. Comparable neuroprotective effects of Hv1 deficiency were found in a repeated-dose LPS model. Neuroprotection was associated with decreased pro-inflammatory cytokine levels and pro-oxidant factors in both neurotoxicant animal models. These in vivo results were confirmed in primary microglial cultures, with LPS treatment increasing Hvcn1 mRNA levels and Hv1 KO microglia failing to exhibit the LPS-mediated inflammatory response. Conditioned media from Hv1 KO microglia treated with LPS resulted in an attenuated loss of cultured dopamine neuron cell viability compared to WT microglia. Taken together, these data suggest that Hv1 is upregulated and mediates microglial pro-inflammatory cytokine production in parkinsonian models and therefore represents a novel target for neuroprotection.
Collapse
Affiliation(s)
- Matthew L. Neal
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Eric E. Beier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Alexa Boyle
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunki Kim
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA
| |
Collapse
|
24
|
Zamanian MY, Terefe EM, Taheri N, Kujawska M, Tork YJ, Abdelbasset WK, Shoukat S, Opulencia MJC, Heidari M, Alesaeidi S. Neuroprotective and Anti-Inflammatory Effects of Pioglitazone on Parkinson's Disease: A Comprehensive Narrative Review of Clinical and Experimental Findings. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1453-1461. [PMID: 36200161 DOI: 10.2174/1871527322666221005122408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurological disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The pathogenesis of PD is strongly related to mitochondrial dysfunction, oxidative stress, and neuroinflammation. This indicates that PD can be treated with anti-oxidative substitutes and anti-inflammatory compounds. The neuroprotective and anti-inflammatory effects of peroxisome proliferator-activated receptor γ (PPAR-γ) agonists decrease cell death and halt the increase in neurodegeneration, which is why they have been given a lot of importance in research. Antidiabetic and anti-inflammatory effects have been observed to be generated by pioglitazone (PG), a selective peroxisome proliferator-activated receptor γ (PPAR-γ) agonist that regulates neural plasticity in various neurodegenerative disorders. The neuroprotective and anti-inflammatory effects of PG are assessed in this article. It was found that the patients with DM who received PG treatment were noticeably at a lower risk of PD. However, some clinical studies have not proven a strong link between the therapeutic effects of PG on PD. As per suggestions of preclinical studies, the therapeutic effects of PG treatment include; increased life expectancy of neurons, decreased oxidative stress, halted microglial activity, lower inflammation (reduced NF-κB, COX-2, and iNOS), reduced mitochondrial dysfunction, rise in motor function (motor agility) and non-motor function (lowered cognitive dysfunction). In conclusion, we determined that PG exerts neuroprotective and anti-inflammatory effects in PD models and it can be considered a potential therapeutic candidate for PD.
Collapse
Affiliation(s)
- Mohammad Yassin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6718773654, Iran
| | - Ermias Mergia Terefe
- School of Pharmacy and Health Science, United States International University, Nairobi, Kenya
| | - Niloofar Taheri
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, Poznan, 60-631, Poland
| | - Yekta Jahedi Tork
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Shehla Shoukat
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad, Pakistan
| | | | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Samira Alesaeidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Kolacheva A, Bannikova A, Pavlova E, Bogdanov V, Ugrumov M. Modeling of the Progressive Degradation of the Nigrostriatal Dopaminergic System in Mice to Study the Mechanisms of Neurodegeneration and Neuroplasticity in Parkinson's Disease. Int J Mol Sci 2022; 24:ijms24010683. [PMID: 36614126 PMCID: PMC9820573 DOI: 10.3390/ijms24010683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
The fight against neurodegenerative diseases, including Parkinson's disease (PD), is among the global challenges of the 21st century. The low efficiency of therapy is due to the late diagnosis and treatment of PD, which take place when there is already significant degradation of the nigrostriatal dopaminergic system, a key link in the regulation of motor function. We have developed a subchronic mouse model of PD by repeatedly administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at gradually increasing doses with a 24 h interval between injections, a period comparable to the time of MPTP metabolism and elimination from the body. This model reproduces the main hallmarks of PD: progressive degeneration of dopaminergic neurons; the appearance of motor disorders with a 70-80% decrease in the level of dopamine in the striatum; an increase in dopamine turnover in the striatum to compensate for dopamine deficiency. When comparing the degradation of the nigrostriatal dopaminergic system and motor disorders in mice in the acute and subchronic models of PD, it has turned out that the resistance of dopaminergic neurons to MPTP increases with its repeated administration. Our subchronic model of PD opens up broad prospects for studying the molecular mechanisms of PD pathogenesis and developing technologies for early diagnosis and preventive treatment.
