1
|
Silva F, Boal-Carvalho I, Williams N, Chabert M, Niu C, Hedhili D, Choltus H, Liaudet N, Gaïa N, Karenovics W, Francois P, Schmolke M. Identification of a short sequence motif in the influenza A virus pathogenicity factor PB1-F2 required for inhibition of human NLRP3. J Virol 2024; 98:e0041124. [PMID: 38567952 PMCID: PMC11092369 DOI: 10.1128/jvi.00411-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
Influenza A virus infection activates the NLRP3 inflammasome, a multiprotein signaling complex responsible for the proteolytic activation and release of the proinflammatory cytokine IL-1β from monocytes and macrophages. Some influenza A virus (IAV) strains encode a short 90-amino acid peptide (PB1-F2) on an alternative open reading frame of segment 2, with immunomodulatory activity. We recently demonstrated that contemporary IAV PB1-F2 inhibits the activation of NLRP3, potentially by NEK7-dependent activation. PB1-F2 binds to NLRP3 with its C-terminal 50 amino acids, but the exact binding motif was unknown. On the NLRP3 side, the interface is formed through the leucine-rich-repeat (LRR) domain, potentially in conjunction with the pyrin domain. Here, we took advantage of PB1-F2 sequences from IAV strains with either weak or strong NLRP3 interaction. Sequence comparison and structure prediction using Alphafold2 identified a short four amino acid sequence motif (TQGS) in PB1-F2 that defines NLRP3-LRR binding. Conversion of this motif to that of the non-binding PB1-F2 suffices to lose inhibition of NLRP3 dependent IL-1β release. The TQGS motif further alters the subcellular localization of PB1-F2 and its colocalization with NLRP3 LRR and pyrin domain. Structural predictions suggest the establishment of additional hydrogen bonds between the C-terminus of PB1-F2 and the LRR domain of NLRP3, with two hydrogen bonds connecting to threonine and glutamine of the TQGS motif. Phylogenetic data show that the identified NLRP3 interaction motif in PB1-F2 is widely conserved among recent IAV-infecting humans. Our data explain at a molecular level the specificity of NLRP3 inhibition by influenza A virus. IMPORTANCE Influenza A virus infection is accompanied by a strong inflammatory response and high fever. The human immune system facilitates the swift clearance of the virus with this response. An essential signal protein in the proinflammatory host response is IL-1b. It is released from inflammatory macrophages, and its production and secretion depend on the function of NLRP3. We had previously shown that influenza A virus blocks NLRP3 activation by the expression of a viral inhibitor, PB1-F2. Here, we demonstrate how this short peptide binds to NLRP3 and provide evidence that a four amino acid stretch in PB1-F2 is necessary and sufficient to mediate this binding. Our data identify a new virus-host interface required to block one signaling path of the innate host response against influenza A virus.
Collapse
Affiliation(s)
- Filo Silva
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Inês Boal-Carvalho
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Nathalia Williams
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Mehdi Chabert
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Chengyue Niu
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Dalila Hedhili
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Hélèna Choltus
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Nicolas Liaudet
- Bioimaging Core Facility, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Patrice Francois
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
- Thoracic Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
- Geneva Center for inflammation research, Medical Faculty, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Owen JC, Garrick SP, Peterson BM, Berger PJ, Nold MF, Sehgal A, Nold-Petry CA. The role of interleukin-1 in perinatal inflammation and its impact on transitional circulation. Front Pediatr 2023; 11:1130013. [PMID: 36994431 PMCID: PMC10040554 DOI: 10.3389/fped.2023.1130013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/31/2023] Open
Abstract
Preterm birth is defined as delivery at <37 weeks of gestational age (GA) and exposes 15 million infants worldwide to serious early life diseases. Lowering the age of viability to 22 weeks GA entailed provision of intensive care to a greater number of extremely premature infants. Moreover, improved survival, especially at extremes of prematurity, comes with a rising incidence of early life diseases with short- and long-term sequelae. The transition from fetal to neonatal circulation is a substantial and complex physiologic adaptation, which normally happens rapidly and in an orderly sequence. Maternal chorioamnionitis or fetal growth restriction (FGR) are two common causes of preterm birth that are associated with impaired circulatory transition. Among many cytokines contributing to the pathogenesis of chorioamnionitis-related perinatal inflammatory diseases, the potent pro-inflammatory interleukin (IL)-1 has been shown to play a central role. The effects of utero-placental insufficiency-related FGR and in-utero hypoxia may also be mediated, in part, via the inflammatory cascade. In preclinical studies, blocking such inflammation, early and effectively, holds great promise for improving the transition of circulation. In this mini-review, we outline the mechanistic pathways leading to abnormalities in transitional circulation in chorioamnionitis and FGR. In addition, we explore the therapeutic potential of targeting IL-1 and its influence on perinatal transition in the context of chorioamnionitis and FGR.
Collapse
Affiliation(s)
- Josephine C. Owen
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Steven P. Garrick
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Briana M. Peterson
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Philip J. Berger
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Marcel F. Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Arvind Sehgal
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Claudia A. Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Correspondence: Claudia A. Nold-Petry
| |
Collapse
|
3
|
Waldstein KA, Varga SM. Respiratory viruses and the inflammasome: The double-edged sword of inflammation. PLoS Pathog 2022; 18:e1011014. [PMID: 36580480 PMCID: PMC9799286 DOI: 10.1371/journal.ppat.1011014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kody A. Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United Stated of America
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United Stated of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United Stated of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United Stated of America
| |
Collapse
|
4
|
Rai S, Grockowiak E, Hansen N, Luque Paz D, Stoll CB, Hao-Shen H, Mild-Schneider G, Dirnhofer S, Farady CJ, Méndez-Ferrer S, Skoda RC. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat Commun 2022; 13:5346. [PMID: 36100613 PMCID: PMC9470591 DOI: 10.1038/s41467-022-32927-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin-1β (IL-1β) is a master regulator of inflammation. Increased activity of IL-1β has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1β serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1β overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1β in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1β in JAK2-V617F mutant mice by anti-IL-1β antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1β with anti-IL-1β antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.
Collapse
Affiliation(s)
- Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Elodie Grockowiak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Damien Luque Paz
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Cedric B Stoll
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Gabriele Mild-Schneider
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Department of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | | | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
5
|
Megale ÂAA, Magnoli FC, Guidolin FR, Godoi KS, Portaro FCV, Dias-da-Silva W. Bitis arietans Snake Venom and Kn-Ba, a Snake Venom Serine Protease, Induce the Production of Inflammatory Mediators in THP-1 Macrophages. Toxins (Basel) 2021; 13:toxins13120906. [PMID: 34941743 PMCID: PMC8705107 DOI: 10.3390/toxins13120906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Bitis arietans is a snake of medical importance found throughout sub-Saharan Africa and in savannas and pastures of Morocco and western Arabia. The effects of its venom are characterized by local and systemic alterations, such as inflammation and cardiovascular and hemostatic disturbances, which can lead to victims' death or permanent disability. To better characterize the inflammatory process induced by this snake's venom, the participation of eicosanoids and PAF (platelet- activating factor) in this response were demonstrated in a previous study. In addition, edema and early increased vascular permeability followed by an accumulation of polymorphonuclear (PMN) cells in the peritoneal cavity were accompanied by the production of the eicosanoids LTB4, LTC4, TXB2, and PGE2, and local and systemic production of IL-6 and MCP-1. In this context, the present study focused on the identification of inflammatory mediators produced by human macrophages derived from THP-1 cells in response to Bitis arietans venom (BaV), and Kn-Ba, a serine protease purified from this venom. Here, we show that Kn-Ba, and even the less intensive BaV, induced the production of the cytokine TNF and the chemokines RANTES and IL-8. Only Kn-Ba was able to induce the production of IL-6, MCP-1, and IP-10, whereas PGE2 was produced only in response to BaV. Finally, the release of IL-1β in culture supernatants suggests the activation of the inflammasomes by the venom of Bitis arietans and by Kn-Ba, which will be investigated in more detail in future studies.
Collapse
Affiliation(s)
- Ângela Alice Amadeu Megale
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
- Correspondence: (Â.A.A.M.); (F.C.V.P.); (W.D.-d.-S.)
| | - Fabio Carlos Magnoli
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
| | - Felipe Raimondi Guidolin
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
| | - Kemily Stephanie Godoi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
| | - Fernanda Calheta Vieira Portaro
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, Brazil
- Correspondence: (Â.A.A.M.); (F.C.V.P.); (W.D.-d.-S.)
| | - Wilmar Dias-da-Silva
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
- Correspondence: (Â.A.A.M.); (F.C.V.P.); (W.D.-d.-S.)
| |
Collapse
|
6
|
Eskilsson A, Shionoya K, Engblom D, Blomqvist A. Fever During Localized Inflammation in Mice Is Elicited by a Humoral Pathway and Depends on Brain Endothelial Interleukin-1 and Interleukin-6 Signaling and Central EP 3 Receptors. J Neurosci 2021; 41:5206-5218. [PMID: 33941650 PMCID: PMC8211540 DOI: 10.1523/jneurosci.0313-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
We examined the signaling route for fever during localized inflammation in male and female mice, elicited by casein injection into a preformed air pouch. The localized inflammation gave rise to high concentrations of prostaglandins of the E species (PGE2) and cytokines in the air pouch and elevated levels of these inflammatory mediators in plasma. There were also elevated levels of PGE2 in the cerebrospinal fluid, although there was little evidence for PGE2 synthesis in the brain. Global deletion of the PGE2 prostaglandin E receptor 3 (EP3) abolished the febrile response as did deletion of the EP3 receptor in neural cells, whereas its deletion on peripheral nerves had no effect, implying that PGE2 action on this receptor in the CNS elicited the fever. Global deletion of the interleukin-1 receptor type 1 (IL-1R1) also abolished the febrile response, whereas its deletion on neural cells or peripheral nerves had no effect. However, deletion of the IL-1R1 on brain endothelial cells, as well as deletion of the interleukin-6 receptor α on these cells, attenuated the febrile response. In contrast, deletion of the PGE2 synthesizing enzymes cyclooxygenase-2 and microsomal prostaglandin synthase-1 in brain endothelial cells, known to attenuate fever evoked by systemic inflammation, had no effect. We conclude that fever during localized inflammation is not mediated by neural signaling from the inflamed site, as previously suggested, but is dependent on humoral signaling that involves interleukin actions on brain endothelial cells, probably facilitating PGE2 entry into the brain from the circulation and hence representing a mechanism distinct from that at work during systemic inflammation.
