1
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
2
|
Gu Y, Zhu L, Wang X, Li H, Hou L, Kong X. Research progress of pattern recognition receptors in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109028. [PMID: 37633345 DOI: 10.1016/j.fsi.2023.109028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Though Procambarus clarkii (red swamp crayfish) is a lower invertebrate, it has nonetheless developed a complex innate immune system. The crayfish farming industry has suffered considerable economic losses in recent years as a consequence of bacterial and viral diseases. Hence, perhaps the most effective ways to prevent microbial infections in P. clarkii are to examine and elucidate its innate immunity. The first step in the immune response is to recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). PRRs are expressed mainly on immune cell surfaces and recognize at least one PAMP. Thence, downstream immune responses are activated and pathogens are phagocytosed. To date, the PRRs identified in P. clarkii include Toll-like receptors (TLRs), lectins, fibrinogen-related proteins (FREPs), and β-1,3-glucan-binding proteins (BGRPs). The present review addresses recent progress in research on PRRs and aims to provide guidance for improving immunity and preventing and treating infectious diseases in P. clarkii.
Collapse
Affiliation(s)
- Yanlong Gu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Hao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
3
|
Zúñiga TM, Baker FL, Smith KA, Batatinha H, Lau B, Burgess SC, Gustafson MP, Katsanis E, Simpson RJ. Clonal Kinetics and Single-Cell Transcriptional Profiles of T Cells Mobilized to Blood by Acute Exercise. Med Sci Sports Exerc 2023; 55:991-1002. [PMID: 36719647 DOI: 10.1249/mss.0000000000003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Acute exercise redistributes large numbers of memory T cells, which may contribute to enhanced immune surveillance in regular exercisers. It is not known, however, if acute exercise promotes a broad or oligoclonal T-cell receptor (TCR) repertoire or evokes transcriptomic changes in "exercise-responsive" T-cell clones. METHODS Healthy volunteers completed a graded bout of cycling exercise up to 80% V̇O 2max . DNA was extracted from peripheral blood mononuclear cells collected at rest, during exercise (EX), and 1 h after (+1H) exercise, and processed for deep TCR-β chain sequencing and tandem single-cell RNA sequencing. RESULTS The number of unique clones and unique rearrangements was decreased at EX compared with rest ( P < 0.01) and +1H ( P < 0.01). Productive clonality was increased compared with rest ( P < 0.05) and +1H ( P < 0.05), whereas Shannon's Index was decreased compared with rest ( P < 0.05) and +1H ( P < 0.05). The top 10 rearrangements in the repertoire were increased at EX compared with rest ( P < 0.05) and +1H ( P < 0.05). Cross-referencing TCR-β sequences with a public database (VDJdb) revealed that exercise increased the number of clones specific for the most prevalent motifs, including Epstein-Barr virus, cytomegalovirus, and influenza A. We identified 633 unique exercise-responsive T-cell clones that were mobilized and/or egressed in response to exercise. Among these clones, there was an upregulation in genes related to cell death, cytotoxicity, and activation ( P < 0.05). CONCLUSIONS Acute exercise promotes an oligoclonal T-cell repertoire by preferentially mobilizing the most dominant clones, several of which are specific to known viral antigens and display differentially expressed genes indicative of cytotoxicity, activation, and apoptosis.
Collapse
MESH Headings
- Humans
- T-Lymphocytes
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Epstein-Barr Virus Infections/metabolism
- Leukocytes, Mononuclear/metabolism
- Herpesvirus 4, Human/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Clone Cells/metabolism
- Exercise
Collapse
Affiliation(s)
- Tiffany M Zúñiga
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | - Forrest L Baker
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | - Kyle A Smith
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | | | - Branden Lau
- The University of Arizona Genetics Core, The University of Arizona, Tucson, AZ
| | | | | | | | | |
Collapse
|
4
|
Yakovenko I, Tobi D, Ner-Gaon H, Oren M. Different sea urchin RAG-like genes were domesticated to carry out different functions. Front Immunol 2023; 13:1066510. [PMID: 36726993 PMCID: PMC9885083 DOI: 10.3389/fimmu.2022.1066510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The closely linked recombination activating genes (RAG1 and RAG2) in vertebrates encode the core of the RAG recombinase that mediates the V(D)J recombination of the immunoglobulin and T-cell receptor genes. RAG1 and RAG2 homologues (RAG1L and RAG2L) are present in multiple invertebrate phyla, including mollusks, nemerteans, cnidarians, and sea urchins. However, the function of the invertebrates' RAGL proteins is yet unknown. The sea urchins contain multiple RAGL genes that presumably originated in a common ancestral transposon. In this study, we demonstrated that two different RAG1L genes in the sea urchin Paracentrutus lividus (PlRAG1La and PlRAG1Lb) lost their mobility and, along with PlRAG2L, were fully domesticated to carry out different functions. We found that the examined echinoid RAGL homologues have distinct expression profiles in early developmental stages and in adult tissues. Moreover, the predicted structure of the proteins suggests that while PlRAG1La could maintain its endonuclease activity and create a heterotetramer with PlRAG2L, the PlRAG1Lb adopted a different function that does not include an interaction with DNA nor a collaboration with PlRAG2L. By characterizing the different RAG homologues in the echinoid lineage, we hope to increase the knowledge about the evolution of these genes and shed light on their domestication processes.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Department of Molecular Biology, Ariel University, Ariel, Israel,*Correspondence: Matan Oren, ; Iryna Yakovenko,
| | - Dror Tobi
- Department of Molecular Biology, Ariel University, Ariel, Israel,Department of Computer Sciences, Ariel University, Ariel, Israel
| | - Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel,*Correspondence: Matan Oren, ; Iryna Yakovenko,
| |
Collapse
|
5
|
Wang C, Li P, Guo L, Cao H, Mo W, Xin Y, Jv R, Zhao Y, Liu X, Ma C, Chen D, Wang H. A new potential risk: The impacts of Klebsiella pneumoniae infection on the histopathology, transcriptome and metagenome of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2022; 131:918-928. [PMID: 36356857 DOI: 10.1016/j.fsi.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Klebsiella pneumoniae is a common conditional pathogen found in natural soil water sources and vegetation and can infect invertebrates, vertebrates, and plants. In this study, we isolated K. pneumoniae from the hepatopancreas of the Chinese mitten crab (Eriocheir sinensis) for the first time and then we analysed its effects of on the histopathological changes, the transcriptome of the hepatopancreas, and the gut microbiota of this crab species. The findings of this study showed that K. pneumoniae infection has led to significant structural changes in the hepatopancreas, such as the production of vacuolated tissue structures, disorganized cell arrangement, and lysis of some hepatopancreatic cells. Also, the infection caused activation of the antioxidant-related enzymes such as SOD and CAT by inducing oxidative stress. The transcriptome of the hepatopancreas identified 10,940 differentially expressed genes (DEGs) in the susceptible (SG) groups and control (CG) groups, and 8495 DEGs in the SG groups and anti-infective (AI) groups. The KEGG pathway revealed upregulated DEGs caused by K. pneumoniae infection that involved in the immune response and apoptotic functional pathways, and also downregulated DEGs involved in the digestive absorption, metabolic, and biosynthetic signaling pathways. Meanwhile, metagenics sequencing revealed that at the phylum, class, order, family, and genus levels, K. pneumoniae infection altered the composition of the gut microbiota of E. sinensis, through increasing the abundance of Prolixibacteraceae, Enterobacterales, and Roseimarinus and decreasing the abundance of Alphaproteobacteria. The flora structure has also been changed between the SG and AI groups, with the abundance of Firmicutes, Erysipelotrichales, and Erysipelotrichaceae that were significantly decreased in the SG groups than in the AI groups. But, the abundance of Acinetobacter was considerably higher than in the AI group. In summary, K. pneumoniae infection induced oxidative stress in E. sinensis, triggered changes in immune-related gene expression, and caused structural changes in the gut microbiota. This study provides data to support the analysis of bacterial infection probes in several crustacean species.
