1
|
Bessard MA, Moser A, Waeckel-Énée E, Lindo V, Gdoura A, You S, Wong FS, Greer F, van Endert P. Insulin-degrading enzyme regulates insulin-directed cellular autoimmunity in murine type 1 diabetes. Front Immunol 2024; 15:1474453. [PMID: 39600694 PMCID: PMC11588737 DOI: 10.3389/fimmu.2024.1474453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Type 1 diabetes results from the destruction of pancreatic beta cells by autoreactive T cells. As an autoantigen with extremely high expression in beta cells, insulin triggers and sustains the autoimmune CD4+ and CD8+ T cell responses and islet inflammation. We have previously shown that deficiency for insulin-degrading enzyme (IDE), a ubiquitous cytosolic protease with very high affinity for insulin, induces endoplasmic reticulum (ER) stress and proliferation in islet cells and protects non-obese diabetic mice (NOD) from diabetes. Here we wondered whether IDE deficiency affects autoreactive CD8+ T cell responses to insulin and thereby immune pathogenesis in NOD mice. We find that Ide-/- NOD harbor fewer diabetogenic T cells and reduced numbers of CD8+ T cells recognizing the dominant autoantigen insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Using in vitro digestions and cellular antigen presentation assays, we show that generation of the dominant insulin epitope B15-23 involves both the proteasome and IDE. IDE deficiency attenuates MHC-I presentation of the immunodominant insulin epitope by beta cells to cognate CD8+ T cells. Consequently, Ide-/- islets display reduced susceptibility to autoimmune destruction upon grafting, and to killing by insulin-specific CD8+ T cells. Moreover, Ide-/- mice are partly resistant to disease transfer by CD8+ T cells specific for insulin but not for IGRP. Thus, IDE has a dual role in beta cells, regulating ER stress and proliferation while at the same time promoting insulin-directed autoreactive CD8+ T cell responses.
Collapse
Affiliation(s)
- Marie-Andrée Bessard
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Anna Moser
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Emmanuelle Waeckel-Énée
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | | | - Abdelaziz Gdoura
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Sylvaine You
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Cochin, Paris, France
| | - F. Susan Wong
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Peter van Endert
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
2
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
3
|
Kloetzel PM. Neo-Splicetopes in Tumor Therapy: A Lost Case? Front Immunol 2022; 13:849863. [PMID: 35265089 PMCID: PMC8898901 DOI: 10.3389/fimmu.2022.849863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Proteasome generates spliced peptides by ligating two distant cleavage products in a reverse proteolysis reaction. The observation that CD8+ T cells recognizing a spliced peptide induced T cell rejection in a melanoma patient following adoptive T cell transfer (ATT), raised some hopes with regard to the general therapeutic and immune relevance of spliced peptides. Concomitantly, the identification of spliced peptides was also the start of a controversy with respect to their frequency, abundancy and their therapeutic applicability. Here I review some of the recent evidence favoring or disfavoring an immune relevance of splicetopes and discuss from a theoretical point of view the potential usefulness of tumor specific splicetopes and why against all odds it still may seem worth trying to identify such tumor and patient-specific neosplicetopes for application in ATT.
Collapse
Affiliation(s)
- Peter M Kloetzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
4
|
Weeder BR, Wood MA, Li E, Nellore A, Thompson RF. pepsickle rapidly and accurately predicts proteasomal cleavage sites for improved neoantigen identification. Bioinformatics 2021; 37:3723-3733. [PMID: 34478497 DOI: 10.1093/bioinformatics/btab628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Proteasomal cleavage is a key component in protein turnover, as well as antigen processing and presentation. Although tools for proteasomal cleavage prediction are available, they vary widely in their performance, options, and availability. RESULTS Herein we present pepsickle, an open-source tool for proteasomal cleavage prediction with better in vivo prediction performance (AUC) and computational speed than current models available in the field and with the ability to predict sites based on both constitutive and immunoproteasome profiles. Post-hoc filtering of predicted patient neoepitopes using pepsickle significantly enriches for immune-responsive epitopes and may improve current epitope prediction and vaccine development pipelines. AVAILABILITY pepsickle is open source and available at https://github.com/pdxgx/pepsickle. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Benjamin R Weeder
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Ellysia Li
- Pacific University, Forest Grove, OR, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.,Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, Oregon, USA
| |
Collapse
|
5
|
Guo L, Shen S, Rowley JW, Tolley ND, Jia W, Manne BK, McComas KN, Bolingbroke B, Kosaka Y, Krauel K, Denorme F, Jacob SP, Eustes AS, Campbell RA, Middleton EA, He X, Brown SM, Morrell CN, Weyrich AS, Rondina MT. Platelet MHC class I mediates CD8+ T-cell suppression during sepsis. Blood 2021; 138:401-416. [PMID: 33895821 PMCID: PMC8343546 DOI: 10.1182/blood.2020008958] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased and have been associated with adverse clinical events, including increased platelet-T-cell interactions. Sepsis is associated with reduced CD8+ T-cell numbers and functional responses, but whether platelets regulate CD8+ T-cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen-specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (eg, interferon-γ and lipopolysaccharide). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage-specific MHC-I-deficient mouse strain (B2Mf/f-Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T-cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo, during sepsis. Loss of platelet MHC-I reduces sepsis-associated mortality in mice in an antigen-specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen-specific CD8+ T cells, and regulate CD8+ T-cell numbers, functional responses, and outcomes during sepsis.
Collapse
Affiliation(s)
- Li Guo
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Sikui Shen
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- West China Hospital, Sichuan University, Chengdu, China
| | - Jesse W Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Neal D Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Wenwen Jia
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | | | - Kyra N McComas
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Ben Bolingbroke
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT
| | - Yasuhiro Kosaka
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Krystin Krauel
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Frederik Denorme
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Shancy P Jacob
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Alicia S Eustes
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Internal Medicine, University of Iowa, Iowa City, IA
| | - Robert A Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Internal Medicine, Department of Medicine, School of Medicine, and
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Samuel M Brown
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
- Center for Humanizing Critical Care, Intermountain Healthcare, Murray, UT
- Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Murray, UT
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY; and
| | - Andrew S Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Internal Medicine, Department of Medicine, School of Medicine, and
- Department of Pathology, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, George E. Wahlen VA Medical Center and Geriatric Research Education Clinical Center (GRECC), Salt Lake City, UT
| |
Collapse
|
6
|
Mathematical modeling and stochastic simulations suggest that low-affinity peptides can bisect MHC1-mediated export of high-affinity peptides into "early"- and "late"-phases. Heliyon 2021; 7:e07466. [PMID: 34286133 PMCID: PMC8278427 DOI: 10.1016/j.heliyon.2021.e07466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 02/01/2023] Open
Abstract
The peptide loading complex (PLC) is a multi-protein complex of the endoplasmic reticulum (ER) which optimizes major histocompatibility I (MHC1)-mediated export of intracellular high-affinity peptides. Whilst, the molecular biology of MHC1-mediated export is well supported by empirical data, the stoichiometry, kinetics and spatio-temporal profile of the participating molecular entities are a matter of considerable debate. Here, a low-affinity peptide-driven (LAPD)-model of MHC1-mediated high-affinity peptide export is formulated, implemented, analyzed and simulated. The model is parameterized in terms of the contribution of the shunt reaction to the concentration of exportable MHC1. Theoretical analyses and simulation studies of the model suggest that low-affinity peptides can bisect MHC1-mediated export of high-affinity peptides into time-dependent distinct “early”- and “late”-phases. The net exportable MHC1 (eM1β(t)) is a function of the retrograde (rM1β(t))- and anterograde (aM1β(t))-derived fractions. The “early”-phase is dominated by the contribution of the retrograde/recyclable (rM1β≈61%,aM1β≈39%) pathway to exportable MHC1, is characterized by Tapasin-mediated peptide-editing and is ATP-independent. The “late”-phase on the other hand, is characterized by de novo PLC-assembly, rapid disassembly and a significant contribution of the anterograde pathway to exportable MHC1 (rM1β≈21%,aM1β≈79%). The shunt reaction is rate limiting and may integrate peptide translocation with PLC-assembly/disassembly thereby, regulating peptide export under physiological and pathological (viral infections, dysplastic alterations) conditions.
