1
|
Zubkov EA, Zorkina YA, Gurina OI, Melnikov PA, Morozova AY, Chekhonin VP. Prenatal exposure to brain-specific anion transporter-1-specific monoclonal antibodies impairs cognitive function in post-natal life. Neuropeptides 2017; 65:100-105. [PMID: 28688524 DOI: 10.1016/j.npep.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/21/2017] [Accepted: 07/02/2017] [Indexed: 11/22/2022]
Abstract
Subclinical hypothyroidism is caused by thyroid hormone deficit and can lead to impairments in mood and cognition. In brain, supply with thyroxine (T4) is mediated by thyroid hormone transporters including the brain-specific anion transporter-1 (BSAT-1). In humans and rodents, BSAT-1 is expressed in brain microvessels and astrocytes. In this study, we tested whether exposure in utero with BSAT-1-specific monoclonal antibodies (MabBSAT) will affect the cognitive function of the progeny. On gestation day 16th, females were intravenously treated with MabBSAT, non-specific antibodies (control 1), and saline (control 2). 72h after injection, MabBSAT were still detectable in the rat brain while non-specific antibodies were found. Immunocytochemistry showed that MabBSAT can bind to cultured primary cerebrovascular rat cells. At the age of 1month, the progeny was subjected to the Y-maze test, novel object recognition test, passive avoidance test, and Morris water maze, which revealed significant impairments in the cognitive function in the MabBSAT-exposed progeny compared to both control progeny groups. Therefore, prenatal exposure to MabBSAT blocks brain BSAT-1 and limits T4 influx to the brain. This impairs the cognitive function in exposed progeny in the post-natal life.
Collapse
Affiliation(s)
- Eugene A Zubkov
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Research Center of Psychiatry and Narcology, Kropotkinsky lane 23, 119991 Moscow, Russia.
| | - Yana A Zorkina
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Research Center of Psychiatry and Narcology, Kropotkinsky lane 23, 119991 Moscow, Russia
| | - Olga I Gurina
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Research Center of Psychiatry and Narcology, Kropotkinsky lane 23, 119991 Moscow, Russia
| | - Pavel A Melnikov
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Research Center of Psychiatry and Narcology, Kropotkinsky lane 23, 119991 Moscow, Russia
| | - Anna Y Morozova
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Research Center of Psychiatry and Narcology, Kropotkinsky lane 23, 119991 Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Research Center of Psychiatry and Narcology, Kropotkinsky lane 23, 119991 Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
2
|
Muche A, Arendt T, Schliebs R. Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells. PLoS One 2017; 12:e0178127. [PMID: 28617802 PMCID: PMC5472258 DOI: 10.1371/journal.pone.0178127] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Oxidative stress is thought to be a key player in the pathogenesis of neurodegenerative dementia, including Alzheimer's disease (AD). It has been assumed that oxidative stress contributes to the ß-amyloid deposition in cerebral blood vessels. METHODS In order to prove this hypothesis, we examined the effect of oxidative stress on the processing of amyloid precursor protein (APP) in primary endothelial cells (EC) derived from cerebral cortical tissue of transgenic Tg2576 mice. Following exposure of EC by 1 μM hydrogen peroxide for up to 48 hours, formation and secretion of APP cleavage products sAPPα and sAPPß into the culture medium as well as the expression of endothelial APP were assessed. RESULTS Oxidative stress resulted in enhanced secretion of sAPPß into the culture medium as compared to controls (absence of hydrogen peroxide), which was accompanied by an increased APP expression, induction of VEGF synthesis, nitric oxide and oxygen free radicals productions, and differential changes of endothelial phospo-p42/44 MAPK expression. CONCLUSION The data suggest that oxidative stress may represent a major risk factor in causing Aß deposition in the brain vascular system by initiating the amyloidogenic route of endothelial APP processing. The enhanced β-secretase activity following oxidative stress exposure, possibly promoted by phosphorylation of p42/44 MAPK.
Collapse
Affiliation(s)
- Abebe Muche
- Department of Human Anatomy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- * E-mail:
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36:862-90. [PMID: 26868179 PMCID: PMC4853841 DOI: 10.1177/0271678x16630991] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
Collapse
Affiliation(s)
- Hans C Helms
- Department of Pharmacy, University of Copenhagen, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, UK
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | | | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, HAS, Szeged, Hungary
| | - Carola Förster
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | - Hans J Galla
- Institute of Biochemistry, University of Muenster, Germany
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Babette Weksler
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, NY, USA
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Borneol Depresses P-Glycoprotein Function by a NF-κB Signaling Mediated Mechanism in a Blood Brain Barrier in Vitro Model. Int J Mol Sci 2015; 16:27576-88. [PMID: 26593909 PMCID: PMC4661909 DOI: 10.3390/ijms161126051] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (P-gp) on brain microvascular endothelial cells (BMECs) that form the blood brain barrier (BBB), influences transportation of substances between blood and brain. The objective of this study was to characterize the effects of borneol on P-gp efflux function on BBB and explore the potential mechanisms. We established an in vitro BBB model comprised of rat BMECs and astrocytes to measure the effects of borneol on the known P-gp substrates transport across BBB, and examined the function and expression of P-gp in BMECs and the signaling pathways regulating P-gp expression. Borneol increased intracellular accumulation of Rhodamine 123, enhanced verapamil and digoxin across the BBB in vitro model, and depressed mdr1a mRNA and P-gp expression. Borneol could activate nuclear factor-κB (NF-κB) and inhibition of NF-κB with MG132 (carbobenzoxy-Leu-Leu-leucinal) and SN50 (an inhibitory peptide) obscuring the P-gp decreases induced by borneol. These data suggested that borneol depresses P-gp function in BMECs by a NF-κB signaling medicated mechanism in a BBB in vitro model.
