1
|
A mouse model of disuse osteoporosis based on a movable noninvasive 3D-printed unloading device. J Orthop Translat 2022; 33:1-12. [PMID: 35070713 PMCID: PMC8753063 DOI: 10.1016/j.jot.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Objective Disuse osteoporosis is a major type of bone loss disease characterized by regional bone loss and microstructure alterations. The condition is induced by a marked decrease in weight bearing over time, which usually occurs due to limb immobilization, therapeutic bed rest or space flight. To date, the most commonly used mouse model of disuse osteoporosis is constructed using the classical tail suspension method, which causes tail injury, movement inconvenience and mental stress. This study aimed to propose a noninvasive and effective method for the establishment of a mouse model of disuse osteoporosis and compared this method with the tail suspension method. Methods 3D printing technology was applied to construct a movable unloading device. A movable noninvasive 3D-printed unloading device (3D-ULD) was used to unload the hindlimbs of the mice. The bone microstructure and bone volume of unloaded femurs were analysed through micro-CT and H&E staining, and von Kossa staining was performed for the detection of bone mineralization in the femurs. TRAP staining, IHC-CTSK and Q-PCR were performed for evaluation of the bone resorption ability, and double labelling, IHC-DMP1, ALP staining and Q-PCR assays were conducted to assess the osteogenic ability. The mechanical properties of disused bone were detected using the three-point bending test. The body, thymus and spleen weights of the mice were recorded, and the serum corticosterone level of the mice was assayed by enzyme-linked immunosorbent assay (ELISA). Results The micro-CT results showed significant trabecular bone loss, and 3D-ULD induced cortical bone loss in disused femurs as well as a decrease in the bone mineral density in the unloaded mice. TRAP staining and IHC-CTSK staining results indicated increases in the osteoclast number per bone perimeter (Oc.N/B.Pm) and the osteoclast surface per bone surface (Oc.S/BS) in the unloaded mice. The Ctsk, Trap and Mmp9 expression levels were significantly increased in the unloaded mice. Decreases in the ratio of the mineral surface to bone surface (MS/BS), mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS) were found in unloaded mice in the 3D-ULD by double labelling. The IHC-DMP1 and ALP staining results showed decreases in the osteoblast number per bone perimeter (Ob.N/B.Pm) and osteoblast surface per bone surface (Ob. S/BS) in the mice unloaded in the 3D-ULD, and these mice also showed decreased Runx2, Alp and Dmp1 expression levels. Three-point bending test results showed that the mechanical properties were attenuated in the disused femurs of the unloaded mice. Less skin rupture and rare alterations in the thymus and spleen weights were found in the unloaded mice in the 3D-ULD. The ELISA results indicated the serum corticosterone level of the mice unloaded in the 3D-ULD was significantly lower than that of mice suspended by their tail. Conclusion This new disuse osteoporosis mouse model based on 3D-ULD could induce effective disuse bone loss with significantly alleviated side effects. Translational potential of this article This study proposes a new disuse osteoporosis mouse model based on 3D-ULD that can be used to better understand disuse bone loss in the future.
Collapse
|
2
|
Nozaka K, Miyakoshi N, Saito H, Kijima H, Chida S, Tsuchie H, Shimada Y. Effectiveness of Ilizarov external fixation in elderly patients with pilon fractures. J Orthop Sci 2021; 26:254-260. [PMID: 32223990 DOI: 10.1016/j.jos.2020.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/28/2020] [Accepted: 02/25/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Pilon fractures are associated with soft tissue complications such as skin necrosis, and deep infections have been reported very often. This study retrospectively compared the treatment effects of Ilizarov external fixation and of internal fixation methods in elderly patients with pilon fractures. METHODS A total of 37 patients >60 years old with pilon fractures (AO classification type 43) were investigated. Patients were treated either with internal fixation (n = 15) or Ilizarov external fixation (n = 22). The patients' mean age was 74.2 (range, 60-78) years in the internal fixation group and 76.1 (range, 60-82) years in the Ilizarov external fixation group. Many patients in the internal fixation group received toe-touch to 1/3 partial weight-bearing at 2-4 weeks postoperatively and full weight-bearing by 6-8 weeks postoperatively. Many patients in the Ilizarov external fixation group received partial weight-bearing (as tolerated) 1 day postoperatively, 1/2 partial weight-bearing at 2 weeks postoperatively, and full weight-bearing at 4 weeks postoperatively. RESULTS The mean duration of hospitalization was 79.1 ± 30.1 days for the internal fixation group and 29.1 ± 18.8 days for the Ilizarov external fixation group (p < 0.05). Bone mineral density (T-score) was 2.6 ± 0.7 for the internal fixation group and 3.6 ± 1.2 for the Ilizarov external fixation group (p < 0.05). The incidence of skin disorders that required additional surgical treatment was 33.3% (5/15 patients) in the internal fixation group and 0% (0/22 patients) in the Ilizarov external fixation group (p < 0.05). CONCLUSIONS In elderly patients with periarticular fractures of the ankle, those who underwent Ilizarov external fixation had a shorter duration of hospitalization and fewer complications than those who underwent internal fixation.
Collapse
Affiliation(s)
- Koji Nozaka
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Hidetomo Saito
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Hiroaki Kijima
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Shuichi Chida
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| |
Collapse
|
3
|
Nishimura H, Kawasaki M, Tsukamoto M, Menuki K, Suzuki H, Matsuura T, Baba K, Motojima Y, Fujitani T, Ohnishi H, Yamanaka Y, Kosugi K, Okada Y, Tokuda K, Tajima T, Yoshioka T, Okimoto N, Ueta Y, Sakai A. Transient receptor potential vanilloid 1 and 4 double knockout leads to increased bone mass in mice. Bone Rep 2020; 12:100268. [PMID: 32373678 PMCID: PMC7191598 DOI: 10.1016/j.bonr.2020.100268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Calcium balance is important in bone homeostasis. The transient receptor potential vanilloid (TRPV) channel is a nonselective cation channel permeable to calcium and is activated by various physiological and pharmacological stimuli. TRPV1 and TRPV4, in particular, have important roles in intracellular Ca2+ signaling and extracellular calcium homeostasis in bone cells. TRPV1 and TRPV4 separately mediate osteoclast and osteoblast differentiation, and deficiency in any of these channels leads to increased bone mass. However, it remains unknown whether bone mass increases in the absence of both TRPV1 and TRPV4. In this study, we used TRPV1 and TRPV4 double knockout (DKO) mice to evaluate their bone mass in vivo, and osteoclast and osteoblast differentiation in vitro. Our results showed that DKO mice and wild type (WT) mice had no significant difference in body weight and femur length. However, the results of dual-energy X-ray absorption, microcomputed tomography, and bone histomorphometry clearly showed that DKO mice had higher bone mass than WT mice. Furthermore, DKO mice had less multinucleated osteoclasts and had lower bone resorption. In addition, the results of cell culture using flushed bone marrow from mouse femurs and tibias showed that osteoclast differentiation was suppressed, whereas osteoblast differentiation was promoted in DKO mice. In conclusion, our results suggest that the increase in bone mass in DKO mice was induced not only by the suppression of osteoclast differentiation and activity but also by the augmentation of osteoblast differentiation and activity. Our findings reveal that both the single deficiency of TRPVs and the concurrent deficiency of TRPVs result in an increase in bone mass. Furthermore, our data showed that DKO mice and single KO mice had varying approaches to osteoclast and osteoblast differentiation in vitro, and therefore, it is important to conduct further studies on TRPVs regarding the increase in bone mass to explore not only individual but also a combination of TRPVs. Knockout of either TRPV1 or TRPV4 results in increased bone mass in mice. This study evaluates the effects of TRPV1 and TRPV4 double knockout (DKO) in mice. Concurrent TRPV1 and TRPV4 deficiency increases mouse bone mass. TRPV1 and TRPV4 DKO suppresses osteoclast differentiation and activity. TRPV1 and TRPV4 DKO enhances osteoblast differentiation and activity.