Collapse
Affiliation(s)
- Anna Eskilsson
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Kiseko Shionoya
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - David Engblom
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
7
|
Gottschlich A, Endres S, Kobold S. Therapeutic Strategies for Targeting IL-1 in Cancer. Cancers (Basel) 2021; 13:477. [PMID: 33530653 PMCID: PMC7865618 DOI: 10.3390/cancers13030477] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Since its discovery, interleukin-1 has been extensively studied in a wide range of medical fields. Besides carrying out vital physiological functions, it has been implicated with a pivotal role in the progression and spreading of different cancer entities. During the last years, several clinical trials have been conducted, shedding light on the role of IL-1 blocking agents for the treatment of cancer. Additionally, recent developments in the field of immuno-oncology have implicated IL-1-induced signaling cascades as a major driver of severe chimeric antigen receptor T cell-associated toxicities such as cytokine release syndrome and immune effector cell-associated neurotoxicity. In this review, we summarize current clinical trials investigating the role of IL-1 blockade in cancer treatment and elaborate the proposed mechanism of these innovative treatment approaches. Additionally, we highlight cutting-edge developments utilizing IL-1 blocking agents to enhance the safety and efficacy of adoptive T cell therapy.
Collapse
Affiliation(s)
- Adrian Gottschlich
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
| | - Stefan Endres
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
8
|
Abstract
The human body has a perfect thermoregulatory system to meet the needs of normal life activities. The central regulation of body temperature is mainly explained by the theory of "setting point (setpoint, SP)". Fever is a positive but nonspecific response of the body to infections and other pyrogens, which causes immune cells to release cytokines, leading to a brain protein-mediated rise in body temperature. Cytokines can be roughly divided into 2 categories: proinflammatory cytokines and anti-inflammatory cytokines. IL-1, TNF-α, and IL-6 are proinflammatory cytokines, whereas IL-4 and IL-10 are anti-inflammatory cytokines. IL-2 is a cytokine that can both activate and inhibit immunity. IL-8 is a neutrophil chemotactic factor, and IFN is a cytokine that plays a key role in the proper induction and maintenance of innate and acquired immunity. This article reviews the pathophysiological characteristics of fever and the cytokines related to fever (IL-2, 4, 6, 8, 10, IFN, TNF, etc.).
Collapse
Affiliation(s)
- Jinfeng Lai
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huichun Wu
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ailan Qin
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Shatoor AS, Al Humayed S. The Protective Effect of Crataegus aronia Against High-Fat Diet-Induced Vascular Inflammation in Rats Entails Inhibition of the NLRP-3 Inflammasome Pathway. Cardiovasc Toxicol 2020; 20:82-99. [PMID: 31183600 DOI: 10.1007/s12012-019-09534-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study investigated whether the whole-plant aqueous extract of Crataegus aronia (C. aronia) could protect against or alleviate high-fat diet (HFD)-induced aortic vascular inflammation in rats by inhibiting the NLRP-3 inflammasome pathway and examined some mechanisms of action with respect to its antioxidant and hypolipidemic effects. Adult male Wistar rats were divided into five groups (n = 6/each): standard diet (10% fat) fed to control rats, control + C. aronia (200 mg/kg), HFD (40% fat), HFD + C. aronia, and HFD post-treated with C. aronia. The HFD was fed for 8 weeks and C. aronia was administered orally for 4 weeks. In addition, isolated macrophages from control rats were pre-incubated with two doses of C. aronia (25 and 50 μg/mL) with or without lipopolysaccharide (LPS) stimulation. Only in HFD-fed rats, co- and post-C. aronia therapy lowered circulatory levels of LDL-C and ox-LDL-c and aortic protein levels of LOX-1 and CD36. C. aronia also inhibited the nuclear accumulation of NF-κB and lowered protein levels of NLRP-3, caspase-1, and mature IL-1β. In vitro, in the absence of ox-LDL-c, C. aronia led to reduced nuclear levels of NF-κB, ROS generation, and protein NLRP-3 levels, in both LPS-stimulated and unstimulated macrophages, in a dose-dependent manner. However, protein levels of LOX-1 were not affected by C. aronia in unstimulated cells. In conclusion, C. aronia inhibits the NLRP-3 inflammasome pathway, induced by HFD feeding in the aorta of rats, mainly by its hypolipidemic effect and in vitro, in LPS-stimulated macrophages, by its antioxidant effect.
Collapse
Affiliation(s)
- Abdullah S Shatoor
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Suliman Al Humayed
- Department of Medicine, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
10
|
Hussain MT, Iqbal AJ, Norling LV. The Role and Impact of Extracellular Vesicles in the Modulation and Delivery of Cytokines during Autoimmunity. Int J Mol Sci 2020; 21:E7096. [PMID: 32993051 PMCID: PMC7584003 DOI: 10.3390/ijms21197096] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines and extracellular vesicles are two methods of initiating and maintaining cellular crosstalk. The role of cytokines in the initiation, progression, and resolution of inflammation has been well studied and more so, their pathophysiological role in the development of autoimmune disease. In recent years, the impact of extracellular vesicles on the progression of autoimmunity has become more widely appreciated. In this review, we discuss the mechanisms that allow extracellular vesicles of various sources to modulate cytokine production, and release, and how extracellular vesicles might be involved in the direct delivery and modulation of cytokine levels. Moreover, we explore what challenges are faced by current therapies and the promising future for extracellular vesicles as therapeutic agents in conditions driven by immune dysregulation.
Collapse
Affiliation(s)
- Mohammed Tayab Hussain
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London E1 4NS, UK;
| | - Asif Jilani Iqbal
- The Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Lucy Victoria Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London E1 4NS, UK;
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
11
|
Schoeman D, Fielding BC. Is There a Link Between the Pathogenic Human Coronavirus Envelope Protein and Immunopathology? A Review of the Literature. Front Microbiol 2020; 11:2086. [PMID: 33013759 PMCID: PMC7496634 DOI: 10.3389/fmicb.2020.02086] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Since the severe acute respiratory syndrome (SARS) outbreak in 2003, human coronaviruses (hCoVs) have been identified as causative agents of severe acute respiratory tract infections. Two more hCoV outbreaks have since occurred, the most recent being SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). The clinical presentation of SARS and MERS is remarkably similar to COVID-19, with hyperinflammation causing a severe form of the disease in some patients. Previous studies show that the expression of the SARS-CoV E protein is associated with the hyperinflammatory response that could culminate in acute respiratory distress syndrome (ARDS), a potentially fatal complication. This immune-mediated damage is largely caused by a cytokine storm, which is induced by significantly elevated levels of inflammatory cytokines interleukin (IL)-1β and IL-6, which are partly mediated by the expression of the SARS-CoV E protein. The interaction between the SARS-CoV E protein and the host protein, syntenin, as well as the viroporin function of SARS-CoV E, are linked to this cytokine dysregulation. This review aims to compare the clinical presentation of virulent hCoVs with a specific focus on the cause of the immunopathology. The review also proposes that inhibition of IL-1β and IL-6 in severe cases can improve patient outcome.
Collapse
Affiliation(s)
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
12
|
Jeong YH, Walsh MC, Yu J, Shen H, Wherry EJ, Choi Y. Mice Lacking the Purinergic Receptor P2X5 Exhibit Defective Inflammasome Activation and Early Susceptibility to Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2020; 205:760-766. [PMID: 32540996 DOI: 10.4049/jimmunol.1901423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
P2X5 is a member of the P2X purinergic receptor family of ligand-gated cation channels and has recently been shown to regulate inflammatory bone loss. In this study, we report that P2X5 is a protective immune regulator during Listeria monocytogenes infection, as P2X5-deficient mice exhibit increased bacterial loads in the spleen and liver, increased tissue damage, and early (within 3-6 d) susceptibility to systemic L. monocytogenes infection. Whereas P2X5-deficient mice experience normal monocyte recruitment in response to L. monocytogenes, P2X5-deficient bone marrow-derived macrophages (BMMs) exhibit defective cytosolic killing of L. monocytogenes We further showed that P2X5 is required for L. monocytogenes-induced inflammasome activation and IL-1β production and that defective L. monocytogenes killing in P2X5-deficient BMMs is substantially rescued by exogenous IL-1β or IL-18. Finally, in vitro BMM killing and in vivo L. monocytogenes infection experiments employing either P2X7 deficiency or extracellular ATP depletion suggest that P2X5-dependent anti-L. monocytogenes immunity is independent of the ATP-P2X7 inflammasome activation pathway. Together, our findings elucidate a novel and specific role for P2X5 as a critical mediator of protective immunity.
Collapse
Affiliation(s)
- Yun Hee Jeong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew C Walsh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jiyeon Yu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hao Shen
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 2020; 109:121-141. [PMID: 32531842 DOI: 10.1002/jlb.3mr0420-305r] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Caspase-8 is an apical caspase involved in the programmed form of cell death called apoptosis that is critically important for mammalian development and immunity. Apoptosis was historically described as immunologically silent in contrast to other types of programmed cell death such as necroptosis or pyroptosis. Recent reports suggest considerable crosstalk between these different forms of cell death. It is becoming increasingly clear that caspase-8 has many non-apoptotic roles, participating in multiple processes including regulation of necroptosis (mediated by receptor-interacting serine/threonine kinases, RIPK1-RIPK3), inflammatory cytokine expression, inflammasome activation, and cleavage of IL-1β and gasdermin D, and protection against shock and microbial infection. In this review, we discuss the involvement of caspase-8 in cell death and inflammation and highlight its role in innate immune responses and in the relationship between different forms of cell death. Caspase-8 is one of the central components in this type of crosstalk.