Collapse
|
6
|
Low-molecular-weight fucoidan protects endothelial function and ameliorates basal hypertension in diabetic Goto-Kakizaki rats. J Transl Med 2014; 94:382-93. [PMID: 24614196 DOI: 10.1038/labinvest.2014.12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/11/2013] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction, characterized by impairment of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability, has been implicated in diabetic cardiovascular pathogenesis. In this study, low-molecular-weight fucoidan (LMWF), which has multiple biological activities including anti-inflammatory and anti-oxidative properties, was investigated for its protective effect against endothelial dysfunction in Goto-Kakizaki type 2 diabetic rats. LMWF (50, 100, or 200 mg/kg/day) or probucol (100 mg/kg/day) were given to diabetic rats for 12 weeks. Basal blood pressure, acetylcholine- or flow-mediated relaxation of mesenteric and paw arteries, endothelium-dependent dilation of aorta, eNOS phosphorylation, and NO production were measured using laser Doppler flowmetry, force myograph, hematoxylin and eosin staining, western blot analysis, and an NO assay. We found that LMWF robustly ameliorated the basal hypertension and impairment of endothelium-dependent relaxation in the aorta, as well as mesenteric and paw arteries in diabetic rats. In addition, the reduction in eNOS phosphorylation at Ser1177, eNOS expression, and NO production because of diabetes were partially reversed by LMWF treatment. However, probucol, a lipid-modifying drug with antioxidant properties, displayed only mild effects. Moreover, LMWF induced, in a dose-dependent manner, endothelium-dependent vasodilation and eNOS phosphorylation at Ser1177 in normal aorta, and also promoted Ser1177 phosphorylation and NO synthesis in primary cultured vasoendothelial cells. Thus, these data demonstrate for the first time that fucoidan protects vasoendothelial function and reduces basal blood pressure in type 2 diabetes rats via, at least in part, preservation of eNOS function. Fucoidan is therefore a potential candidate drug for protection of endothelium in diabetic cardiovascular complications.
Collapse
|
7
|
Muche A, Bürger S, Arendt T, Schliebs R. Hypoxic stress, brain vascular system, and β-amyloid: A primary cell culture study. Nutr Neurosci 2013; 18:1-11. [DOI: 10.1179/1476830513z.000000000112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
A simple method for isolating and culturing the rat brain microvascular endothelial cells. Microvasc Res 2013; 90:199-205. [DOI: 10.1016/j.mvr.2013.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/12/2013] [Accepted: 08/14/2013] [Indexed: 02/05/2023]
|
9
|
Passeleu-Le Bourdonnec C, Carrupt PA, Scherrmann JM, Martel S. Methodologies to assess drug permeation through the blood-brain barrier for pharmaceutical research. Pharm Res 2013; 30:2729-56. [PMID: 23801086 DOI: 10.1007/s11095-013-1119-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/11/2013] [Indexed: 12/21/2022]
Abstract
The drug discovery process for drugs that target the central nervous system suffers from a very high rate of failure due to the presence of the blood-brain barrier, which limits the entry of xenobiotics into the brain. To minimise drug failure at different stages of the drug development process, new methodologies have been developed to understand the absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of drug candidates at early stages of drug development. Additionally, understanding the permeation of drug candidates is also important, particularly for drugs that target the central nervous system. During the first stages of the drug discovery process, in vitro methods that allow for the determination of permeability using high-throughput screening methods are advantageous. For example, performing the parallel artificial membrane permeability assay followed by cell-based models with interesting hits is a useful technique for identifying potential drugs. In silico models also provide interesting information but must be confirmed by in vitro models. Finally, in vivo models, such as in situ brain perfusion, should be studied to reduce a large number of drug candidates to a few lead compounds. This article reviews the different methodologies used in the drug discovery and drug development processes to determine the permeation of drug candidates through the blood-brain barrier.
Collapse
Affiliation(s)
- Céline Passeleu-Le Bourdonnec
- School of Pharmaceutical Sciences, University of Geneva University of Lausanne, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | | | | | | |
Collapse
|
10
|
Vaccinia virus-induced smallpox postvaccinal encephalitis in case of blood–brain barrier damage. Vaccine 2012; 30:1397-405. [DOI: 10.1016/j.vaccine.2011.08.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 11/19/2022]
|
11
|
Sakurai E, Sakurai E, Ueda Y, Yagi Y. Enhancing effect of zinc on L-histidine transport in rat lung microvascular endothelial cells. Biol Trace Elem Res 2011; 142:713-22. [PMID: 20721638 DOI: 10.1007/s12011-010-8797-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/29/2010] [Indexed: 11/29/2022]
Abstract
The aim of this study was to examine enhancing effect of L: -histidine into cultured rat lung microvascular endothelial cells (LMECs), which constitute the gas-blood barrier. Uptake of L: -histidine into LMECs markedly increased with the addition of ZnSO(4) (0.1 mmol/L), and this enhanced uptake of L: -histidine was drastically reduced in the presence of the Na(+)-independent system L substrate, 2-amino-2-norbornanecarboxylic acid (BCH). However, the uptake of L: -histidine together with ZnSO(4) was not reduced by the addition of metabolic inhibitor, 2,4-dinitrophenol, or sodium ion replacement. Moreover, the addition of the system N-substrate, L: -glutamic acid γ-monohydroxamate did not significantly decrease the uptake of L: -histidine with 143 mmol/L Na (+) + 1 mmol/L BCH. These results indicated that system-N transporter does not play a role in the uptake of L: -histidine in the presence of ZnSO(4), suggesting that only system-L transporter is involved in the uptake of L: -histidine, although L: -histidine in the absence of ZnSO(4) was taken up by at least two pathways of Na(+)-dependent system-N and Na(+)-independent system-L processes into rat LMECs. The uptake of L: -histidine into rat LMECs in the presence of ZnSO(4) was also found to be unaffected by pH (5.0-7.4), indicating that uptake of L: -histidine into LMECs by the addition of zinc may not be involved in the H(+)-coupled transporters.