Collapse
Affiliation(s)
- Chen Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Pengfei Li
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Leifeng Guo
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Hongzhen Cao
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Wei Mo
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Yunteng Xin
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Rong Jv
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Yun Zhao
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xiaolong Liu
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Changning Ma
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Duanduan Chen
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China; School of Agricultural Science and Engineering Liaocheng University, Liaocheng, 252000, China.
| | - Hui Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
6
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
7
|
Abstract
Interactions between the immune system and the nervous system have been described mostly in the context of diseases. More recent studies have begun to reveal how certain immune cell-derived soluble effectors, the cytokines, can influence host behaviour even in the absence of infection. In this Review, we contemplate how the immune system shapes nervous system function and how it controls the manifestation of host behaviour. Interactions between these two highly complex systems are discussed here also in the context of evolution, as both may have evolved to maximize an organism's ability to respond to environmental threats in order to survive. We describe how the immune system relays information to the nervous system and how cytokine signalling occurs in neurons. We also speculate on how the brain may be hardwired to receive and process information from the immune system. Finally, we propose a unified theory depicting a co-evolution of the immune system and host behaviour in response to the evolutionary pressure of pathogens.
Collapse
|
8
|
Yakovenko I, Agronin J, Smith LC, Oren M. Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Front Immunol 2021; 12:709165. [PMID: 34394111 PMCID: PMC8355894 DOI: 10.3389/fimmu.2021.709165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jacob Agronin
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
9
|
Kinlein A, Janes ME, Kincer J, Almeida T, Matz H, Sui J, Criscitiello MF, Flajnik MF, Ohta Y. Analysis of shark NCR3 family genes reveals primordial features of vertebrate NKp30. Immunogenetics 2021; 73:333-348. [PMID: 33742259 DOI: 10.1007/s00251-021-01209-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells play major roles in innate immunity against viruses and cancer. Natural killer receptors (NKR) expressed by NK cells recognize foreign- or self-ligands on infected and transformed cells as well as healthy cells. NKR genes are the most rapidly evolving loci in vertebrates, and it is generally difficult to detect orthologues in different taxa. The unique exception is NKp30, an activating NKR in mammals that binds to the self-ligand B7H6. The NKp30-encoding gene, NCR3, has been found in most vertebrates including sharks, the oldest vertebrates with human-type adaptive immunity. NCR3 has a special, non-rearranging VJ-type immunoglobulin superfamily (IgSF) domain that predates the emergence of the rearranging antigen receptors. Herein we show that NCR3 loci are linked to the shark major histocompatibility complex (MHC), proving NCR3's primordial association with the MHC. We identified eight subtypes of differentially expressed highly divergent shark NCR3 family genes. Using in situ hybridization, we detected one subtype, NS344823, to be expressed by predominantly single cells outside of splenic B cell zones. The expression by non-B cells was also confirmed by PCR in peripheral blood lymphocytes. Surprisingly, high expression of NS344823 was detected in the thymic cortex, demonstrating NS344823 expression in developing T cells. Finally, we show for the first time that shark T cells are found as single cells or in small clusters in the splenic red pulp, also unassociated with the large B cell follicles we previously identified.
Collapse
Affiliation(s)
- Allison Kinlein
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Morgan E Janes
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jacob Kincer
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Tereza Almeida
- Centro de Investigacão Em Biodiversidade E Recursos Genéticos, CIBIO-InBIO, Campus Agrário de Vairão, Universidade Do Porto, Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal
| | - Hanover Matz
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jianxin Sui
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
11
|
Zhang Y, Corbett E, Wu S, Schatz DG. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. EMBO J 2020; 39:e105857. [PMID: 32945578 DOI: 10.15252/embj.2020105857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
Jawed vertebrate adaptive immunity relies on the RAG1/RAG2 (RAG) recombinase, a domesticated transposase, for assembly of antigen receptor genes. Using an integration-activated form of RAG1 with methionine at residue 848 and cryo-electron microscopy, we determined structures that capture RAG engaged with transposon ends and U-shaped target DNA prior to integration (the target capture complex) and two forms of the RAG strand transfer complex that differ based on whether target site DNA is annealed or dynamic. Target site DNA base unstacking, flipping, and melting by RAG1 methionine 848 explain how this residue activates transposition, how RAG can stabilize sharp bends in target DNA, and why replacement of residue 848 by arginine during RAG domestication led to suppression of transposition activity. RAG2 extends a jawed vertebrate-specific loop to interact with target site DNA, and functional assays demonstrate that this loop represents another evolutionary adaptation acquired during RAG domestication to inhibit transposition. Our findings identify mechanistic principles of the final step in cut-and-paste transposition and the molecular and structural logic underlying the transformation of RAG from transposase to recombinase.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Elizabeth Corbett
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Shenping Wu
- Department of Pharmacology, Yale School of Medicine West Haven, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Tsakou-Ngouafo L, Paganini J, Kaufman J, Pontarotti P. Origins of the RAG Transposome and the MHC. Trends Immunol 2020; 41:561-571. [PMID: 32467030 DOI: 10.1016/j.it.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023]
Abstract
How innate immunity gave rise to adaptive immunity in vertebrates remains unknown. We propose an evolutionary scenario beginning with pathogen-associated molecular pattern(s) (PAMPs) being presented by molecule(s) on one cell to specific receptor(s) on other cells, much like MHC molecules and T cell receptors (TCRs). In this model, mutations in MHC-like molecule(s) that bound new PAMP(s) would not be recognized by original TCR-like molecule(s), and new MHC-like gene(s) would be lost by neutral drift. Integrating recombination activating gene (RAG) transposon(s) in a TCR-like gene would result in greater recognition diversity, with new MHC-like variants recognized and selected, along with a new RAG/TCR-like system. MHC genes would be selected to present many peptides, through multigene families, allelic polymorphism, and peptide-binding promiscuity.
Collapse
Affiliation(s)
- Louis Tsakou-Ngouafo
- Aix Marseille University IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France 3, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | | | - Jim Kaufman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK; University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB2 0ES, UK; University of Edinburgh, Institute for Immunology and Infection Research, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Pierre Pontarotti
- Aix Marseille University IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France 3, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseilles, France.
| |
Collapse
|
13
|
Cook SL, Franke MC, Sievert EP, Sciammas R. A Synchronous IRF4-Dependent Gene Regulatory Network in B and Helper T Cells Orchestrating the Antibody Response. Trends Immunol 2020; 41:614-628. [PMID: 32467029 DOI: 10.1016/j.it.2020.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Control of diverse pathogens requires an adaptive antibody response, dependent on cellular division of labor to allocate antigen-dependent B- and CD4+ T-cell fates that collaborate to control the quantity and quality of antibody. This is orchestrated by the dynamic action of key transcriptional regulators mediating gene expression programs in response to pathogen-specific environmental inputs. We describe a conserved, likely ancient, gene regulatory network that intriguingly operates contemporaneously in B and CD4+ T cells to control their cell fate dynamics and thus, the character of the antibody response. The remarkable output of this network derives from graded expression, designated by antigen receptor signal strength, of a pivotal transcription factor that regulates alternate cell fate choices.
Collapse
Affiliation(s)
- Sarah L Cook
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA.
| | - Marissa C Franke
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Evelyn P Sievert
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Martin EC, Vicari C, Tsakou-Ngouafo L, Pontarotti P, Petrescu AJ, Schatz DG. Identification of RAG-like transposons in protostomes suggests their ancient bilaterian origin. Mob DNA 2020; 11:17. [PMID: 32399063 PMCID: PMC7204232 DOI: 10.1186/s13100-020-00214-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background V(D) J recombination is essential for adaptive immunity in jawed vertebrates and is initiated by the RAG1-RAG2 endonuclease. The RAG1 and RAG2 genes are thought to have evolved from a RAGL (RAG-like) transposon containing convergently-oriented RAG1-like (RAG1L) and RAG2-like (RAG2L) genes. Elements resembling this presumptive evolutionary precursor have thus far only been detected convincingly in deuterostomes, leading to the model that the RAGL transposon first appeared in an early deuterostome. Results We have identified numerous RAGL transposons in the genomes of protostomes, including oysters and mussels (phylum Mollusca) and a ribbon worm (phylum Nemertea), and in the genomes of several cnidarians. Phylogenetic analyses are consistent with vertical evolution of RAGL transposons within the Bilateria clade and with its presence in the bilaterian ancestor. Many of the RAGL transposons identified in protostomes are intact elements containing convergently oriented RAG1L and RAG2L genes flanked by terminal inverted repeats (TIRs) and target site duplications with striking similarities with the corresponding elements in deuterostomes. In addition, protostome genomes contain numerous intact RAG1L-RAG2L adjacent gene pairs that lack detectable flanking TIRs. Domains and critical active site and structural amino acids needed for endonuclease and transposase activity are present and conserved in many of the predicted RAG1L and RAG2L proteins encoded in protostome genomes. Conclusions Active RAGL transposons were present in multiple protostome lineages and many were likely transmitted vertically during protostome evolution. It appears that RAGL transposons were broadly active during bilaterian evolution, undergoing multiple duplication and loss/fossilization events, with the RAGL genes that persist in present day protostomes perhaps constituting both active RAGL transposons and domesticated RAGL genes. Our findings raise the possibility that the RAGL transposon arose earlier in evolution than previously thought, either in an early bilaterian or prior to the divergence of bilaterians and non-bilaterians, and alter our understanding of the evolutionary history of this important group of transposons.