Collapse
Affiliation(s)
- Pontus Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
14
|
Zhang SC, Wang MY, Feng JR, Chang Y, Ji SR, Wu Y. Reversible promoter methylation determines fluctuating expression of acute phase proteins. eLife 2020; 9:51317. [PMID: 32223889 PMCID: PMC7136028 DOI: 10.7554/elife.51317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Acute phase reactants (APRs) are secretory proteins exhibiting large expression changes in response to proinflammatory cytokines. Here we show that the expression pattern of a major human APR, that is C-reactive protein (CRP), is casually determined by DNMT3A and TET2-tuned promoter methylation status. CRP features a CpG-poor promoter with its CpG motifs located in binding sites of STAT3, C/EBP-β and NF-κB. These motifs are highly methylated at the resting state, but undergo STAT3- and NF-κB-dependent demethylation upon cytokine stimulation, leading to markedly enhanced recruitment of C/EBP-β that boosts CRP expression. Withdrawal of cytokines, by contrast, results in a rapid recovery of promoter methylation and termination of CRP induction. Further analysis suggests that reversible methylation also regulates the expression of highly inducible genes carrying CpG-poor promoters with APRs as representatives. Therefore, these CpG-poor promoters may evolve CpG-containing TF binding sites to harness dynamic methylation for prompt and reversible responses.
Collapse
Affiliation(s)
- Shi-Chao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ming-Yu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Rui Feng
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yue Chang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Jain A, Irizarry-Caro RA, McDaniel MM, Chawla AS, Carroll KR, Overcast GR, Philip NH, Oberst A, Chervonsky AV, Katz JD, Pasare C. T cells instruct myeloid cells to produce inflammasome-independent IL-1β and cause autoimmunity. Nat Immunol 2020; 21:65-74. [PMID: 31848486 PMCID: PMC6927526 DOI: 10.1038/s41590-019-0559-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
The cytokine interleukin (IL)-1β is a key mediator of antimicrobial immunity as well as autoimmune inflammation. Production of IL-1β requires transcription by innate immune receptor signaling and maturational cleavage by inflammasomes. Whether this mechanism applies to IL-1β production seen in T cell-driven autoimmune diseases remains unclear. Here, we describe an inflammasome-independent pathway of IL-1β production that was triggered upon cognate interactions between effector CD4+ T cells and mononuclear phagocytes (MPs). The cytokine TNF produced by activated CD4+ T cells engaged its receptor TNFR on MPs, leading to pro-IL-1β synthesis. Membrane-bound FasL, expressed by CD4+ T cells, activated death receptor Fas signaling in MPs, resulting in caspase-8-dependent pro-IL-1β cleavage. The T cell-instructed IL-1β resulted in systemic inflammation, whereas absence of TNFR or Fas signaling protected mice from CD4+ T cell-driven autoimmunity. The TNFR-Fas-caspase-8-dependent pathway provides a mechanistic explanation for IL-1β production and its consequences in CD4+ T cell-driven autoimmune pathology.
Collapse
Affiliation(s)
- Aakanksha Jain
- Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Ricardo A Irizarry-Caro
- Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Margaret M McDaniel
- Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlin R Carroll
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Garrett R Overcast
- Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Naomi H Philip
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | | | - Jonathan D Katz
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Shatoor AS, Al Humayed S, Alkhateeb MA, Shatoor KA, Aldera H, Alassiri M, Shati AA. Crataegus Aronia protects and reverses vascular inflammation in a high fat diet rat model by an antioxidant mechanism and modulating serum levels of oxidized low-density lipoprotein. PHARMACEUTICAL BIOLOGY 2019; 57:38-48. [PMID: 30702358 PMCID: PMC6366417 DOI: 10.1080/13880209.2018.1564930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Crataegus aronia (Willd.) Bosc (Rosaceae) (syn. Azarolus L) is traditionally used to treat cardiovascular disorders. OBJECTIVES To investigate C. aronia protection against a high-fat diet (HFD)-induced vascular inflammation in rats. MATERIALS AND METHODS Wistar Male rats (180-220 g) were divided (n = 10/group) as control fed a standard diet (STD), STD + C. aronia (200 mg/kg, orally), HFD, HFD + C. aronia and HFD post-treated with C. aronia. Simvastatin (20 mg/kg) was co- or post-administered as a positive control drug. HFD was given for 8 weeks, and all other treatments were administered for 4 weeks. RESULTS Most significantly, co-administration of C. aronia to HFD-fed rats reduced the thickness of aorta tunica media (90 ± 5 vs. 160 ± 11.3 µm) and adventitia (54.3 ± 3.8 vs. 93.6 ± 9.4 µm). It also lowered protein levels of TNF-α (0.51 ± 0.15 and 0.15 ± 0.16 vs. 0.1 ± 0.09%) and IL-6 (0.52 ± 0.19 vs. 1.0 ± 0.2%) in their aorta or serum (5.9 ± 0.91 vs. 12.98 ± 1.3 ng/mL and 78.1 ± 6.7 vs. 439 ± 78 pg/mL, respectively). It also lowered all serum lipids and increased aorta levels of GSH levels (70.4 ± 4.0 vs. 40.7 µM) and activity of SOD (5.7 ± 0.7 vs. 2.9 ± 0.6 U/mg) and decreased serum levels of ox-LDL-c (566.7 ± 46 vs. 1817 ± 147 ng/mL). Such effects were more profound than all other treatments. CONCLUSIONS C. aronia inhibits the HFD-induced vascular inflammation and its use in clinical trials is recommended.
Collapse
Affiliation(s)
- Abdullah S. Shatoor
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
- CONTACT Abdullah S. Shatoor Department of Medicine, Cardiology Section, College of Medicine, King Khalid University, Abha64121, Saudi Arabia
| | - Suliman Al Humayed
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mahmoud A. Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Khalid A. Shatoor
- An intern, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Hussain Aldera
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research center (KAIMRC), Riyadh, Saudi Arabia
| | - Ali A. Shati
- Department of Biology College of Science, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| |
Collapse
|
17
|
Arce DY, Bellavia A, Cantonwine DE, Napoli OJ, Meeker JD, James-Todd T, McElrath TF, Tsen LC. Average and time-specific maternal prenatal inflammatory biomarkers and the risk of labor epidural associated fever. PLoS One 2019; 14:e0222958. [PMID: 31689293 PMCID: PMC6830771 DOI: 10.1371/journal.pone.0222958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/10/2019] [Indexed: 02/03/2023] Open
Abstract
Background The use of labor epidural analgesia has been associated with intrapartum fever, known as labor epidural associated fever (LEAF). LEAF is most commonly non-infectious in origin and associated with elevated inflammatory cytokines. Methods The LIFECODES pregnancy cohort was designed to prospectively collect data to evaluate the association of maternal inflammatory biomarkers with preterm birth in women who delivered between 2007 and 2008 at Brigham and Women’s Hospital. Our secondary analysis of the data from the cohort identified 182 women for whom inflammatory biomarkers (i.e. interleukin-10, interleukin-1β, interleukin-6, tumor necrosis factor-α and C-reactive protein) collected longitudinally over four prenatal visits was available. Maternal temperature and other clinical variables were abstracted from medical records. The primary outcome, the presence of LEAF, was defined as oral temperature ≥ 38°C (≥100.4°F) after epidural analgesia initiation. Multivariable logistic regression estimated the association between inflammatory biomarker concentrations and the odds of developing an intrapartum fever after adjusting for a number of potential confounders. Results Women who developed LEAF were more likely to have a longer duration of epidural analgesia, whereas women who did not develop LEAF were more likely to have induced labor and positive or unknown Group B Streptococcus colonization status. However, no differences were seen by nulliparity, mode of delivery, white blood cell count at admission, baseline temperature, length of rupture of membranes and number of cervical exams performed during labor. Unadjusted and multivariable logistic regression models did not provide evidence for or exclude an association between individual maternal inflammatory biomarkers and the odds of developing LEAF, regardless of visit time-period. Conclusion The predictive value of maternal inflammatory biomarkers measured during early- and mid-pregnancy for the risk of developing LEAF cannot be excluded.
Collapse
Affiliation(s)
- Dominique Y. Arce
- Department of Anesthesiology, Perioperative and Pain Medicine, Division of Obstetric Anesthesia, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - David E. Cantonwine
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olivia J. Napoli
- Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, United States of America
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Thomas F. McElrath
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lawrence C. Tsen
- Department of Anesthesiology, Perioperative and Pain Medicine, Division of Obstetric Anesthesia, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Croci DM, Wanderer S, Strange F, Grüter BE, Casoni D, Sivanrupan S, Widmer HR, Di Santo S, Fandino J, Mariani L, Marbacher S. Systemic and CSF Interleukin-1α Expression in a Rabbit Closed Cranium Subarachnoid Hemorrhage Model: An Exploratory Study. Brain Sci 2019; 9:brainsci9100249. [PMID: 31554320 PMCID: PMC6827074 DOI: 10.3390/brainsci9100249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Background: The inflammatory pathway in cerebrospinal fluid (CSF) leads to delayed cerebral vasospasm (DCVS) and delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH). The role of IL-1α has never been evaluated in a rabbit SAH model. The aim of our study is to analyze systemic and CSF changes of IL-1α, and to evaluate potential associations with the onset of DCVS in a rabbit closed cranium SAH model. Methods: 17 New Zealand white rabbits were randomized into two groups, SAH (n = 12) and sham (n = 5). In the first group, SAH was induced by extracranial-intracranial shunting from the subclavian artery into the cerebral cistern of magna under intracranial pressure (ICP) monitoring. The sham group served as a control. The CSF and blood samples for IL-1α measurement were taken at day zero before SAH induction and at day three. Results: There was a significant increase of ICP (p = 0.00009) and a decrease of cerebral perfusion pressure (CPP) (p = 0.00089) during SAH induction. At follow up, there was a significant increase of systemic IL-1α in the SAH as compared with the sham group (p = 0.042). There was no statistically significant difference in the CSF values in both groups. The CSF IL-1α values showed a correlation trend of DCVS. Conclusions: Systemic IL-1α levels are elevated after SAH induction in a rabbit SAH model.