Collapse
|
26
|
Zolotarev YA, Shram SI, Dadayan AK, Dolotov OV, Markov DD, Nagaev IY, Kudrin VS, Narkevich VB, Sokolov OY, Kost NV. HLDF-6 peptides exhibit neuroprotective effects in the experimental model of preclinical Parkinson's disease. Neuropeptides 2022; 96:102287. [PMID: 36280440 DOI: 10.1016/j.npep.2022.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
The mechanisms of the neuroprotective action of the hexapeptides HLDF-6 encoded by the amino acid sequence 41-46 of Human Leukemia Differentiation Factor and its homoserine derivative HLDF-6H were studied in an experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model of Parkinson's disease (PD). C57Bl/6 mice received two intraperitoneal injections of 18 mg/kg MPTP-HCl, with an interval of 2 hours. MPTP-induced motor dysfunction was assessed using horizontal grid test. Our data show that chronic intranasal administration of peptides (3 weeks, 300 μg/kg/day) restored normal levels of dopamine and improved its turnover rates in the striatum. Furthermore, peptide administration increased serum estradiol levels and led to a significant improvement in motor functions in MPTP-treated mice. Additionally, peptide treatment increased the levels of mRNA encoding neurotrophin BDNF, but normalized the levels of mRNA encoding the inflammatory mediators TGFβ1, IL1β and IFNγ in the brain. Collectively, our behavioral and biochemical studies demonstrate that HLDF-6 peptides have a therapeutic potential for treating PD. We propose that HLDF-6 peptides may exert their neuroprotective mechanism, at least in part, by normalizing estradiol levels and modulating the expression of key factors involved in neurotrophic support and neuroinflammation.
Collapse
Affiliation(s)
- Yurii A Zolotarev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia.
| | - Stanislav I Shram
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Aleksandr K Dadayan
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Oleg V Dolotov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy D Markov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Igor Yu Nagaev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | | | | | | | | |
Collapse
|
27
|
Yu Z, Qin G, Ge Z, Li W. Beneficial effect of transient desflurane inhalation on relieving inflammation and reducing signaling induced by MPTP in mice. J Int Med Res 2022; 50:3000605221115388. [PMID: 35915871 PMCID: PMC9350528 DOI: 10.1177/03000605221115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective To determine if the beneficial effects of transient desflurane application
mitigates inflammation and decrease associated signaling induced by
1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in mice. Methods Mice were induced to develop Parkinson’s disease (PD) by intraperitoneal
injection with MPTP for 20 consecutive days, and validated mice were
randomly allocated to four groups. Collected samples from euthanized mice
were designated for the following analyses: 1) immunohistochemical staining
for positive dopaminergic neurons in the substantia nigra and striatum, 2)
immunofluorescence staining for ionized calcium binding adaptor molecule-1
(Iba1) and glial fibrillary acid protein (GFAP), and 3) western blotting for
p38, p-p38, toll-like receptor 4, and tumor necrosis factor (TNF)-α. Results The inhalation of desflurane for 1 hour ameliorated locomotory dysfunctions
of PD mice by recovering the loss of Iba1- and GFAP-positive dopaminergic
neurons, deactivating microglial cells and astrocytes, and decreasing the
amounts of inflammatory cytokines (TNF-α). Conclusions These findings suggest that transient desflurane inhalation may provide some
benefits for PD through ameliorating inflammation and enhancing locomotor
activity.
Collapse
Affiliation(s)
- Zhiyang Yu
- Department of Anesthesiology, Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Guowei Qin
- Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P.R. China
| | - Zhenzhong Ge
- Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P.R. China
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
28
|
Han HJ, Powers SJ, Gabrielson KL. The Common Marmoset-Biomedical Research Animal Model Applications and Common Spontaneous Diseases. Toxicol Pathol 2022; 50:628-637. [PMID: 35535728 PMCID: PMC9310150 DOI: 10.1177/01926233221095449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Collapse
Affiliation(s)
- Hyo-Jeong Han
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- University of Ulsan, College of Medicine, Seoul, Korea
| | - Sarah J Powers
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Gopinath A, Mackie P, Hashimi B, Buchanan AM, Smith AR, Bouchard R, Shaw G, Badov M, Saadatpour L, Gittis A, Ramirez-Zamora A, Okun MS, Streit WJ, Hashemi P, Khoshbouei H. DAT and TH expression marks human Parkinson's disease in peripheral immune cells. NPJ Parkinsons Dis 2022; 8:72. [PMID: 35672374 PMCID: PMC9174333 DOI: 10.1038/s41531-022-00333-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is marked by a loss of dopamine neurons, decreased dopamine transporter (DAT) and tyrosine hydroxylase (TH) expression. However, this validation approach cannot be used for diagnostic, drug effectiveness or investigational purposes in human patients because midbrain tissue is accessible postmortem. PD pathology affects both the central nervous and peripheral immune systems. Therefore, we immunophenotyped blood samples of PD patients for the presence of myeloid derived suppressor cells (MDSCs) and discovered that DAT+/TH+ monocytic MDSCs, but not granulocytic MDSCs are increased, suggesting a targeted immune response to PD. Because in peripheral immune cells DAT activity underlies an immune suppressive mechanism, we investigated whether expression levels of DAT and TH in the peripheral immune cells marks PD. We found drug naïve PD patients exhibit differential DAT+/TH+ expression in peripheral blood mononuclear cells (PBMCs) compared to aged/sex matched healthy subjects. While total PBMCs are not different between the groups, the percentage of DAT+/TH+ PBMCs was significantly higher in drug naïve PD patients compared to healthy controls irrespective of age, gender, disease duration, disease severity or treatment type. Importantly, treatment for PD negatively modulates DAT+/TH+ expressing PBMCs. Neither total nor the percentage of DAT+/TH+ PBMCs were altered in the Alzheimer's disease cohort. The mechanistic underpinning of this discovery in human PD was revealed when these findings were recapitulated in animal models of PD. The reverse translational experimental strategy revealed that alterations in dopaminergic markers in peripheral immune cells are due to the disease associated changes in the CNS. Our study demonstrates that the dopaminergic machinery on peripheral immune cells displays an association with human PD, with exciting implications in facilitating diagnosis and investigation of human PD pathophysiology.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Phillip Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Basil Hashimi