Collapse
Affiliation(s)
- Eliza C Martin
- 1Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Célia Vicari
- 2Evolutionary biology team, Aix Marseille Université IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Louis Tsakou-Ngouafo
- 2Evolutionary biology team, Aix Marseille Université IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- 2Evolutionary biology team, Aix Marseille Université IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France.,SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Andrei J Petrescu
- 1Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - David G Schatz
- 4Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011 USA
| |
Collapse
|
15
|
Tao X, Yuan S, Chen F, Gao X, Wang X, Yu W, Liu S, Huang Z, Chen S, Xu A. Functional requirement of terminal inverted repeats for efficient ProtoRAG activity reveals the early evolution of V(D)J recombination. Natl Sci Rev 2020; 7:403-417. [PMID: 34692056 PMCID: PMC8289069 DOI: 10.1093/nsr/nwz179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022] Open
Abstract
The discovery of ProtoRAG in amphioxus indicated that vertebrate RAG recombinases originated from an ancient transposon. However, the sequences of ProtoRAG terminal inverted repeats (TIRs) were obviously dissimilar to the consensus sequence of mouse 12/23RSS and recombination mediated by ProtoRAG or RAG made them incompatible with each other. Thus, it is difficult to determine whether or how 12/23RSS persisted in the vertebrate RAG system that evolved from the TIRs of ancient RAG transposons. Here, we found that the activity of ProtoRAG is highly dependent on its asymmetric 5′TIR and 3′TIR, which are composed of conserved TR1 and TR5 elements and a partially conserved TRsp element of 27/31 bp to separate them. Similar to the requirements for the recombination signal sequences (RSSs) of RAG recombinase, the first CAC in TR1, the three dinucleotides in TR5 and the specific length of the partially conserved TRsp are important for the efficient recombination activity of ProtoRAG. In addition, the homologous sequences flanking the signal sequences facilitate ProtoRAG- but not RAG-mediated recombination. In addition to the diverged TIRs, two differentiated functional domains in BbRAG1L were defined to coordinate with the divergence between TIRs and RSSs. One of these is the CTT* domain, which facilitates the specific TIR recognition of the BbRAGL complex, and the other is NBD*, which is responsible for DNA binding and the protein stabilization of the BbRAGL complex. Thus, our findings reveal that the functional requirement for ProtoRAG TIRs is similar to that for RSS in RAG-mediated recombination, which not only supports the common origin of ProtoRAG TIRs and RSSs from the asymmetric TIRs of ancient RAG transposons, but also reveals the development of RAG and RAG-like machineries during chordate evolution.
Collapse
Affiliation(s)
- Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fan Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoman Gao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinli Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Song Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ziwen Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
16
|
Analyses of RAG1 and RAG2 genes suggest different evolutionary rates in the Cetacea lineage. Mol Immunol 2019; 117:131-138. [PMID: 31770676 DOI: 10.1016/j.molimm.2019.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
V(D)J recombination is a process of somatic recombination catalyzed by proteins encoded by RAG1 and RAG2 genes, both restricted to the genome of jawed vertebrates. Their proteins constitute the enzymatic core of V(D)J recombination machinery and are crucial for jawed vertebrate adaptive immunity. Mammals possess great ecological diversity, and their complex evolutionary history associated with radiation to different environments presented many distinct pathogenic challenges from these different habitats. Cetaceans comprise a mammalian order of fully aquatic mammals that have arisen from a complete terrestrial ancestor and, accordingly, was confronted with challenges from changing environmental pathogens while they transitioned from land to sea. In this study we undertook molecular evolutionary analyses of RAG1 and RAG2 genes, exploring the possible role of natural selection acting on these genes focusing on the cetacean lineage. We performed phylogenetic reconstructions on IQ-TREE, together with selection analyses in the codeml program of the PAML package, and in the FITMODEL program for codon evolution and switching on both the RAG1 and RAG2 genes. Our findings demonstrate that RAG1 and RAG2 remained fairly conserved among tetrapods, with purifying selection acting on both genes, with evidence for a few punctuated shifts in nucleotide substitution rates of both genes along tetrapod evolution. We demonstrate differential evolution in the closely linked genes RAG1 and RAG2 specifically in cetaceans.
Collapse
|
17
|
Lea JK, Unckless RL. An assessment of the immune costs associated with meiotic drive elements in Drosophila. Proc Biol Sci 2019; 286:20191534. [PMID: 31530140 PMCID: PMC6784720 DOI: 10.1098/rspb.2019.1534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Most organisms are constantly adapting to pathogens and parasites that exploit their host for their own benefit. Less studied, but perhaps more ubiquitous, are intragenomic parasites or selfish genetic elements. These include transposable elements, selfish B chromosomes and meiotic drivers that promote their own replication without regard to fitness effects on hosts. Therefore, intragenomic parasites are also a constant evolutionary pressure on hosts. Gamete-killing meiotic drive elements are often associated with large chromosomal inversions that reduce recombination between the drive and wild-type chromosomes. This reduced recombination is thought to reduce the efficacy of selection on the drive chromosome and allow for the accumulation of deleterious mutations. We tested whether gamete-killing meiotic drive chromosomes were associated with reduced immune defence against two bacterial pathogens in three species of Drosophila. We found little evidence of reduced immune defence in lines with meiotic drive. One line carrying the Drosophila melanogaster autosomal Segregation Distorter did show reduced defence, but we were unable to attribute that reduced defence to either genotype or immune gene expression differences. Our results suggest that though gamete-killing meiotic drive chromosomes probably accumulate deleterious mutations, those mutations do not result in reduced capacity for immune defence.