Collapse
Affiliation(s)
- Davide Marco Croci
- Department of Neurosurgery, University Hospital Basel, 4031 Basel, Switzerland.
- Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
- Department of Neurosurgery, Neurocenter of Southern Switzerland, Regional Hospital Lugano, 6900 Lugano, Switzerland.
| | - Stefan Wanderer
- Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland.
| | - Fabio Strange
- Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland.
| | - Basil E Grüter
- Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland.
| | - Daniela Casoni
- Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland.
| | - Sivani Sivanrupan
- Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Bern University Hospital, Inselspital Bern, 3008 Bern, Switzerland.
| | - Stefano Di Santo
- Department of Neurosurgery, Bern University Hospital, Inselspital Bern, 3008 Bern, Switzerland.
| | - Javier Fandino
- Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland.
| | - Luigi Mariani
- Department of Neurosurgery, University Hospital Basel, 4031 Basel, Switzerland.
| | - Serge Marbacher
- Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland.
| |
Collapse
|
19
|
Cardoso-Sousa L, Aguiar EMG, Caixeta DC, Vilela DD, da Costa DP, Silva TL, Cunha TM, Faria PR, Espindola FS, Jardim AC, Vieira AA, Oliveira TL, Goulart LR, Sabino-Silva R. Effects of salbutamol and phlorizin on acute pulmonary inflammation and disease severity in experimental sepsis. PLoS One 2019; 14:e0222575. [PMID: 31536570 PMCID: PMC6752759 DOI: 10.1371/journal.pone.0222575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 09/03/2019] [Indexed: 02/05/2023] Open
Abstract
Respiratory infection can be exacerbated by the high glucose concentration in the airway surface liquid (ASL). We investigated the effects of salbutamol and phlorizin on the pulmonary function, oxidative stress levels and SGLT1 activity in lung, pulmonary histopathological damages and survival rates of rats with sepsis. Sepsis was induced by cecal ligation and puncture surgery (CLP). Twenty-four hours after surgery, CLP rats were intranasally treated with saline, salbutamol or phlorizin. After 2 hours, animals were anesthetized and sacrificed. Sepsis promoted atelectasis and bronchial inflammation, and led to increased expression of SGLT1 on cytoplasm of pneumocytes. Salbutamol treatment reduced bronchial inflammation and promoted hyperinsuflation in CLP rats. The interferon-ɤ and Interleucin-1β concentrations in bronchoalveolar lavage (BAL) were closely related to the bronchial inflammation regulation. Salbutamol stimulated SGLT1 in plasma membrane; whereas, phlorizin promoted the increase of SGLT1 in cytoplasm. Phlorizin reduced catalase activity and induced a significant decrease in the survival rate of CLP rats. Taken together, sepsis promoted atelectasis and lung inflammation, which can be associated with SGLT1 inhibition. The loss of function of SGLT1 by phlorizin are related to the augmented disease severity, increased atelectasis, bronchial inflammation and a significant reduction of survival rate of CLP rats. Alternatively salbutamol reduced BAL inflammatory cytokines, bronchial inflammation, atelectasis, and airway damage in sepsis. These data suggest that this selective β2-adrenergic agonist may protect lung of septic acute effects.
Collapse
Affiliation(s)
- Léia Cardoso-Sousa
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Emilia Maria Gomes Aguiar
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | | | - Danilo Pereira da Costa
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Tamires Lopes Silva
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlandia, Minas Gerais, Brazil
| | - Thúlio Marquez Cunha
- Department of Pulmonology, School of Medicine, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Paulo Rogério Faria
- Department of Morphology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | - Ana Carolina Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Alexandre Antônio Vieira
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Tales Lyra Oliveira
- Faculty of Medicine, Municipal University of Sao Caetano do Sul, Sao Paulo, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California Davis, California, United States of America
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
20
|
Piotrowski J, Jędrzejewski T, Pawlikowska M, Wrotek S, Kozak W. High mobility group box 1 protein released in the course of aseptic necrosis of tissues sensitizes rats to pyrogenic effects of lipopolysaccharide. J Therm Biol 2019; 84:36-44. [PMID: 31466775 DOI: 10.1016/j.jtherbio.2019.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
It is still an open question as to whether or not aseptic injuries affect the generation of fever due to exogenous pyrogens including bacterial products. Therefore, in the present paper we have investigated the course of endotoxin fever in rats induced with lipopolysaccharide (LPS; given intraperitoneally in a dose of 50 μg/kg) 48 h after subcutaneous administration of turpentine oil (TRP; 0.1 mL per rat) that causes aseptic necrosis of tissues. We found that febrile response was significantly augmented in the animals pre-treated with turpentine compared to control rats (pre-treated with saline), and that observed excessive elevation of body temperature (Tb) was accompanied by enhanced release of fever mediators: interleukin-6 (IL-6) and prostaglandin E2 (PGE2) into plasma. Moreover, we found that sensitization to pyrogenic effects of lipopolysaccharide was associated with the increase in plasma level of high mobility group box 1 protein (HMGB1), one of the best-known damage-associated molecular patterns (DAMP), which was recently discovered as inflammatory mediator. Since the injection of anti-HMGB1 antibodies weakened observed hyperpyrexia in the animals pre-treated with turpentine, we conclude that HMGB1 is a plasma-derived factor released in the course of aseptic injury that enhances pyrogenic effects of LPS.
Collapse
Affiliation(s)
- Jakub Piotrowski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Torun, Poland.
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Torun, Poland
| | - Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Torun, Poland
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Torun, Poland
| | - Wieslaw Kozak
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Torun, Poland
| |
Collapse
|
21
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
22
|
Paudel S, Ghimire L, Jin L, Baral P, Cai S, Jeyaseelan S. NLRC4 suppresses IL-17A-mediated neutrophil-dependent host defense through upregulation of IL-18 and induction of necroptosis during Gram-positive pneumonia. Mucosal Immunol 2019; 12:247-257. [PMID: 30279514 PMCID: PMC6301100 DOI: 10.1038/s41385-018-0088-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023]
Abstract
Gram-positive pathogens, including Staphylococcus aureus, cause necrotizing pneumonia. The central feature of S. aureus pneumonia is toxin-induced necroptosis of immune and resident cells, which impedes host defense. However, the role of the NLRC4 in the lung following S. aureus infection remains elusive. Here, we demonstrate that S. aureus activates the NLRC4 to drive necroptosis and IL-18 production, which impaired IL-17A-dependent neutrophil-mediated host susceptibility. In particular, Nlrc4-/- mice exhibit reduced necroptosis, enhanced neutrophil influx into the lungs, decreased bacterial burden, and improved host survival. Loss of NLRC4 signaling in both hematopoietic and non-hematopoietic cells contributes to the host protection against S. aureus pneumonia. Secretion of IL-17A by γδ T cells is essential for neutrophil recruitment into the lungs of Nlrc4-/- mice following infection. Moreover, treatment of wild-type mice with necroptosis inhibitors or genetic ablation of MLKL and IL-18 improves host defense against S. aureus infection, which is associated with increased IL-17A+γδ T cells and neutrophils. Taken together, these novel findings reveal that S. aureus activates the NLRC4 to dampen IL-17A-dependent neutrophil accumulation through induction of necroptosis and IL-18. Thus, modulating the function of the NLRC4 may be an attractive therapeutic approach for treating S. aureus infections.