Collapse
|
7
|
Rosales-Reyes R, Garza-Villafuerte P, Vences-Vences D, Aubert DF, Aca-Teutle R, Ortiz-Navarrete VF, Bonifaz LC, Carrero-Sánchez JC, Olivos-García A, Valvano MA, Santos-Preciado JI. Interferon-gamma-activated macrophages infected with Burkholderia cenocepacia process and present bacterial antigens to T-cells by class I and II major histocompatibility complex molecules. Emerg Microbes Infect 2021; 9:2000-2012. [PMID: 32873215 PMCID: PMC7534305 DOI: 10.1080/22221751.2020.1818632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Burkholderia cenocepacia is an emerging opportunistic pathogen for people with cystic fibrosis and chronic granulomatous disease. Intracellular survival in macrophages within a membrane-bound vacuole (BcCV) that delays acidification and maturation into lysosomes is a hallmark of B. cenocepacia infection. Intracellular B. cenocepacia induce an inflammatory response leading to macrophage cell death by pyroptosis through the secretion of a bacterial deamidase that results in the activation of the pyrin inflammasome. However, how or whether infected macrophages can process and present B. cenocepacia antigens to activate T-cells has not been explored. Engulfed bacterial protein antigens are cleaved into small peptides in the late endosomal major histocompatibility class II complex (MHC) compartment (MIIC). Here, we demonstrate that BcCVs and MIICs have overlapping features and that interferon-gamma-activated macrophages infected with B. cenocepacia can process bacterial antigens for presentation by class II MHC molecules to CD4+ T-cells and by class I MHC molecules to CD8+ T-cells. Infected macrophages also release processed bacterial peptides into the extracellular medium, stabilizing empty class I MHC molecules of bystander cells. Together, we conclude that BcCVs acquire MIIC characteristics, supporting the notion that macrophages infected with B. cenocepacia contribute to establishing an adaptive immune response against the pathogen.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Paola Garza-Villafuerte
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Daniela Vences-Vences
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Daniel F Aubert
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada
| | - Rubi Aca-Teutle
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Vianney F Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, México
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | | | - Alfonso Olivos-García
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Miguel A Valvano
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada.,The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - José Ignacio Santos-Preciado
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
8
|
Willimsky G, Beier C, Immisch L, Papafotiou G, Scheuplein V, Goede A, Holzhütter HG, Blankenstein T, Kloetzel PM. In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo. eLife 2021; 10:e62019. [PMID: 33875134 PMCID: PMC8154032 DOI: 10.7554/elife.62019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Proteasome-catalyzed peptide splicing (PCPS) of cancer-driving antigens could generate attractive neoepitopes to be targeted by T cell receptor (TCR)-based adoptive T cell therapy. Based on a spliced peptide prediction algorithm, TCRs were generated against putative KRASG12V- and RAC2P29L-derived neo-splicetopes with high HLA-A*02:01 binding affinity. TCRs generated in mice with a diverse human TCR repertoire specifically recognized the respective target peptides with high efficacy. However, we failed to detect any neo-splicetope-specific T cell response when testing the in vivo neo-splicetope generation and obtained no experimental evidence that the putative KRASG12V- and RAC2P29L-derived neo-splicetopes were naturally processed and presented. Furthermore, only the putative RAC2P29L-derived neo-splicetopes was generated by in vitro PCPS. The experiments pose severe questions on the notion that available algorithms or the in vitro PCPS reaction reliably simulate in vivo splicing and argue against the general applicability of an algorithm-driven 'reverse immunology' pipeline for the identification of cancer-specific neo-splicetopes.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Epitopes
- HEK293 Cells
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- K562 Cells
- Mice
- Mice, Transgenic
- Mutation
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Proof of Concept Study
- Proteasome Endopeptidase Complex/metabolism
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/immunology
- Proto-Oncogene Proteins p21(ras)/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/immunology
- rac GTP-Binding Proteins/metabolism
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
- Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - Christin Beier
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lena Immisch
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, partner site Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
| | - George Papafotiou
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - Vivian Scheuplein
- Max Delbrück Center for Molecular Medicine in Helmholtz Association, Berlin, Germany
| | - Andrean Goede
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hermann-Georg Holzhütter
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in Helmholtz Association, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Peter M Kloetzel
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Li S, Liu Y, He Y, Rong W, Zhang M, Li L, Liu Z, Zen K. Podocytes present antigen to activate specific T cell immune responses in inflammatory renal disease. J Pathol 2020; 252:165-177. [PMID: 32686090 DOI: 10.1002/path.5508] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Infiltration of activated T cells into renal tissue plays an essential role in inflammatory nephropathy. However, the mechanism enabling the renal recruitment and activation of T cells remains elusive. Here we report that inflammatory cytokine-promoted antigen presentation by podocytes is a key for recruiting and activating specific T cells. Our results showed that diabetes-associated inflammatory cytokines IFNγ and IL-17 all upregulated expression of MHC-I, MHC-II, CD80 and CD86 on the podocyte surface. Both IFNγ and IL-17 stimulated the uptake and processing of ovalbumin (OVA) by mouse podocytes, resulting in presentation of OVA antigen peptide on the cell surface. OVA antigen presentation by podocytes was also validated using human podocytes. Furthermore, OVA antigen-presenting mouse podocytes were able to activate OT-I mouse T cell proliferation and inflammatory cytokine secretion, which in turn caused podocyte injury and apoptosis. Finally, OT-I mice subjected to direct renal injection of OVA plus IFNγ/IL-17 but not OVA alone exhibited OVA antigen presentation by podocytes and developed nephropathy in 4 weeks. In conclusion, antigen presentation by podocytes under inflammatory conditions plays an important role in activating T cell immune responses and facilitating immune-mediated glomerular disease development. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shan Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Ying Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Yueqin He
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Weiwei Rong
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Limin Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| |
Collapse
|
10
|
Prinz JC. Melanocytes: Target Cells of an HLA-C*06:02-Restricted Autoimmune Response in Psoriasis. J Invest Dermatol 2017; 137:2053-2058. [PMID: 28941475 DOI: 10.1016/j.jid.2017.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
HLA-C*06:02 is the main psoriasis risk allele. By the unbiased analysis of a Vα3S1/Vβ13S1 T-cell receptor from pathogenic psoriatic CD8+ T cells, we had recently proven that HLA-C*06:02 directs an autoimmune response against melanocytes through autoantigen presentation in psoriasis and identified ADAMTSL5 as a melanocyte autoantigen. We concluded that psoriasis is based on a melanocyte-specific immune response and that HLA-C*06:02 may predispose to psoriasis via this newly identified autoimmune pathway. Understanding this pathway, however, requires more detailed explanation. It is based on the fact that an HLA class I-restricted autoreactive CD8+ T-cell response must be directed against a particular target cell type, because HLA class I molecules present peptide antigens generated from cytoplasmic (i.e., intracellular) proteins. This review summarizes the findings on the melanocyte-specific autoimmune response in the context of the immune mechanisms related to HLA function and T-cell receptor-antigen recognition. Identifying melanocytes as target cells of the psoriatic immune response now explains psoriasis as a primary autoimmune skin disease.
Collapse
Affiliation(s)
- Jörg Christoph Prinz
- Department of Dermatology, University Clinics, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Prinz JC. Autoimmune aspects of psoriasis: Heritability and autoantigens. Autoimmun Rev 2017; 16:970-979. [PMID: 28705779 DOI: 10.1016/j.autrev.2017.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/10/2017] [Indexed: 12/28/2022]
Abstract
Chronic immune-mediated disorders (IMDs) constitute a major health burden. Understanding IMD pathogenesis is facing two major constraints: Missing heritability explaining familial clustering, and missing autoantigens. Pinpointing IMD risk genes and autoimmune targets, however, is of fundamental importance for developing novel causal therapies. The strongest association of all IMDs is seen with human leukocyte antigen (HLA) alleles. Using psoriasis as an IMD model this article reviews the pathogenic role HLA molecules may have within the polygenic predisposition of IMDs. It concludes that disease-associated HLA alleles account for both missing heritability and autoimmune mechanisms by facilitating tissue-specific autoimmune responses through autoantigen presentation.