Collapse
Affiliation(s)
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
18
|
Foulkrod AM, Appasamy PM. Expression of TCR genes in adult and larval Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:78-82. [PMID: 30738793 DOI: 10.1016/j.dci.2019.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
In order to better understand the development and function of γδ T cells in Xenopus frogs, it is necessary to determine where and when γδ T cells are found in Xenopus tissues. This study examined the expression of TCR genes, focused primarily on TCR γ, in tissues of adult and larval Xenopus laevis and provide new data about the expression pattern of these different TCR genes in this anuran amphibian. TCR gene expression was detected by RT-PCR in adult frog tissues including the thymus, spleen, skin, intestine, lung, and liver, but not the testes. TCR γ and β genes were detected in the larval (tadpole) tail and intestine. The absence of RAG-1 expression in these larval tissues is consistent with differentiation of the T cells in the thymus. Together, these data provide evidence that migration of these cells from the thymus likely occurs relatively early in larval development. These studies provide a necessary foundation for future studies of the functions of γδ T cells in amphibians, which are placed at an intermediate position flanked by fishes on one end and mammals and chickens on the other.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Genes, T-Cell Receptor delta
- Genes, T-Cell Receptor gamma
- Homeodomain Proteins/immunology
- Homeodomain Proteins/metabolism
- Larva/genetics
- Larva/immunology
- Larva/metabolism
- Metamorphosis, Biological
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Xenopus laevis/genetics
- Xenopus laevis/immunology
- Xenopus laevis/metabolism
Collapse
|
19
|
Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 2019; 569:79-84. [PMID: 30971819 PMCID: PMC6494689 DOI: 10.1038/s41586-019-1093-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
Domestication of a transposon (a DNA sequence that can change its position in a genome) to give rise to the RAG1-RAG2 recombinase (RAG) and V(D)J recombination, which produces the diverse repertoire of antibodies and T cell receptors, was a pivotal event in the evolution of the adaptive immune system of jawed vertebrates. The evolutionary adaptations that transformed the ancestral RAG transposase into a RAG recombinase with appropriately regulated DNA cleavage and transposition activities are not understood. Here, beginning with cryo-electron microscopy structures of the amphioxus ProtoRAG transposase (an evolutionary relative of RAG), we identify amino acid residues and domains the acquisition or loss of which underpins the propensity of RAG for coupled cleavage, its preference for asymmetric DNA substrates and its inability to perform transposition in cells. In particular, we identify two adaptations specific to jawed-vertebrates-arginine 848 in RAG1 and an acidic region in RAG2-that together suppress RAG-mediated transposition more than 1,000-fold. Our findings reveal a two-tiered mechanism for the suppression of RAG-mediated transposition, illuminate the evolution of V(D)J recombination and provide insight into the principles that govern the molecular domestication of transposons.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tat Cheung Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Qingyi Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Marius D Surleac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jeffrey D Mandell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre Pontarotti
- Aix Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anlong Xu
- Beijing University of Chinese Medicine, Beijing, China. .,State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Fu Y, Yang Z, Huang J, Cheng X, Wang X, Yang S, Ren L, Lian Z, Han H, Zhao Y. Identification of Two Nonrearranging IgSF Genes in Chicken Reveals a Novel Family of Putative Remnants of an Antigen Receptor Precursor. THE JOURNAL OF IMMUNOLOGY 2019; 202:1992-2004. [PMID: 30770416 DOI: 10.4049/jimmunol.1801305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022]
Abstract
In this study, we identified a pair of nonrearranging VJ-joined Ig superfamily genes, termed putative remnants of an Ag receptor precursor (PRARP) genes, in chicken. Both genes encode a single V-set Ig domain consisting of a canonical J-like segment and a potential immunoreceptor tyrosine-based inhibitory or switch motif in the cytoplasmic region. In vitro experiments showed that both genes were expressed at the cell surface as membrane proteins, and their recombinant products formed a monomer and a disulfide-linked homodimer or a heterodimer. These two genes were mainly expressed in B and T cells and were upregulated in response to stimulation with poly(I:C) in vitro and vaccination in vivo. Orthologs of PRARP have been identified in bony fish, amphibians, reptiles, and other birds, and a V-C1 structure similar to that of Ig or TCR chains was found in all these genes, with the exception of those in avian species, which appear to contain degenerated C1 domains or divergent Ig domains. Phylogenetic analyses suggested that the newly discovered genes do not belong to any known immune receptor family and appear to be a novel gene family. Further elucidation of the functions of PRARP and their origin might provide significant insights into the evolution of the immune system of jawed vertebrates.
Collapse
Affiliation(s)
- Yanbin Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jinwei Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, People's Republic of China; and
| | - Shiping Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhengxing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
21
|
Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, Chen J, Wei W, Gong F, Wang B, Du Y, Ma G, Amerein MW, Xia T, Shi Y. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun 2018; 9:4259. [PMID: 30323235 PMCID: PMC6189171 DOI: 10.1038/s41467-018-06744-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
Phagocytosis is one of the earliest cellular functions, developing approximately 2 billion years ago. Although FcR-based phagocytic signaling is well-studied, how it originated from ancient phagocytosis is unknown. Lipid redistribution upregulates a phagocytic program recapitulating FcR-based phagocytosis with complete dependence on Src family kinases, Syk, and phosphoinositide 3-kinases (PI3K). Here we show that in phagocytes, an atypical ITAM sequence in the ancient membrane anchor protein Moesin transduces signal without receptor activation. Plasma membrane deformation created by solid structure binding generates phosphatidylinositol 4,5-bisphosphate (PIP2) accumulation at the contact site, which binds the Moesin FERM domain and relocalizes Syk to the membrane via the ITAM motif. Phylogenic analysis traces this signaling using PI3K and Syk to 0.8 billion years ago, earlier than immune receptor signaling. The proposed general model of solid structure phagocytosis implies a preexisting lipid redistribution-based activation platform collecting intracellular signaling components for the emergence of immune receptors.
Collapse
Affiliation(s)
- Libing Mu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyuan Tu
- Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Lin Miao
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hefei Ruan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ning Kang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yongzhen Hei
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiahuan Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fangling Gong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bingjie Wang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Matthias W Amerein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, AB, Canada
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Tie Xia
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yan Shi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute, University of Calgary, Calgary, T2N 4N1, AB, Canada.
| |
Collapse
|
22
|
Findly RC, Niagro FD, Sweeney RP, Camus AC, Dickerson HW. Rearranged T Cell Receptor Sequences in the Germline Genome of Channel Catfish Are Preferentially Expressed in Response to Infection. Front Immunol 2018; 9:2117. [PMID: 30319607 PMCID: PMC6170632 DOI: 10.3389/fimmu.2018.02117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022] Open
Abstract
Rearranged V(D)J genes coding for T cell receptor α and β chains are integrated into the germline genome of channel catfish. Previous analysis of expressed TCR Vβ2 repertoires demonstrated that channel catfish express multiple public clonotypes, which were shared among all the fish, following infection with a common protozoan parasite. In each case a single DNA sequence was predominately used to code for a public clonotype. We show here that the rearranged VDJ genes coding for these expressed public Vβ2 clonotypes can be amplified by PCR from germline DNA isolated from oocytes and erythrocytes. Sequencing of the Vβ2 PCR products confirmed that these expressed public Vβ2 clonotypes are integrated into the germline. Moreover, sequencing of PCR products confirmed that all five Vβ gene families and Vα1 have rearranged V(D)J genes with diverse CDR3 sequences integrated into the germline. Germline rearranged Vβ2 and Vβ4 genes retain the intron between the leader and Vβ sequence. This suggests that the germline rearranged TCR Vβ genes arose through VDJ rearrangement in T cells, and subsequently moved into the germline through DNA transposon mediated transposition. These results reveal a new dimension to the adaptive immune system of vertebrates, namely: the expression of evolutionarily conserved, rearranged V(D)J genes from the germline.
Collapse
Affiliation(s)
- Robert Craig Findly
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Frank D Niagro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ryan P Sweeney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Alvin C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Harry W Dickerson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
23
|
Khamlichi AA, Feil R. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 2018; 34:954-971. [PMID: 30217559 DOI: 10.1016/j.tig.2018.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.
Collapse
Affiliation(s)
- Ahmed Amine Khamlichi
- Institute of Pharmacology and Structural Biology (IPBS), Centre National de la Recherche Scientifique (CNRS) and Paul Sabatier University (UPS), 205 route de Narbonne, 31077 Toulouse, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and the University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
24
|
Sniezewski L, Janik S, Laszkiewicz A, Majkowski M, Kisielow P, Cebrat M. The evolutionary conservation of the bidirectional activity of the NWC gene promoter in jawed vertebrates and the domestication of the RAG transposon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:105-115. [PMID: 29175053 DOI: 10.1016/j.dci.2017.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
The RAG-1 and RAG-2 genes form a recombinase complex that is indispensable for V(D)J recombination, which generates the diversity of immunoglobulins and T-cell receptors. It is widely accepted that the presence of RAGs in the genomes of jawed vertebrates and other lineages is a result of the horizontal transfer of a mobile genetic element. While a substantial amount of evidence has been gathered that clarifies the nature of the RAG transposon, far less attention has been paid to the genomic site of its integration in various host organisms. In all genomes of the jawed vertebrates that have been studied to date, the RAG genes are located in close proximity to the NWC gene. We have previously shown that the promoter of the murine NWC genes exhibits a bidirectional activity, which may have facilitated the integration and survival of the RAG transposon in the host genome. In this study, we characterise the promoters of the NWC homologues that are present in the representatives of other jawed vertebrates (H. sapiens, X. tropicalis and D. rerio). We show that the features that are characteristic for promoters as the hosts of a successful transposon integration (in terms of the arrangement, bidirectional and constitutive activity and the involvement of the Zfp143 transcription factor in the promoter regulation) are evolutionarily conserved, which indicates that the presence of RAG genes in jawed vertebrates is a direct result of a successful transposon integration into the NWC locus.