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Aidan R Smith
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Gerry Shaw
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- EnCor Biotechnology, Inc, Gainesville, FL, USA
| | - Martin Badov
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Leila Saadatpour
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aryn Gittis
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Parastoo Hashemi
- University of South Carolina, Columbia, SC, USA
- Department of Bioengineering, Imperial College, London, UK
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Chalazonitis A, Rao M, Sulzer D. Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:50. [PMID: 35459867 PMCID: PMC9033791 DOI: 10.1038/s41531-022-00308-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to the well-known degeneration of midbrain dopaminergic neurons, enteric neurons can also be affected in neurodegenerative disorders such as Parkinson's disease (PD). Dopaminergic neurons have recently been identified in the enteric nervous system (ENS). While ENS dopaminergic neurons have been shown to degenerate in genetic mouse models of PD, analyses of their survival in enteric biopsies of PD patients have provided inconsistent results to date. In this context, this review seeks to highlight the distinctive and shared factors and properties that control the evolution of these two sets of dopaminergic neurons from neuronal precursors to aging neurons. Although their cellular sources and developmental times of origin differ, midbrain and ENS dopaminergic neurons express many transcription factors in common and their respective environments express similar neurotrophic molecules. For example, Foxa2 and Sox6 are expressed by both populations to promote the specification, differentiation, and long-term maintenance of the dopaminergic phenotype. Both populations exhibit sustained patterns of excitability that drive intrinsic vulnerability over time. In disorders such as PD, colon biopsies have revealed aggregation of alpha-synuclein in the submucosal plexus where dopaminergic neurons reside and lack blood barrier protection. Thus, these enteric neurons may be more susceptible to neurotoxic insults and aggregation of α-synuclein that spreads from gut to midbrain. Under sustained stress, inefficient autophagy leads to neurodegeneration, GI motility dysfunction, and PD symptoms. Recent findings suggest that novel neurotrophic factors such as CDNF have the potential to be used as neuroprotective agents to prevent and treat ENS symptoms of PD.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Division of Molecular Therapeutics, New York State Psychiatry Institute, Columbia University, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
31
|
Application of neurotoxin- and pesticide-induced animal models of Parkinson's disease in the evaluation of new drug delivery systems. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:35-58. [PMID: 36651528 DOI: 10.2478/acph-2022-0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neuro-degenerative disease after Alzheimer´s disease. It is characterized by motor symptoms such as akinesia, bradykinesia, tremor, rigidity, and postural abnormalities, due to the loss of nigral dopaminergic neurons and a decrease in the dopa-mine contents of the caudate-putamen structures. To this date, there is no cure for the disease and available treatments are aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In the past decades, animal models of PD have been proven to be valuable tools in elucidating the nature of the pathogenic processes involved in the disease, and in designing new pharmacological approaches. Here, we review the use of neurotoxin-induced and pesticide-induced animal models of PD, specifically those induced by rotenone, paraquat, maneb, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-OHDA (6-hydroxydopamine), and their application in the development of new drug delivery systems for PD.
Collapse
|
32
|
Carta AR, Pisanu A, Palmas MF, Barcia C, Cuenca-Bermejo L, Herrero MT. MPTP: Advances from an Evergreen Neurotoxin. HANDBOOK OF NEUROTOXICITY 2022:485-516. [DOI: 10.1007/978-3-031-15080-7_104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Abolarin PO, Nafiu AB, Oyewole AL, Amin A, Ogundele OM, Owoyele BV. Selenium reduces nociceptive response in acute 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity. IBRO Neurosci Rep 2021; 12:1-11. [PMID: 34927129 PMCID: PMC8652001 DOI: 10.1016/j.ibneur.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
The potential of Se to alleviate pain associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity was investigated. Swiss mice were intraperitoneally injected with MPTP (20 mg/kg) 4 times with an interval of 2 h in 1 day. Seven days after MPTP injection, the mice (n = 5 mice per group) were randomly assigned to groups: MPTP-, DOPA (50 mg/kg)-, Se4 (0.4 mg/kg)-, Se6 (0.6 mg/kg)-, DOPA+Se4-, and DOPA+Se6-treated groups were compared with controls. MPTP mice were treated for seven days; thereafter, motor-coordination and nociceptive-motor reactions were assessed. Pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and selected pain biomarkers (substance P (SP), glutamate and β-endorphin) were assessed in the serum and the substantial nigra pars compacta (SNpc). Motor activity was increased slightly by Se (0.6 or 0.4 mg/kg) vs. MPTP (10.48 ± 2.71 or 11.81 ± 1.28 s vs. 3.53 ± 0.06 s respectively) but considerably increased by DOPA (50 mg/kg) vs. MPTP (50.47 ± 3.06 s vs. 3.53 ± 0.06 s respectively). Se and DOPA increased nociceptive threshold but Se alone reduced both serum and SN pro-inflammatory cytokines. Se modulates SP while DOPA modulates SP and glutamate in the SNpc of mice treated with MPTP. Se suppressed pro-inflammatory cytokines and restored the basal pain biomarkers in the SNpc of mice treated with MPTP. Se requires further study as analgesic adjuvant.