Collapse
Affiliation(s)
- Sagar Paudel
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, Louisiana, USA, 70803
| | - Laxman Ghimire
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, Louisiana, USA, 70803
| | - Liliang Jin
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, Louisiana, USA, 70803
| | - Pankaj Baral
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, Louisiana, USA, 70803
| | - Shanshan Cai
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, Louisiana, USA, 70803
| | - Samithamby Jeyaseelan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, Louisiana, USA, 70803.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, USA, 70112.,Address Correspondence: Dr. Samithamby Jeyaseelan, Laboratory of Lung Biology, Department of Pathobiological Sciences, Louisiana State University (LSU), Baton Rouge, Louisiana, USA, 70803. Phone: +1 225 578 9524;
| |
Collapse
|
23
|
Ge Y, Huang M, Yao YM. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev 2018; 45:24-34. [PMID: 30587411 DOI: 10.1016/j.cytogfr.2018.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
The IL-1 family comprises two anti-inflammatory cytokines (IL-37, IL-38), two receptor antagonists (IL-1ra, IL-36ra), and seven ligand agonists (IL-1α, IL-1β, IL-33, IL-36α, IL-36β, IL-36γ). The members of this family exert pleiotropic effects on intercellular signaling, leading to pro- or anti-inflammatory responses. They initiate potent inflammatory and immune responses by binding to specific receptors in the IL-1 receptor family, and their activities are repressed by naturally occurring inhibitors. Various immune cells produce and are regulated by these crucial molecules, which appear to be involved in the pathogenesis of diverse diseases including cancer as well as inflammatory and autoimmune disorders. Recent decades have seen substantial progress in understanding how the IL-1 family contributes to the development of sepsis. In this review, we will briefly introduce the IL-1 family and discuss its critical role in inflammatory and immune responses. The potential significance of IL-1 members in sepsis will also be explored, together with the clinical implications for treating this dangerous condition.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
24
|
Souza RFS, Rault L, Seyffert N, Azevedo V, Le Loir Y, Even S. Lactobacillus casei BL23 modulates the innate immune response in Staphylococcus aureus-stimulated bovine mammary epithelial cells. Benef Microbes 2018; 9:985-995. [PMID: 30041534 DOI: 10.3920/bm2018.0010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Probiotics have been adopted to treat and prevent various diseases in humans and animals. They were notably shown to be a promising alternative to prevent mastitis in dairy cattle. This inflammation of the mammary gland is generally of infectious origin and generates extensive economic losses worldwide. In a previous study, we found that Lactobacillus casei BL23 was able to inhibit the internalisation of Staphylococcus aureus, one of the major pathogens involved in mastitis, into bovine mammary epithelial cells (bMEC). In this study, we further explored the capacity of this strain to modulate the innate immune response of bovine mammary epithelial cells during S. aureus infection. L. casei BL23 was able to decrease the expression of several pro-inflammatory cytokines, including interleukins 6, 8, 1α and 1β and tumour necrosis factor alpha, in S. aureus-stimulated bMEC, 8 h post-infection. On the other hand, L. casei did not impair the induction of defensins, such as lingual antimicrobial peptide and defensin β1 in the presence of S. aureus, and even slightly increased the induction of tracheal antimicrobial peptide during S. aureus infection. Finally, this strain did not alter the expression of the pattern recognition receptor nucleotide-binding oligomerisation domain proteins (NOD2). This study demonstrates that L. casei BL23 displayed anti-inflammatory properties on S. aureus-stimulated bMEC. These results open the way to further characterisation of the BL23 probiotic potential in a bovine mammary gland context and to a better understanding of how all these beneficial properties combine in vivo to combat mastitis pathogens.
Collapse
Affiliation(s)
- R F S Souza
- 1 INRA, UMR 1253 STLO, 65 Rue de Saint-Brieuc, 35000 Rennes, France.,2 Agrocampus Ouest, UMR 1253 STLO, 85 Rue de Saint Brieuc, 35042 Rennes, France.,3 Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 MG, Brazil.,4 Universidade Federal do Vale do São Francisco, Av. José de Sá Maniçoba, S/N Centro, Petrolina, 56304-917 PE, Brazil
| | - L Rault
- 1 INRA, UMR 1253 STLO, 65 Rue de Saint-Brieuc, 35000 Rennes, France.,2 Agrocampus Ouest, UMR 1253 STLO, 85 Rue de Saint Brieuc, 35042 Rennes, France
| | - N Seyffert
- 3 Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 MG, Brazil
| | - V Azevedo
- 3 Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 MG, Brazil
| | - Y Le Loir
- 1 INRA, UMR 1253 STLO, 65 Rue de Saint-Brieuc, 35000 Rennes, France.,2 Agrocampus Ouest, UMR 1253 STLO, 85 Rue de Saint Brieuc, 35042 Rennes, France
| | - S Even
- 1 INRA, UMR 1253 STLO, 65 Rue de Saint-Brieuc, 35000 Rennes, France.,2 Agrocampus Ouest, UMR 1253 STLO, 85 Rue de Saint Brieuc, 35042 Rennes, France
| |
Collapse
|
25
|
Suto H, Nambu A, Morita H, Yamaguchi S, Numata T, Yoshizaki T, Shimura E, Arae K, Asada Y, Motomura K, Kaneko M, Abe T, Matsuda A, Iwakura Y, Okumura K, Saito H, Matsumoto K, Sudo K, Nakae S. IL-25 enhances T H17 cell-mediated contact dermatitis by promoting IL-1β production by dermal dendritic cells. J Allergy Clin Immunol 2018. [PMID: 29522843 DOI: 10.1016/j.jaci.2017.12.1007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND In addition to thymic stromal lymphopoietin and IL-33, IL-25 is known to induce TH2 cytokine production by various cell types, including TH2 cells, TH9 cells, invariant natural killer T cells, and group 2 innate lymphoid cells, involved in TH2-type immune responses. Because both TH2-type and TH17-type cells/cytokines are crucial for contact hypersensitivity (CHS), IL-25 can contribute to this by enhancing TH2-type immune responses. However, the precise role of IL-25 in the pathogenesis of fluorescein isothiocyanate-induced CHS is poorly understood. OBJECTIVE We investigated the contribution of IL-25 to CHS using Il25-/- mice. METHODS CHS was evaluated by means of measurement of ear skin thickness in mice after fluorescein isothiocyanate painting. Skin dendritic cell (DC) migration, hapten-specific TH cell differentiation, and detection of IL-1β-producing cells were determined by using flow cytometry, ELISA, and immunohistochemistry, respectively. RESULTS In contrast to thymic stromal lymphopoietin, we found that IL-25 was not essential for skin DC migration or hapten-specific TH cell differentiation in the sensitization phase of CHS. Unexpectedly, mast cell- and non-immune cell-derived IL-25 was important for hapten-specific TH17 cell-mediated rather than TH2 cell-mediated inflammation in the elicitation phase of CHS by enhancing TH17-related, but not TH2-related, cytokines in the skin. In particular, IL-1β produced by dermal DCs in response to IL-25 was crucial for hapten-specific TH17 cell activation, contributing to induction of local inflammation in the elicitation phase of CHS. CONCLUSION Our results identify a novel IL-25 inflammatory pathway involved in induction of TH17 cell-mediated, but not TH2 cell-mediated, CHS. IL-25 neutralization can be a potential approach for treatment of CHS.
Collapse
Affiliation(s)
- Hajime Suto
- Atopy Research Center, Juntendo University, Tokyo, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takafumi Numata
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takamichi Yoshizaki
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eri Shimura
- Atopy Research Center, Juntendo University, Tokyo, Japan; Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ken Arae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Immunology, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Yousuke Asada
- Department of Ophthalmology, Juntendo University, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mari Kaneko
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
26
|
Zasada M, Lenart M, Rutkowska-Zapała M, Stec M, Czyz O, Mól N, Siedlar M, Kwinta P. Inflammasome function in monocyte subsets and a risk of late-onset sepsis in preterm very low birth weight neonates. Minerva Pediatr (Torino) 2018; 74:121-131. [PMID: 29381011 DOI: 10.23736/s2724-5276.18.05034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Immature immune systems predispose very low birth weight (VLBW) neonates to systemic infections in early life. Defective inflammasome function may increase a neonate's susceptibility to late-onset sepsis (LOS). METHODS Blood samples were taken on the 5th day of life (DOL) for all VLBW neonates (non-LOS and before-LOS groups; N.=76), and within 24 hours of sepsis onset (LOS group; N.=39). Monocyte (MO) subsets and intracellular interleukin-1β (IL-1β) expression were analyzed using flow cytometry. Inflammasome function, defined as level of IL-1β and interleukin-18 (IL-18) was measured with enzyme-linked immunosorbent assay. IRA B cells were reported as a fraction of all B cells. RESULTS Stimulation of classical MO in non-LOS cells demonstrated a higher expression of intracellular IL-1β in comparison to MO from before LOS group. Serum from the LOS group revealed a higher level of IL-18. Stimulation of mononuclear cultures from samples taken during LOS resulted in significantly increased supernatant level of IL-1β and IL-18 in comparison to samples taken on 5th DOL. No changes in the levels of IRA B cells were detected with the onset of sepsis. CONCLUSIONS We did not observe a difference in the functioning of the inflammasome within monocytes taken on 5th DOL from premature VLBW neonates. Furthermore, there was no observable change in the IRA B cells of the septic and non-septic groups. The decreased expression of intracellular IL-1β within classical MO of the before-LOS group may be an independent risk factor for LOS development.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland -
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Małgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Ola Czyz
- Jagiellonian University, Krakow, Poland
| | - Nina Mól
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University, Krakow, Poland
| |
Collapse
|
27
|
Expression of inflammasome proteins and inflammasome activation occurs in human, but not in murine keratinocytes. Cell Death Dis 2018; 9:24. [PMID: 29348630 PMCID: PMC5833864 DOI: 10.1038/s41419-017-0009-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Abstract
Inflammasomes are multimeric protein complexes that assemble upon sensing of a variety of stress factors. Their formation results in caspase-1-mediated activation and secretion of the pro-inflammatory cytokines pro-interleukin(IL)-1β and -18, which induce an inflammatory response. Inflammation is supported by a lytic form of cell death, termed pyroptosis. Innate immune cells, such as macrophages or dendritic cells, express and activate inflammasomes. However, it has also been demonstrated that human primary keratinocytes activate different types of inflammasomes in vitro, for example, upon UVB irradiation or viral infection. Keratinocytes are the main cell type of the epidermis, the outermost layer of the body, and form a protective barrier consisting of a stratified multi-layered epithelium. In human, gain-of-function mutations of the NLRP1 gene cause syndromes mediated by inflammasome activation in keratinocytes that are characterised by skin inflammation and skin cancer susceptibility. Here we demonstrate that murine keratinocytes do not activate inflammasomes in response to stimuli, which induce IL-1β and -18 secretion by human keratinocytes. Whereas murine keratinocytes produced caspase-1 and proIL-18, expression of the inflammasome proteins Nlrp1, Nlrp3, Aim2, Asc, and proIL-1β was, compared to human keratinocytes or murine dendritic cells, very low or even undetectable. Priming of murine keratinocytes with cytokines commonly used for induction of proIL-1β and inflammasome protein expression did not rescue inflammasome activation. Nevertheless, UVB-induced inflammation and neutrophil recruitment in murine skin was dependent on IL-1β and caspase-1. However, also under these conditions, we did not detect expression of proIL-1β by keratinocytes in murine skin, but by immune cells. These results demonstrate a higher immunological competence of human compared to murine keratinocytes, which is reflected by stress-induced IL-1β secretion that is mediated by inflammasomes. Therefore, keratinocytes in human skin can exert immune functions, which are carried out by professional immune cells in murine skin.