Collapse
Affiliation(s)
- Lukasz Sniezewski
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Sylwia Janik
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Agnieszka Laszkiewicz
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Michal Majkowski
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Pawel Kisielow
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; Laboratory of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Malgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
25
|
Bai Z, Zhao L, Chen X, Li Q, Li J. A galectin contributes to the innate immune recognition and elimination of pathogens in the freshwater mussel Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:36-45. [PMID: 28300581 DOI: 10.1016/j.dci.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Galectins are members of the lectin superfamily. They function as pattern recognition receptors in the innate immune system of vertebrates and invertebrates. A galectin homolog from the triangle sail mussel Hyriopsis cumingii (HcGal2) was cloned and characterized. HcGal2 mRNA was expressed in all tissues examined, displaying particular enrichment in mantle tissue. Interestingly, rHcGAL2 protein was only detected in the mantle, hemocytes, and gills, suggesting that post-transcriptional regulation may occur. HcGal2 expression was induced in the mantle, liver, and hemocytes after exposure to lipopolysaccharides, Gram-negative bacteria (Aeromonas hydrophila), and Gram-positive bacteria (Staphylococcus aureus). The transcript significant upregulated was also detected after implantation in the mantle, pearl sac, liver, and hemocytes. Recombinant HcGAL2 protein (rHcGAL2) agglutinated Gram-positive and Gram-negative bacteria. In addition, rHcGAL2 promoted phagocytosis by hemocytes in vivo. Our data suggest that HcGal2 functioned as a pattern recognition receptor in against the pathogenic microbes and contributed to the "non-self" recognition and elimination in H. cumingii.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | - Liting Zhao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | - Xiajun Chen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | - Qingqing Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China.
| |
Collapse
|
26
|
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J 2017; 284:1590-1605. [PMID: 27973733 PMCID: PMC5459667 DOI: 10.1111/febs.13990] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/10/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
27
|
Abstract
Diversity of antibodies and T cell receptors is generated by gene rearrangement dependent on RAG1 and RAG2, enzymes predicted to have been derived from a transposable element (TE) that invaded an immunoglobulin superfamily gene early in the evolution of jawed vertebrates. Now, Huang et al. report the discovery of ProtoRAG in the lower chordate Amphioxus, the long-anticipated TE related to the RAG transposon.
Collapse
|
28
|
Abstract
Lovely and Sen discuss new insight from Carmona et al. (this issue) on the origin and function of the recombination-activating gene 1 (RAG1) and RAG2 in V(D)J recombination. Generation of a diverse repertoire of antigen receptor specificities via DNA recombination underpins adaptive immunity. In this issue of Genes & Development, Carmona and colleagues (pp. 909–917) provide novel insights into the origin and function of recombination-activating gene 1 (RAG1) and RAG2, the lymphocyte-specific components of the recombinase involved in the process.
Collapse
Affiliation(s)
- Geoffrey A Lovely
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| |
Collapse
|
29
|
Whitmore KV, Gaspar HB. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency. Front Immunol 2016; 7:314. [PMID: 27579027 PMCID: PMC4985714 DOI: 10.3389/fimmu.2016.00314] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/02/2016] [Indexed: 11/24/2022] Open
Abstract
Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences.
Collapse
Affiliation(s)
- Kathryn V. Whitmore
- Molecular and Cellular Immunology Section, UCL Institute of Child Health, University College London, London, UK
| | - Hubert B. Gaspar
- Molecular and Cellular Immunology Section, UCL Institute of Child Health, University College London, London, UK
| |
Collapse
|
30
|
Edholm ES, Banach M, Robert J. Evolution of innate-like T cells and their selection by MHC class I-like molecules. Immunogenetics 2016; 68:525-36. [PMID: 27368412 DOI: 10.1007/s00251-016-0929-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Abstract
Until recently, major histocompatibility complex (MHC) class I-like-restricted innate-like αβT (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire were thought to be a recent evolutionary acquisition restricted to mammals. However, molecular and functional studies in Xenopus laevis have demonstrated that iT cells, defined as MHC class I-like-restricted innate-like αβT cells with a semi-invariant TCR, are evolutionarily conserved and prominent from early development in amphibians. As these iT cells lack the specificity conferred by conventional αβ TCRs, it is generally considered that they are specialized to recognize conserved antigens equivalent to pathogen-associated molecular patterns. Thus, one advantage offered by the MHC class I-like iT cell-based recognition system is that it can be adapted to a common pathogen and function on the basis of a relatively small number of T cells. Although iT cells have only been functionally described in mammals and amphibians, the identification of non-classical MHC/MHC class I-like genes in other groups of endothermic and ectothermic vertebrates suggests that iT cells have a broader phylogenetic distribution than previously envisioned. In this review, we discuss the possible role of iT cells during the emergence of the jawed vertebrate adaptive immune system.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maureen Banach
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
31
|
Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell 2016; 166:102-114. [PMID: 27293192 PMCID: PMC5017859 DOI: 10.1016/j.cell.2016.05.032] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 05/06/2016] [Indexed: 01/08/2023]
Abstract
Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates. A typical ProtoRAG is flanked by 5-bp target site duplications and a pair of terminal inverted repeats (TIRs) resembling V(D)J recombination signal sequences. Between the TIRs reside tail-to-tail-oriented, intron-containing RAG1-like and RAG2-like genes. We demonstrate that ProtoRAG was recently active in the lancelet germline and that the lancelet RAG1/2-like proteins can mediate TIR-dependent transposon excision, host DNA recombination, transposition, and low-efficiency TIR rejoining using reaction mechanisms similar to those used by vertebrate RAGs. We propose that ProtoRAG represents a molecular "living fossil" of the long-sought RAG transposon.
Collapse
Affiliation(s)
- Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Peiyi Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Helen A Beilinson
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ya Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Pierre Pontarotti
- CNRS, Centrale Marseille, I2M UMR 7373, Equipe Evolution Biologique et Modélisation, Aix-Marseille Université, 13284 Marseille, France
| | - Hector Escriva
- CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, Université Pierre et Marie Curie, Université Paris 6, 75005 Paris, France
| | - Yann Le Petillon
- CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, Université Pierre et Marie Curie, Université Paris 6, 75005 Paris, France
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, 295 Congress Avenue, New Haven, CT 06511, USA
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Beijing University of Chinese Medicine, Dong San Huan Road, Chao-yang District, Beijing 100029, People's Republic of China.
| |
Collapse
|
32
|
Carmona LM, Fugmann SD, Schatz DG. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes Dev 2016; 30:909-17. [PMID: 27056670 PMCID: PMC4840297 DOI: 10.1101/gad.278432.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/09/2016] [Indexed: 12/03/2022]
Abstract
Here, Carmona et al. show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. They propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity. The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate V(D)J recombination, the process that assembles the B- and T-lymphocyte antigen receptor genes of jawed vertebrates. RAG1 and RAG2 are thought to have arisen from a transposable element, but the origins of this element are not understood. We show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. Conversely, we report low levels of V(D)J recombination by RAG1 in the absence of RAG2. Recombination by RAG1 alone differs from canonical V(D)J recombination in having lost the requirement for asymmetric DNA substrates, implicating RAG2 in the origins of the “12/23 rule,” a fundamental regulatory feature of the reaction. We propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Sebastian D Fugmann
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan City 33302, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan City 33302, Taiwan
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06520, USA; Howard Hughes Medical Institute, New Haven, Connecticut 06511, USA
| |
Collapse
|
33
|
Fang ZY, Li D, Li XJ, Zhang X, Zhu YT, Li WW, Wang Q. A single CRD C-type lectin from Eriocheir sinensis (EsLecB) with microbial-binding, antibacterial prophenoloxidase activation and hem-encapsulation activities. FISH & SHELLFISH IMMUNOLOGY 2016; 50:175-190. [PMID: 26826423 DOI: 10.1016/j.fsi.2016.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
C-type lectins (CTLs) exist widely in crustaceans. To date, thirteen CTLs have been reported in crustaceans, and play significant roles in pathogen recognition, encapsulation of hemocytes and antimicrobial activity in the innate immune response. Based on the initial expressed sequence tags (EST) of a hepatopancreatic cDNA library, a novel CTL, designated as EsLecB, with a 470 bp open reading frame encodes a polypeptide of 156 amino acids, including a signal peptide of 19 amino acid residues and one carbohydrate-recognition domain of 131 aa residues, was cloned from the crustacean Eriocheir sinensis. By qRT-PCR analysis, EsLecB was detected in all tested tissues, and showed highest expression in hemocytes, hepatopancreas and heart. The expression of EsLecB was up-regulated following injections of PAMPs or bacteria. The recombinant protein (rEsLecB) expressed in Escherichia coli had a calcium-independent but carbohydrate-dependent microbial-binding and microbial-agglutinating, microorganism growth inhibitory and hem-encapsulation activities. Moreover, the rEsLecB could stimulate the activation of prophenoloxidase in vitro. These results indicated that EsLecB, as an antibacterial pattern recognition receptor is involved in innate immunity, and may act as an upstream detector of the prophenoloxidase activating system, which can detect pathogen invasion in E. sinensis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Anti-Bacterial Agents/metabolism
- Arthropod Proteins/chemistry
- Arthropod Proteins/genetics
- Arthropod Proteins/metabolism
- Bacteria/chemistry
- Base Sequence
- Brachyura/genetics
- Brachyura/immunology
- Brachyura/metabolism
- Catechol Oxidase/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Enzyme Precursors/metabolism
- Gene Expression
- Immunity, Innate
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Organ Specificity
- Pathogen-Associated Molecular Pattern Molecules/pharmacology
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
Collapse
Affiliation(s)
- Zi-Yan Fang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Dan Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xing Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
34
|
Abstract
V(D)J recombination, the mechanism responsible for generating antigen receptor diversity, has the potential to generate aberrant DNA rearrangements in developing lymphocytes. Indeed, the recombinase has been implicated in several different kinds of errors leading to oncogenic transformation. Here we review the basic aspects of V(D)J recombination, mechanisms underlying aberrant DNA rearrangements, and the types of aberrant events uncovered in recent genomewide analyses of lymphoid neoplasms.