Collapse
Affiliation(s)
- Eiichi Sakurai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | |
Collapse
|
12
|
Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature. J Neurosci Res 2010; 88:1457-74. [PMID: 20025060 DOI: 10.1002/jnr.22316] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) refers to the network of microvessels that selectively restricts the passage of substances between the circulation and the central nervous system (CNS). This microvascular network is comprised of arterioles, capillaries and venules, yet the respective contribution of each of these to the BBB awaits clarification. In this regard, it has been postulated that brain microvascular endothelial cells (BMEC) from these different tributaries might exhibit considerable heterogeneity in form and function, with such diversity underlying unique roles in physiological and pathophysiological processes. Means to begin exploring such endothelial differences in situ, free from caveats associated with cell isolation and culturing procedures, are crucial to comprehending the nature and treatment of CNS diseases with vascular involvement. Here, the recently validated approach of immuno-laser capture microdissection (immuno-LCM) coupled to quantitative real-time PCR (qRT-PCR) was used to analyze gene expression patterns of BMEC retrieved in situ from either capillaries or venules. From profiling 87 genes known to play a role in BBB function and/or be enriched in isolated brain microvessels, results imply that most BBB properties reside in both segments, but that capillaries preferentially express some genes related to solute transport, while venules tend toward higher expression of an assortment of genes involved in inflammatory-related tasks. Fuller appreciation of such heterogeneity will be critical for efficient therapeutic targeting of the endothelium and the management of CNS disease.
Collapse
Affiliation(s)
- Jennifer A Macdonald
- Blood-Brain Barrier Laboratory, Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 07070, USA
| | | | | |
Collapse
|
13
|
Role of src-suppressed C kinase substrate in rat pulmonary microvascular endothelial hyperpermeability stimulated by inflammatory cytokines. Inflamm Res 2010; 59:949-58. [PMID: 20454828 DOI: 10.1007/s00011-010-0207-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 04/04/2010] [Accepted: 04/21/2010] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The aim of the study was to investigate the role of src-suppressed C kinase substrate (SSeCKS) in the modulation of rat pulmonary microvascular endothelial cells (RPMVEC) permeability elicited by interleukin (IL)-1β and tumor necrosis factor (TNF)-α. METHODS The gene expression of SSeCKS was analyzed by reverse transcription-polymerase chain reaction. Immunoblotting was used to determine the SSeCKS protein expression and the activation of the protein kinase C (PKC) signaling pathway. A RPMVEC monolayer was constructed to determine changes of transendothelial electrical resistance (TER) and FITC-dextran flux (P (d)) across the monolayer. SSeCKS-specific small interfering RNA was transfected into RPMVEC. RESULTS IL-1β and TNF-α activated the PKC signaling pathway in RPMVEC, and up-regulated the gene and protein expression of SSeCKS. Depletion of endogenous SSeCKS in RPMVEC significantly attenuated cytokine-induced decrease in TER and increase in P (d), but not to the basal levels. PKC inhibitors also significantly decreased cytokine-induced hyperpermeability and SSeCKS expression. CONCLUSIONS SSeCKS is involved in the endothelial hyperpermeability induced by IL-1β and TNF-α in inflammatory process.
Collapse
|
14
|
Han IK, Kim MY, Byun HM, Hwang TS, Kim JM, Hwang KW, Park TG, Jung WW, Chun T, Jeong GJ, Oh YK. Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J Mol Med (Berl) 2006; 85:75-83. [PMID: 17089096 DOI: 10.1007/s00109-006-0114-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 07/02/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Recently, nasal administration has been studied as a noninvasive route for delivery of plasmid DNA encoding therapeutic or antigenic genes. Here, we examined the brain targeting efficiency and transport pathways of intranasally administered plasmid DNA. Quantitative polymerase chain reaction (PCR) measurements of plasmid DNA in blood and brain tissues revealed that intranasally administered pCMVbeta (7.2 kb) and pN2/CMVbeta (14.1 kb) showed systemic absorption and brain distribution. Following intranasal administration, the beta-galactosidase protein encoded by these plasmids was significantly expressed in brain tissues. Kinetic studies showed that intranasally administered plasmid DNA reached the brain with a 2,595-fold higher efficiency than intravenously administered plasmid DNA did, 10 min post-dose. Over 1 h post-dose, the brain targeting efficiencies were consistently higher for intranasally administered plasmid DNA than for intravenously administered DNA. To examine how plasmid DNA enters the brain and moves to the various regions, we examined tissues from nine brain regions, at 5 and 10 min after intranasal or intravenous administration of plasmid DNA. Intravenously administered plasmid DNA displayed similar levels of plasmid DNA in the nine different regions, whereas, intranasally administered plasmid DNA exhibited different levels of distribution among the regions, with the highest plasmid DNA levels in the olfactory bulb. Moreover, plasmid DNA was mainly detected in the endothelial cells, but not in glial cells. Our results suggest that intranasally applied plasmid DNA may reach the brain through a direct route, possibly via the olfactory bulb, and that the nasal route might be an alternative method for efficiently delivering plasmid DNA to the brain.
Collapse
Affiliation(s)
- In-Kwon Han
- MyGene Bioscience Institute, Kangnam-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Marco S, Skaper SD. Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci Lett 2006; 401:219-24. [PMID: 16644119 DOI: 10.1016/j.neulet.2006.03.047] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease is characterised by neuronal loss, numerous intraneuronal deposits of neurofibrillary tangles, senile plaques, and cerebrovascular amyloid deposits. The major component of senile plaques and cerebrovascular deposits is the 39-43 amino acid beta-amyloid peptide (Abeta). The effects of Abeta on cerebral endothelium and thus the blood-brain barrier remain unclear. Utilising endothelial cells isolated from rat cerebral cortex microvessels, we have examined effects of Abeta peptides on tight junction protein behaviour. The transmembrane tight junction proteins occludin, claudin-1 and claudin-5, as well as the cytoplasmic accessory proteins ZO-1 and ZO-2 displayed a continuous distribution at cell boundaries. Endothelial cells exposed to Abeta1-42 (20 microM) for 3 days showed a disrupted plasma membrane pattern of claudin-5 and ZO-2 with relocation to the cytoplasm. These effects were not seen with Abeta25-35 or Abeta1-40[Gln22] (Dutch type). Abeta1-42 treatment altered also protein expression: occludin was lower at 1st day, claudin-1 increased at all times, and ZO-2 increased after 1 day and then decreased. These data suggest that Abeta1-42 effects on tight junction protein complexes may alter blood-brain barrier integrity and contribute to the neuropathological sequelae of Alzheimer's disease.