Collapse
Affiliation(s)
| | | | | | - Abdulbasit Amin
- Department of Physiology, University of Ilorin, P.M.B 1515, Ilorin, Nigeria
| | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | | |
Collapse
|
34
|
Ahuja M, Ammal Kaidery N, Attucks OC, McDade E, Hushpulian DM, Gaisin A, Gaisina I, Ahn YH, Nikulin S, Poloznikov A, Gazaryan I, Yamamoto M, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Bach1 derepression is neuroprotective in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:e2111643118. [PMID: 34737234 PMCID: PMC8694049 DOI: 10.1073/pnas.2111643118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the loss of nigrostriatal dopaminergic neurons. Mounting evidence suggests that Nrf2 is a promising target for neuroprotective interventions in PD. However, electrophilic chemical properties of the canonical Nrf2-based drugs cause irreversible alkylation of cysteine residues on cellular proteins resulting in side effects. Bach1 is a known transcriptional repressor of the Nrf2 pathway. We report that Bach1 levels are up-regulated in PD postmortem brains and preclinical models. Bach1 knockout (KO) mice were protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity and associated oxidative damage and neuroinflammation. Functional genomic analysis demonstrated that the neuroprotective effects in Bach1 KO mice was due to up-regulation of Bach1-targeted pathways that are associated with both Nrf2-dependent antioxidant response element (ARE) and Nrf2-independent non-ARE genes. Using a proprietary translational technology platform, a drug library screen identified a substituted benzimidazole as a Bach1 inhibitor that was validated as a nonelectrophile. Oral administration of the Bach1 inhibitor attenuated MPTP neurotoxicity in pre- and posttreatment paradigms. Bach1 inhibitor-induced neuroprotection was associated with the up-regulation of Bach1-targeted pathways in concurrence with the results from Bach1 KO mice. Our results suggest that genetic deletion as well as pharmacologic inhibition of Bach1 by a nonelectrophilic inhibitor is a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Navneet Ammal Kaidery
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | | | | | - Dmitry M Hushpulian
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Arsen Gaisin
- Integrated Molecular Structure Education and Research Center, Northwestern University, IL 60208
| | - Irina Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612
| | - Young Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Andrey Poloznikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Irina Gazaryan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
- Department of Chemical Enzymology, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai 980-8573, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Bobby Thomas
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425;
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
35
|
Alessenko AV, Blokhin VE, Shupik MA, Gutner UA, Lebedev AT, Maloshitskaya OA, Sokolov SA, Ugrumov MV. Changes in the Content of Sphingolipids in the Nigrostriatal Dopaminergic System in the Brain of Mice with a Neurotoxic Model of Parkinson’s Disease. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Petiet A. Current and Emerging MR Methods and Outcome in Rodent Models of Parkinson's Disease: A Review. Front Neurosci 2021; 15:583678. [PMID: 33897339 PMCID: PMC8058186 DOI: 10.3389/fnins.2021.583678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/05/2021] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is a major neurodegenerative disease characterized by massive degeneration of the dopaminergic neurons in the substantia nigra pars compacta, α-synuclein-containing Lewy bodies, and neuroinflammation. Magnetic resonance (MR) imaging plays a crucial role in the diagnosis and monitoring of disease progression and treatment. A variety of MR methods are available to characterize neurodegeneration and other disease features such as iron accumulation and metabolic changes in animal models of PD. This review aims at giving an overview of how those physiopathological features of PD have been investigated using various MR methods in rodent models. Toxin-based and genetic-based models of PD are first described. MR methods for neurodegeneration evaluation, iron load, and metabolism alterations are then detailed, and the main findings are provided in those models. Ultimately, future directions are suggested for neuroinflammation and neuromelanin evaluations in new animal models.