Collapse
Affiliation(s)
- Jörg Christoph Prinz
- Department of Dermatology, University Clinics, Ludwig-Maximilian-University of Munich, Munich, Germany.
| |
Collapse
|
12
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
13
|
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 2014; 4:994-1025. [PMID: 25412285 PMCID: PMC4279167 DOI: 10.3390/biom4040994] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.
Collapse
|
14
|
Lu YF, Sheng H, Zhang Y, Li ZY. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data. J Zhejiang Univ Sci B 2014; 14:816-28. [PMID: 24009202 DOI: 10.1631/jzus.b1200299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteasomes are responsible for the production of the majority of cytotoxic T lymphocyte (CTL) epitopes. Hence, it is important to identify correctly which peptides will be generated by proteasomes from an unknown protein. However, the pool of proteasome cleavage data used in the prediction algorithms, whether from major histocompatibility complex (MHC) I ligand or in vitro digestion data, is not identical to in vivo proteasomal digestion products. Therefore, the accuracy and reliability of these models still need to be improved. In this paper, three types of proteasomal cleavage data, constitutive proteasome (cCP), immunoproteasome (iCP) in vitro cleavage, and MHC I ligand data, were used for training cleave-site predictive methods based on the kernel-function stabilized matrix method (KSMM). The predictive accuracies of the KSMM+pair coefficients were 75.0%, 72.3%, and 83.1% for cCP, iCP, and MHC I ligand data, respectively, which were comparable to the results from support vector machine (SVM). The three proteasomal cleavage methods were combined in turn with MHC I-peptide binding predictions to model MHC I-peptide processing and the presentation pathway. These integrations markedly improved MHC I peptide identification, increasing area under the receiver operator characteristics (ROC) curve (AUC) values from 0.82 to 0.91. The results suggested that both MHC I ligand and proteasomal in vitro degradation data can give an exact simulation of in vivo processed digestion. The information extracted from cCP and iCP in vitro cleavage data demonstrated that both cCP and iCP are selective in their usage of peptide bonds for cleavage.
Collapse
Affiliation(s)
- Yu-feng Lu
- School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China; College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China; School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | | | | | | |
Collapse
|
15
|
Hovestädt M, Kuckelkorn U, Niewienda A, Keller C, Goede A, Ay B, Günther S, Janek K, Volkmer R, Holzhütter HG. Rapid degradation of solid-phase bound peptides by the 20S proteasome. J Pept Sci 2013; 19:588-97. [DOI: 10.1002/psc.2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/05/2013] [Accepted: 06/17/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Marc Hovestädt
- Mathematical Systems Biochemistry Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
- Institute of Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Ulrike Kuckelkorn
- Proteolysis Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Agathe Niewienda
- Proteolysis Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Christin Keller
- Proteolysis Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Andrean Goede
- Mathematical Systems Biochemistry Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Bernhard Ay
- Institute of Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Stefan Günther
- Pharmaceutical Bioinformatics Group, Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Freiburg Germany
| | - Katharina Janek
- Proteolysis Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Rudolf Volkmer
- Institute of Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Hermann-Georg Holzhütter
- Mathematical Systems Biochemistry Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
16
|
Milner E, Gutter-Kapon L, Bassani-Strenberg M, Barnea E, Beer I, Admon A. The effect of proteasome inhibition on the generation of the human leukocyte antigen (HLA) peptidome. Mol Cell Proteomics 2013; 12:1853-64. [PMID: 23538226 DOI: 10.1074/mcp.m112.026013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Major histocompatibility complex (MHC) class I peptidome is thought to be generated mostly through proteasomal degradation of cellular proteins, a notion that is based on the alterations in presentation of selected peptides following proteasome inhibition. We evaluated the effects of proteasome inhibitors, epoxomicin and bortezomib, on human cultured cancer cells. Because the inhibitors did not reduce the level of presentation of the cell surface human leukocyte antigen (HLA) molecules, we followed their effects on the rates of synthesis of both HLA peptidome and proteome of the cells, using dynamic stable isotope labeling in tissue culture (dynamic-SILAC). The inhibitors reduced the rates of synthesis of most cellular proteins and HLA peptides, yet the synthesis rates of some of the proteins and HLA peptides was not decreased by the inhibitors and of some even increased. Therefore, we concluded that the inhibitors affected the production of the HLA peptidome in a complex manner, including modulation of the synthesis rates of the source proteins of the HLA peptides, in addition to their effect on their degradation. The collected data may suggest that the current reliance on proteasome inhibition may overestimate the centrality of the proteasome in the generation of the MHC peptidome. It is therefore suggested that the relative contribution of the proteasomal and nonproteasomal pathways to the production of the MHC peptidome should be revaluated in accordance with the inhibitors effects on the synthesis rates of the source proteins of the MHC peptides.
Collapse
Affiliation(s)
- Elena Milner
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Ebstein F, Kloetzel PM, Krüger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 2012; 69:2543-58. [PMID: 22382925 PMCID: PMC11114860 DOI: 10.1007/s00018-012-0938-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 01/09/2023]
Abstract
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Peter-Michael Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Elke Krüger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Ulrike Seifert
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
- Institut für Molekulare und Klinische Immunologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
18
|
Irvine K, Bennink J. Factors influencing immunodominance hierarchies in TCD8+ -mediated antiviral responses. Expert Rev Clin Immunol 2010; 2:135-47. [PMID: 20477094 DOI: 10.1586/1744666x.2.1.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD8(+) T-lymphocytes (T(CD8+)) perform a critical role in immunity against tumors and virus infections. A central feature of T(CD8+) immune responses is immunodominance: the observation that T(CD8+) responses consist of a limited collection of specificities with a structured hierarchy. These immunodominance hierarchies result from a complex combination of factors. Major roles are played by peptide binding affinity, T-cell repertoire, and antigen processing and presentation. While the bulk of our information comes from mouse model systems, an increasing number of human studies suggest that immunodominance will be even more complicated. This review outlines current knowledge of T(CD8+ )immunodominance to viral antigens and discusses the relevance and importance of a thorough understanding for the rational design of vaccines that elicit effective T(CD8+) responses.
Collapse
Affiliation(s)
- Kari Irvine
- National Institute for Allergy & Infectious Diseases, Cell Biology Section/Viral Immunology Section, Laboratory of Viral Diseases, Room 209, Building 44 Center Drive, Bethesda, MD 20892-0440, USA.
| | | |
Collapse
|
19
|
Singh P, Kohr D, Kaps M, Blaes F. Skeletal muscle cell MHC I expression: Implications for statin-induced myopathy. Muscle Nerve 2009; 41:179-84. [DOI: 10.1002/mus.21479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
|
21
|
Dominant CD8+ T-lymphocyte responses suppress expansion of vaccine-elicited subdominant T lymphocytes in rhesus monkeys challenged with pathogenic simian-human immunodeficiency virus. J Virol 2009; 83:10028-35. [PMID: 19641002 DOI: 10.1128/jvi.01015-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging data suggest that a cytotoxic T-lymphocyte response against a diversity of epitopes confers greater protection against a human immunodeficiency virus/simian immunodeficiency virus infection than does a more focused response. To facilitate the creation of vaccine strategies that will generate cellular immune responses with the greatest breadth, it will be important to understand the mechanisms employed by the immune response to regulate the relative magnitudes of dominant and nondominant epitope-specific cellular immune responses. In this study, we generated dominant Gag p11C- and subdominant Env p41A-specific CD8(+) T-lymphocyte responses in Mamu-A*01(+) rhesus monkeys through vaccination with plasmid DNA and recombinant adenovirus encoding simian-human immunodeficiency virus (SHIV) proteins. Infection of vaccinated Mamu-A*01(+) rhesus monkeys with a SHIV Gag Deltap11C mutant virus generated a significantly increased expansion of the Env p41A-specific CD8(+) T-lymphocyte response in the absence of secondary Gag p11C-specific CD8(+) T-lymphocyte responses. These results indicate that the presence of the Gag p11C-specific CD8(+) T-lymphocyte response following virus challenge may exert suppressive effects on primed Env p41A-specific CD8(+) T-lymphocyte responses. These findings suggest that immunodomination exerted by dominant responses during SHIV infection may diminish the breadth of recall responses primed during vaccination.