Collapse
Affiliation(s)
- Sonia Marco
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, CM19 5AW Harlow, Essex, United Kingdom
| | | |
Collapse
|
16
|
Takei T, Sakai S, Ono T, Ijima H, Kawakami K. Fabrication of endothelialized tube in collagen gel as starting point for self-developing capillary-like network to construct three-dimensional organs in vitro. Biotechnol Bioeng 2006; 95:1-7. [PMID: 16604522 DOI: 10.1002/bit.20903] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A possible strategy for creating three-dimensional (3D) tissue-engineered organs in vitro with similar volumes to the primary organs is to develop a capillary network throughout the constructs to provide sufficient oxygenation and nutrition to the cells composing them. Here, we propose a novel approach for the creation of a capillary-like network in vitro, based on the spontaneous tube-forming activity of vascular endothelial cells (ECs) in collagen gel. We fabricated a linear tube of 500 microm in diameter, the inner surface of which was filled with bovine carotid artery vascular endothelial cells (BECs), in type I collagen gel as a starting point for the formation of a capillary-like network. The BECs exposed to a medium containing vascular endothelial growth factor (VEGF) migrated into the ambient gel around the tube. After 2 weeks of VEGF exposure, the distance of the migration into the ambient gel in the radial direction of the tube reached approximately 800 microm. Cross-sections of capillary-like structures composed of the migrating BECs, with a lumen-like interior space, were observed in slices of the gel around the tube stained with hematoxylin-eosin (H&E). These results demonstrate that this approach using a pre-established tube, which is composed of ECs, as a starting point for a self-developing capillary-like network is potentially useful for constructing 3D organs in vitro.
Collapse
Affiliation(s)
- Takayuki Takei
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0385, Japan.
| | | | | | | | | |
Collapse
|
17
|
Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005; 25:59-127. [PMID: 15962509 PMCID: PMC11529645 DOI: 10.1007/s10571-004-1377-8] [Citation(s) in RCA: 476] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 03/25/2004] [Indexed: 10/25/2022]
Abstract
(1) The specifically regulated restrictive permeability barrier to cells and molecules is the most important feature of the blood-brain barrier (BBB). The aim of this review was to summarize permeability data obtained on in vitro BBB models by measurement of transendothelial electrical resistance and by calculation of permeability coefficients for paracellular or transendothelial tracers. (2) Results from primary cultures of cerebral microvascular endothelial cells or immortalized cell lines from bovine, human, porcine, and rodent origin are presented. Effects of coculture with astroglia, neurons, mesenchymal cells, blood cells, and conditioned media, as well as physiological influence of serum components, hormones, growth factors, lipids, and lipoproteins on the barrier function are discussed. (3) BBB permeability results gained on in vitro models of pathological conditions including hypoxia and reoxygenation, neurodegenerative diseases, or bacterial and viral infections have been reviewed. Effects of cytokines, vasoactive mediators, and other pathogenic factors on barrier integrity are also detailed. (4) Pharmacological treatments modulating intracellular cyclic nucleotide or calcium levels, and activity of protein kinases, protein tyrosine phosphatases, phospholipases, cyclooxygenases, or lipoxygenases able to change BBB integrity are outlined. Barrier regulation by drugs involved in the metabolism of nitric oxide and reactive oxygen species, as well as influence of miscellaneous treatments are also listed and evaluated. (5) Though recent advances resulted in development of improved in vitro BBB model systems to investigate disease modeling, drug screening, and testing vectors targeting the brain, there is a need for checking validity of permeability models and cautious interpretation of data.
Collapse
Affiliation(s)
- Máiria A Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | | | | | | |
Collapse
|
18
|
Shibata T, Misawa N, Takeo C, Saeki N, Saito Y, Tatsuno I. Analysis of Genes Dominantly Expressed in Rat Cerebral Endothelial Cells Using Suppression Subtractive Hybridization. J Atheroscler Thromb 2005; 12:330-7. [PMID: 16394617 DOI: 10.5551/jat.12.330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In mammals, a fully developed, highly branched vascular system specialized for each particular organ or tissue is essential for obtaining metabolic nutrients supply. The formation of a blood-brain barrier that protects against environmental insults is a distinguishing feature of the brain's vascular system. Since this is accomplished by cerebral endothelial cells (CECs), we analyzed the genes specifically and/or dominantly expressed in rat CECs using Suppression Subtractive Hybridization (SSH). We found 39 genes specifically and/or dominantly expressed in CECs. 24 genes of known function (thrombospondin-2, vimentin, etc.), 13 genes of known sequence but unknown function including 7 of ESTs (SNERG1, rat GPCR, etc.), and 2 novel genes. The physiological significance of these genes in CECs has been under investigation. SSH is useful for identifying genes regulated in an organ-specific manner in cells such as CECs to obtain clarification of their physiological roles.
Collapse
Affiliation(s)
- Takahisa Shibata
- Department of Clinical Cell Biology, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya KI. New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today 2004; 8:944-54. [PMID: 14554158 DOI: 10.1016/s1359-6446(03)02858-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pharmaceutical industry has been searching for an in vitro blood-brain barrier (BBB) model that preserves in vivo transporter functions in CNS drug discovery and development. The application of conditionally immortalized cell lines derived from transgenic animals harboring temperature-sensitive SV40 large T-antigen gene, is a rational and promising approach to such a workable in vitro BBB model. The established brain capillary endothelial cell lines retain the in vivo transport rate of several compounds and various forms of gene expression. Furthermore, this new approach has enabled the development of stable and reproducible co-culture models with a pericyte cell line and/or an astrocyte cell line.
Collapse
Affiliation(s)
- Tetsuya Terasaki
- Department of Molecular, Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences and New Industry Creation, Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Han D, Ma W, Liao F, Yeh M, Ouyang Z, Sun Y. Time-series observation of the spreading out of microvessel endothelial cells with atomic force microscopy. Phys Med Biol 2003; 48:3897-909. [PMID: 14703165 DOI: 10.1088/0031-9155/48/23/007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The spreading out of microvessel endothelial cells plays a key role in angiogenesis and the post-injury healing of endothelial cells. In our study, a physical force applied with an atomic force microscopic (AFM) cantilever tip in contact mode partly broke the peripheral adhesion that just-confluent cultured rat cerebral microvessel endothelial cells had formed with basal structures and resulted in the cells actively withdrawing from the stimulated area. Time-series changes in cell extension were imaged using tapping mode AFM, in conjunction with total internal reflection fluorescence microscopy, intensified charge-coupled device and field emission scanning electron microscopy. We also interpreted phase images of living endothelial cells. The results showed that formation of a fibronectin molecule monolayer is key to the spreading out of the cells. Lamellipods as well as filopods would spread out in temporal and spatial distribution following the formation of fibronectin layer. In addition, a lattice-like meshwork of filopods formed in the regions leading lamellipods, which would possibly provide a fulcrum for the filaments of the cytoskeleton within the leading cell body periphery.