Collapse
Affiliation(s)
- Alexandra Petiet
- Centre de Neuroimagerie de Recherche, Institut du Cerveau, Paris, France.,Inserm U1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| |
Collapse
|
37
|
Rabaneda-Lombarte N, Serratosa J, Bové J, Vila M, Saura J, Solà C. The CD200R1 microglial inhibitory receptor as a therapeutic target in the MPTP model of Parkinson's disease. J Neuroinflammation 2021; 18:88. [PMID: 33823877 PMCID: PMC8025338 DOI: 10.1186/s12974-021-02132-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
Background It is suggested that neuroinflammation, in which activated microglial cells play a relevant role, contributes to the development of Parkinson’s disease (PD). Consequently, the modulation of microglial activation is a potential therapeutic target to be taken into account to act against the dopaminergic neurodegeneration occurring in this neurological disorder. Several soluble and membrane-associated inhibitory mechanisms contribute to maintaining microglial cells in a quiescent/surveillant phenotype in physiological conditions. However, the presence of activated microglial cells in the brain in PD patients suggests that these mechanisms have been somehow overloaded. We focused our interest on one of the membrane-associated mechanisms, the CD200-CD200R1 ligand-receptor pair. Methods The acute MPTP experimental mouse model of PD was used to study the temporal pattern of mRNA expression of CD200 and CD200R1 in the context of MPTP-induced dopaminergic neurodegeneration and neuroinflammation. Dopaminergic damage was assessed by tyrosine hydroxylase (TH) immunoreactivity, and neuroinflammation was evaluated by the mRNA expression of inflammatory markers and IBA1 and GFAP immunohistochemistry. The effect of the modulation of the CD200-CD200R1 system on MPTP-induced damage was determined by using a CD200R1 agonist or CD200 KO mice. Results MPTP administration resulted in a progressive decrease in TH-positive fibres in the striatum and TH-positive neurons in the substantia nigra pars compacta, which were accompanied by transient astrogliosis, microgliosis and expression of pro- and anti-inflammatory markers. CD200 mRNA levels rapidly decreased in the ventral midbrain after MPTP treatment, while a transient decrease of CD200R1 mRNA expression was repeatedly observed in this brain area at earlier and later phases. By contrast, a transient increase in CD200R1 expression was observed in striatum. The administration of a CD200R1 agonist resulted in the inhibition of MPTP-induced dopaminergic neurodegeneration, while microglial cells showed signs of earlier activation in CD200-deficient mice. Conclusions Collectively, these findings provide evidence for a correlation between CD200-CD200R1 alterations, glial activation and neuronal loss. CD200R1 stimulation reduces MPTP-induced loss of dopaminergic neurons, and CD200 deficiency results in earlier microglial activation, suggesting that the potentiation of CD200R1 signalling is a possible approach to controlling neuroinflammation and neuronal death in PD.
Collapse
Affiliation(s)
- Neus Rabaneda-Lombarte
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Bové
- Vall d'Hebrón Research Institute-CIBERNED, Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebrón Research Institute-CIBERNED, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
38
|
El-Gamal M, Salama M, Collins-Praino LE, Baetu I, Fathalla AM, Soliman AM, Mohamed W, Moustafa AA. Neurotoxin-Induced Rodent Models of Parkinson's Disease: Benefits and Drawbacks. Neurotox Res 2021; 39:897-923. [PMID: 33765237 DOI: 10.1007/s12640-021-00356-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by cardinal motor impairments, including akinesia and tremor, as well as by a host of non-motor symptoms, including both autonomic and cognitive dysfunction. PD is associated with a death of nigral dopaminergic neurons, as well as the pathological spread of Lewy bodies, consisting predominantly of the misfolded protein alpha-synuclein. To date, only symptomatic treatments, such as levodopa, are available, and trials aiming to cure the disease, or at least halt its progression, have not been successful. Wong et al. (2019) suggested that the lack of effective therapy against neurodegeneration in PD might be attributed to the fact that the molecular mechanisms standing behind the dopaminergic neuronal vulnerability are still a major scientific challenge. Understanding these molecular mechanisms is critical for developing effective therapy. Thirty-five years ago, Calne and William Langston (1983) raised the question of whether biological or environmental factors precipitate the development of PD. In spite of great advances in technology and medicine, this question still lacks a clear answer. Only 5-15% of PD cases are attributed to a genetic mutation, with the majority of cases classified as idiopathic, which could be linked to exposure to environmental contaminants. Rodent models play a crucial role in understanding the risk factors and pathogenesis of PD. Additionally, well-validated rodent models are critical for driving the preclinical development of clinically translatable treatment options. In this review, we discuss the mechanisms, similarities and differences, as well as advantages and limitations of different neurotoxin-induced rat models of PD. In the second part of this review, we will discuss the potential future of neurotoxin-induced models of PD. Finally, we will briefly demonstrate the crucial role of gene-environment interactions in PD and discuss fusion or dual PD models. We argue that these models have the potential to significantly further our understanding of PD.