Collapse
|
35
|
Valdivia-Olarte H, Requena D, Ramirez M, Saravia LE, Izquierdo R, Falconi-Agapito F, Zavaleta M, Best I, Fernández-Díaz M, Zimic M. Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection. Bioinformation 2015; 11:460-5. [PMID: 26664030 PMCID: PMC4658644 DOI: 10.6026/97320630011460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/18/2015] [Indexed: 11/23/2022] Open
Abstract
Fowl adenoviruses (FAdVs) are the ethiologic agents of multiple pathologies in chicken. There are five different species of FAdVs grouped as FAdV-A, FAdV-B, FAdV-C, FAdV-D, and FAdV-E. It is of interest to develop immunodiagnostics and vaccine candidate for Peruvian FAdV-C in chicken infection using MHC restricted short peptide candidates. We sequenced the complete genome of one FAdV strain isolated from a chicken of a local farm. A total of 44 protein coding genes were identified in each genome. We sequenced twelve Cobb chicken MHC alleles from animals of different farms in the central coast of Peru, and subsequently determined three optimal human MHC-I and four optimal human MHC-II substitute alleles for MHC-peptide prediction. The potential MHC restricted short peptide epitope-like candidates were predicted using human specific (with determined suitable chicken substitutes) NetMHC MHC-peptide prediction model with web server features from all the FAdV genomes available. FAdV specific peptides with calculated binding values to known substituted chicken MHC-I and MHC-II were further filtered for diagnostics and potential vaccine epitopes. Promiscuity to the 3/4 optimal human MHC-I/II alleles and conservation among the available FAdV genomes was considered in this analysis. The localization on the surface of the protein was considered for class II predicted peptides. Thus, a set of class I and class II specific peptides from FAdV were reported in this study. Hence, a multiepitopic protein was built with these peptides, and subsequently tested to confirm the production of specific antibodies in chicken.
Collapse
Affiliation(s)
- Hugo Valdivia-Olarte
- Farvet s.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta. Ica – Peru
- Laboratorio de Bioinformática y Biologáa
Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofáa, Universidad Peruana Cayetano Heredia,
Av. Honorio Delgado 430, San Martin de Porres. Lima – Peru
| | - David Requena
- Farvet s.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta. Ica – Peru
- Laboratorio de Bioinformática y Biologáa
Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofáa, Universidad Peruana Cayetano Heredia,
Av. Honorio Delgado 430, San Martin de Porres. Lima – Peru
| | - Manuel Ramirez
- Farvet s.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta. Ica – Peru
- Laboratorio de Bioinformática y Biologáa
Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofáa, Universidad Peruana Cayetano Heredia,
Av. Honorio Delgado 430, San Martin de Porres. Lima – Peru
| | - Luis E Saravia
- Farvet s.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta. Ica – Peru
| | - Ray Izquierdo
- Farvet s.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta. Ica – Peru
| | | | - Milagros Zavaleta
- Farvet s.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta. Ica – Peru
| | - Iván Best
- Farvet s.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta. Ica – Peru
| | | | - Mirko Zimic
- Farvet s.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta. Ica – Peru
- Laboratorio de Bioinformática y Biologáa
Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofáa, Universidad Peruana Cayetano Heredia,
Av. Honorio Delgado 430, San Martin de Porres. Lima – Peru
| |
Collapse
|
36
|
Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre E, Clark MR, Cowell LG, Casellas R, Schatz DG. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell 2015; 162:751-65. [PMID: 26234156 PMCID: PMC4537821 DOI: 10.1016/j.cell.2015.07.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/14/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022]
Abstract
The RAG1 endonuclease, together with its cofactor RAG2, is essential for V(D)J recombination but is a potent threat to genome stability. The sources of RAG1 mis-targeting and the mechanisms that have evolved to suppress it are poorly understood. Here, we report that RAG1 associates with chromatin at thousands of active promoters and enhancers in the genome of developing lymphocytes. The mouse and human genomes appear to have responded by reducing the abundance of "cryptic" recombination signals near RAG1 binding sites. This depletion operates specifically on the RSS heptamer, whereas nonamers are enriched at RAG1 binding sites. Reversing this RAG-driven depletion of cleavage sites by insertion of strong recombination signals creates an ectopic hub of RAG-mediated V(D)J recombination and chromosomal translocations. Our findings delineate rules governing RAG binding in the genome, identify areas at risk of RAG-mediated damage, and highlight the evolutionary struggle to accommodate programmed DNA damage in developing lymphocytes.
Collapse
Affiliation(s)
- Grace Teng
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Yaakov Maman
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Wolfgang Resch
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Min Kim
- Division of Biomedical Informatics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Box 9066, Dallas, TX 75390-9066, USA
| | - Arito Yamane
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Qian
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Yanhong Ji
- Department of Immunology and Microbiology, College of Medicine, Xi'an Jiao Tong University, 76 Yan Ta West Road, Box 37, Xian, Shaanxi 710061, PRC
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Lindsay G Cowell
- Division of Biomedical Informatics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Box 9066, Dallas, TX 75390-9066, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA; Howard Hughes Medical Institute, 295 Congress Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
37
|
Abstract
The modular, noncontiguous architecture of the antigen receptor genes necessitates their assembly through V(D)J recombination. This program of DNA breakage and rejoining occurs during early lymphocyte development, and depends on the RAG1 and RAG2 proteins, whose collaborative endonuclease activity targets specific DNA motifs enriched in the antigen receptor loci. This essential gene shuffling reaction requires lymphocytes to traverse several developmental stages wherein DNA breakage is tolerated, while minimizing the expense to overall genome integrity. Thus, RAG activity is subject to stringent temporal and spatial regulation. The RAG proteins themselves also contribute autoregulatory properties that coordinate their DNA cleavage activity with target chromatin structure, cell cycle status, and DNA repair pathways. Even so, lapses in regulatory restriction of RAG activity are apparent in the aberrant V(D)J recombination events that underlie many lymphomas. In this review, we discuss the current understanding of the RAG endonuclease, its widespread binding in the lymphocyte genome, its noncleavage activities that restrain its enzymatic potential, and the growing evidence of its evolution from an ancient transposase.
Collapse
|
38
|
Koonin EV, Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 2014; 16:184-92. [PMID: 25488578 DOI: 10.1038/nrg3859] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adaptive immune systems in prokaryotes and animals give rise to long-term memory through modification of specific genomic loci, such as by insertion of foreign (viral or plasmid) DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci in prokaryotes and by V(D)J recombination of immunoglobulin genes in vertebrates. Strikingly, recombinases derived from unrelated mobile genetic elements have essential roles in both prokaryotic and vertebrate adaptive immune systems. Mobile elements, which are ubiquitous in cellular life forms, provide the only known, naturally evolved tools for genome engineering that are successfully adopted by both innate immune systems and genome-editing technologies. In this Opinion article, we present a general scenario for the origin of adaptive immunity from mobile elements and innate immune systems.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894, USA
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
39
|
An amphioxus gC1q protein binds human IgG and initiates the classical pathway: Implications for a C1q-mediated complement system in the basal chordate. Eur J Immunol 2014; 44:3680-95. [DOI: 10.1002/eji.201444734] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/27/2014] [Accepted: 08/28/2014] [Indexed: 11/07/2022]
|
40
|
Ikaros and RAG-2-mediated antisense transcription are responsible for lymphocyte-specific inactivation of NWC promoter. PLoS One 2014; 9:e106927. [PMID: 25198102 PMCID: PMC4157847 DOI: 10.1371/journal.pone.0106927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/03/2014] [Indexed: 02/03/2023] Open
Abstract
Recombination activating gene-2 (RAG-2) and NWC are strongly evolutionarily conserved overlapping genes which are convergently transcribed. In non-lymphoid cells the NWC promoter is active whereas in lymphocytes it is inactive due to the DNA methylation. Analysing the mechanism responsible for lymphocyte-specific methylation and inactivation of NWC promoter we found that Ikaros, a lymphocyte-specific transcription factor, acts as a repressor of NWC promoter - thus identifying a new Ikaros target - but is insufficient for inducing its methylation which depends on the antisense transcription driven by RAG-2 promoter. Possible implications of these observations for understanding evolutionary mechanisms leading to lymphocyte specific expression of RAG genes are discussed.