Collapse
Affiliation(s)
- Dong Han
- The Key Laboratory of Atomic and Molecular Nanosciences of Ministry of Education, Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Efflux transport at the blood-brain barrier (BBB) limits the brain tissue exposure to a variety of potential therapeutic agents, including compounds that are relatively lipophilic and would be predicted to permeate the endothelial lining of the brain microvasculature. Recent advances in molecular and cell biology have led to identification of several specific transport systems at the blood-brain interface. Refinement of classical pharmacokinetic experimentation has allowed assessment of the structural specificity of transporters, the impact of efflux transport on brain tissue exposure, and the potential for drug-drug interactions at the level of BBB efflux transport. The objective of this minireview is to summarize efflux transporter characteristics (location, specificity, and potential inhibition) for transport systems identified in the BBB. A variety of experimental approaches available to ascertain or predict the impact of efflux transport on net brain tissue uptake of substrates also are presented. The potential impact of efflux transport on the pharmacodynamics of agents acting in the central nervous system are illustrated. Finally, general issues regarding the role of identifying efflux transport as part of the drug development process are discussed.
Collapse
Affiliation(s)
- Pamela L Golden
- Drug Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Newark, Delaware 19880, USA
| | | |
Collapse
|
22
|
Takeo C, Nakamura S, Tanaka T, Uchida D, Noguchi Y, Nagao T, Saito Y, Tatsuno I. Rat cerebral endothelial cells express trk C and are regulated by neurotrophin-3. Biochem Biophys Res Commun 2003; 305:400-6. [PMID: 12745089 DOI: 10.1016/s0006-291x(03)00770-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cerebral endothelial cells (CEC) are critical for formation of the vascular system in the mammalian central nervous system (CNS). We focused on the neurotrophin (NT) for its possible involvement in signaling for the regulation of CEC to control formation and maintenance of the vascular system in CNS in comparison of rat cerebral endothelial cells (RCEC) with rat aortic endothelial cells (RAEC). We found that (1) trk C, a receptor for neurotrophin-3 (NT-3), is dominantly expressed in RCEC, but trk B, a receptor for brain-derived neurotrophic factor, is dominantly expressed in RAEC; (2) NT-3 inhibited the proliferation of RCEC; and (3) NT-3 stimulated the production of nitric oxide (NO) with increases in protein expression of endothelial NO synthase. These data indicated that NT may regulate and/or maintain the functions of the brain microvasculature through the regulation of CEC.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Cell Culture Techniques
- Cell Division/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation
- Male
- Nerve Growth Factors/pharmacology
- Neurotrophin 3/pharmacology
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type III
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Receptor, trkC/biosynthesis
- Receptor, trkC/genetics
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
Collapse
Affiliation(s)
- Chikari Takeo
- The Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-city, 260-8655, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The central nervous system (CNS) contains important cellular barriers that maintain homeostasis by protecting the brain from circulating toxins and through the elimination of toxic metabolites generated in the brain. The barriers that limit the concentration of toxins and xenobiotics in the interstitial fluids of the CNS are the capillary endothelial cells of the blood-brain barrier (BBB) and the epithelial cells of the blood-cerebrospinal fluid barrier (BCSFB). Both of these barriers have cellular tight junctions and express transport systems which serve to actively transport nutrients into the brain, and actively efflux toxic metabolites and xenobiotics out of the brain. This review will focus on the expression and function of selected drug efflux transporters in these two barriers, specifically the multidrug resistance transporter, p-glycoprotein, and various organic anion transporters, such as multidrug resistance-associated proteins, organic anion transporter polypeptides, and organic anion transporters. These transport systems are increasingly recognized as important determinants of drug distribution to, and elimination from, different compartments of the CNS. Consequences of drug efflux transporters in barriers of the CNS include limiting the distribution of substrates that are beneficial to treat CNS diseases, and increasing the possibility of drug-drug interactions that may lead to untoward toxicities. Therefore, the study of these transporters is important in examining the various determinants of drug delivery to the CNS.
Collapse
Affiliation(s)
- Haiying Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
24
|
Demeuse P, Kerkhofs A, Struys-Ponsar C, Knoops B, Remacle C, van den Bosch de Aguilar P. Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the blood-brain barrier. J Neurosci Methods 2002; 121:21-31. [PMID: 12393158 DOI: 10.1016/s0165-0270(02)00225-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The specific structure of the blood-brain barrier (BBB) is based on the partnership of brain endothelial cells and astrocytes. In the last decade, cocultures of these two cell types have been developed as in vitro models. However, these studies did not allow close contacts between both cell types. We report here a syngenic coculture model using rat endothelial cells on one side of a polyethylene terephtalate filter and rat astrocytes on the other. Endothelial cells retain their typical morphology and are factor VIII and OX 26 positive. We optimized the diameter of the membrane pores to establish very close contacts between the cells through the membrane pores without mixing the two cell types. Transmission electron microscopy showed evidence of tight junction formation between the endothelial cells and few pinocytic vesicles. The cocultures reached high electrical resistances up to 1000 Omegacm(2) showing their ability to limit the passage of ions. A 15-fold increase in gamma-glutamyl transpeptidase activity was measured in the endothelial cells in coculture compared to endothelial cell monoculture. Our syngenic coculture represents a useful in vitro model of the rat BBB that may prove to be valuable for studying the passage of substances across the barrier as well as other aspects of the BBB function.