Collapse
Affiliation(s)
- Mohamed El-Gamal
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mohamed Salama
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
| | | | | | - Ahmed M Fathalla
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amira M Soliman
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Mansoura, Egypt.,Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University, Kuantan, Pahang, Malaysia
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia.,Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
39
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Bogale TA, Faustini G, Longhena F, Mitola S, Pizzi M, Bellucci A. Alpha-Synuclein in the Regulation of Brain Endothelial and Perivascular Cells: Gaps and Future Perspectives. Front Immunol 2021; 12:611761. [PMID: 33679750 PMCID: PMC7933041 DOI: 10.3389/fimmu.2021.611761] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Misfolded proteins, inflammation, and vascular alterations are common pathological hallmarks of neurodegenerative diseases. Alpha-synuclein is a small synaptic protein that was identified as a major component of Lewy bodies and Lewy neurites in the brain of patients affected by Parkinson's disease (PD), Lewy body dementia (LBD), and other synucleinopathies. It is mainly involved in the regulation of synaptic vesicle trafficking but can also control mitochondrial/endoplasmic reticulum (ER) homeostasis, lysosome/phagosome function, and cytoskeleton organization. Recent evidence supports that the pathological forms of α-synuclein can also reduce the release of vasoactive and inflammatory mediators from endothelial cells (ECs) and modulates the expression of tight junction (TJ) proteins important for maintaining the blood-brain barrier (BBB). This hints that α-synuclein deposition can affect BBB integrity. Border associated macrophages (BAMs) are brain resident macrophages found in association with the vasculature (PVMs), meninges (MAMs), and choroid plexus (CPMs). Recent findings indicate that these cells play distinct roles in stroke and neurodegenerative disorders. Although many studies have addressed how α-synuclein may modulate microglia, its effect on BAMs has been scarcely investigated. This review aims at summarizing the main findings supporting how α-synuclein can affect ECs and/or BAMs function as well as their interplay and effect on other cells in the brain perivascular environment in physiological and pathological conditions. Gaps of knowledge and new perspectives on how this protein can contribute to neurodegeneration by inducing BBB homeostatic changes in different neurological conditions are highlighted.
Collapse
Affiliation(s)
- Tizibt Ashine Bogale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Mitola
- Biotechnology Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
41
|
Vedam-Mai V. Harnessing the immune system for the treatment of Parkinson's disease. Brain Res 2021; 1758:147308. [PMID: 33524380 DOI: 10.1016/j.brainres.2021.147308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Current treatment options for Parkinson's disease (PD) typically aim to replace dopamine, and hence only provide symptomatic relief. However, in the long run, this approach alone loses its efficacy as it is associated with debilitating side effects. Hence there is an unmet clinical need for addressing levodopa resistant symptoms, and an urgency to develop therapies that can halt or prevent the course of PD. The premise that α-syn can transmit from cell-to-cell in a prion like manner has opened up the possibility for the use of immunotherapy in PD. There is evidence for inflammation in PD as is evidenced by microglial activation, as well as the involvement of the peripheral immune system in PD, and peripheral inflammation can exacerbate dopaminergic degeneration as seen in animal models of the disease. However, mechanisms that link the immune system with PD are not clear, and the sequence of immune responses with respect to PD are still unknown. Nevertheless, our present knowledge offers avenues for the development of immune-based therapies for PD. In order to successfully employ such strategies, we must comprehend the state of the peripheral immune system during the course of PD. This review describes the developments in the field of both active and passive immunotherapies in the treatment of PD, and highlights the crucial need for future research for clarifying the role of inflammation and immunity in this debilitating disease.
Collapse
|
42
|
Kopaeva MY, Cherepov AB, Nesterenko MV, Zarayskaya IY. Pretreatment with Human Lactoferrin Had a Positive Effect on the Dynamics of Mouse Nigrostriatal System Recovery after Acute MPTP Exposure. BIOLOGY 2021; 10:24. [PMID: 33401480 PMCID: PMC7823682 DOI: 10.3390/biology10010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 01/26/2023]
Abstract
We studied the effect of human lactoferrin (hLf) on degenerative changes in the nigrostriatal system and associated behavioral deficits in the animal model of Parkinson disease. Nigrostriatal dopaminergic injury was induced by single administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 40 mg/kg) to five-month-old C57Bl/6 mice. Behavioral disturbances were assessed in the open field and rotarod tests and by the stride length analysis. Structural deficits were assessed by the counts of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and optical density (OD) of TH-immunolabeled fibers in the striatum. Acute MPTP treatment induced long-term behavioral deficit and degenerative changes in the nigrostriatal system. Pretreatment with hLf prevented body weight loss and promoted recovery of motor functions and exploratory behavior. Importantly, OD of TH-positive fibers in the striatum of mice treated with hLf almost returned to normal, and the number of TH-positive cells in the substantia nigra significantly increased on day 28. These results indicate that hLf produces a neuroprotective effect and probably stimulates neuroregeneration under conditions of MPTP toxicity in our model. A relationship between behavioral deficits and nigrostriatal system disturbances at delayed terms after MPTP administration was found.
Collapse
Affiliation(s)
- Marina Yu. Kopaeva
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | - Anton B. Cherepov
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | | | - Irina Yu. Zarayskaya
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| |
Collapse
|
43
|
Maegawa H, Niwa H. Generation of Mitochondrial Toxin Rodent Models of Parkinson's Disease Using 6-OHDA , MPTP , and Rotenone. Methods Mol Biol 2021; 2322:95-110. [PMID: 34043196 DOI: 10.1007/978-1-0716-1495-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Several animal models are employed to discover novel treatments for the symptoms of Parkinson's disease (PD). PD models can be divided into two models: neurotoxin models and genetic models. Among neurotoxins to produce PD models, 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and rotenone, which inhibit the mitochondrial complex I, are widely used. Animal models of PD using these neurotoxins are also known as mitochondrial toxin models. Here this chapter describes the preparation of these mitochondrial toxin models.