Collapse
Key Words
- ALP, alkaline phosphatase
- BMD, bone mineral density
- BMSCs, bone marrow mesenchymal stem cells
- Bone histomorphometry
- CB, cannabinoid
- CT, computed tomography
- Cell culture
- DKO, double knock out
- DXA, dual-energy X-ray absorption
- MNCs, multinucleated cells
- Micro-CT
- Osteogenesis
- PCR, polymerase chain reaction
- POc, preosteoclast
- Preosteoclast
- RANK, receptor activator of nuclear factor-kappa B
- RANKL, receptor activator of nuclear factor-kappa B ligand
- TRACP, tartrate-resistant acid phosphatase
- TRPV, transient receptor potential vanilloid
- Transient receptor potential vanilloid
- V1KO, TRPV1 knock out
- V4KO, TRPV4 knock out
- WT, wild type
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kunitaka Menuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kazuhiko Baba
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuhito Motojima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Teruaki Fujitani
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kenji Kosugi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kotaro Tokuda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Takafumi Tajima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Toru Yoshioka
- Department of Orthopaedics, Shimura Hospital, 3-13 Funairimachi Naka-ku, Hiroshima 730-0841, Japan
| | - Nobukazu Okimoto
- Okimoto Clinic, 185-4 Yutakamachikubi, Kure, Hiroshima 734-0304, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
4
|
Nozaka K, Miyakoshi N, Saito H, Chida S, Tsuchie H, Yuasa Y, Mita M, Shimada Y. Advantages of Ilizarov External Fixation in an Elderly Patient with Pilon Fracture with Severe Soft Tissue Injury and Severe Osteoporosis: A Case Report. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/ojo.2019.91002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Marrella A, Lee TY, Lee DH, Karuthedom S, Syla D, Chawla A, Khademhosseini A, Jang HL. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:362-376. [PMID: 30100812 PMCID: PMC6082025 DOI: 10.1016/j.mattod.2017.10.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Blood vessels and nerve fibers are distributed throughout the entirety of skeletal tissue, and play important roles during bone development and fracture healing by supplying oxygen, nutrients, and cells. However, despite the successful development of bone mimetic materials that can replace damaged bone from a structural point of view, most of the available bone biomaterials often do not induce sufficient formation of blood vessels and nerves. In part, this is due to the difficulty of integrating and regulating multiple tissue types within artificial materials, which causes a gap between native skeletal tissue. Therefore, understanding the anatomy and underlying interaction mechanisms of blood vessels and nerve fibers in skeletal tissue is important to develop biomaterials that can recapitulate its complex microenvironment. In this perspective, we highlight the structure and osteogenic functions of the vascular and nervous system in bone, in a coupled manner. In addition, we discuss important design criteria for engineering vascularized, innervated, and neurovascularized bone implant materials, as well as recent advances in the development of such biomaterials. We expect that bone implant materials with neurovascularized networks can more accurately mimic native skeletal tissue and improve the regeneration of bone tissue.
Collapse
Affiliation(s)
- Alessandra Marrella
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Tae Yong Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dong Hoon Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Sobha Karuthedom
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Denata Syla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Liu Y, Zheng G, Liu L, Wang Z, Wang Y, Chen Q, Luo E. Inhibition of osteogenesis surrounding the titanium implant by CGRP deficiency. Connect Tissue Res 2018; 59:147-156. [PMID: 28402679 DOI: 10.1080/03008207.2017.1317759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have suggested one of the neurotransmitters, calcitonin gene-related peptide (CGRP), modulates local regulation of bone metabolism; however, the regulating signaling pathway is still being explored. The objective of this study was to determine whether CGRP deficiency affects the osteogenesis surrounding titanium implants in vivo. Titanium screws were implanted in 72 adult rats, which were divided into three groups randomly: Sham, inferior alveolar neurectomy (IAN), and IAN+CGRP. Saline solution containing CGRP (concentration: 100 nmol/L) was injected into the area surrounding the implants in the IAN+CGRP group every day post operation. According to histological observations and Micro-CT, osteogenesis surrounding the implant was suppressed in the IAN group compared to that in the Sham and IAN+CGRP groups; the highest degree of osteogenesis was observed in the Sham group. This effect was also proved via the gene expressions of osteocalcin and runt-related transcription factor 2 surrounding the implant by real-time (RT) PCR analysis. In addition, through immunofluorescence staining and RT-PCR analysis, levels of CGRP and β-catenin were also reduced in the IAN group, while the highest expression was observed in the Sham group (p < 0.05). Our results collectively suggest that the titanium implant bone model established by IAN exhibited CGRP deficiency and reduced osteogenesis surrounding the implant. Additionally, the expression analyses suggest that the canonical Wnt signaling pathway could be involved in this process of bone metabolism in vivo.
Collapse
Affiliation(s)
- Yao Liu
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Guangsen Zheng
- b Guangdong Provincial Key Laboratory of Oral Diseases , Sun Yat-Sen University , Guangzhou , China
| | - Li Liu
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Zhi Wang
- b Guangdong Provincial Key Laboratory of Oral Diseases , Sun Yat-Sen University , Guangzhou , China
| | - Yiyao Wang
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Qianming Chen
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - En Luo
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| |
Collapse
|
7
|
Vegger JB, Brüel A, Brent MB, Thomsen JS. Disuse osteopenia induced by botulinum toxin is similar in skeletally mature young and aged female C57BL/6J mice. J Bone Miner Metab 2018; 36:170-179. [PMID: 28365811 DOI: 10.1007/s00774-017-0830-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/19/2017] [Indexed: 11/24/2022]
Abstract
Osteopenia and osteoporosis predominately occur in the fully grown skeleton. However, it is unknown whether disuse osteopenia in skeletally mature, but growing, mice resembles that of fully grown mice. Twenty-four 16-week-old (young) and eighteen 44-week-old (aged) female C57BL/6J mice were investigated. Twelve young and nine aged mice were injected with botulinum toxin in one hind limb; the remaining mice served as controls. The mice were euthanized after 3 weeks of disuse. The femora were scanned by micro-computed tomography (µCT) and bone strength was determined by mechanically testing the femoral mid-diaphysis and neck. At the distal femoral metaphysis, the loss of trabecular bone volume fraction (BV/TV) differed between the young and aged mice. However, at the distal femoral epiphysis, no age-dependent differences were observed. Thinning of the trabeculae was not affected by the age of the mice at either the distal femoral metaphysis or the epiphysis. Furthermore, the aged mice lost more bone strength at the femoral mid-diaphysis, but not at the femoral neck, compared to the young mice. In general, the bone loss induced by botulinum toxin did not differ substantially between young and aged mice. Therefore, the loss of bone in young mice resembles that of aged mice, even though they are not fully grown.