Collapse
|
41
|
Johnson RM, Papp E, Grandal I, Kowalski PE, Nutter L, Wong RCC, Joseph-George AM, Danska JS, Guidos CJ. MuLV-related endogenous retroviral elements and Flt3 participate in aberrant end-joining events that promote B-cell leukemogenesis. Genes Dev 2014; 28:1179-90. [PMID: 24888589 PMCID: PMC4052764 DOI: 10.1101/gad.240820.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During V(D)J recombination of immunoglobulin genes, p53 and nonhomologous end-joining (NHEJ) suppress aberrant rejoining of DNA double-strand breaks induced by recombinase-activating genes (Rags)-1/2. However, Rag deficiency does not prevent B-cell leukemogenesis in p53/NHEJ mutant mice. Johnson et al. identified a novel class of activating mutations in Flt3 in Rag/p53/NHEJ triple-mutant B-cell leukemias. These mutant Flt3 alleles were created by complex genomic rearrangements with Moloney leukemia virus (MuLV)-related endogenous retroviral (ERV) elements. Mutant Flt3 induced ligand-independent STAT5 phosphorylation and promoted development of clinically aggressive B-cell leukemia. During V(D)J recombination of immunoglobulin genes, p53 and nonhomologous end-joining (NHEJ) suppress aberrant rejoining of DNA double-strand breaks induced by recombinase-activating genes (Rags)-1/2, thus maintaining genomic stability and limiting malignant transformation during B-cell development. However, Rag deficiency does not prevent B-cell leukemogenesis in p53/NHEJ mutant mice, revealing that p53 and NHEJ also suppress Rag-independent mechanisms of B-cell leukemogenesis. Using several cytogenomic approaches, we identified a novel class of activating mutations in Fms-like tyrosine kinase 3 (Flt3), a receptor tyrosine kinase important for normal hematopoiesis in Rag/p53/NHEJ triple-mutant (TM) B-cell leukemias. These mutant Flt3 alleles were created by complex genomic rearrangements with Moloney leukemia virus (MuLV)-related endogenous retroviral (ERV) elements, generating ERV-Flt3 fusion genes encoding an N-terminally truncated mutant form of Flt3 (trFlt3) that was transcribed from ERV long terminal repeats. trFlt3 protein lacked most of the Flt3 extracellular domain and induced ligand-independent STAT5 phosphorylation and proliferation of hematopoietic progenitor cells. Furthermore, expression of trFlt3 in p53/NHEJ mutant hematopoietic progenitor cells promoted development of clinically aggressive B-cell leukemia. Thus, repetitive MuLV-related ERV sequences can participate in aberrant end-joining events that promote development of aggressive B-cell leukemia.
Collapse
Affiliation(s)
- Radia M Johnson
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; Department of Immunology
| | - Eniko Papp
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ildiko Grandal
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Paul E Kowalski
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Lauryl Nutter
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Raymond C C Wong
- The Centre for Applied Genomics, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Ann M Joseph-George
- The Centre for Applied Genomics, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Jayne S Danska
- Department of Immunology, Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; Department of Immunology
| |
Collapse
|
42
|
Criscitiello MF. What the shark immune system can and cannot provide for the expanding design landscape of immunotherapy. Expert Opin Drug Discov 2014; 9:725-39. [PMID: 24836096 DOI: 10.1517/17460441.2014.920818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Sharks have successfully lived in marine ecosystems, often atop food chains as apex predators, for nearly one and a half billion years. Throughout this period they have benefitted from an immune system with the same fundamental components found in terrestrial vertebrates like man. Additionally, sharks have some rather extraordinary immune mechanisms which mammals lack. AREAS COVERED In this review the author briefly orients the reader to sharks, their adaptive immunity, and their important phylogenetic position in comparative immunology. The author also differentiates some of the myths from facts concerning these animals, their cartilage, and cancer. From thereon, the author explores some of the more remarkable capabilities and products of shark lymphocytes. Sharks have an isotype of light chain-less antibodies that are useful tools in molecular biology and are moving towards translational use in the clinic. These special antibodies are just one of the several tricks of shark lymphocyte antigen receptor systems. EXPERT OPINION While shark cartilage has not helped oncology patients, shark immunoglobulins and T cell receptors do offer exciting novel possibilities for immunotherapeutics. Much of the clinical immunology developmental pipeline has turned from traditional vaccines to passively delivered monoclonal antibody-based drugs for targeted depletion, activation, blocking and immunomodulation. The immunogenetic tools of shark lymphocytes, battle-tested since the dawn of our adaptive immune system, are well poised to expand the design landscape for the next generation of immunotherapy products.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Texas A&M Health Science Center, Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology , Mailstop 4467, College Station, TX 77843 , USA +1 979 845 4207 ; +1 979 862 1088 ;
| |
Collapse
|
43
|
Fugmann SD. Form follows function - the three-dimensional structure of antigen receptor gene loci. Curr Opin Immunol 2014; 27:33-7. [PMID: 24549092 DOI: 10.1016/j.coi.2014.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 01/17/2023]
Abstract
Antigen receptor genes are assembled during lymphocyte development from individual gene segments by a somatic gene rearrangement process named V(D)J recombination. This process is tightly regulated to ensure the generation of an unbiased broad primary repertoire of immunoglobulins and T cell receptors, and to prevent aberrant recombination products that could initiate lymphomagenesis. One important mode of regulation that has recently been discovered for the immunoglobulin heavy chain (IGH) gene locus is the adoption of distinct three-dimensional structures of the locus. Changes in the spatial conformation are thought to ensure the appropriate access of the V(D)J recombinase machinery at each developmental stage, and the formation of extensive chromosome loops has been implicated in allowing equal access to widely dispersed gene elements.
Collapse
Affiliation(s)
- Sebastian D Fugmann
- Department of Biomedical Sciences, Chang Gung University, 259 Wenhua 1st Rd, Kwei-Shan, Tao-Yuan 333, Taiwan.
| |
Collapse
|
44
|
Covello JM, Bird S, Morrison RN, Bridle AR, Battaglene SC, Secombes CJ, Nowak BF. Isolation of RAG-1 and IgM transcripts from the striped trumpeter (Latris lineata), and their expression as markers for development of the adaptive immune response. FISH & SHELLFISH IMMUNOLOGY 2013; 34:778-788. [PMID: 23291253 DOI: 10.1016/j.fsi.2012.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
A partial sequence of the recombination activating gene-1 (RAG-1) and several full length sequences of the immunoglobulin M (IgM) heavy chain mRNA were obtained from the striped trumpeter (Latris lineata). The RAG-1 fragment consisted of 205 aa and fell within the core region of the open reading frame. The complete IgM heavy chain sequences translated into peptides ranging between 581 and 591 aa. Both genes showed good homology to other vertebrate sequences. The expression of the two genes was assessed throughout the early developmental stages of striped trumpeter larvae (5-100 dph) and used as markers to follow the ontogeny of the adaptive immune response. Using RT-PCR, RAG-1 mRNA expression was detectable at 5 dph and remained so until 80 dph, before becoming undetectable at 100 dph. IgM expression was also detectable at 5 dph, and remained so throughout. These patterns of expression may suggest that the striped trumpeter possess mature B cells with surface IgM at 100 dph. However, complete immunological competence is likely not reached until some time later. The early detection of IgM mRNA at 5 dph led to the investigation of its presence in oocytes. Both RAG-1 and IgM mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. The biological significance of such a phenomenon remains to be investigated.