Collapse
|
22
|
Stufano A, Kanduc D. Proteome-based epitopic peptide scanning along PSA. Exp Mol Pathol 2009; 86:36-40. [DOI: 10.1016/j.yexmp.2008.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/26/2008] [Indexed: 12/18/2022]
|
23
|
Evdokimova VN, Butterfield LH. Alpha-fetoprotein and other tumour-associated antigens for immunotherapy of hepatocellular cancer. Expert Opin Biol Ther 2008; 8:325-36. [PMID: 18294103 DOI: 10.1517/14712598.8.3.325] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer death, with few treatment options for advanced disease. OBJECTIVES Here, we review the aetiology of HCC and focus on recent data on tumour-associated antigens (TAA) for HCC, their functions and potential use as immunological targets for immune-based therapy for HCC. In addition, we examine some aspects of antigen presentation within the liver. RESULTS/CONCLUSIONS alpha-Fetoprotein (AFP) has been investigated for many years as a TAA, and has been tested in recent clinical trials. More recently, additional TAA have been identified and new therapeutic approaches have been investigated which may be testable clinically in this difficult disease setting.
Collapse
Affiliation(s)
- Viktoria N Evdokimova
- University of Pittsburgh, Hillman Cancer Center, Department of Medicine, Hematology/Oncology, Research Pavilion, Room 1.32, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
24
|
The Tat protein broadens T cell responses directed to the HIV-1 antigens Gag and Env: Implications for the design of new vaccination strategies against AIDS. Vaccine 2008; 26:727-37. [DOI: 10.1016/j.vaccine.2007.11.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 11/12/2007] [Accepted: 11/16/2007] [Indexed: 10/22/2022]
|
25
|
Hasegawa A, Moriya C, Liu H, Charini WA, Vinet HC, Subbramanian RA, Sen P, Letvin NL, Kuroda MJ. Analysis of TCRalphabeta combinations used by simian immunodeficiency virus-specific CD8+ T cells in rhesus monkeys: implications for CTL immunodominance. THE JOURNAL OF IMMUNOLOGY 2007; 178:3409-17. [PMID: 17339435 DOI: 10.4049/jimmunol.178.6.3409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunodominance is a common feature of Ag-specific CTL responses to infection or vaccines. Understanding the basis of immunodominance is crucial to understanding cellular immunity and viral evasion mechanisms and will provide a rational approach for improving HIV vaccine design. This study was performed comparing CTLs specific for the SIV Gag p11C (dominant) and SIV Pol p68A (subdominant) epitopes that are consistently generated in Mamu-A*01(+) rhesus monkeys exposed to SIV proteins. Additionally, vaccinated monkeys were used to prevent any issues of antigenic variation or dynamic changes in CTL responses by continuous Ag exposure. Analysis of the TCR repertoire revealed the usage of higher numbers of TCR clones by the dominant p11C-specific CTL population. Preferential usage of specific TCRs and the in vitro functional TCR-alpha- and -beta-chain-pairing assay suggests that every peptide/MHC complex may only be recognized by a limited number of unique combinations of alpha- and beta-chain pairs. The wider array of TCR clones used by the dominant p11C-specific CTL population might be explained by the higher probability of generating those specific TCR chain pairs. Our data suggest that Ag-specific naive T cell precursor frequency may be predetermined and that this process dictates immunodominance of SIV-specific CD8(+) T cell responses. These findings will aid in understanding immunodominance and designing new approaches to modulate CTL responses.
Collapse
Affiliation(s)
- Atsuhiko Hasegawa
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Robek MD, Garcia ML, Boyd BS, Chisari FV. Role of immunoproteasome catalytic subunits in the immune response to hepatitis B virus. J Virol 2006; 81:483-91. [PMID: 17079320 PMCID: PMC1797445 DOI: 10.1128/jvi.01779-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inhibition of hepatitis B virus (HBV) replication and viral clearance from an infected host requires both the innate and adaptive immune responses. Expression of interferon (IFN)-inducible proteasome catalytic and regulatory subunits correlates with the IFN-alpha/beta- and IFN-gamma-mediated noncytopathic inhibition of HBV in transgenic mice and hepatocytes, as well as with clearance of the virus in acutely infected chimpanzees. The immunoproteasome catalytic subunits LMP2 and LMP7 alter proteasome specificity and influence the pool of peptides available for presentation by major histocompatibility complex class I molecules. We found that these subunits influenced both the magnitude and specificity of the CD8 T-cell response to the HBV polymerase and envelope proteins in immunized HLA-A2-transgenic mice. We also examined the role of LMP2 and LMP7 in the IFN-alpha/beta- and IFN-gamma-mediated inhibition of virus replication using HBV transgenic mice and found that they do not play a direct role in this process. These results demonstrate the ability of the IFN-induced proteasome catalytic subunits to shape the HBV-specific CD8 T-cell response and thus potentially influence the progression of infection to acute or chronic disease. In addition, these studies identify a potential key role for IFN in regulating the adaptive immune response to HBV through alterations in viral antigen processing.
Collapse
Affiliation(s)
- Michael D Robek
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
27
|
Manuel ER, Charini WA, Sen P, Peyerl FW, Kuroda MJ, Schmitz JE, Autissier P, Sheeter DA, Torbett BE, Letvin NL. Contribution of T-cell receptor repertoire breadth to the dominance of epitope-specific CD8+ T-lymphocyte responses. J Virol 2006; 80:12032-40. [PMID: 17035327 PMCID: PMC1676269 DOI: 10.1128/jvi.01479-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dominant epitope-specific CD8(+) T-lymphocyte responses play a central role in controlling viral spread. We explored the basis for the development of this focused immune response in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys through the use of two dominant (p11C and p199RY) and two subdominant (p68A and p56A) epitopes. Using real-time PCR to quantitate T-cell receptor (TCR) variable region beta (Vbeta) family usage, we show that CD8(+) T-lymphocyte populations specific for dominant epitopes are characterized by a diverse Vbeta repertoire, whereas those specific for subdominant epitopes employ a dramatically more focused Vbeta repertoire. We also demonstrate that dominant epitope-specific CD8(+) T lymphocytes employ TCRs with multiple CDR3 lengths, whereas subdominant epitope-specific cells employ TCRs with a more restricted CDR3 length. Thus, the relative dominance of an epitope-specific CD8(+) T-lymphocyte response reflects the clonal diversity of that response. These findings suggest that the limited clonal repertoire of subdominant epitope-specific CD8(+) T-lymphocyte populations may limit the ability of these epitope-specific T-lymphocyte populations to expand and therefore limit the ability of these cell populations to contribute to the control of viral replication.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Chromatography, High Pressure Liquid
- DNA Primers
- DNA, Complementary/genetics
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Flow Cytometry
- Genes, T-Cell Receptor beta/genetics
- Immunity, Cellular/immunology
- Macaca mulatta
- Molecular Sequence Data
- Peptides/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Sequence Analysis, DNA
- Simian Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Edwin R Manuel
- Beth Israel Deaconess Medical Center, 41 Ave. Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kessler JH, Bres-Vloemans SA, van Veelen PA, de Ru A, Huijbers IJG, Camps M, Mulder A, Offringa R, Drijfhout JW, Leeksma OC, Ossendorp F, Melief CJM. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes. Leukemia 2006; 20:1738-50. [PMID: 16932347 DOI: 10.1038/sj.leu.2404354] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For immunotherapy of residual disease in patients with Philadelphia-positive leukemias, the BCR-ABL fusion regions are attractive disease-specific T-cell targets. We analyzed these regions for the prevalence of cytotoxic T lymphocyte (CTL) epitopes by an advanced reverse immunology procedure. Seventeen novel BCR-ABL fusion peptides were identified to bind efficiently to the human lymphocyte antigen (HLA)-A68, HLA-B51, HLA-B61 or HLA-Cw4 HLA class I molecules. Comprehensive enzymatic digestion analysis showed that 10 out of the 28 HLA class I binding fusion peptides were efficiently excised after their C-terminus by the proteasome, which is an essential requirement for efficient cell surface expression. Therefore, these peptides are prime vaccine candidates. The other peptides either completely lacked C-terminal liberation or were only inefficiently excised by the proteasome, rendering them inappropriate or less suitable for inclusion in a vaccine. CTL raised against the properly processed HLA-B61 epitope AEALQRPVA from the BCR-ABL e1a2 fusion region, expressed in acute lymphoblastic leukemia (ALL), specifically recognized ALL tumor cells, proving cell surface presentation of this epitope, its applicability for immunotherapy and underlining the accuracy of our epitope identification strategy. Our study provides a reliable basis for the selection of optimal peptides to be included in immunotherapeutic BCR-ABL vaccines against leukemia.