Collapse
|
28
|
Abstract
The interleukin-1 (IL-1) family of cytokines and receptors is unique in immunology because the IL-1 family and Toll-like receptor (TLR) families share similar functions. More than any other cytokine family, the IL-1 family is primarily associated with innate immunity. More than 95% of living organisms use innate immune mechanisms for survival whereas less than 5% depend on T- and B-cell functions. Innate immunity is manifested by inflammation, which can function as a mechanism of host defense but when uncontrolled is detrimental to survival. Each member of the IL-1 receptor and TLR family contains the cytoplasmic Toll-IL-1-Receptor (TIR) domain. The 50 amino acid TIR domains are highly homologous with the Toll protein in Drosophila. The TIR domain is nearly the same and present in each TLR and each IL-1 receptor family. Whereas IL-1 family cytokine members trigger innate inflammation via IL-1 family of receptors, TLRs trigger inflammation via bacteria, microbial products, viruses, nucleic acids, and damage-associated molecular patterns (DAMPs). In fact, IL-1 family member IL-1a and IL-33 also function as DAMPs. Although the inflammatory properties of the IL-1 family dominate in innate immunity, IL-1 family member can play a role in acquired immunity. This overview is a condensed update of the IL-1 family of cytokines and receptors.
Collapse
Affiliation(s)
- Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Interleukin-1α and Interleukin-1β play a central role in the pathogenesis of fulminant hepatic failure in mice. PLoS One 2017; 12:e0184084. [PMID: 28953903 PMCID: PMC5617151 DOI: 10.1371/journal.pone.0184084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background and aims Fulminant hepatitis failure (FHF) is marked by the sudden loss of hepatic function, with a severe life-threatening course in persons with no prior history of liver disease. Interleukin (IL)-1α and IL-1β are key inflammatory cytokines but little is known about their role in the development of FHF. The aim of this study was to assess the involvement of IL-1α and IL-1β in the progression of LPS/GalN-induced FHF. Methods WT, IL-1α or IL-1β deficient mice were injected with LPS/GalN. Blood and liver tissue were collected at different time points, FHF related pathways were examined. Results After FHF induction the survival of both IL-1α and IL-1β KO mice was longer than that of WT mice. Lower serum liver enzyme levels, demonstrated reduced hepatic injury in the IL-1α and IL-1βKO mice. Histologically detected liver injury and apoptotic hepatocytes were significantly reduced in the IL-1αand IL-1βKO mice compared to WT mice. Reduced hepatic IkB levels and upregulated NFκB activity in WT mice remained inhibited in IL-1α and IL-1β KO mice. Hepatic expression levels of TNFα and IL-6 were significantly increased in WT mice but not in IL-1α and IL-1β KO mice. Conclusions IL-1α and IL-1β play a central role in the pathogenesis of LPS/GalN-induced FHF. These interleukins are associated with the activation of NFκB signaling, upregulation of the pro-inflammatory cytokines and liver damage and apoptosis. Since neither IL-1α nor IL-1β depletions completely rescued the phenotype, we believe that IL-1α and IL-1β have a similar and probably complementary role in FHF progression.
Collapse
|
30
|
Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A. Sci Rep 2017; 7:12158. [PMID: 28939905 PMCID: PMC5610307 DOI: 10.1038/s41598-017-12529-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-α and lipopolysaccaride (LPS). TNF-α time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-α and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-α or LPS challenge, being higher in microglia with TNF-α and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/ neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-α treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS.
Collapse
|
31
|
Witter AR, Okunnu BM, Berg RE. The Essential Role of Neutrophils during Infection with the Intracellular Bacterial Pathogen Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2017; 197:1557-65. [PMID: 27543669 DOI: 10.4049/jimmunol.1600599] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/16/2016] [Indexed: 01/04/2023]
Abstract
Neutrophils have historically been characterized as first responder cells vital to host survival because of their ability to contain and eliminate bacterial and fungal pathogens. However, recent studies have shown that neutrophils participate in both protective and detrimental responses to a diverse array of inflammatory and infectious diseases. Although the contribution of neutrophils to extracellular infections has been investigated for decades, their specific role during intracellular bacterial infections has only recently been appreciated. During infection with the Gram-positive intracellular pathogen Listeria monocytogenes, neutrophils are recruited from the bone marrow to sites of infection where they use novel bacterial-sensing pathways leading to phagocytosis and production of bactericidal factors. This review summarizes the requirement of neutrophils during L. monocytogenes infection by examining both neutrophil trafficking and function during primary and secondary infection.
Collapse
Affiliation(s)
- Alexandra R Witter
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Busola M Okunnu
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Rance E Berg
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
32
|
Hu B, Jin C, Li HB, Tong J, Ouyang X, Cetinbas NM, Zhu S, Strowig T, Lam FC, Zhao C, Henao-Mejia J, Yilmaz O, Fitzgerald KA, Eisenbarth SC, Elinav E, Flavell RA. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 2017; 354:765-768. [PMID: 27846608 DOI: 10.1126/science.aaf7532] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
Abstract
Acute exposure to ionizing radiation induces massive cell death and severe damage to tissues containing actively proliferating cells, including bone marrow and the gastrointestinal tract. However, the cellular and molecular mechanisms underlying this pathology remain controversial. Here, we show that mice deficient in the double-stranded DNA sensor AIM2 are protected from both subtotal body irradiation-induced gastrointestinal syndrome and total body irradiation-induced hematopoietic failure. AIM2 mediates the caspase-1-dependent death of intestinal epithelial cells and bone marrow cells in response to double-strand DNA breaks caused by ionizing radiation and chemotherapeutic agents. Mechanistically, we found that AIM2 senses radiation-induced DNA damage in the nucleus to mediate inflammasome activation and cell death. Our results suggest that AIM2 may be a new therapeutic target for ionizing radiation exposure.
Collapse
Affiliation(s)
- Bo Hu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chengcheng Jin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hua-Bing Li
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiyu Tong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Naniye Malli Cetinbas
- Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Shu Zhu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Till Strowig
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fred C Lam
- Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Chen Zhao
- Hematology Oncology Fellowship Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Omer Yilmaz
- Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eran Elinav
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
33
|
Stojadinovic O, Wikramanayake TC, Villasante Fricke AC, Yin NC, Liang L, Hinde E, Escandon J, Tomic-Canic M, Ansell DM, Paus R, Jimenez JJ. Wound healing protects against chemotherapy-induced alopecia in young rats via up-regulating interleukin-1β-mediated signaling. Heliyon 2017; 3:e00309. [PMID: 28607955 PMCID: PMC5454141 DOI: 10.1016/j.heliyon.2017.e00309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 05/24/2017] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex process regulated by various cell types and a plethora of mediators. While interactions between wounded skin and the hair follicles (HFs) could induce HF neogenesis or promote wound healing, it remains unknown whether the wound healing-associated signaling milieu can be manipulated to protect against alopecia, such as chemotherapy-induced alopecia (CIA). Utilizing a well-established neonatal rat model of CIA, we show here that skin wounding protects from alopecia caused by several clinically relevant chemotherapeutic regimens, and that protection is dependent on the time of wounding and hair cycle stage. Gene expression profiling unveiled a significant increase in interleukin-1 beta (IL-1β) mediated signaling by skin wounding. Subsequently, we showed that IL-1β is sufficient and indispensable for mediating the CIA-protective effect. Administration of IL-1β alone to unwounded rats exhibited local CIA protection while IL-1β neutralization abrogated CIA protection by wounding. Mechanistically, IL-1β retarded postnatal HF morphogenesis, making HFs at the wound sites or IL-1β treated areas damage-resistant while the rats developed total alopecia elsewhere. We conclude that wound healing switches the cutaneous cytokine milieu to an IL-1β-dominated state thus retarding HF growth progression and rendering the HFs resistant to chemotherapy agents. In the future, manipulation of HF progression through interfering with the IL-1β signaling milieu may provide therapeutic benefits to a variety of conditions, from prevention of CIA to inhibition of hair growth and treatment of hirsutism.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tongyu C Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Molecular Cell and Developmental Biology, Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexandra C Villasante Fricke
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie C Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liang Liang
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eleanor Hinde
- The Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Julia Escandon
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Human Genetics and Genomics Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,The Ronald O. Perelman Department of Dermatology, Langone Medical Center, New York, NY, USA
| | - David M Ansell
- The Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ralf Paus
- The Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Deptartment of Dermatology, University of Münster, Münster, Germany
| | - Joaquin J Jimenez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
34
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
35
|
Dinarello CA. Review: Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100040301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
For many years, it was thought that bacterial products caused fever via the intermediate production of a host-derived, fever-producing molecule, called endogenous pyrogen (EP). Bacterial products and other fever-producing substances were termed exogenous pyrogens. It was considered highly unlikely that exogenous pyrogens caused fever by acting directly on the hypothalamic thermoregulatory center since there were countless fever-producing microbial products, mostly large molecules, with no common physical structure. In vivo and in vitro, lipopolysaccharides (LPSs) and other microbial products induced EP, subsequently shown to be interleukin-1 (IL-1). The concept of the `endogenous pyrogen' cause of fever gained considerable support when pure, recombinant IL-1 produced fever in humans and in animals at subnanomolar concentrations. Subsequently, recombinant tumor necrosis factor-α (TNF-α), IL-6 and other cytokines were also shown to cause fever and EPs are now termed pyrogenic cytokines. However, the concept was challenged when specific blockade of either IL-1 or TNF activity did not diminish the febrile response to LPS, to other microbial products or to natural infections in animals and in humans. During infection, fever could occur independently of IL-1 or TNF activity. The cytokine-like property of Toll-like receptor (TLR) signal transduction provides an explanation by which any microbial product can cause fever by engaging its specific TLR on the vascular network supplying the thermoregulatory center in the anterior hypothalamus. Since fever induced by IL-1, TNF-α, IL-6 or TLR ligands requires cyclooxygenase-2, production of prostaglandin E2 (PGE 2) and activation of hypothalamic PGE2 receptors provides a unifying mechanism for fever by endogenous and exogenous pyrogens. Thus, fever is the result of either cytokine receptor or TLR triggering; in autoimmune diseases, fever is mostly cytokine mediated whereas both cytokine and TLR account for fever during infection.