Collapse
Affiliation(s)
- Hiroharu Maegawa
- Department of Dental Anesthesia, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hitoshi Niwa
- Department of Dental Anesthesia, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
44
|
Iyer M, Subramaniam MD, Venkatesan D, Cho SG, Ryding M, Meyer M, Vellingiri B. Role of RhoA-ROCK signaling in Parkinson's disease. Eur J Pharmacol 2020; 894:173815. [PMID: 33345850 DOI: 10.1016/j.ejphar.2020.173815] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a complex and widespread neurodegenerative disease characterized by depletion of midbrain dopaminergic (DA) neurons. Key issues are the development of therapies that can stop or reverse the disease progression, identification of dependable biomarkers, and better understanding of the pathophysiological mechanisms of PD. RhoA-ROCK signals appear to have an important role in PD symptoms, making it a possible approach for PD treatment strategies. Activation of RhoA-ROCK (Rho-associated coiled-coil containing protein kinase) appears to stimulate various PD risk factors including aggregation of alpha-synuclein (αSyn), dysregulation of autophagy, and activation of apoptosis. This manuscript reviews current updates about the biology and function of the RhoA-ROCK pathway and discusses the possible role of this signaling pathway in causing the pathogenesis of PD. We conclude that inhibition of the RhoA-ROCK signaling pathway may have high translational potential and could be a promising therapeutic target in PD.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
45
|
Thadathil N, Xiao J, Hori R, Alway SE, Khan MM. Brain Selective Estrogen Treatment Protects Dopaminergic Neurons and Preserves Behavioral Function in MPTP-induced Mouse Model of Parkinson's Disease. J Neuroimmune Pharmacol 2020; 16:667-678. [PMID: 33221984 DOI: 10.1007/s11481-020-09972-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra and loss of both motor and non-motor features. Several clinical and preclinical studies have provided evidence that estrogen therapy reduces the risk of PD but have limitations in terms of adverse peripheral effects. Therefore, we examined the potential beneficial effects of the brain-selective estrogen prodrug, 10β, 17β-dihydroxyestra-1,4-dien-3-one (DHED) on nigrostriatal dopaminergic neurodegeneration and behavioral abnormalities in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wild-type mice were treated with daily subcutaneous injections of DHED (50 and 100 µg/kg) or vehicle for four weeks. To produce PD-like symptoms, mice were injected with MPTP (18 mg/kg in saline; intraperitoneally) four times at 2-hr intervals for one day. After behavioral examination, mice were sacrificed, and the brains were isolated for neurochemical and morphological examinations. MPTP injected mice exhibited loss of dopaminergic neurons and fibers in substantia nigra and striatum respectively, along with impaired motor function at day 7 post MPTP injection. These phenotypes were associated with significantly increased oxidative stress and inflammatory responses in the striatum regions. DHED treatments significantly mitigated behavioral impairments and dopaminergic neurodegeneration induced by MPTP. We further observed that DHED treatment suppressed oxidative stress and inflammation in the striatum of MPTP treated mice when compared to vehicle treated mice. In conclusions, our findings suggest that DHED protects dopaminergic neurons from MPTP toxicity in mouse model of PD and support a beneficial effect of brain-selective estrogen in attenuating neurodegeneration and motor symptoms in PD-related neurological disorders. Graphical Abstract.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - Roderick Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA.
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
46
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
47
|
Liu WW, Wei SZ, Huang GD, Liu LB, Gu C, Shen Y, Wang XH, Xia ST, Xie AM, Hu LF, Wang F, Liu CF. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson's disease mouse model. FASEB J 2020; 34:6570-6581. [PMID: 32246801 DOI: 10.1096/fj.201901565rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/21/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
Dysfunction of the circadian rhythm is one of most common nonmotor symptoms in Parkinson's disease (PD), but the molecular role of the circadian rhythm in PD is unclear. We here showed that inactivation of brain and muscle ARNT-like 1 (BMAL1) in 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP)-treated mice resulted in obvious motor functional deficit, loss of dopaminergic neurons (DANs) in the substantia nigra pars compacta (SNpc), decrease of dopamine (DA) transmitter, and increased activation of microglia and astrocytes in the striatum. Time on the rotarod or calorie consumption, and food and water intake were reduced in the Bmal1-/- mice after MPTP treatment, suggesting that absence of Bmal1 may exacerbate circadian and PD motor function. We observed a significant reduction of DANs (~35%) in the SNpc, the tyrosine hydroxylase protein level in the striatum (~60%), the DA (~22%), and 3,4-dihydroxyphenylacetic acid content (~29%), respectively, in MPTP-treated Bmal1-/- mice. Loss of Bmal1 aggravated the inflammatory reaction both in vivo and in vitro. These findings suggest that BMAL1 may play an essential role in the survival of DANs and maintain normal function of the DA signaling pathway via regulating microglia-mediated neuroinflammation in the brain.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Shi-Zhuang Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Guo-Dong Huang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lu-Bing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chao Gu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yun Shen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xian-Hui Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Shu-Ting Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
48
|
Sinha P, Chakrabarti N, Ghosh N, Mitra S, Dalui S, Bhattacharyya A. Alterations of thyroidal status in brain regions and hypothalamo-pituitary-blood-thyroid-axis associated with dopaminergic depletion in substantia nigra and ROS formation in different brain regions after MPTP treatment in adult male mice. Brain Res Bull 2020; 156:131-140. [PMID: 31891753 DOI: 10.1016/j.brainresbull.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