Collapse
MESH Headings
- Amino Acid Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Epitope Mapping/methods
- Epitopes, T-Lymphocyte/immunology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Fusion Proteins, bcr-abl/metabolism
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- HLA-B Antigens/immunology
- HLA-B Antigens/metabolism
- HLA-B51 Antigen
- HLA-C Antigens/immunology
- HLA-C Antigens/metabolism
- Humans
- Immunotherapy/methods
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
Collapse
Affiliation(s)
- J H Kessler
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wherry EJ, Golovina TN, Morrison SE, Sinnathamby G, McElhaugh MJ, Shockey DC, Eisenlohr LC. Re-evaluating the Generation of a “Proteasome-Independent” MHC Class I-Restricted CD8 T Cell Epitope. THE JOURNAL OF IMMUNOLOGY 2006; 176:2249-61. [PMID: 16455981 DOI: 10.4049/jimmunol.176.4.2249] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.
Collapse
Affiliation(s)
- E John Wherry
- Department of Microbiology and Immunology, Jefferson Medical College and Kimmel Cancer Institute, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Rakoff-Nahoum S, Kuebler PJ, Heymann JJ, E Sheehy M, Ortiz GM, S Ogg G, Barbour JD, Lenz J, Steinfeld AD, Nixon DF. Detection of T lymphocytes specific for human endogenous retrovirus K (HERV-K) in patients with seminoma. AIDS Res Hum Retroviruses 2006; 22:52-6. [PMID: 16438646 DOI: 10.1089/aid.2006.22.52] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retrovirus K (HERV-K) is distinctive among the retroviruses that comprise about 8% of the human genome in that multiple HERV-K proviruses encode full-length viral proteins, and many HERV-K proviruses formed during recent human evolution. HERV-K gag proteins are found in the cytoplasm of primary tumor cells of patients with seminoma. We identified HERV-K-specific T cells in patients with a past history of seminoma using the interferon-gamma ELISPOT assay and an MHC-HERV-K peptide-specific tetramer. A minority of apparently healthy subjects without evident germ cell tumors also made HERV-K-specific T cell responses. In summary, we detected T cell reactivity to HERV-K peptides in both past seminoma patients and a minority of apparently healthy controls.
Collapse
Affiliation(s)
- Seth Rakoff-Nahoum
- J.D. Gladstone Institutes, Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Milicic A, Price DA, Zimbwa P, Booth BL, Brown HL, Easterbrook PJ, Olsen K, Robinson N, Gileadi U, Sewell AK, Cerundolo V, Phillips RE. CD8+ T cell epitope-flanking mutations disrupt proteasomal processing of HIV-1 Nef. THE JOURNAL OF IMMUNOLOGY 2005; 175:4618-26. [PMID: 16177107 DOI: 10.4049/jimmunol.175.7.4618] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL play a critical role in the control of HIV and SIV. However, intrinsic genetic instability enables these immunodeficiency viruses to evade detection by CTL through mutation of targeted antigenic sites. These mutations can impair binding of viral epitopes to the presenting MHC class I molecule or disrupt TCR-mediated recognition. In certain regions of the virus, functional constraints are likely to limit the capacity for variation within epitopes. Mutations elsewhere in the protein, however, might still enable immune escape through effects on Ag processing. In this study, we describe the coincident emergence of three mutations in a highly conserved region of Nef during primary HIV-1 infection. These mutations (R69K, A81G, and H87R) flank the HLA B*35-restricted VY8 epitope and persisted to fixation as the early CTL response to this Ag waned. The variant form of Nef showed a reduced capacity to activate VY8-specific CTL, although protein stability and expression levels were unchanged. This effect was associated with altered processing by the proteasome that caused partial destruction of the VY8 epitope. Our data demonstrate that a variant HIV genotype can significantly impair proteasomal epitope processing and substantiate the concept of immune evasion through diminished Ag generation. These observations also indicate that the scale of viral escape may be significantly underestimated if only intraepitope variation is evaluated.
Collapse
Affiliation(s)
- Anita Milicic
- James Martin 21st Century School and Nuffield Department of Clinical Medicine, The Peter Medawar Building, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bruder D, Nussbaum AK, Gakamsky DM, Schirle M, Stevanovic S, Singh-Jasuja H, Darji A, Chakraborty T, Schild H, Pecht I, Weiss S. Multiple synergizing factors contribute to the strength of the CD8+ T cell response against listeriolysin O. Int Immunol 2005; 18:89-100. [PMID: 16291651 DOI: 10.1093/intimm/dxh352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunodominance in CD8+ T cell responses against Listeria monocytogenes is a well-recognized but still not fully understood phenomenon. From listeriolysin, the major virulence factor of L. monocytogenes, only a single epitope, pLLO91-99, is presented by MHC class I molecules in BALB/c mice which dominates the cytotoxic T cell response against this bacterial pathogen. To obtain more insights into the molecular and cellular mechanisms underlying immunodominance of this particular epitope, we compared the various steps involved in the presentation and recognition of pLLO91-99 derived from a wild-type toxin with an equivalent epitope from a mutated toxin. This fully functional variant contains within the pLLO91-99 epitope a conservative isoleucine to alanine replacement at the C-terminal anchor residue which results in loss of antigenicity. The binding properties of the variant peptide to soluble Kd remained unaffected and cytotoxic T cells capable of recognizing the pLLO99A/Kd complex were detectable in BALB/c mice. However, such T cells required higher concentrations of antigen in order to be optimally activated in vitro. A comparison between the TAP translocation efficiency of wild-type and mutant peptide demonstrated that the mutation at the C-terminus leads to a reduced transportation rate. Furthermore, the amino acid substitution changes the in vitro proteasomal cleavage pattern, resulting in a reduced liberation of the correct peptide from a polypeptide precursor. Thus, in all assays employed the immunodominant epitope performs optimally while the variant was found to be inferior. The synergy of all these steps most likely is the decisive factor in the immunodominance of pLLO91-99.