Collapse
Affiliation(s)
- Charles A. Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver, Colorado, USA,
| |
Collapse
|
36
|
Mujagic Z, Tigchelaar EF, Zhernakova A, Ludwig T, Ramiro-Garcia J, Baranska A, Swertz MA, Masclee AAM, Wijmenga C, van Schooten FJ, Smolinska A, Jonkers DMAE. A novel biomarker panel for irritable bowel syndrome and the application in the general population. Sci Rep 2016; 6:26420. [PMID: 27263852 PMCID: PMC4893613 DOI: 10.1038/srep26420] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
Biological markers that measure gut health and diagnose functional gastro-intestinal (GI) disorders, such as irritable bowel syndrome (IBS), are lacking. The objective was to identify and validate a biomarker panel associated with the pathophysiology of IBS that discriminates IBS from healthy controls (HC), and correlates with GI symptom severity. In a case-control design, various plasma and fecal markers were measured in a cohort of 196 clinical IBS patients and 160 HC without GI symptoms. A combination of biomarkers, which best discriminates between IBS and HC was identified and validated in an independent internal validation set and by permutation testing. The correlation between the biomarker panel and GI symptom severity was tested in IBS patients and in a general population cohort of 958 subjects. A set of 8 biomarker panel was identified to discriminate IBS from HC with high sensitivity (88.1%) and specificity (86.5%). The results for the IBS subtypes were comparable. Moreover, a moderate correlation was found between the biomarker panel and GI symptom scores in the IBS (r = 0.59, p < 0.001) and the general population cohorts (r = 0.51, p = 0.003). A novel multi-domain biomarker panel has been identified and validated, which correlated moderately to GI symptom severity in IBS and general population subjects.
Collapse
Affiliation(s)
- Zlatan Mujagic
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ettje F. Tigchelaar
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Thomas Ludwig
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department Developmental Physiology and Nutrition, Danone Nutricia Research, Utrecht, The Netherlands
| | - Javier Ramiro-Garcia
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Agnieszka Baranska
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Morris A. Swertz
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ad A. M. Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Cisca Wijmenga
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Frederik J. van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daisy M. A. E. Jonkers
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
37
|
Chau A, Markley J, Juang J, Tsen L. Cytokines in the perinatal period – Part I. Int J Obstet Anesth 2016; 26:39-47. [DOI: 10.1016/j.ijoa.2015.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/28/2015] [Accepted: 12/22/2015] [Indexed: 01/18/2023]
|
38
|
Sun L, Ye RD. Serum amyloid A1: Structure, function and gene polymorphism. Gene 2016; 583:48-57. [PMID: 26945629 DOI: 10.1016/j.gene.2016.02.044] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Inducible expression of serum amyloid A (SAA) is a hallmark of the acute-phase response, which is a conserved reaction of vertebrates to environmental challenges such as tissue injury, infection and surgery. Human SAA1 is encoded by one of the four SAA genes and is the best-characterized SAA protein. Initially known as a major precursor of amyloid A (AA), SAA1 has been found to play an important role in lipid metabolism and contributes to bacterial clearance, the regulation of inflammation and tumor pathogenesis. SAA1 has five polymorphic coding alleles (SAA1.1-SAA1.5) that encode distinct proteins with minor amino acid substitutions. Single nucleotide polymorphism (SNP) has been identified in both the coding and non-coding regions of human SAA1. Despite high levels of sequence homology among these variants, SAA1 polymorphisms have been reported as risk factors of cardiovascular diseases and several types of cancer. A recently solved crystal structure of SAA1.1 reveals a hexameric bundle with each of the SAA1 subunits assuming a 4-helix structure stabilized by the C-terminal tail. Analysis of the native SAA1.1 structure has led to the identification of a competing site for high-density lipoprotein (HDL) and heparin, thus providing the structural basis for a role of heparin and heparan sulfate in the conversion of SAA1 to AA. In this brief review, we compares human SAA1 with other forms of human and mouse SAAs, and discuss how structural and genetic studies of SAA1 have advanced our understanding of the physiological functions of the SAA proteins.
Collapse
Affiliation(s)
- Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, SAR, China.
| |
Collapse
|
39
|
Abstract
Inflammasomes are multi-protein signaling platforms that upon activation trigger the maturation of the pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18, and cell death. Inflammasome sensors detect microbial and host-derived molecules. Here, we review the mechanisms of inflammasome activation triggered by bacterial infection, primarily focusing on two model intracellular bacterial pathogens, Francisella novicida and Salmonella typhimurium. We discuss the complex relationship between bacterial recognition through direct and indirect detection by inflammasome sensors. We highlight regulation mechanisms that potentiate or limit inflammasome activation. We discuss the importance of caspase-1 and caspase-11 in host defense, and we examine the downstream consequences of inflammasome activation within the context of bacterial infections.
Collapse
Affiliation(s)
- Kelly M Storek
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
40
|
Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy. Curr Top Microbiol Immunol 2016; 397:133-60. [PMID: 27460808 DOI: 10.1007/978-3-319-41171-2_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammasomes are cytosolic innate immune surveillance systems that recognize a variety of danger signals, including those from pathogens. Listeria monocytogenes is a Gram-positive intracellular bacterium evolved to live within the harsh environment of the host cytosol. Further, L. monocytogenes can activate a robust cell-mediated immune response that is being harnessed as an immunotherapeutic platform. Access to the cytosol is critical for both causing disease and inducing a protective immune response, and it is hypothesized that the cytosolic innate immune system, including the inflammasome, is critical for both host protection and induction of long-term immunity. L. monocytogenes can activate a variety of inflammasomes via its pore-forming toxin listeriolysin-O, flagellin, or DNA released through bacteriolysis; however, inflammasome activation attenuates L. monocytogenes, and as such, L. monocytogenes has evolved a variety of ways to limit inflammasome activation. Surprisingly, inflammasome activation also impairs the host cell-mediated immune response. Thus, understanding how L. monocytogenes activates or avoids detection by the inflammasome is critical to understand the pathogenesis of L. monocytogenes and improve the cell-mediated immune response generated to L. monocytogenes for more effective immunotherapies.
Collapse
|
41
|
Krzemiński K, Buraczewska M, Miśkiewicz Z, Dąbrowski J, Steczkowska M, Kozacz A, Ziemba A. Effect of ultra-endurance exercise on left ventricular performance and plasma cytokines in healthy trained men. Biol Sport 2015; 33:63-9. [PMID: 26985136 PMCID: PMC4786588 DOI: 10.5604/20831862.1189767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/11/2015] [Accepted: 11/14/2015] [Indexed: 01/19/2023] Open
Abstract
The purpose of this study was to investigate the effect of ultra-endurance exercise on left ventricular (LV) performance and plasma concentration of interleukin (IL)-6, IL-10, IL-18 and tumour necrosis factor alpha (TNF-α) as well as to examine the relationships between exercise-induced changes in plasma cytokines and those in echocardiographic indices of LV function in ultra-marathon runners. Nine healthy trained men (mean age 30±1.0 years) participated in a 100-km ultra-marathon. Heart rate, blood pressure, ejection fraction (EF), fractional shortening (FS), ratio of early (E) to late (A) mitral inflow peak velocities (E/A), ratio of early (E’) to late (A’) diastolic mitral annulus peak velocities (E’/A’) and E-wave deceleration time (DT) were obtained by echocardiography before, immediately after and in the 90th minute of the recovery period. Blood samples were taken before each echocardiographic evaluation. The ultra-endurance exercise caused significant increases in plasma IL-6, IL-10, IL-18 and TNF-α. Echocardiography revealed significant decreases in both E and the E/A ratio immediately after exercise, without any significant changes in EF, FS, DT or the E/E’ ratio. At the 90th minute of the recovery period, plasma TNF-α and the E/A ratio did not differ significantly from the pre-exercise values, whereas FS was significantly lower than before and immediately after exercise. The increases in plasma TNF-α correlated with changes in FS (r=0.73) and DT (r=-0.73). It is concluded that ultra-endurance exercise causes alterations in LV diastolic function. The present data suggest that TNF-α might be involved in this effect.
Collapse
Affiliation(s)
- K Krzemiński
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - M Buraczewska
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Z Miśkiewicz
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - J Dąbrowski
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - M Steczkowska
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - A Kozacz
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - A Ziemba
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
Nadeau-Vallée M, Obari D, Quiniou C, Lubell WD, Olson DM, Girard S, Chemtob S. A critical role of interleukin-1 in preterm labor. Cytokine Growth Factor Rev 2015; 28:37-51. [PMID: 26684042 DOI: 10.1016/j.cytogfr.2015.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022]
Abstract
Preterm birth (PTB) is a leading cause of neonatal mortality and morbidity worldwide, and represents a heavy economic and social burden. Despite its broad etiology, PTB has been firmly linked to inflammatory processes. Pro-inflammatory cytokines are produced in gestational tissues in response to stressors and can prematurely induce uterine activation, which precedes the onset of preterm labor. Of all cytokines implicated, interleukin (IL)-1 has been largely studied, revealing a central role in preterm labor. However, currently approved IL-1-targeting therapies have failed to show expected efficacy in pre-clinical studies of preterm labor. Herein, we (a) summarize animal and human studies in which IL-1 or IL-1-targeting therapeutics are implicated with preterm labor, (b) focus on novel IL-1-targeting therapies and diagnostic tests, and (c) develop the case for commercialization and translation means to hasten their development.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Dima Obari
- Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton AB TG6 2S2, Canada
| | - Sylvie Girard
- Departments of Obstetrics and Gynecology, CHU Sainte-Justine Research Centre, Montréal H3T 1C5, Canada.