Collapse
Affiliation(s)
- J M Covello
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Private Bag 1370, Launceston, Tasmania 7250, Australia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang F, Jiang K, Sun M, Zhang D, Ma L. Multiplex immune-related genes expression analysis response to bacterial challenge in mud crab, Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2013; 34:712-716. [PMID: 23231853 DOI: 10.1016/j.fsi.2012.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Crabs lack an acquired adaptive immune system and host defense is believed to depend entirely on innate, non-adaptive mechanisms to resist invasion by pathogens. Discovery of immune-related factors are helpful for understanding the molecular response of crabs to pathogens. The mud crab Scylla paramamosain is an important marine species for aquaculture in China because of its high nutritional value for humans. In recent years, the crab is prone to being infected by microbes with the enlargement of breeding scale. In this study, eight immune-related genes were analyzed by multiplex genes expression analysis using the GenomeLab GeXP analysis system (Beckman Coulter). The expression levels of all the detected genes rose after challenged by the live bacteria, but the levels of only four genes (C-type lectin, alpha 2-macroglobulin, HSP70 and thioredoxin 1) increased after challenge in heat-killed bacteria group. So the live bacteria were more effective in motivating expressions of immune factors than heat-killed bacteria. However, the transcript of C-type lectin firstly increased at 1 h after challenge in both heat-killed and live bacteria group. This indicated that C-type lectin was a quite susceptive immune factor responding to external pathogen. In group challenged by live bacteria, the genes of alpha 2-macroglobulin, HSP40, thioredoxin 1 and prophenoloxidase activating factor (PPAF) showed response earlier than the other genes. The rise of PPAF expression preceded prophenoloxidase (proPO), which suggested that PPAF might trigger production of proPO transcripts in the early stage of phenoloxidase reaction system. C-type lectin, proPO, thioredoxin 1, HSP40, and alpha 2-macroglobulin are very important immunity factors in response to bacterial infection. According to the result of heat-killed group, HSP70 is a sensitively inductive factor to foreign stimulus compared with the other genes. The multi-gene analysis presented an alternative approach for screening of immune-related genes, and provided a more global overview of genes transcript alteration in response to bacterial challenge.
Collapse
Affiliation(s)
- Fengying Zhang
- Key Laboratory of Marine and Estuarine Fisheries Resources and Ecology, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
46
|
Kato L, Stanlie A, Begum NA, Kobayashi M, Aida M, Honjo T. An evolutionary view of the mechanism for immune and genome diversity. THE JOURNAL OF IMMUNOLOGY 2012; 188:3559-66. [PMID: 22492685 DOI: 10.4049/jimmunol.1102397] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ortholog of activation-induced cytidine deaminase (AID) was, evolutionarily, the first enzyme to generate acquired immune diversity by catalyzing gene conversion and probably somatic hypermutation (SHM). AID began to mediate class switch recombination (CSR) only after the evolution of frogs. Recent studies revealed that the mechanisms for generating immune and genetic diversity share several critical features. Meiotic recombination, V(D)J recombination, CSR, and SHM all require H3K4 trimethyl histone modification to specify the target DNA. Genetic instability related to dinucleotide or triplet repeats depends on DNA cleavage by topoisomerase 1, which also initiates DNA cleavage in both SHM and CSR. These similarities suggest that AID hijacked the basic mechanism for genome instability when AID evolved in jawless fish. Thus, the risk of introducing genome instability into nonimmunoglobulin loci is unavoidable but tolerable compared with the advantage conferred on the host of being protected against pathogens by the enormous Ig diversification.
Collapse
Affiliation(s)
- Lucia Kato
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Begum NA, Honjo T. Evolutionary comparison of the mechanism of DNA cleavage with respect to immune diversity and genomic instability. Biochemistry 2012; 51:5243-56. [PMID: 22712724 DOI: 10.1021/bi3005895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the genetic mechanism for immune diversity is unique and distinct from that for general genome diversity, in part because of the high efficiency and strict regulation of immune diversity. This expectation was partially met by the discovery of RAG1 and -2, which catalyze V(D)J recombination to generate the immune repertoire of B and T lymphocyte receptors. RAG1 and -2 were later shown to be derived from a transposon. On the other hand, activation-induced cytidine deaminase (AID), which mediates both somatic hypermutation (SHM) and the class-switch recombination (CSR) of the immunoglobulin genes, evolved earlier than RAG1 and -2 in jawless vertebrates. This review compares immune diversity and general genome diversity from an evolutionary perspective, shedding light on the roles of DNA-cleaving enzymes and target recognition markers. This comparison revealed that AID-mediated SHM and CSR share the cleaving enzyme topoisomerase 1 with transcription-associated mutation (TAM) and triplet contraction, which is involved in many genetic diseases. These genome-altering events appear to target DNA with non-B structure, which is induced by the inefficient correction of the excessive supercoiling that is caused by active transcription. Furthermore, an epigenetic modification on chromatin (histone H3K4 trimethylation) is used as a mark for DNA cleavage sites in meiotic recombination, V(D)J recombination, CSR, and SHM. We conclude that acquired immune diversity evolved via the appearance of an AID orthologue that utilized a preexisting mechanism for genomic instability, such as TAM.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
48
|
Flajnik MF, Tlapakova T, Criscitiello MF, Krylov V, Ohta Y. Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC. Immunogenetics 2012; 64:571-90. [PMID: 22488247 DOI: 10.1007/s00251-012-0616-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/20/2012] [Indexed: 12/21/2022]
Abstract
The B7 family of genes is essential in the regulation of the adaptive immune system. Most B7 family members contain both variable (V)- and constant (C)-type domains of the immunoglobulin superfamily (IgSF). Through in silico screening of the Xenopus genome and subsequent phylogenetic analysis, we found novel genes belonging to the B7 family, one of which is the recently discovered B7H6. Humans and rats have a single B7H6 gene; however, many B7H6 genes were detected in a single large cluster in the Xenopus genome. The B7H6 expression patterns also varied in a species-specific manner. Human B7H6 binds to the activating natural killer receptor, NKp30. While the NKp30 gene is single-copy and maps to the MHC in most vertebrates, many Xenopus NKp30 genes were found in a cluster on a separate chromosome that does not harbor the MHC. Indeed, in all species so far analyzed from sharks to mammals, the number of NKp30 and B7H6 genes correlates well, suggestive of receptor-ligand co-evolution. Furthermore, we identified a Xenopus-specific B7 homolog (B7HXen) and revealed its close linkage to B2M, which we have demonstrated previously to have been originally encoded in the MHC. Thus, our study provides further proof that the B7 precursor was included in the proto MHC. Additionally, the comparative analysis revealed a new B7 family member, B7H7, which was previously designated in the literature as an unknown gene, HHLA2.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
49
|
Nowacki M, Shetty K, Landweber LF. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu Rev Genomics Hum Genet 2011; 12:367-89. [PMID: 21801022 DOI: 10.1146/annurev-genom-082410-101420] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha's somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
50
|
Du E, Ni X, Zhao H, Li X. Natural history and intragenomic dynamics of the Transib transposon Hztransib in the cotton bollworm Helicoverpa zea. INSECT MOLECULAR BIOLOGY 2011; 20:291-301. [PMID: 21166910 PMCID: PMC3086985 DOI: 10.1111/j.1365-2583.2010.01061.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hztransib, recently identified from Helicoverpa zea, represents the first intact and transcriptionally active Transib element. Its open reading frame was detected in Helicoverpa armigera, from which H. zea evolved, and in Helicoverpa assulta, the common ancestor of H. zea and H. armigera, but its remaining parts were found only in H. armigera. Thirty-nine Hztransib insertion sites, all of which are polymorphic, were detected from eight populations of H. zea. Out of the 39 insertion sites, 35 were not frequently occupied, with 1-33 occurrences in a total of 128 individuals from the eight populations (16 larvae per population). Its copy number ranged from 5.8 to 14.2 per individual, with putative intact copies always more abundant than internally deleted ones. Taking this evidence together, Hztransib probably transferred to H. zea from H. armigera and most likely still retains its capacity to maintain structural integrity, increase copy number and remobilize in H. zea.
Collapse
Affiliation(s)
- Erxia Du
- Department of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Entomology, University of Arizona, Tucson, AZ, 85719, USA
| | - Xinzhi Ni
- USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - Huiyan Zhao
- Department of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, 85719, USA
| |
Collapse
|