Collapse
Affiliation(s)
- Dunja Bruder
- Molecular Immunology, Department of Cell Biology and Immunology, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Otahal P, Hutchinson SC, Mylin LM, Tevethia MJ, Tevethia SS, Schell TD. Inefficient cross-presentation limits the CD8+ T cell response to a subdominant tumor antigen epitope. THE JOURNAL OF IMMUNOLOGY 2005; 175:700-12. [PMID: 16002665 DOI: 10.4049/jimmunol.175.2.700] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T lymphocytes (T(CD8)) responding to subdominant epitopes provide alternate targets for the immunotherapy of cancer, particularly when self-tolerance limits the response to immunodominant epitopes. However, the mechanisms that promote T(CD8) subdominance to tumor Ags remain obscure. We investigated the basis for the lack of priming against a subdominant tumor epitope following immunization of C57BL/6 (B6) mice with SV40 large tumor Ag (T Ag)-transformed cells. Immunization of B6 mice with wild-type T Ag-transformed cells primes T(CD8) specific for three immunodominant T Ag epitopes (epitopes I, II/III, and IV) but fails to induce T(CD8) specific for the subdominant T Ag epitope V. Using adoptively transferred T(CD8) from epitope V-specific TCR transgenic mice and immunization with T Ag-transformed cells, we demonstrate that the subdominant epitope V is weakly cross-presented relative to immunodominant epitopes derived from the same protein Ag. Priming of naive epitope V-specific TCR transgenic T(CD8) in B6 mice required cross-presentation by host APC. However, robust expansion of these T(CD8) required additional direct presentation of the subdominant epitope by T Ag-transformed cells and was only significant following immunization with T Ag-expressing cells lacking the immunodominant epitopes. These results indicate that limited cross-presentation coupled with competition by immunodominant epitope-specific T(CD8) contributes to the subdominant nature of a tumor-specific epitope. This finding has implications for vaccination strategies targeting T(CD8) responses to cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- Adoptive Transfer
- Animals
- Antigens, Viral, Tumor/administration & dosage
- Antigens, Viral, Tumor/biosynthesis
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- Antigens, Viral, Tumor/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cell Line, Transformed
- Cell Proliferation
- Clone Cells
- Cross-Priming/immunology
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Immunization, Secondary
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Immunologic Memory/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Resting Phase, Cell Cycle/genetics
- Resting Phase, Cell Cycle/immunology
- Simian virus 40/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- Pavel Otahal
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hassainya Y, Garcia-Pons F, Kratzer R, Lindo V, Greer F, Lemonnier FA, Niedermann G, van Endert PM. Identification of naturally processed HLA-A2--restricted proinsulin epitopes by reverse immunology. Diabetes 2005; 54:2053-9. [PMID: 15983206 DOI: 10.2337/diabetes.54.7.2053] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is thought to result from the destruction of beta-cells by autoantigen-specific T-cells. Observations in the NOD mouse model suggest that CD8+ cytotoxic T-cells play an essential role in both the initial triggering of insulitis and its destructive phase. However, little is known about the epitopes derived from human beta-cell autoantigens and presented by HLA class I molecules. We used a novel reverse immunology approach to identify HLA-A2-restricted, naturally processed epitopes derived from proinsulin, an autoantigen likely to play an important role in the pathogenesis of type 1 diabetes. Recombinant human proinsulin was digested with purified proteasome complexes to establish an inventory of potential COOH-terminals of HLA class I-presented epitopes. Cleavage data were then combined with epitope predictions based on the SYFPEITHI and BIMAS algorithms to select 10 candidate epitopes; 7 of these, including 3 with a sequence identical to murine proinsulin, were immunogenic in HLA-A2 transgenic mice. Moreover, six of six tested peptides were processed and presented by proinsulin-expressing cells. These results demonstrate the power of reverse immunology approaches. Moreover, the novel epitopes may be of significant interest in monitoring autoreactive T-cells in type 1 diabetes.
Collapse
Affiliation(s)
- Yousra Hassainya
- Institut National de la Santé et de la Recherche Médicale Unité 580, Université René Descartes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
He X, Tsang TC, Zhang T, Luo P, Harris DT. Antigen epitope-expressing cytokines for DNA immunization. Vaccine 2005; 23:1966-72. [PMID: 15734069 DOI: 10.1016/j.vaccine.2004.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 09/21/2004] [Accepted: 10/12/2004] [Indexed: 11/28/2022]
Abstract
Strategies to enhance the efficacy of DNA vaccination against malignancy remain to be established. In this study, a plasmid expressing a tumor antigen incorporated into the signal peptide of human IL-2 was tested as a DNA vaccine in a murine model system. Results showed that antigen-specific CTL responses were elicited by intramuscular injection of these plasmids. Importantly, compared with a minigene vector expressing the same epitope, the OVA epitope-incorporated, IL-2 expression plasmid vaccination was more effective in protecting mice from OVA-expressing tumor challenge. The improved efficacy appears to result from enhanced antigen presentation as well as the immunostimulatory activity of IL-2. This approach may provide new perspectives in designing cytokine-adjuvant DNA vaccines for clinical applications.
Collapse
Affiliation(s)
- Xianghui He
- Gene Therapy Group, Department of Microbiology and Immunology, PO Box 245049, University of Arizona, Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
36
|
Pajonk F, Scholber J, Fiebich B. Hypericin?an inhibitor of proteasome function. Cancer Chemother Pharmacol 2005; 55:439-46. [PMID: 15672261 DOI: 10.1007/s00280-004-0933-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 11/25/2004] [Indexed: 10/25/2022]
Abstract
Hypericin is the presumed active moiety within Saint John's wort. Extracts of Saint John's wort are widely used as an effective treatment for depression. Available as "over-the-counter" drugs, they are frequently part of the self-medication of patients undergoing radiation therapy for malignant diseases. In addition to antidepressive properties, hypericin has been shown to be able to induce apoptosis and radiosensitize tumor cells, and to have antiinflammatory and phototoxic skin effects. However, the underlying mechanisms are not clear. In this study, we investigated possible inhibitory effects of hypericin on proteasome function and related pathways. Extracts from U373 human glioma cells were incubated with different concentrations of hypericin. Three proteasome activities were monitored using a fluorogenic peptide assay. Activity of the transcription factor NF-kappaB and protein levels of p65, p50, IkappaBalpha and caspase-3 were investigated by EMSA and Western blotting, respectively. Hypericin caused a dose-dependent and photoactivation-independent inhibition of proteasome function. Hypericin treatment (6.25-50 microM) inhibited NF-kappaB, caused accumulation of phosphorylated IkappaBalpha, decreased p50 protein levels and induced cleavage of p65 protein in U373 cells. These effects were observed in MCF-7 cells only at higher concentrations of hypericin (12.5-50 microM). Additionally, inhibition of NF-kappaB activity in U373 cells by hypericin was prevented by caspase inhibition. Although hypericin clearly inhibits proteasome function, its effect NF-kappaB DNA-binding activity was not exclusively proteasome-dependent. The underlying mechanism might also involve caspase activation, a consequence of proteasome inhibition.
Collapse
Affiliation(s)
- F Pajonk
- Clinical and Experimental Radiation Biology Research Section, Department of Radiation Oncology, University of Freiburg Medical School, 79106 Freiburg, Germany.
| | | | | |
Collapse
|
37
|
Burlet-Schiltz O, Claverol S, Gairin JE, Monsarrat B. The Use of Mass Spectrometry to Identify Antigens from Proteasome Processing. Methods Enzymol 2005; 405:264-300. [PMID: 16413318 DOI: 10.1016/s0076-6879(05)05011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mass spectrometry (MS) is a powerful tool for the characterization of antigenic peptides that play a major role in the immune system. Most of the major histocompatibility complex (MHC) class I peptides are generated during the degradation of intracellular proteins by the proteasome, a catalytic complex present in all eukaryotic cells. This chapter focuses on the contribution of MS to the understanding of the mechanisms of antigen processing by the proteasome. This knowledge may be valuable for the design of specific inhibitors of proteasome, which has recently been recognized as a therapeutic target in cancer therapies and for the development of efficient peptidic vaccines in immunotherapies. Examples from the literature have been chosen to illustrate how MS data can contribute first to the understanding of the mechanisms of proteasomal processing and, second, to the understanding of the crucial role of proteasome in cytotoxic T lymphocytes (CTL) activation. The general strategy based on MS analyses used in these studies is also described.
Collapse
|
38
|
Petrovsky N, Brusic V. Virtual models of the HLA class I antigen processing pathway. Methods 2004; 34:429-35. [PMID: 15542368 DOI: 10.1016/j.ymeth.2004.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2004] [Indexed: 11/24/2022] Open
Abstract
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class I binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify HLA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Autoimmunity Research Unit, The Canberra Hospital, ACT 2606, Australia.