Collapse
Affiliation(s)
- Ph Demeuse
- Université Catholique de Louvain, Laboratoire de Biologie Cellulaire, 5 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | |
Collapse
|
25
|
Sakurai E, Sakurada T, Ochiai Y, Yamakami J, Tanaka Y. Stereoselective transport of histidine in rat lung microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1192-7. [PMID: 12003774 DOI: 10.1152/ajplung.00405.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transport characteristics of L- and D-histidine through the blood-lung barrier were studied in cultured rat lung microvascular endothelial cells (LMECs). L-Histidine uptake was a saturable process. The addition of metabolic inhibitors [2,4-dinitrophenol (DNP) and rotenone] reduced the uptake rate of L-histidine. Ouabain, an inhibitor of Na(+)-K(+)-ATPase, also reduced uptake of L-histidine. Moreover, the initial L-histidine uptake rate was reduced by the substitution of Na(+) with choline chloride and choline bicarbonate in the incubation buffer. The system N substrate, L-glutamic acid gamma-monohydroxamate, also inhibited uptake of L-histidine. However, system N-mediated transport was not pH sensitive. These results demonstrated that L-histidine is actively taken up by a system N transport mechanism into rat LMECs, with energy supplied by Na(+). Moreover, the Na(+)-independent system L substrate, 2-amino-2-norbornanecarboxylic acid (BCH), had an inhibitory effect on L-histidine uptake in Na(+) removal, indicating facilitated diffusion by a Na(+)-independent system L transport into the rat LMECs. These results provide evidence for there being at least two pathways for L-histidine uptake into rat LMECs, a Na(+)-dependent system N and Na(+)-independent system L process. On the other hand, the uptake of D-histidine into rat LMECs was not reduced by the addition of DNP, rotenone, or ouabain, or by Na(+) replacement. Although the uptake of D-histidine was reduced in the presence of BCH, the addition of L-glutamic acid gamma-monohydroxamate did not significantly decrease uptake of D-histidine. These results suggest that the uptake of D-histidine by rat LMECs has different characteristics compared with its isomer, L-histidine, indicating that system N transport did not involve D-histidine uptake.
Collapse
Affiliation(s)
- Eiichi Sakurai
- Department of Pharmaceutics I, Tohoku Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | |
Collapse
|
26
|
Stachon A, Schlüter T, Köller M, Weisser H, Krieg M. Primary culture of microvascular endothelial cells from human benign prostatic hyperplasia. Prostate 2001; 48:156-64. [PMID: 11494331 DOI: 10.1002/pros.1094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate growth seems to be influenced by paracrine factors like IL-6 originating from the microvascular endothelium. Therefore, our efforts were focused on the primary culture and behavior of microvascular endothelial cells (HPEC) derived from tissue of human benign prostatic hyperplasia (BPH). Until now, the isolation and culture of HPEC from BPH have not been reported. METHODS BPH tissue was cut into small cubes and gently squeezed after incubation with dispase. HPEC were cultured from the resulting cell suspension after a stepwise selection by use of superparamagnetic beads coated with antibodies against endothelial specific antigens. HPEC were characterized by flow cytometry and immunohistochemistry. gamma-Glutamyl transpeptidase activity (specific for microvascular endothelium) was measured after dissolution of the HPEC with Triton X-100. After the incubation of HPEC either with ATP, VEGF, or TNF-alpha, the release of IL-6 was measured by enzyme linked immunosorbent assay (ELISA). RESULTS HPEC showed a typical endothelial morphology. They were positive for von Willebrand factor, CD31, CD62E (after stimulation with TNF-alpha), alpha-actin and were negative for fibroblastic antigens and PSA. Proliferation was stimulated by vascular endothelial growth factor (VEGF). gamma-Glutamyl transpeptidase activity in HPEC was 6.3 microIU/microg protein, whereas in human umbilical vein endothelial cells (HUVEC) no gamma-glutamyl transpeptidase activity was detectable. The IL-6 secretion of HPEC was stimulated by VEGF and TNF-alpha, but not by ATP and bradykinin. CONCLUSIONS For the first time, the primary culture of microvascular endothelial cells from BPH tissue was successfully performed. Our results suggest that HPEC may be actively involved in prostate growth, due to the secretion of regulatory factors such as IL-6.
Collapse
Affiliation(s)
- A Stachon
- Institute of Clinical Chemistry, Transfusion, and Laboratory Medicine, University Clinic Bergmannsheil, Ruhr University of Bochum, Bochum, Germany.
| | | | | | | | | |
Collapse
|
27
|
Hosoya KI, Takashima T, Tetsuka K, Nagura T, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T. mRna expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting. J Drug Target 2001; 8:357-70. [PMID: 11328662 DOI: 10.3109/10611860008997912] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Brain capillary endothelial cell lines (TR-BBB) were established from a recently developed transgenic rat harboring temperature-sensitive simian virus 40 (ts SV 40) large T-antigen gene (Tg rat) and used to characterize the endothelial marker, transport activity, and mRNA expression of transporters and tight-junction strand proteins at the blood-brain barrier (BBB). These cell lines expressed active large T-antigen and grew well at 33 degrees C with a doubling-time of about 22-31 hr, but did not grow at 39 degrees C. TR-BBBs expressed the typical endothelial marker, von Willebrand factor, and exhibited acetylated low-density lipoprotein uptake activity. Although the gamma-glutamyltranspeptidase activity in TR-BBBs was approximately 13% of that of the brain capillary fraction of a normal rat, it was localized in the apical side, suggesting that it reflects the functional polarity of the in vivo BBB. The mRNA of tight-junction strand proteins such as claudine-5, occludin, and junctional adhesion molecule are expressed in TR-BBB13. Drug efflux transporter, P-glycoprotein, with a molecular weight of 170 kDa was expressed in all TR-BBBs and mdr 1a, mdr 1b, and mdr 2 mRNA were detected in TR-BBBs using RT-PCR. Moreover, mrp1 mRNA was expressed in all TR-BBBs. Influx transporter, GLUT-1, expressed at 55 kDa was revealed by Western blot analysis. It had 3-O-methyl-D-glucose (3-OMG) uptake activity which was concentration-dependent with a Michaelis-Menten constant of 9.86 +/- 1.20 mM. The mRNA of large neutral amino acid transporter, which consists of LAT-1 and 4F2hc was expressed in TR-BBBs. In conclusion, the conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB) had endothelial makers, expressed mRNA for tight-junction strand proteins and the influx and efflux transporters and produced GLUT-1, which is capable of 3-OMG transport activity.