Collapse
Affiliation(s)
- Jens Bay Vegger
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Jesper Skovhus Thomsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| |
Collapse
|
8
|
Okuma KF, Menuki K, Tsukamoto M, Tajima T, Fukuda H, Okada Y, Mori T, Tsuchiya T, Kawamoto T, Yoshida Y, Uchida S, Sakai A. Disruption of the Aldehyde Dehydrogenase 2 Gene Results in No Increase in Trabecular Bone Mass Due to Skeletal Loading in Association with Impaired Cell Cycle Regulation Through p21 Expression in the Bone Marrow Cells of Mice. Calcif Tissue Int 2017; 101:328-340. [PMID: 28474171 PMCID: PMC5544803 DOI: 10.1007/s00223-017-0285-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 12/17/2022]
Abstract
Approximately 45% of people of East Asian descent have the inactive aldehyde dehydrogenase 2 (ALDH2) phenotype. The enzyme defect of ALDH2 has been found to adversely influence the risk of osteoporosis. The aim of this study was to clarify the effect of skeletal loading on trabecular bone structure and dynamics in Aldh2-disrupted mice in the absence of alcohol consumption. Four-week-old male Aldh2-/- (KO) and Aldh2+/+ (WT) mice were divided into a ground control (GC) group and a climbing exercise (CE) group in each genotype. The trabecular bone mineral density of the distal femur measured by peripheral quantitative computed tomography in the wild-type CE (WTCE) group was significantly higher than that in the wild-type GC (WTGC) group; however, there was no significant difference between the knockout CE (KOCE) and knockout GC (KOGC) groups. Bone histomorphometry revealed that osteogenic parameters were significantly increased in the WTCE group compared with the WTGC group, but not increased in the KOCE group compared with the KOGC group. Quantitative reverse transcriptase polymerase chain reaction and flow cytometry revealed that mRNA and protein expression levels of p21 were significantly decreased in the WTCE group compared with those in the WTGC group, while these differences were not observed between the KOGC and KOCE groups. This study provides the first in vivo evidence that p21 expression in the bone marrow is not decreased after skeletal loading and osteoblast differentiation is impaired in the absence of Aldh2 gene.
Collapse
Affiliation(s)
- Kayoko Furukawa Okuma
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Kunitaka Menuki
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Manabu Tsukamoto
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Takafumi Tajima
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Hokuto Fukuda
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Yasuaki Okada
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Toshiharu Mori
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Takuto Tsuchiya
- 0000 0004 0374 5913grid.271052.3Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshihiro Kawamoto
- 0000 0004 0374 5913grid.271052.3Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhiro Yoshida
- 0000 0004 0374 5913grid.271052.3Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Soshi Uchida
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, Wakamatsu Hospital for the University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| |
Collapse
|
9
|
Tsukamoto M, Menuki K, Murai T, Hatakeyama A, Takada S, Furukawa K, Sakai A. Elcatonin prevents bone loss caused by skeletal unloading by inhibiting preosteoclast fusion through the unloading-induced high expression of calcitonin receptors in bone marrow cells. Bone 2016; 85:70-80. [PMID: 26851124 DOI: 10.1016/j.bone.2016.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/20/2022]
Abstract
This study aimed to clarify whether elcatonin (EL) has a preventive action on bone dynamics in skeletal unloading. Seven-week-old male C57BL/6J mice with either ground control (GC) or tail suspension (TS) were administered EL 20U/kg or a vehicle (veh) three times per week and assigned to one of the following four groups: GCEL, GCveh, TSEL, and TSveh. Blood samples and bilateral femurs and tibias of the mice were obtained for analysis. After 7days of unloading, the trabecular bone mineral density in the distal femur obtained via peripheral quantitative computed tomography and the trabecular bone volume were significantly higher in the TSEL group than in the TSveh group. The bone resorption histomorphometric parameters, such as the osteoclast surface and osteoclast number, were significantly suppressed in the TSEL mice, whereas the number of preosteoclasts was significantly increased. The plasma level of tartrate-resistant acid phosphatase-5b (TRACP-5b) was significantly lower in the TSEL group than in all other groups. In the bone marrow cell culture, the number of TRACP-positive (TRACP(+)) multinucleated cells was significantly lower in the TSEL mice than in the TSveh mice, whereas the number of TRACP(+) mononucleated cells was higher in the TSEL mice. On day 4, the expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), cathepsin K and d2 isoform of vacuolar ATPase V0 domain (ATP6V0D2) mRNA in the bone marrow cells in the TSEL mice was suppressed, and the expression of calcitonin receptor (Calcr) mRNA on day 1 and Calcr antigen on day 4 were significantly higher in the TSveh mice than in the GCveh mice. EL prevented the unloading-induced bone loss associated with the high expression of Calcr in the bone marrow cells of mouse hindlimbs after tail suspension, and it suppressed osteoclast development from preosteoclasts to mature osteoclasts through bone-resorbing activity. This study of EL-treated unloaded mice provides the first in vivo evidence of a physiological role of EL in the inhibition of the differentiation process from preosteoclasts to osteoclasts.
Collapse
Affiliation(s)
- Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Kunitaka Menuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Teppei Murai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Akihisa Hatakeyama
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Shinichiro Takada
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Kayoko Furukawa
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
10
|
Komori T. Animal models for osteoporosis. Eur J Pharmacol 2015; 759:287-94. [PMID: 25814262 DOI: 10.1016/j.ejphar.2015.03.028] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/08/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
The major types of osteoporosis in humans are postmenopausal osteoporosis, disuse osteoporosis, and glucocorticoid-induced osteoporosis. Animal models for postmenopausal osteoporosis are generated by ovariectomy. Bone loss occurs in estrogen deficiency due to enhanced bone resorption and impaired osteoblast function. Estrogen receptor α induces osteoclast apoptosis, but the mechanism for impaired osteoblast function remains to be clarified. Animal models for unloading are generated by tail suspension or hind limb immobilization by sciatic neurectomy, tenotomy, or using plaster cast. Unloading inhibits bone formation and enhances bone resorption, and the involvement of the sympathetic nervous system in it needs to be further investigated. The osteocyte network regulates bone mass by responding to mechanical stress. Osteoblast-specific BCL2 transgenic mice, in which the osteocyte network is completely disrupted, can be a mouse model for the evaluation of osteocyte functions. Glucocorticoid treatment inhibits bone formation and enhances bone resorption, and markedly reduces cancellous bone in humans and large animals, but not consistently in rodents.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| |
Collapse
|
11
|
Different effects of implanting sensory nerve or blood vessel on the vascularization, neurotization, and osteogenesis of tissue-engineered bone in vivo. BIOMED RESEARCH INTERNATIONAL 2014; 2014:412570. [PMID: 25101279 PMCID: PMC4101209 DOI: 10.1155/2014/412570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/02/2014] [Indexed: 12/31/2022]
Abstract
To compare the different effects of implanting sensory nerve tracts or blood vessel on the osteogenesis, vascularization, and neurotization of the tissue-engineered bone in vivo, we constructed the tissue engineered bone and implanted the sensory nerve tracts (group SN), blood vessel (group VB), or nothing (group Blank) to the side channel of the bone graft to repair the femur defect in the rabbit. Better osteogenesis was observed in groups SN and VB than in group Blank, and no significant difference was found between groups SN and VB at 4, 8, and 12 weeks postoperatively. The neuropeptides expression and the number of new blood vessels in the bone tissues were increased at 8 weeks and then decreased at 12 weeks in all groups and were highest in group VB and lowest in group Blank at all three time points. We conclude that implanting either blood vessel or sensory nerve tract into the tissue-engineered bone can significantly enhance both the vascularization and neurotization simultaneously to get a better osteogenesis effect than TEB alone, and the method of implanting blood vessel has a little better effect of vascularization and neurotization but almost the same osteogenesis effect as implanting sensory nerve.