| | | |
Collapse
|
39
|
Shinoda K, Xin KQ, Jounai N, Kojima Y, Tamura Y, Okada E, Kawamoto S, Okuda K, Klinman D, Okuda K. Polygene DNA vaccine induces a high level of protective effect against HIV-vaccinia virus challenge in mice. Vaccine 2004; 22:3676-90. [PMID: 15315847 DOI: 10.1016/j.vaccine.2004.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2003] [Accepted: 03/14/2004] [Indexed: 11/21/2022]
Abstract
Single HIV-1 subtype DNA vaccine is unlikely to provide reactive protection across a wide range of HIV strains since the HIV virus changes the antigenic sites, particularly, in env gene. To overcome these issues, we constructed a multivalent poly-epitope DNA vaccine. A polygenic DNA vaccine encoding 20 antigenic epitopes from the HIV-1 Env, Gag, and Pol proteins of several clades was constructed using humanized and optimized codons and it was named here hDNA vaccine. In mice, this hDNA vaccine stimulated the following strong (1) antigen-specific serum antibody (Ab) responses, (2) delayed-type hypersensitivity, (3) the activation of IFN-gamma secretion cells targeting gp120 and synthetic antigenic peptides, in addition (4) a significant level of several peptide specific cytotoxic T lymphocytes (CTL) responses. Challenged with modified vaccinia viruses vPE16 and vP1206 expressing HIV-1 env and gag.pol genes, respectively, demonstrated the viral titers in the ovary of the mice vaccinated with hDNA significantly less compared to the unvaccinated mice. Thus, the use of polygene DNA vaccine appears to induce a high level of HIV-specific immune responses and is very effective against challenge with recombinant HIV-vaccinia viruses.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- AIDS Vaccines/therapeutic use
- Amino Acid Sequence
- Animals
- Antibody Formation/immunology
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Gene Products, gag/immunology
- HIV Antibodies/analysis
- HIV Antibodies/biosynthesis
- HIV Envelope Protein gp120/immunology
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/immunology
- Hypersensitivity, Delayed/immunology
- Image Processing, Computer-Assisted
- Immunity, Cellular/immunology
- Immunization
- Interferon-gamma/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Plasmids/genetics
- Plasmids/immunology
- Promoter Regions, Genetic/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Kaori Shinoda
- Department of Bacteriology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004; 114:250-9. [PMID: 15254592 PMCID: PMC449747 DOI: 10.1172/jci20985] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/18/2004] [Indexed: 12/11/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004. [PMID: 15254592 DOI: 10.1172/jci200420985] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nagorsen D, Panelli M, Dudley ME, Finkelstein SE, Rosenberg SA, Marincola FM. Biased epitope selection by recombinant vaccinia-virus (rVV)-infected mature or immature dendritic cells. Gene Ther 2003; 10:1754-65. [PMID: 12939642 PMCID: PMC2275329 DOI: 10.1038/sj.gt.3302066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recombinant expression vectors represent a powerful way to deliver whole antigens (Ags) for immunization. Sustained Ag expression in vector-infected dendritic cells (DC) combines Ag-specific stimulation with powerful costimulation and, simultaneously, through 'self-selection' of ad hoc epitopes broadens the scope of immunization beyond restrictions posed by individual patients' human leukocyte antigen (HLA) phenotype. In this study, therefore, we evaluated the efficiency of a recombinant vaccinia virus encoding the gp100/PMel17 melanoma Ag (rVV-gp100) to infect immature (iDC) or mature dendritic cells (mDC) derived from circulating mononuclear cells and the effect of infection on their status of maturation. In addition, we tested the ability of rVV-gp100-infected iDC and mDC to present the HLA-A*0201-associated gp100:209-217 epitope (g209). Irrespective of status of maturation, rVV-gp100 infection induced gp100 expression while only partially reversing the expression of some maturation markers. However, endogenous presentation of the wild-type g209 epitope was inefficient. The low efficiency was epitope-specific since infection of DC with rVV encoding a gp100 construct containing the modified gp100:209-217 (210M) (g209-2M) epitope characterized by high binding affinity for HLA-A*0201 restored efficient Ag presentation. Presentation of an HLA-class II-associated epitope and cytokine release by DC was not altered by rVV infection. Thus, Ag expression driven by rVV may be an efficient strategy for whole Ag delivery. However, since the effectiveness of Ag processing and presentation is subject to stringent HLA/epitope pairing, and for other yet undefined rules, the assumption that whole Ag delivery may circumvent HLA restriction is incorrect and recombinant expression vectors encoding well-characterized polyepitopic constructs may prove more effective.
Collapse
Affiliation(s)
- D Nagorsen
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
43
|
Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC. Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J Pept Sci 2003; 9:255-81. [PMID: 12803494 DOI: 10.1002/psc.456] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Analytical biochemistry and synthetic peptide based chemistry have helped to reveal the pivotal role that peptides play in determining the specificity, magnitude and quality of both humoral (antibody) and cellular (cytotoxic and helper T cell) immune responses. In addition, peptide based technologies are now at the forefront of vaccine design and medical diagnostics. The chemical technologies used to assemble peptides into immunogenic structures have made great strides over the past decade and assembly of highly pure peptides which can be incorporated into high molecular weight species, multimeric and even branched structures together with non-peptidic material is now routine. These structures have a wide range of applications in designer vaccines and diagnostic reagents. Thus the tools of the peptide chemist are exquisitely placed to answer questions about immune recognition and along the way to provide us with new and improved vaccines and diagnostics.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Malkevitch N, Patterson LJ, Aldrich K, Richardson E, Alvord WG, Robert-Guroff M. A replication competent adenovirus 5 host range mutant-simian immunodeficiency virus (SIV) recombinant priming/subunit protein boosting vaccine regimen induces broad, persistent SIV-specific cellular immunity to dominant and subdominant epitopes in Mamu-A*01 rhesus macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4281-9. [PMID: 12682263 DOI: 10.4049/jimmunol.170.8.4281] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL are important in controlling HIV and SIV infection. To quantify cellular immune responses induced by immunization, CD8(+) T cells specific for the subdominant Env p15m and p54m epitopes and/or the dominant Gag p11C epitope were evaluated by tetramer staining in nine macaques immunized with an adenovirus (Ad) 5 host range mutant (Ad5hr)-SIVenv/rev recombinant and in four of nine which also received an Ad5hr-SIVgag recombinant. Two Ad5hr-SIV recombinant priming immunizations were followed by two boosts with gp120 protein or an envelope polypeptide representing the CD4 binding domain. Two mock-immunized macaques served as controls. IFN-gamma-secreting cells were also assessed by ELISPOT assay using p11C, p15m, and p54m peptide stimuli and overlapping pooled Gag and Env peptides. As shown by tetramer staining, Ad-recombinant priming elicited a high frequency of persistent CD8(+) T cells able to recognize p11C, p15m, and p54m epitopes. The presence of memory cells 38 wk postinitial immunization was confirmed by expansion of tetramer-positive CD8(+) T cells following in vitro stimulation. The SIV-specific CD8(+) T cells elicited were functional and secreted IFN-gamma in response to SIV peptide stimuli. Although the level and frequency of response of peripheral blood CD8(+) T cells to the subdominant Env epitopes were not as great as those to the dominant p11C epitope, elevated responses were observed when lymph node CD8(+) T cells were evaluated. Our data confirm the potency and persistence of functional cellular immune responses elicited by replication competent Ad-recombinant priming. The cellular immunity elicited is broad and extends to subdominant epitopes.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Administration, Intranasal
- Administration, Oral
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Enzyme-Linked Immunosorbent Assay/methods
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Gene Products, env/administration & dosage
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/administration & dosage
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors/administration & dosage
- Genetic Vectors/immunology
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunity, Cellular/genetics
- Immunization, Secondary/methods
- Immunodominant Epitopes/immunology
- Interferon-gamma/biosynthesis
- Interferon-gamma/metabolism
- Intubation, Intratracheal
- Leukocytes, Mononuclear/chemistry
- Leukocytes, Mononuclear/immunology
- Lymph Nodes/chemistry
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/genetics
- Macaca mulatta
- Protein Subunits/administration & dosage
- Protein Subunits/genetics
- Protein Subunits/immunology
- Recombination, Genetic/immunology
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/genetics
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Staining and Labeling
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Nina Malkevitch
- Basic Research Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lacey SF, Villacres MC, La Rosa C, Wang Z, Longmate J, Martinez J, Brewer JC, Mekhoubad S, Maas R, Leedom JM, Forman SJ, Zaia JA, Diamond DJ. Relative dominance of HLA-B*07 restricted CD8+ T-lymphocyte immune responses to human cytomegalovirus pp65 in persons sharing HLA-A*02 and HLA-B*07 alleles. Hum Immunol 2003; 64:440-52. [PMID: 12651070 DOI: 10.1016/s0198-8859(03)00028-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CD8(+) T-cell responses to three human cytomegalovirus (CMV) pp65 epitopes were studied in panels of healthy seropositive HLA-A*02/HLA-B*07 individuals, and HLA-A*02 donors mismatched for HLA-B*07. The majority of the latter had significant responses to a HLA-A*02-restricted epitope within the CMV pp65 antigen. By contrast, the strongest responses to CMV in the first group were to HLA-B*07-restricted epitopes. Similar immunodominance of HLA-B*07 over HLA-A*02 was found in two immunocompromised HIV-infected HLA-A*02/HLA-B*07 patients, and in the reconstituting immune system of three stem cell transplant recipients. In vitro stimulation of peripheral blood mononuclear cells (PBMC) from two immunocompetent HLA-A*02/HLA-B*07 individuals indicated that cytotoxic T lymphocyte (CTL) precursors specific for both HLA-A*02 and HLA-B*07 restricted epitopes were present and could be expanded by stimulation with the cognate peptides. However, if stimulation was performed by antigen presenting cells infected with recombinant vaccinia expressing full-length native pp65, only HLA-B*07 epitope-specific cells were seen. In one patient the HLA-B*07 dominance was partially broken by using recombinant vaccinia expressing ubiquitinated pp65, suggesting that enhanced protein processing can reveal weaker immune responses. Our results indicate that CMV-specific cellular immune responses restricted by HLA-B*07 dominate those restricted by HLA-A*02 in both immunocompetent and immunocompromised individuals. This may have significant consequences for the design of epitope-specific vaccines.