Collapse
Affiliation(s)
- K I Hosoya
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kido Y, Tamai I, Uchino H, Suzuki F, Sai Y, Tsuji A. Molecular and functional identification of large neutral amino acid transporters LAT1 and LAT2 and their pharmacological relevance at the blood-brain barrier. J Pharm Pharmacol 2001; 53:497-503. [PMID: 11341366 DOI: 10.1211/0022357011775794] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We present here the evidence of molecular and functional expression of LAT1 and LAT2, subunits of the large neutral amino acid transporter system L, in cultured brain capillary endothelial cells of the rat. By means of the RT-PCR method, transcripts of LAT1, LAT2 and heavy chain of 4F2 antigen (4F2hc) were detected in rat primary cultured brain capillary endothelial cells (BCECs) and immortalized subline, RBEC1. The uptake properties of RBEC1, such as [3H]leucine and L-[3H]DOPA uptake, were similar to those of primary cultured BCECs. So, RBEC1 may retain almost native properties of the large neutral amino acid uptake activities. [3H]Leucine uptake by RBEC1 showed two saturable components and the Km values of the high- and low-affinity components were 8.92+/-3.18 and 119+/-45 microM, respectively. The Km value of the high-affinity component agreed well with that of LAT1 and the amino acid transport selectivity of RBEC1 was similar to that of LAT1. Therefore, it is suggested that LAT1 is important at the blood-brain barrier of rats. Additionally, the Km value of the low-affinity component was similar to that of LAT2. These observations indicate that LAT1 and LAT2 are involved as transporters for large neutral amino acids at the blood-brain barrier. Additionally, we concluded that RBEC1 is useful as an in-vitro model for evaluation of the pharmacological relevance of system L at the blood-brain barrier.
Collapse
Affiliation(s)
- Y Kido
- Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Hosoya K, Tomi M, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T. Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp Eye Res 2001; 72:163-72. [PMID: 11161732 DOI: 10.1006/exer.2000.0941] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of this study was to establish and characterize a retinal capillary endothelial cell line (TR-iBRB) from a newly developed transgenic rat harboring the temperature-sensitive simian virus 40 (SV 40) large T-antigen gene (Tg rat). Retinal capillary endothelial cells were isolated from a Tg rat and cultured in collagen-coated dishes at 37 degrees C for a period of 48 hr. Cells were subsequently cultured at 33 degrees C to activate the large T-antigen. At the third passage, cells were cloned by colony formation and isolated from other cells. Nine immortalized cell lines of retinal capillary endothelial cells (TR-iBRB1 approximately 9) were obtained from a Tg rat. These cell lines had a spindle-fiber shape morphology, expressed the typical endothelial marker, von Willebrand factor, and internalized acetylated-low density lipoprotein. Moreover, vascular endothelial growth factor (VEGF) receptor-2 was expressed in TR-iBRBs. TR-iBRBs expressed a large T-antigen and grew well at 33 degrees C with a doubling time of 19-21 hr. In contrast, cells did not grow at 37 and 39 degrees C due to the reduced expression of large T-antigen, supporting temperature-dependent cell growth. TR-iBRBs expressed GLUT1 and exhibited 3- O -methyl- D -glucose (3-OMG) uptake activity. This 3-OMG uptake was saturable with a Michaelis-Menten constant of 5.56 +/- 0.51 m M and a maximum uptake rate of 45.3 +/- 2.6 nmol min(-1) mg protein(-1). P-Glycoprotein, with a molecular weight of approximately 180 KDa, was expressed in TR-iBRBs. In addition, mdr 1a, mdr 1b and mdr 2 were detected in TR-iBRB2 using RT-PCR. In conclusion, conditionally immortalized retinal capillary endothelial cell lines were established from a transgenic rat harboring the temperature-sensitive SV 40 large T-antigen gene and these lines were shown to exhibit the properties of retinal capillary endothelial cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis
- Animals
- Animals, Genetically Modified
- Antigens, Viral, Tumor/analysis
- Antigens, Viral, Tumor/genetics
- Blood-Retinal Barrier
- Blotting, Western
- Capillaries
- Cell Division
- Cell Separation
- Endothelium, Vascular/pathology
- Genes, MDR
- Glucose Transporter Type 1
- Hot Temperature
- Models, Animal
- Monosaccharide Transport Proteins/analysis
- Rats
- Receptor Protein-Tyrosine Kinases/analysis
- Receptors, Growth Factor/analysis
- Receptors, Vascular Endothelial Growth Factor
- Retinal Vessels
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K Hosoya
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kido Y, Tamai I, Okamoto M, Suzuki F, Tsuji A. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm Res 2000; 17:55-62. [PMID: 10714609 DOI: 10.1023/a:1007518525161] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To prove the functional significance of monocarboxylic acid transporter, MCT1 at the blood-brain barrier (BBB) for the passage of both endogenous and exogenous monocarboxylic acids into the central nervous system. METHODS Monocarboxylic acid transport at the BBB was studied in rats by using a newly established immortalized brain capillary endothelial cell (BCEC) line, RBEC1, and the results were compared with those obtained by using primary cultured BCECs, cells stably expressed with rat MCT1, and the in vivo brain uptake index (BUI) method. RESULTS The cell line, RBEC1 meets various morphological and enzymatic criteria of BCECs and appears to be suitable for the study of BBB transport of monocarboxylic acids. The presence of MCT1-transcript in RBEC1 was confirmnned by the RT-PCR method, as previously observed in isolated brain capillaries. A typical substrate of MCT1, lactic acid, was taken up by RBEC1 in a stereospecific and saturable manner. The value of the kinetic parameter Km showed good agreement with values previously obtained in studies using an in vivo BUI and in vitro MCT1-transfected cells. An organic weak acid, benzoic acid, which has been considered to cross biological membranes by passive diffusion, exhibited carrier-mediated transport properties, such as saturation, pH dependence, and stereospecific inhibition in RBEC1, similar to those we observed in primary cultured rat BCECs. The Km values in RBEC1, in primary cultured BCECs and in the in vivo BUI method were comparable and well agreed with that obtained in MCT1-transfected cells, suggesting that the transport features of benzoic acid observed by in vitro methods well reflect the in vivo transport activity. Furthermore, hybrid depletion of MCT1 in RBEC1 using an antisense oligonucleotide against rat MCT1 abolished the saturable transport of benzoic acid. CONCLUSIONS These observations show that MCT1 plays a significant role in the transport of monocarboxylic acids, including the exogenous organic weak acid benzoic acid, as well as native lactic acid.