Collapse
|
12
|
Feng L, Wu H, E L, Wang D, Feng F, Dong Y, Liu H, Wang L. Effects of vascular endothelial growth factor 165 on bone tissue engineering. PLoS One 2013; 8:e82945. [PMID: 24376611 PMCID: PMC3869747 DOI: 10.1371/journal.pone.0082945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022] Open
Abstract
To study the relationship between vascular endothelial growth factor (VEGF) and formation and repair of engineering bone, second-generation bone marrow stromal cells (BMSCs) of New Zealand white rabbits that were separated in vitro were transfected with VEGF 165 gene vectors by adenovirus to detect gene expressions. Transfected BMSCs and β-tricalcium phosphate material were complexed and implanted at the femoral injury sites of the study group (n = 12), and the control group (n = 12) were implanted with engineering bones that were not transfected with VEGF. Femoral recoveries of the two groups were observed on the 15th, 30th, 45th and 60th days, and their vascularization and ossification statuses were observed by immunohistochemical methods. The BMSCs transfected with VEGF highly expressed VEGF genes and excreted VEGF. The two groups both experienced increased vascularization and bone volume after implantation (t = 7.92, P<0.05), and the increases of the study group were significantly higher than those of the control group (t = 6.92, P<0.05). VEGF is clinically applicable because it can accelerate the formation and repair of engineering bone by promoting vascularization and ossification.
Collapse
Affiliation(s)
- Lin Feng
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
- * E-mail:
| | - Hao Wu
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Lingling E
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Dongsheng Wang
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Fukui Feng
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Yuwan Dong
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Hongchen Liu
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Lili Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of LMU, Jinzhou, P. R. China
| |
Collapse
|
13
|
Aryal ACS, Miyai K, Hayata T, Notomi T, Nakamoto T, Pawson T, Ezura Y, Noda M. Nck1 deficiency accelerates unloading-induced bone loss. J Cell Physiol 2013; 228:1397-403. [PMID: 23280595 DOI: 10.1002/jcp.24317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/19/2012] [Indexed: 11/06/2022]
Abstract
Mechanical stress is an important signal to determine the levels of bone mass. Unloading-induced osteoporosis is a critical issue in bed-ridden patients and astronauts. Many molecules have been suggested to be involved in sensing mechanical stress in bone, though the mechanisms involved in this phenomenon are not fully understood. Nck1 is an adaptor protein known to mediate signaling from plasma membrane-activated receptors to cytosolic effectors regulating actin cytoskeleton remodeling. Nck1 has also been implicated in cellular responses to endoplasmic reticulum stress. In vitro, in case of cell stress the actin cytoskeleton is disrupted and in such cases Nck1 has been reported to enter the nucleus of the cells to mediate the nuclear actin polymerization. However, the role of Nck1 in vivo during the bone response to mechanical stimuli is unknown. The purpose of this study is to examine the role of Nck1 in unloading-induced bone loss in vivo. Sciatic and femoral nerve resection was conducted. Neurectomy-based unloading enhanced Nck1 gene expression in bone about twofold. Using the Nck1 deficient mice and control Nck1+/+, effects of neurectomy-based unloading on bone structure were examined. Unloading reduced bone volume in wild type mice by 30% whereas the levels in bone loss were exacerbated to 50% in Nck1 deficient mice due to neurectomy after 4 weeks. These data demonstrate that Nck1 gene deficiency accelerates the mechanical unloading-induced bone loss suggesting Nck1 to be a crucial molecule in mechanical stress mediated regulation in bone metabolism.
Collapse
Affiliation(s)
- A C Smriti Aryal
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sakai A, Oshige T, Zenke Y, Yamanaka Y, Nagaishi H, Nakamura T. Unipedal standing exercise and hip bone mineral density in postmenopausal women: a randomized controlled trial. J Bone Miner Metab 2009; 28:42-8. [PMID: 19521657 DOI: 10.1007/s00774-009-0100-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/29/2009] [Indexed: 11/25/2022]
Abstract
The aim of this study was to test the effect of unipedal standing exercise on bone mineral density (BMD) of the hip in postmenopausal women. Japanese postmenopausal women (n = 94) were assigned at random to an exercise or control group (no exercise). The 6-month exercise program consisted of standing on a single foot for 1 min per leg 3 times per day. BMD of the hip was measured by dual-energy X-ray absorptiometry. There was no significant difference in age and baseline hip BMD between the exercise group (n = 49) and control group (n = 45). Exercise did not improve hip BMD compared with the control group. Stepwise regression analysis identified old age as a significant determinant (p = 0.034) of increased hip total BMD at 6 months after exercise. In 31 participants aged >/=70 years, the exercise group (n = 20) showed significant increase in the values of hip BMD at the areas of total (p = 0.008), intertrochanteric (p = 0.023), and Ward's triangle (p = 0.032). The same parameters were decreased in the control group (n = 11). The percent changes in hip BMD of the exercise group were not significantly different from those of the control group either in the participants with low baseline hip total BMD (<80% of the young adult mean) or high baseline hip total BMD (> or =80% of the young adult mean). In conclusion, unipedal standing exercise for 6 months did not improve hip BMD in Japanese postmenopausal women. Effect of exercise on hip total BMD was age dependent. In participants aged > or =70 years, the exercise significantly increased hip total BMD.
Collapse
Affiliation(s)
- Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Yamane H, Sakai A, Mori T, Tanaka S, Moridera K, Nakamura T. The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice. Bone 2009; 44:1055-62. [PMID: 19303837 DOI: 10.1016/j.bone.2008.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 03/06/2008] [Accepted: 05/14/2008] [Indexed: 11/28/2022]
Abstract
We hypothesized that the anabolic action of parathyroid hormone (PTH) with the anti-catabolic agents cathepsin K inhibitor and alendronate differs depending on the remodeling status in the bone. C57/BL/6J mice, 8 weeks of age, were subjected to ovariectomized (OVX) or sham surgery. At 6 weeks after surgery, the mice were treated with cathepsin K inhibitor, alendronate, or a vehicle (daily, for 8 weeks), with or without PTH (1-34) (5 times/week, for the last 4 weeks). We assessed the bone chemical markers of the serum and urine, bone mineral density (BMD), histomorphomery in the primary and secondary spongiosa of the proximal tibia after fluorescence labeling, primary cell culture, and mRNA expressions in bone marrow cells. Cathepsin K inhibitor and alendronate significantly increased the BMD and the bone volume of the primary and secondary spongiosa, with a reduction of the urinary C-telopeptide of type I collagen that was increased by OVX, respectively. Cathepsin K inhibitor augmented the anabolic action of PTH on the BMD and bone volume at both the primary and secondary spongiosa, while alendronate had the same effect on the BMD and bone volume only at the primary spongiosa. Cathepsin K inhibitor did not decrease serum osteocalcin with or without PTH, while alendronate did decrease it. Cathepsin K inhibitor did not decrease the values of osteoclast number or bone formation rate with or without PTH, while alendronate decreased those values and increased osteoclast apoptosis. The combination of PTH and cathepsin K inhibitor increased alkaline phosphatase-positive CFU-f formation and c-fos, osterix, and osteocalcin mRNA expressions of bone marrow cells as well as PTH alone, while the combination of PTH and alendronate decreased those values. This study demonstrated that alendronate enhances the anabolic action of PTH at the primary spongiosa, but blunts it in the remodeling trabecular bone, while cathepsin K inhibitor enhances the action at both sites in OVX mice. In conclusion, the anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status of bone in OVX mice.
Collapse
Affiliation(s)
- Hirotoshi Yamane
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Sakai A, Toba N, Takeda M, Suzuki M, Abe Y, Aoyagi K, Nakamura T. Association of unipedal standing time and bone mineral density in community-dwelling Japanese women. Osteoporos Int 2009; 20:731-6. [PMID: 18763011 DOI: 10.1007/s00198-008-0726-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 07/21/2008] [Indexed: 11/28/2022]
Abstract
UNLABELLED Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. INTRODUCTION The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. METHODS The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. RESULTS Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. CONCLUSION BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.