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada.
| |
Collapse
|
43
|
Afonina I, Müller C, Martin S, Beyaert R. Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. Immunity 2015; 42:991-1004. [DOI: 10.1016/j.immuni.2015.06.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Indexed: 12/22/2022]
|
44
|
Netea MG, van de Veerdonk FL, van der Meer JWM, Dinarello CA, Joosten LAB. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol 2014; 33:49-77. [PMID: 25493334 DOI: 10.1146/annurev-immunol-032414-112306] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the exception of the IL-1 receptor antagonist, all IL-1 family cytokines lack a signal peptide and require proteolytic processing into an active molecule. One such unique protease is caspase-1, which is activated by protein platforms called the inflammasomes. However, increasing evidence suggests that inflammasomes and caspase-1 are not the only mechanism for processing IL-1 cytokines. IL-1 cytokines are often released as precursors and require extracellular processing for activity. Here we review the inflammasome-independent enzymatic processes that are able to activate IL-1 cytokines, paying special attention to neutrophil-derived serine proteases, which subsequently induce inflammation and modulate host defense. The inflammasome-independent processing of IL-1 cytokines has important consequences for understanding inflammatory diseases, and it impacts the design of IL-1-based modulatory therapies.
Collapse
|
45
|
Sharma AA, Jen R, Kan B, Sharma A, Marchant E, Tang A, Gadawski I, Senger C, Skoll A, Turvey SE, Sly LM, Côté HCF, Lavoie PM. Impaired NLRP3 inflammasome activity during fetal development regulates IL-1β production in human monocytes. Eur J Immunol 2014; 45:238-49. [PMID: 25311115 DOI: 10.1002/eji.201444707] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/04/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-1β (IL-1β) production is impaired in cord blood monocytes. However, the mechanism underlying this developmental attenuation remains unclear. Here, we analyzed the extent of variability within the Toll-like receptor (TLR)/NLRP3 inflammasome pathways in human neonates. We show that immature low CD14 expressing/CD16(pos) monocytes predominate before 33 weeks of gestation, and that these cells lack production of the pro-IL-1β precursor protein upon LPS stimulation. In contrast, high levels of pro-IL-1β are produced within high CD14 expressing monocytes, although these cells are unable to secrete mature IL-1β. The lack of secreted IL-1β in these monocytes parallels a reduction of NLRP3 induction following TLR stimulation resulting in a lack of caspase-1 activity before 29 weeks of gestation, whereas expression of the apoptosis-associated speck-like protein containing a CARD and function of the P2×7 receptor are preserved. Our analyses also reveal a strong inhibitory effect of placental infection on LPS/ATP-induced caspase-1 activity in cord blood monocytes. Lastly, secretion of IL-1β in preterm neonates is restored to adult levels during the neonatal period, indicating rapid maturation of these responses after birth. Collectively, our data highlight important developmental mechanisms regulating IL-1β responses early in gestation, in part due to a downregulation of TLR-mediated NLRP3 expression. Such mechanisms may serve to limit potentially damaging inflammatory responses in a developing fetus.
Collapse
Affiliation(s)
- Ashish A Sharma
- Child & Family Research Institute, Vancouver, BC, Canada; Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tsuchiya K, Hara H, Fang R, Hernandez-Cuellar E, Sakai S, Daim S, Chen X, Dewamitta SR, Qu H, Mitsuyama M, Kawamura I. The adaptor ASC exacerbates lethal Listeria monocytogenes infection by mediating IL-18 production in an inflammasome-dependent and -independent manner. Eur J Immunol 2014; 44:3696-707. [PMID: 25251560 DOI: 10.1002/eji.201444673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/19/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes induces the formation of inflammasomes and subsequent caspase-1 activation, and the adaptor apoptosis-associated speck-like protein containing a CARD (ASC) is crucial for this response. However, the role of ASC in L. monocytogenes infection in vivo is unclear. In this study, we demonstrate that ASC has a detrimental effect on host defense against L. monocytogenes infection at a lethal dose (10(6) CFU), but not at a sublethal dose (10(3) CFU). During lethal L. monocytogenes infection, serum levels of IL-18 and IL-10 were markedly elevated in WT mice, but not in ASC KO mice. IL-18 KO mice were more resistant to lethal L. monocytogenes infection than WT mice and had lower levels of serum IL-10. Furthermore, blockade of IL-10 receptor resulted in a reduction in bacterial counts, suggesting that ASC and IL-18 might exacerbate L. monocytogenes infection through induction of IL-10. We noticed that maturation of IL-18 during lethal infection was partially independent of caspase-1, but was critically dependent on ASC. ASC was required for the elevation of serum neutrophil serine protease activity, which correlated with caspase-1-independent IL-18 maturation and IL-10 production. Collectively, these results suggest that ASC plays a detrimental role in lethal L. monocytogenes infection through IL-18 production in an inflammasome-dependent and -independent manner.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Endo Y, Blinova K, Romantseva T, Golding H, Zaitseva M. Differences in PGE2 production between primary human monocytes and differentiated macrophages: role of IL-1β and TRIF/IRF3. PLoS One 2014; 9:e98517. [PMID: 24870145 PMCID: PMC4037220 DOI: 10.1371/journal.pone.0098517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/04/2014] [Indexed: 12/16/2022] Open
Abstract
Prostaglandin E2 (PGE2) is induced in vivo by bacterial products including TLR agonists. To determine whether PGE2 is induced directly or via IL-1β, human monocytes and macrophages were cultured with LPS or with Pam3CSK4 in presence of caspase-1 inhibitor, ZVAD, or IL-1R antagonist, Kineret. TLR agonists induced PGE2 in macrophages exclusively via IL-1β-independent mechanisms. In contrast, ZVAD and Kineret reduced PGE2 production in LPS-treated (but not in Pam3CSK4-treated) monocytes, by 30–60%. Recombinant human IL-1β augmented COX-2 and mPGES-1 mRNA and PGE2 production in LPS-pretreated monocytes but not in un-primed or Pam3CSK4-primed monocytes. This difference was explained by the finding that LPS but not Pam3CSK4 induced phosphorylation of IRF3 in monocytes suggesting activation of the TRIF signaling pathway. Knocking down TRIF, TRAM, or IRF3 genes by siRNA inhibited IL-1β-induced COX-2 and mPGES-1 mRNA. Blocking of TLR4 endocytosis during LPS priming prevented the increase in PGE2 production by exogenous IL-1β. Our data showed that TLR2 agonists induce PGE2 in monocytes independently from IL-1β. In the case of TLR4, IL-1β augments PGE2 production in LPS-primed monocytes (but not in macrophages) through a mechanism that requires TLR4 internalization and activation of the TRIF/IRF3 pathway. These findings suggest a key role for blood monocytes in the rapid onset of fever in animals and humans exposed to bacterial products and some novel adjuvants.
Collapse
Affiliation(s)
- Yukinori Endo
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Ksenia Blinova
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Tatiana Romantseva
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Hana Golding
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Marina Zaitseva
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Hussainzada N, Lewis JA, Baer CE, Ippolito DL, Jackson DA, Stallings JD. Whole adult organism transcriptional profiling of acute metal exposures in male zebrafish. BMC Pharmacol Toxicol 2014; 15:15. [PMID: 24612858 PMCID: PMC4007779 DOI: 10.1186/2050-6511-15-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
Background A convergence of technological breakthroughs in the past decade has facilitated the development of rapid screening tools for biomarkers of toxicant exposure and effect. Platforms using the whole adult organism to evaluate the genome-wide response to toxicants are especially attractive. Recent work demonstrates the feasibility of this approach in vertebrates using the experimentally robust zebrafish model. In the present study, we evaluated gene expression changes in whole adult male zebrafish following an acute 24 hr high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate concentrations corresponding to their respective 96 hr LC20, LC40 and LC60. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal. Results Comparative analysis identified subsets of differentially expressed transcripts both overlapping and unique to each metal. Application of gene ontology (GO) and transcription factor (TF) enrichment algorithms revealed a number of key biological processes perturbed by metal poisonings and the master transcriptional regulators mediating gene expression changes. Metal poisoning differentially activated biological processes associated with ribosome biogenesis, proteosomal degradation, and p53 signaling cascades, while repressing oxygen-generating pathways associated with amino acid and lipid metabolism. Despite appreciable effects on gene regulation, nickel poisoning did not induce any morphological alterations in male zebrafish organs and tissues. Histopathological effects of cobalt remained confined to the olfactory system, while chromium targeted the gills, pharynx, and intestinal mucosa. A number of enriched transcription factors mediated the observed gene response to metal poisoning, including known targets such as p53, HIF1α, and the myc oncogene, and novel regulatory factors such as XBP1, GATA6 and HNF3β. Conclusions This work uses an experimentally innovative approach to capture global responses to metal poisoning and provides mechanistic insights into metal toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan D Stallings
- Biomarkers Program, US Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland 21702-5010, USA.
| |
Collapse
|
50
|
Berghe TV, Demon D, Bogaert P, Vandendriessche B, Goethals A, Depuydt B, Vuylsteke M, Roelandt R, Van Wonterghem E, Vandenbroecke J, Choi SM, Meyer E, Krautwald S, Declercq W, Takahashi N, Cauwels A, Vandenabeele P. Simultaneous Targeting of IL-1 and IL-18 Is Required for Protection against Inflammatory and Septic Shock. Am J Respir Crit Care Med 2014; 189:282-91. [DOI: 10.1164/rccm.201308-1535oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|