Collapse
Affiliation(s)
- Y Kido
- Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | | | | | | | | |
Collapse
|
31
|
Hosoya KI, Tetsuka K, Nagase K, Tomi M, Saeki S, Ohtsuki S, Terasaki T, Yanai N, Obinata M, Kikuchi A, Obinata M, Takanaga H. Conditionally immortalized brain capillary endothelial cell lines established from a transgenic mouse harboring temperature-sensitive simian virus 40 large T-antigen gene. AAPS PHARMSCI 2000; 2:E27. [PMID: 11741243 PMCID: PMC2761138 DOI: 10.1208/ps020328] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Accepted: 08/10/2000] [Indexed: 12/29/2022]
Abstract
Five immortalized brain capillary endothelial cell lines (TM-BBB1-5) were established from 3 transgenic mice harboring temperature-sensitive simian virus 40 large T-antigen gene (Tg mouse). These cell lines expressed active large T-antigen and grew well at 33 degrees C with a doubling time of about 20 to 30 hours. TM-BBBs also grew at 37 degrees C but not at 39 degrees C. However, growth was restored when the temperature of the culture was lowered to 33 degrees C. Although significant amounts of large T-antigen were shown to be present in the cell culture at 33 degrees C, there was less of this complex at 37 degrees C and 39 degrees C. TM-BBBs expressed the typical endothelial marker, von Willebrand factor, and exhibited acetylated low-density lipoprotein uptake activity. The alkaline phosphatase and gamma-glutamyltranspeptidase activity in TM-BBBs were -10% and 50% to 80% of brain capillary fraction of normal mice, respectively. D-mannitol transport in the both apical-to-basal and basal-to-apical directions across the TM-BBB was 2-fold greater than for inulin. TM-BBBs were found to express GLUT-1 but not GLUT-3, and exhibited concentration-dependent 3-O-methyl-D-glucose (3-OMG) uptake activity with a Michaelis-Menten constant of 6.59 +/- 1.16 mmol/l. Moreover, P-glycoprotein (P-gp) with a molecular weight of -170 kDa was expressed in all TM-BBBs. Both mdr1a and mdr1b mRNA were detected in TM-BBB4 using reverse transcription-polymerase chain reaction (RT-PCR) analysis. [3H]-Cyclosporin A uptake by TM-BBB was significantly increased in the presence of 100 micromol/l verapamil and vincristine, suggesting that TM-BBB exhibits efflux transport activity via P-gp. In conclusion, conditional brain capillary endothelial cell lines were established from Tg mice. This cell line expresses endothelial markers and transporters at the BBB and is able to regulate cell growth, due to the amount of active large T-antigen in the cell, by changing the culture temperature.
Collapse
Affiliation(s)
- Ken-ichi Hosoya
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, 980-8578 Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Kazuhiro Tetsuka
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, 980-8578 Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Katsuhiko Nagase
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, 980-8578 Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Masatoshi Tomi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, 980-8578 Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Shigeki Saeki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, 980-8578 Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Sumio Ohtsuki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, 980-8578 Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Tetsuya Terasaki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, 980-8578 Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Nobuaki Yanai
- Department of Cell Biology, Institute of Development, Ageing and Center, Tohoku University, Aoba-ku, Sendai, Japan
| | - Masuo Obinata
- Department of Cell Biology, Institute of Development, Ageing and Center, Tohoku University, Aoba-ku, Sendai, Japan
| | - Akihiko Kikuchi
- Institute of Biomedical Engineering, Tokyo Women's Medical College, Shinjyu-ku, Tokyo, Japan
| | - Masuo Obinata
- Institute of Biomedical Engineering, Tokyo Women's Medical College, Shinjyu-ku, Tokyo, Japan
| | | |
Collapse
|
32
|
Yamakami J, Sakurai E, Sakurada T, Maeda K, Hikichi N. Stereoselective blood-brain barrier transport of histidine in rats. Brain Res 1998; 812:105-12. [PMID: 9813265 DOI: 10.1016/s0006-8993(98)00958-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transport characteristics of l- and d-histidine through the blood-brain barrier (BBB) were studied using cultured rat brain microvascular endothelial cells (BMEC). l-Histidine uptake was a saturable process. A decrease in incubation temperature from 37 to 0 degreesC or the addition of metabolic inhibitors (DNP and rotenone) reduced the uptake rate of l-histidine. Ouabain, an inhibitor of (Na+, K+)-ATPase, also reduced uptake of l-histidine. Moreover, the substitution of Na+ with choline chloride and choline bicarbonate in the incubation buffer decreased the initial l- and d-histidine uptake rates. These results suggested that l-histidine is actively uptaken by a carrier-mediated mechanism into the BMEC, with energy supplied by Na+. However, l-histidine uptake at 0 degreesC was not completely inhibited, and it was reduced in the presence of an Na+-independent System-L substrate, BCH, suggesting facilitated diffusion (the Na+-independent process) by a carrier-mediated mechanism into the BMEC. l-histidine uptake in rat BMEC also appeared to be System-N mediated since uptake was inhibited by glutamine, aspargine and l-glutamic acid gamma-monohydroxamate. System-N mediated transport was not pH sensitive. d-histidine transport was also studied in rat BMEC. d-histidine transport by rat BMEC has similar characteristics to l-histidine. However, System-N transport did not play a role in d-histidine uptake. The uptake of l-histidine was also greater than that of the d-isomer, indicating the stereoselective uptake of histidine in rat BMEC.
Collapse
Affiliation(s)
- J Yamakami
- Department of Pharmaceutics I, Tohoku College of Pharmacy, 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan
| | | | | | | | | |
Collapse
|