Collapse
Affiliation(s)
- A Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Imai S, Heino TJ, Hienola A, Kurata K, Büki K, Matsusue Y, Väänänen HK, Rauvala H. Osteocyte-derived HB-GAM (pleiotrophin) is associated with bone formation and mechanical loading. Bone 2009; 44:785-94. [PMID: 19442624 DOI: 10.1016/j.bone.2009.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/19/2008] [Accepted: 01/02/2009] [Indexed: 02/04/2023]
Abstract
HB-GAM (also known as pleiotrophin) is a cell matrix-associated protein that is highly expressed in bone. It affects osteoblast function, and might therefore play a role in bone development and remodeling. We aimed to investigate the role of HB-GAM in bone in vivo and in vitro. The bones of HB-GAM deficient mice with an inbred mouse background were studied by histological, histomorphometrical, radiological, biomechanical and mu-CT analyses and the effect of immobilization was evaluated. HB-GAM localization in vivo was studied. MLO-Y4 osteocytes were subjected to fluid shear stress in vitro, and gene and protein expression were studied by subtractive hybridization, quantitative PCR and Western blot. Human osteoclasts were cultured in the presence of rhHB-GAM and their formation and resorption activities were assayed. In agreement with previous reports, the skeletal structure of the HB-GAM knockout mice developed normally. However, a growth retardation of the weight-bearing bones was observed by 2 months of age, suggesting a link to physical activity. Adult HB-GAM deficient mice were characterized by low bone formation and osteopenia, as well as resistance to immobilization-dependent bone remodeling. HB-GAM was localized around osteocytes and their processes in vivo and furthermore, osteocytic HB-GAM expression was upregulated by mechanical loading in vitro. HB-GAM did not affect on human osteoclast formation or resorption in vitro. Taken together, our results suggest that HB-GAM is an osteocyte-derived factor that could participate in mediating the osteogenic effects of mechanical loading on bone.
Collapse
Affiliation(s)
- S Imai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Setatsukinowa, Otsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Taketa T, Sakai A, Tanaka S, Nakai K, Menuki K, Yamane H, Tanaka K, Nakamura T. Selective cyclooxygenase-2 inhibitor prevents reduction of trabecular bone mass in collagen-induced arthritic mice in association with suppression of RANKL/OPG ratio and IL-6 mRNA expression in synovial tissues but not in bone marrow cells. J Bone Miner Metab 2008; 26:143-51. [PMID: 18301970 DOI: 10.1007/s00774-007-0808-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 08/16/2007] [Indexed: 11/29/2022]
Abstract
We performed this study to clarify whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, prevents trabecular bone mass reduction by suppressing arthritis-related increase of bone resorption, and to discriminate differences in actions on bone among celecoxib, SC-58560 (a selective COX-1 inhibitor), and indomethacin. Eight-week-old DBA/1J male mice were divided into six groups as follows. Control untreated (Normal) and collagen-induced arthritic (CIA) mice were compared with four treatment groups: celecoxib was orally administered to CIA mice at doses of 0 (Vehicle), 16 (COX2L), and 75 (COX2H) mg/kg, in addition to two groups of mice treated with SC-58560 (COX1) or indomethacin (IND). Histomorphometry showed a significant decrease in tibial trabecular bone volume in arthritic mice, which was corrected by COX2H. The increased osteoclast surface and number in the Vehicle group were suppressed by COX2L, COX2H, and IND. The decreased bone formation rate in Vehicle was elevated by COX2H without statistical significance. A high ratio of mRNA expression of receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG) in Vehicle synovial tissue was suppressed by COX2L and COX2H. The increased expression of interleukin (IL)-6 mRNA in Vehicle was suppressed by COX2L, COX2H, and IND, although no difference in this expression was observed in bone marrow cells among all groups. In conclusion, in CIA mice, celecoxib suppresses arthritis-related increase in bone resorption at low and high doses and prevents trabecular bone mass reduction at high doses in association with suppression of osteoclast development in bone marrow through inhibition of RANKL/OPG ratio and IL-6 mRNA expression in inflammatory synovial tissue.
Collapse
Affiliation(s)
- Tomonori Taketa
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nakai K, Tanaka S, Sakai A, Nagashima M, Tanaka M, Otomo H, Nakamura T. Cyclooxygenase-2 selective inhibition suppresses restoration of tibial trabecular bone formation in association with restriction of osteoblast maturation in skeletal reloading after hindlimb elevation of mice. Bone 2006; 39:83-92. [PMID: 16487758 DOI: 10.1016/j.bone.2005.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/20/2005] [Accepted: 12/22/2005] [Indexed: 11/25/2022]
Abstract
To clarify the role of cyclooxygenase-2 (COX-2) in acute recovery of trabecular bone in reloaded hindlimbs of tail-suspended mice, we administered a COX-2 selective inhibitor in the mice during the reloading period after unloading. Experiments were conducted on 140 male C57BL/6J mice (8 weeks old). They were divided into ground control (GC) and unloading by tail suspension (UL) groups. On day 7, Group GC was divided into Groups GC+Vehicle (Veh) and GC+Celecoxib (Cel), while Group UL mice were fed on the ground [reloading (RL)] after 7-day unloading and were then divided into Groups RL+Veh and RL+Cel. Bone histomorphometry, osteogenic cell development, and mRNA expression of osteogenic molecules were assessed. At 5 days after reloading, the increase of bone formation rate and the ratio of osteocalcin mRNA expression per CFU-f colony in Group RL+Cel were significantly decreased compared with those in Group RL+Veh, while alkaline phosphatase-positive (ALP+) CFU-f formation and the ratios of cbfa-1, osterix, and type 1 collagen mRNA expression per CFU-f colony increased to the same levels in both RL groups. At 14 days after reloading, decreased bone volume by unloading in RL+Veh recovered to the same level as that of GC+Veh, but that in RL+Cel did not recover completely. The increase of c-fos mRNA expression in bone marrow cells at 1, 24, and 48 h after reloading, osteocalcin mRNA at 6 h, and osterix mRNA at 24 h were suppressed by COX-2 inhibitor. These data indicate that the COX-2 selective inhibitor celecoxib suppresses the restoration of tibial trabecular bone formation and the acute recovery of trabecular bone. These actions are closely related to restriction of c-fos and osteocalcin mRNA expressions and osteoblast differentiation in bone marrow cells.
Collapse
Affiliation(s)
- Kenichiro Nakai
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Whiteside GT, Boulet JM, Sellers R, Bunton TE, Walker K. Neuropathy-induced osteopenia in rats is not due to a reduction in weight born on the affected limb. Bone 2006; 38:387-93. [PMID: 16203196 DOI: 10.1016/j.bone.2005.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 08/17/2005] [Accepted: 08/23/2005] [Indexed: 11/22/2022]
Abstract
Changes in bone mineral density (BMD) are associated with clinical neuropathies. Following nerve injury in the rat, there is a loss of BMD, which may be related to nerve injury or reduced mechanical loading. The purpose of this study was to investigate if altered mechanical loading is solely responsible for the observed loss of BMD in neuropathic pain models. In addition, we sought to study the action of chronic bisphosphonate treatment on both neuropathy-induced osteopenia and pain. We therefore had two hypotheses: firstly, that nerve injuries can have variable effects on hind limb bone loss in rats which are not attributable to differences in the extent of hind limb disuse and, secondly, that bisphosphonate treatment can reverse bone loss in a rat mononeuropathy model, and this is not attributable to bisphosphonate effects on nociception or hind paw unweighting. Male Sprague-Dawley rats were subject to chronic constriction injury (CCI), partial sciatic nerve ligation (PSN) or L5 + L6 spinal nerve ligation (SNL). Loss of BMD, defined as a numerically lower BMD as compared to control animals, was extreme following CCI (maximum ipsilateral/contralateral difference of 0.023 +/- 0.011); BMD loss following either PSN or SNL in the rat was subtle (0.010 +/- 0.002 and 0.013 +/- 0.012 g/cm2, respectively), significant only at early time points and had resolved by 7 weeks post-surgery. Chronic bisphosphonate treatment significantly inhibited CCI-induced osteopenia in the rat without inhibiting the reduction in weight-bearing tactile allodynia or mechanical hyperalgesia. Loss of BMD is observed in rats in a variety of neuropathic pain models. Lack of correlation between neuropathy-induced bone loss and weight bearing demonstrates that the bone loss is not simply a function of reduced mechanical loading and suggests that altered bone-nerve signaling is involved. Furthermore, chronic bisphosphonate treatment inhibits neuropathy-induced osteopenia without affecting behavioral measurements of neuropathic pain. This indicates that osteopenia is not directly related to neuropathic pain behaviors.