Collapse
Affiliation(s)
- Simon F Lacey
- Laboratory of Vaccine Research, Division of Virology, Beckman Institute of the City of Hope, City of Hope Medical Centre, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 2002; 80:1-70. [PMID: 12078479 DOI: 10.1016/s0065-2776(02)80012-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the past decade there has been considerable progress in understanding how MHC class I-presented peptides are generated. The emerging theme is that the immune system has not evolved its own specialized proteolytic mechanisms but instead utilizes the phylogenetically ancient catabolic pathways that continually turnover proteins in all cells. Three distinct proteolytic steps have now been defined in MHC class I antigen presentation. The first step is the degradation of proteins by the ubiquitin-proteasome pathway into oligopeptides that either are of the correct size for presentation or are extended on their amino-termini. In the second step, aminopeptidases trim N-extended precursors into peptides of the correct length to be presented on class I molecules. The third step involves the destruction of peptides by endo- and exopeptidases, which limits antigen presentation, but is important for preventing the accumulation of peptides and recycling them back to amino acids for protein synthesis or production of energy. The immune system has evolved several components that modify the activity of these ancient pathways in ways that enhance the generation of class I-presented peptides. These include catalytically active subunits of the proteasome, the PA28 proteasome activator, and leucine aminopeptidase, all of which are upregulated by interferon-gamma. In addition to these pathways that operate in all cells, dendritic cells and macrophages can also generate class I-presented peptides from proteins internalized from the extracellular fluids by degrading them in endocytic compartments or transferring them to the cyotosol for degradation by proteasomes.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
47
|
Cohen WM, Bianco A, Connan F, Camoin L, Dalod M, Lauvau G, Ferriès E, Culmann-Penciolelli B, van Endert PM, Briand JP, Choppin J, Guillet JG. Study of antigen-processing steps reveals preferences explaining differential biological outcomes of two HLA-A2-restricted immunodominant epitopes from human immunodeficiency virus type 1. J Virol 2002; 76:10219-25. [PMID: 12239297 PMCID: PMC136577 DOI: 10.1128/jvi.76.20.10219-10225.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T-lymphocyte (CTL) responses directed to different human immunodeficiency virus (HIV) epitopes vary in their protective efficacy. In particular, HIV-infected cells are much more sensitive to lysis by anti-Gag/p17(77-85)/HLA-A2 than to that by anti-polymerase/RT(476-484)/HLA-A2 CTL, because of a higher density of p17(77-85) complexes. This report describes multiple processing steps favoring the generation of p17(77-85) complexes: (i) the exact COOH-terminal cleavage of epitopes by cellular proteases occurred faster and more frequently for p17(77-85) than for RT(476-484), and (ii) the binding efficiency of the transporter associated with antigen processing was greater for p17(77-85) precursors than for the RT(476-484) epitope. Surprisingly, these peptides, which differed markedly in their antigenicity, displayed qualitatively and quantitatively similar immunogenicity, suggesting differences in the mechanisms governing these phenomena. Here, we discuss the mechanisms responsible for such differences.
Collapse
Affiliation(s)
- W M Cohen
- Institut National de la Santé et de la Recherche Médicale Unité 445, Institut Cochin de Génétique Moléculaire, Hôpital Cochin, 27 rue du faubourg Saint-Jacques, 75014 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Grommé M, Neefjes J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol Immunol 2002; 39:181-202. [PMID: 12200050 DOI: 10.1016/s0161-5890(02)00101-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules usually present endogenous peptides at the cell surface. This is the result of a cascade of events involving various dedicated proteins like the peptide transporter associated with antigen processing (TAP) and the ER chaperone tapasin. However, alternative ways for class I peptide loading exist which may be highly relevant in a process called cross-priming. Both pathways are described here in detail. One major difference between these pathways is that the proteases involved in the generation of peptides are different. How proteases and peptidases influence peptide generation and degradation will be discussed. These processes determine the amount of peptides available for TAP translocation and class I binding and ultimately the immune response.
Collapse
Affiliation(s)
- Monique Grommé
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
49
|
Goldberg AL, Cascio P, Saric T, Rock KL. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 2002; 39:147-64. [PMID: 12200047 DOI: 10.1016/s0161-5890(02)00098-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three different proteolytic processes have been shown to be important in the generation of antigenic peptides displayed on MHC-class I molecules. The great majority of these peoptides are derived from oligopeptides produced during the degradation of intracellular proteins by the ubiquitin-proteasome pathway. Novel methods were developed to follow this process in vitro. When pure 26S proteasomes degrade the model substrate, ovalbumin, they produce the immunodominant peptide, SIINFEKL, occasionally, but more often an N-extended form of SIINFEKL. Interferon-gamma stimulates antigen presentation in part by inducing new forms of the proteasome that are more efficient in antigen presentation, and in vitro these immunoproteasomes specifically produce more of the N-extended versions of SIINFEKL. In addition, gamma-interferon induces a novel 26S complex containing the 19S and 20S particles and the proteasome activator, PA28, which we show cleaves proteins in distinct ways. In vivo studies established that proteasomal cleavages produce the C-termini of antigenic peptides, but not their N-termini, which can be formed efficiently by aminopeptidases that trim longer proteasomal products to the presented epitopes. gamma-interferon stimulates this trimming process by inducing in the cytosol leucine aminopeptidase and a novel aminopeptidase in the ER. Peptides released by proteasomes, including antigenic peptides, are labile in cytosolic extracts, and most of the longer proteasome products are rapidly cleaved by the cytosolic enzyme, thymet oligopeptidase (TOP). If cells express large amounts of TOP, class I presentation decreases, and if TOP is inhibited, presentation increases. Thus, peptide degradation in the cytosol appears to limit the efficiency of antigen presentation.
Collapse
Affiliation(s)
- Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
Hypertonic loading of proteins into cells has been used to introduce soluble proteins into the major histocompatibility complex class I pathway of antigen presentation followed by cytotoxic T-lymphocyte (CTL) induction. The precise mechanism for this pathway is not completely understood. The antigen is either processed and presented by/on the same cell or by professional antigen-presenting cells (APC) after taking up the antigen from damaged or apoptotic cells. After loading labelled ovalbumin (OVA), it could be co-precipitated with the proteasome complex, supporting the role of this pathway for antigen processing. The processing speed however, appeared to be slow since intact OVA could be detected inside the cells even after 18 hr. This corresponded well with the processing of OVA by isolated proteasomes. On the other hand, enough peptides for recognition of target cells by CTLs were generated in this reaction. One reason for the low level of processing might be that hypertonic loading may damage the cells and inhibit direct processing. In fact, at least 50% of the cells became positive for Annexin V binding after hypertonic loading which indicates severe membrane alterations usually associated with the progress of apoptosis. Annexin V binds to phosphatidylserine residues which also serve as ligand for CD36 expressed on monocytes and some immature dendritic cells. This may direct the phagocytic pathway to hypertonically loaded cells and thus enable professional APCs to present OVA-peptides. Therefore, in addition to the direct processing of OVA, CTLs can be primed by professional APC after uptake of apoptotic, OVA-loaded cells.
Collapse
Affiliation(s)
- Georg A Enders
- Institute for Surgical Research, LM-University, Munich, Germany.
| |
Collapse
|