MPTP produces oxidative stress, damages niagrostriatal dopaminergic neurons and develops Parkinsonism in rodents. Due to paucity of information, the thyroidal status in brain regions and peripheral tissues during different post-treatment days in MPTP-induced mice had been executed in the present study. MPTP depleted tyrosine hydroxylase protein expressions that signify the dopaminergic neuronal damage in substantia nigra. MPTP elevated ROS formation differentially in brain regions (cerebral cortex, hippocampus, substantia nigra) with maximal elevation at hippocampus. The changes in thyroid hormone (T4 and T3) levels indicate that brain regions might combat the adverse situation by keeping the levels of thyroid hormones either unchanged or in the elevated conditions in the latter phases (day-3 and day-7), apart from the depletion of thyroid hormones in certain brain regions (T4 in SN and hippocampus, T3 in hippocampus) as the immediate (day-1) effects after MPTP treatment. MPTP caused alterations of cellular morphology, RNA:Protein ratio and TPO protein expression, concomitantly depleted TPO mRNA expression and elevated TSH levels in the thyroid gland. Although T4 levels changed differentially, T3 levels remained unaltered in thyroid gland throughout the post-treatment days. Results have been discussed mentioning the putative role of T4 and TSH in apoptosis and/or proliferation/differentiation of thyrocytes. In blood, T4 levels remained unchanged while the changes in T3 and TSH levels did not signify the clinical feature of hypo/hyperthyroidism of animals. In the pituitary, both T4 and T3 levels remained elevated where TSH differentially altered (elevated followed by depletion) during post-treatment days. Notably, T4, T3 and TSH levels did not alter in hypothalamus except initial (day-1) depletion of the T4 level. Therefore, the feedback control mechanism of hypothalamo-pituitary-blood-thyroid-axis failed to occur after MPTP treatment. Overall, MPTP altered thyroidal status in the brain and peripheral tissues while both events might occur in isolation as well.
Collapse
Affiliation(s)
- Priyobrata Sinha
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India; Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India; Centres with Potential for Excellence in Particular Areas (CPEPA, UGC), Centre for "Electrophysiology & Neuroimaging Studies Including Mathematical Modeling" India.
| | - Nabanita Ghosh
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Soham Mitra
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Shauryabrota Dalui
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
49
|
Twice subacute MPTP administrations induced time-dependent dopaminergic neurodegeneration and inflammation in midbrain and ileum, as well as gut microbiota disorders in PD mice. Neurotoxicology 2019; 76:200-212. [PMID: 31790727 DOI: 10.1016/j.neuro.2019.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disease. PD produces a pathological state in the intestine and disordered gut microbiota (GM), which may be important for the pathogenesis and progression of PD, but it is not clear. To explore the conditions and characteristics of intestinal pathology and GM disorders when PD-related injuries occur, we used twice 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) subacute administration with an interval of 3 weeks (each was an intraperitoneal injection of 25 mg/kg MPTP for 5 consecutive days). We observed the changes in intestinal and brain immune status, intestinal barrier function and GM in different injury states one day, one week, and three weeks after the first stimulus and one day and one week after the second stimulus. Our study found that two subacute administrations of MPTP induced dopaminergic (DAergic) neuron injury and inflammation in the midbrain and ileum, impaired intestinal barrier function and GM disorders closely related to administration. These changes recovered after the first administration, but after repeated administration, some indicators showed more dramatic changes than during the first administration. Our results suggest that the intestinal tract is sensitive to PD-related injury, and the GM is susceptible to disturbances caused by intestinal function, which may be concerned in local immune disorders of the intestine.
Collapse
|
50
|
Lindahl M, Chalazonitis A, Palm E, Pakarinen E, Danilova T, Pham TD, Setlik W, Rao M, Võikar V, Huotari J, Kopra J, Andressoo JO, Piepponen PT, Airavaara M, Panhelainen A, Gershon MD, Saarma M. Cerebral dopamine neurotrophic factor-deficiency leads to degeneration of enteric neurons and altered brain dopamine neuronal function in mice. Neurobiol Dis 2019; 134:104696. [PMID: 31783118 PMCID: PMC7000201 DOI: 10.1016/j.nbd.2019.104696] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson’s disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf−/−), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf−/− mouse are much greater than in those of Cdnf+/+ mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf−/− mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf−/− male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf−/− mouse brain is altered. The deficiencies of Cdnf−/− mice, therefore, are reminiscent of those seen in early stages of Parkinson’s disease.
Collapse
Affiliation(s)
- Maria Lindahl
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland.
| | | | - Erik Palm
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Emmi Pakarinen
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Tatiana Danilova
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Tuan D Pham
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Wanda Setlik
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Meenakshi Rao
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Vootele Võikar
- Neuroscience Center/Laboratory Animal Center, Mustialankatu 1, FI-00014, University of Helsinki, Finland
| | - Jatta Huotari
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, FI-00014, University of Helsinki, Finland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Petteri T Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, FI-00014, University of Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Michael D Gershon
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| |
Collapse
|