Collapse
Affiliation(s)
- Garth T Whiteside
- Department of Neuropharmacology, Purdue Pharma Discovery Research, 6 Cedar Brook Drive, Cranbury, NJ 08512, USA.
| | | | | | | | | |
Collapse
|
21
|
Iwasaki-Ishizuka Y, Yamato H, Murayama H, Ezawa I, Kurokawa K, Fukagawa M. Menatetrenone rescues bone loss by improving osteoblast dysfunction in rats immobilized by sciatic neurectomy. Life Sci 2005; 76:1721-34. [PMID: 15698851 DOI: 10.1016/j.lfs.2004.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 09/07/2004] [Indexed: 11/27/2022]
Abstract
Menatetrenone (MK-4) is a vitamin K2 homologue that has been used as a therapeutic agent for osteoporosis in Japan. However, there is no far any reported evidence that MK-4 ameliorates a pre-existing condition of reduced bone mineral density (BMD) in vivo. In this study, we evaluated the effect of MK-4 in a rat model of established bone loss through immobilization caused by sciatic neurectomy. Unilateral sciatic neurectomy (SNx) was performed in rats, and 10 or 30 mg/kg of MK-4 or vehicle was administered to the rats three weeks after operation. Seven weeks after operation, the rats were sacrificed and BMD and bone histomorphometric parameters were measured to assess the effects of MK-4. While BMD of the distal femoral metaphysis was significantly decreased after SNx, MK-4 administration increased BMD in the neurectomized rats. Bone formation was decreased continuously and bone resorption was initially increased in SNx rats. Four weeks treatment of MK-4 increased bone formation and suppressed bone resorption. In addition, increased carboxylated osteocalcin and decreased undercarboxylated osteocalcin in serum were observed in MK-4-administered rats. These results indicated that MK-4 rescued bone volume by improving osteoblast dysfunction and accelerating gamma carboxylation of osteocalcin. MK-4 may be useful for treating disuse osteopenia.
Collapse
Affiliation(s)
- Yoshiko Iwasaki-Ishizuka
- Department of Health Sciences, Oita University of Nursing and Health Sciences, 2944-9, Megusuno, Notsuharu, Oita 870-1201, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Akahoshi S, Sakai A, Arita S, Ikeda S, Morishita Y, Tsutsumi H, Ito M, Shiraishi A, Nakamura T. Modulation of bone turnover by alfacalcidol and/or alendronate does not prevent glucocorticoid-induced osteoporosis in growing minipigs. J Bone Miner Metab 2005; 23:341-50. [PMID: 16133683 DOI: 10.1007/s00774-005-0611-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/28/2005] [Indexed: 10/25/2022]
Abstract
The study was performed to clarify the effects of active vitamin D (alfacalcidol) and/or alendronate (ALN) on bone tissue turnover in glucocorticoid (GC)-treated growing minipigs. Göttingen minipigs aged 8 months were divided into six groups (n = 5 each): group BC, killed for baseline control; group GC, injected subcutaneously with prednisolone (0.5 mg/kg body weight [BW] per day, 5 days/week for 24 weeks); group VC, treated with vehicle alone; group alf, treated with oral alfacalcidol at 0.1 microm/kg BW per day, 5 days/week; group ALN, treated with alendronate 1 mg/kg BW per day; and group alf* ALN, treated with both alf and ALN as above. Biochemical examinations dual-energy X-ray absorptiometry, micro-computed tomography, peripheral quantitative computed tomography, and histomorphometry were performed. In group GC, all bone chemical markers were lower than in group VC. GC treatment reduced the age-dependent augmentation of bone mass and structure by reducing the bone formation rate (BFR) and activation frequency (Ac.f) relative to VC in lumbar bone and femoral cortex. Trabecular and osteonal wall thickness values did not change by GC. Treatments with alf, ALN, and alf* ALN did not have substantial effects on bone mass or structure. Alf treatment maintained lumbar BFR and Ac.f, while ALN reduced osteoclasts. Femoral cortical Ac.f values were not affected by these treatments. GC caused reduced bone formation, leading to low tissue turnover and imbalance of bone formation and resorption. Modulation of bone tissue turnover by alfacalcidol and/or alendronate failed to maintain the growth-dependent increases in mass and structure in GC-treated young minipigs.
Collapse
Affiliation(s)
- Shojiro Akahoshi
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tanaka S, Sakai A, Tanaka M, Otomo H, Okimoto N, Sakata T, Nakamura T. Skeletal unloading alleviates the anabolic action of intermittent PTH(1-34) in mouse tibia in association with inhibition of PTH-induced increase in c-fos mRNA in bone marrow cells. J Bone Miner Res 2004; 19:1813-20. [PMID: 15476581 DOI: 10.1359/jbmr.040808] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2003] [Revised: 05/21/2004] [Accepted: 06/21/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED We analyzed the effect of unloading by tail suspension on the anabolic action of intermittent PTH in the tibia of growing mice. Unloading alleviated the PTH-induced increase of bone formation and accelerated bone resorption, consequently reducing bone mass. Reduction of the PTH-induced anabolic actions on bone was associated with unloading, which was apparently related to suppression of c-fos mRNA expression in bone marrow. INTRODUCTION The effects of intermittent parathyroid hormone (PTH) administration on unloading bone have not been well elucidated at the cellular and molecular levels. We tested the effects of PTH on unloaded tibias of tail-suspended mice. MATERIALS AND METHODS Eighty male C57BL/6J mice, 8 weeks of age, were divided into four groups with loading or unloading and administration of PTH (40 microg/kg body weight) or vehicle five times per week. Mice were killed at 8 or 15 days, and both tibias were obtained. Bone histomorphometry of the trabecular bone in the proximal tibia, development of osteogenic cells, and mRNA expression of osteogenic molecules in bone marrow cells were assessed. RESULTS AND CONCLUSIONS At 15 days of unloading, bone volume decreased in PTH-treated mice. The increase in the bone formation rate by PTH was depressed, and the osteoclast surface was thoroughly increased. The increase in alkaline phosphatase-positive colony-forming units-fibroblastic (CFU-f) colonies induced by PTH was maintained and that of TRACP+ multinucleated cells enhanced. The PTH-induced increase in c-fos mRNA was depressed, but the increases in Osterix and RANKL mRNA were maintained. Unloading promoted the PTH-associated osteoclastogenesis and seemed to delay the progression of osteogenic differentiation in association with reduction of the PTH-dependent increase of c-fos mRNA in bone marrow cells.
Collapse
Affiliation(s)
- Shinya Tanaka
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Damrongrungruang T, Kuroda S, Kondo H, Aoki K, Ohya K, Kasugai S. A simple murine model for immobilization osteopenia. Clin Orthop Relat Res 2004:244-51. [PMID: 15292815 DOI: 10.1097/00003086-200408000-00035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reduction of loading force to bone induces osteopenia. Although the tail suspension model is the frequently used osteopenia model, this model burdens the animals with nonphysiologic blood distribution and systemic stress. We developed a new simple animal model for osteopenia under reduced loading. Both hind legs of male ICR mice (8 weeks old) in the experimental group were inserted into plastic tubes, which then were connected with wires of three sizes. This apparatus completely immobilized both femurs while allowing the tibias to move. Animals were pair-fed and sacrificed on Days 3, 7, 10, and 14 after immobilization. Bone mineral density measurement with dual energy xray absorptiometry revealed bone loss in the immobilized femurs. Histomorphometric analysis showed increased bone resorption and decreased bone formation, which started from Day 7 and continued until Day 14, resulting in structural disorders in the cancellous bone. Osteoclast population increase before osteoblast population decrease revealed that osteoclasts initially affect the process of this type of osteopenia. Our immobilization model is simple, easy to use, well-tolerated by the animal, and has potential for evaluating the therapeutic effects of drugs to treat osteopenia caused by reduced loading.
Collapse
Affiliation(s)
- Teerasak Damrongrungruang
- Masticatory Function Control, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Wu J, Wang XX, Higuchi M, Yamada K, Ishimi Y. High bone mass gained by exercise in growing male mice is increased by subsequent reduced exercise. J Appl Physiol (1985) 2004; 97:806-10. [PMID: 15090485 DOI: 10.1152/japplphysiol.01169.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise-induced bone gains are lost if exercise ceases. Therefore, continued exercise at a reduced frequency or intensity may be required to maintain these benefits. In this study, we evaluated whether 4 wk of reduced exercise after 4 wk of running exercise in growing male mice results in the maintenance of high bone mass. Five-week-old mice were divided into the following groups: 1) baseline control; 2) 4-wk control; 3) 4-wk exercise; 4) 8-wk control; 5) 4-wk exercise followed by 4-wk cessation of training; and 6) 4-wk exercise followed by reduced exercise at half the frequency. The regimen consisted of exercise 6 days/wk, and the reduced exercise regimen consisted of running 3 days/wk on a treadmill for 30 min/day, at 12 m/min on a 10 degrees uphill slope. Running exercise significantly increased bone mineral density of the femur, periosteal mineral apposition rate, bone formation rate, percent labeled perimeter at the midfemur, and osteogenic activity of bone marrow cells. However, these parameters declined to the age-matched sedentary control after cessation of training. In contrast, the reduced exercise group had significantly higher mineral apposition rate compared with those of the sedentary control and cessation of training groups. Furthermore, bone mineral density for the reduced exercise group was significantly higher than those for the other groups. These results suggest that the high bone formation gained through exercise can be maintained, and bone mass was further increased by subsequent exercise even if the exercise frequency is reduced.
Collapse
Affiliation(s)
- Jian Wu
- Division of Applied Food Research, The National Institute of Health and Nutrition, Tokyo 162-8636, Japan
| | | | | | | | | |
Collapse
|
26
|
Okazaki R, Sakai A, Ootsuyama A, Sakata T, Nakamura T, Norimura T. Trabecular bone mass and bone formation are preserved after limb immobilisation in p53 null mice. Ann Rheum Dis 2004; 63:453-6. [PMID: 15020343 PMCID: PMC1754969 DOI: 10.1136/ard.2003.011643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To determine whether disruption of the p53 gene leads to preservation of trabecular bone volume (BV) after limb immobilisation. MATERIALS AND METHODS Tibias of immobilised hind limbs of p53 gene knockout (p53(-/-)) and wild-type (p53(+/+)) mice were compared. Right knee joints of 8 week old mice were immobilised in full extension for 7 days. Trabecular structure and bone formation were similar in the p53(-/-) and p53(+/+) control groups. RESULTS Immobilisation significantly reduced BV to 77% of the control in p53(+/+) mice, but no change was noted in p53(-/-) mice. After immobilisation, bone formation rate was significantly reduced in p53(+/+) but not in p53(-/-) mice. In bone marrow cell cultures the numbers of alkaline phosphatase positive colony forming units-fibroblastic and mineralised nodules were significantly reduced by immobilisation in p53(+/+) but not in p53(-/-) mice. Immobilisation enhanced p53 mRNA expression in marrow cells of p53(+/+) mice and increased terminal dUTP nick end labelling positive osteocytes and marrow cells in p53(+/+) but not in p53(-/-) mice. Lack of p53 in immobilised mice was associated with preservation of trabecular bone mass and bone formation and suppression of significant apoptosis of marrow cells. CONCLUSION Disruption of the p53 gene preserves trabecular bone mass and leads to bone formation after limb immobilisation.
Collapse
Affiliation(s)
- R Okazaki
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Mori T, Okimoto N, Sakai A, Okazaki Y, Nakura N, Notomi T, Nakamura T. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice. J Bone Miner Res 2003; 18:2002-9. [PMID: 14606513 DOI: 10.1359/jbmr.2003.18.11.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED To investigate the relationship between the effects of bone turnover and bone marrow cell development in bone cells, we developed a mouse voluntary climbing exercise model. Climbing exercise increased bone volume and transient osteogenic potential of bone marrow. This model would be suitable for investigating the mechanistic roles of mechanical loading. INTRODUCTION The relationship between bone mass gain and local bone formation and resorption in mechanically loaded bone is not well understood. MATERIALS AND METHODS Sixty-five C57BL/6J mice, 8 weeks of age, were assigned to five groups: a baseline control and two groups each of ground control and climbing exercise mice for 2 and 4 weeks. Mice were housed in a 100-cm tower and had to climb toward a bottle placed at the top to drink water. RESULTS Compared with the ground control, bone mineral density of the left femur increased in the climbing mice at 4 weeks. At 2 and 4 weeks, bone formation rate (BFR/BS) of periosteal surface, the cross-sectional area, and moment of inertia were increased in the climbing mice, whereas BFR/BS and eroded surface (ES/BS) of endosteal surface did not differ. The trabecular bone volume (BV/TV) of the proximal tibia increased in climbing mice, and osteoclast surface (Oc.S/BS) and osteoclast number decreased at 2 weeks. At 4 weeks, there were increases in BV/TV and parameters of bone formation, including mineralized surface, mineral apposition rate, and bone formation rate. In marrow cell cultures from the tibia, the number of alkaline phosphatase+ colony forming units-fibroblastic and the area of mineralized nodule formation in climbing mice were increased, and the number of osteoclast-like TRACP+ multinucleated cells was lower at 2 weeks. At 4 weeks, these parameters recovered to the levels of the ground controls. CONCLUSION Our results indicate that climbing increased trabecular bone volume and reduced bone resorption, with a subsequent increase in bone formation. Intermittent climbing downregulates marrow osteoclastogenic cells and upregulates osteogenic cells initially, but further exercise seemed to desensitize them. Cortical envelopes were enlarged earlier, but the response seems to differ from trabecular bone.
Collapse
Affiliation(s)
- Toshiharu Mori
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Nishida S, Tsurukami H, Sakai A, Sakata T, Ikeda S, Tanaka M, Ito M, Nakamura T. Stage-dependent changes in trabecular bone turnover and osteogenic capacity of marrow cells during development of type II collagen-induced arthritis in mice. Bone 2002; 30:872-9. [PMID: 12052456 DOI: 10.1016/s8756-3282(02)00725-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rheumatoid arthritis (RA) is a disease characterized by inflammatory polyarthritis leading to destruction of the joints and reduction in bone mass. However, the relationship between bone mass and turnover is not yet clear in RA patients. To clarify the effect of bone turnover and marrow osteogenic capacity on mass and structure during the development of arthritis, we examined DBA1/J mice for 8 weeks after the first immunization with bovine type II collagen at the age of 9 weeks. Localized arthritis developed at 4 weeks and advanced arthritis at 6 weeks postimmunization. Urinary deoxypyridinoline levels in arthritic mice were significantly higher at 4 weeks, and levels were maintained thereafter. Their serum osteocalcin levels were significantly reduced compared with controls at 2 and 6 weeks, but did not differ significantly from those in the control group at 4 and 8 weeks. Three-dimensional (3D) trabecular bone volume of the proximal tibia measured by 3D microcomputed tomography (micro-CT) in the arthritic mice became significantly lower at 4 weeks and decreased further at 6 weeks compared with controls. Parameters of 3D trabecular bone structure, such as structure model index and trabecular bone pattern factor, were increased at 4 and 6 weeks, respectively. Trabecular osteoclast number increased and bone formation rates decreased at 8 weeks. The number of total bone marrow cells (BMCs), adherent stromal cells, and area of mineralized nodule formation in the tibia of arthritic mice were significantly reduced compared with controls at 6 weeks. Numbers of total fibroblastic colony-forming units (CFU-f) and alkaline phosphatase (ALP)-positive CFU-f colonies also decreased. However, the values of these osteogenic parameters corrected for the total BMCs and/or adherent stromal cells did not differ significantly between the arthritic and control groups. These data indicate that an increase in bone resorption led to the reduction in trabecular bone mass and deterioration of 3D structure during the localized arthritic stage. The reduction in bone marrow osteogenic potential in the advanced arthritic stage was due to the reduction in the number of total bone marrow cells, and differentiation of osteogenic cells was apparently unaffected. The reduction in bone formation may not be substantial in this arthritic model.
Collapse
Affiliation(s)
- S Nishida
- Department of Orthopedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, Watanabe K, Ikeda K, Nakamura T. Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 2002; 17:1015-25. [PMID: 12054156 DOI: 10.1359/jbmr.2002.17.6.1015] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To clarify the role of nitric oxide (NO) in regulation of bone metabolism in response to skeletal loading, we examined inducible NO synthase (iNOS) gene knockout mice in the tail-suspension model. Histomorphometric analyses of proximal tibias revealed that 7 days of tail suspension decreased the bone volume (BV/TV) and bone formation rate (BFR/BS) and increased the osteoclast surface (Oc.S/BS) in mice with all iNOS genotypes. Both iNOS+/+ and iNOS+/- mice responded to subsequent 14-day reloading, with increases in BV/TV and BFR/BS and a decrease in Oc.S/BS, whereas these responses were abolished in iNOS-/- mice. The osteoblasts flattened after tail suspension appeared cuboidal during subsequent reloading. Immunoreactivity for iNOS was detected in these osteoblasts and osteocytes by immunohistochemistry. These defective responses after reloading were rescued in iNOS-/- mice by treatment with an NO donor nitroglycerine (NG). Conversely, the responses in iNOS+/+ mice were inhibited by treatment with an NOS inhibitor aminoguanidine (AG). In bone marrow cell cultures, mineralized nodules derived from iNOS-/- mice after reloading were significantly reduced. Taken together, our results suggest that NO generated by iNOS in osteoblasts plays a critical role in adjusting bone turnover and increasing osteogenic activity in response to the acute increase in mechanical loading after tail suspension.
Collapse
Affiliation(s)
- Makoto Watanuki
- Department of Orthopedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sakai A, Sakata T, Tanaka S, Okazaki R, Kunugita N, Norimura T, Nakamura T. Disruption of the p53 gene results in preserved trabecular bone mass and bone formation after mechanical unloading. J Bone Miner Res 2002; 17:119-27. [PMID: 11771658 DOI: 10.1359/jbmr.2002.17.1.119] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We tested the hypothesis that mechanical unloading facilitates signaling of p53, an important modulator of cell cycling and apoptosis, in bone marrow cells and thereby reduces trabecular bone volume (BV). We performed histomorphometric analyses and bone marrow cell cultures in tail-suspended (TS) p53 null (p53-/-) and wild-type (p53+/+) mice. Eight-week-old male mice were assigned to four groups after 1-week acclimatization: p53+/+ + ground control (GC), p53+/+ + TS, p53-/- + GC, and p53-/- + TS. Bilateral tibial samples were used for analysis. The histomorphometric parameters of trabecular structure, formation and resorption did not differ between the p53-/- + GC and p53+/+ + GC groups. Trabecular BV in p53+/+ + TS mice was significantly reduced to 45% of that in the p53+/+ + GC group after one week of TS. In contrast, BV in p53-/- + TS mice was preserved at the same level as that in the p53-/- + GC group. The bone formation rate (BFR) was significantly reduced in p53+/+ + TS but not in p53-/- + TS mice. Unloading significantly increased trabecular osteoclast number (Oc.N) and surface in p53+/+ + TS mice compared with the p53+/+ + GC group, but the difference was not significant between p53-/- + TS and p53-/- + GC mice. In bone marrow cell culture, the numbers of alkaline phosphatase-positive (ALP+) colony-forming units fibroblastic (CFU-f) and mineralized nodules were significantly reduced in p53+/+ + TS, but not p53-/- + TS mice. [3H]thymidine incorporation into bone marrow cells was higher in p53-/- mice than in p53+/+ mice, independent of mechanical loading or unloading. Flow cytometric cell cycle analysis revealed that unloading significantly increased the percentage of hypoploid bone marrow cells in p53+/+ mice relative to that in p53+/+ + GC mice, but there was no significant difference in ploidy between p53-/- + TS and p53-/- + GC mice. Expression levels of p53 and p21 mRNAs were enhanced after TS in bone marrow cells from p53+/+ mice. Our data show that trabecular bone mass and bone formation were preserved after tail-suspension in p53-/- mice, closely associated with ALP+ CFU-f and mineralized nodule formation in marrow cultures obtained from tibias of p53-/- mice. We speculate that bone loss due to mechanical unloading may be related to facilitation of intracellular p53-p21 signaling.
Collapse
Affiliation(s)
- Akinori Sakai
- Department of Orthopedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Bateman TA, Dunstan CR, Lacey DL, Ferguson VL, Ayers RA, Simske SJ. Osteoprotegerin ameliorates sciatic nerve crush induced bone loss. J Orthop Res 2001; 19:518-23. [PMID: 11518255 DOI: 10.1016/s0736-0266(00)00057-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examines the ability of osteoprotegerin (OPG) to prevent the local bone resorption caused by sciatic nerve damage. Sixty-five 18-week-old male mice were assigned to one of six groups (n = 10-11/group). A baseline control group was sacrificed on day zero of the 10-day study. The remaining groups were placebo sham operated, placebo nerve crush (Plac NC) operated, 0.1 mg/kg/day OPG + nerve crush (LOW), 0.3 mg/kg/day OPG + nerve crush (MED), and 1.0 mg/kg/day OPG + nerve crush (HI). Nerve crush or sham operations were performed on the right leg. The left leg served as a contralateral control to the nerve crushed (ipsilateral) leg. The difference in mass between the right and left femur and tibia was examined. Additionally, quantitative histomorphometry was performed on the right and left femur and tibia diaphyses. Nerve crush resulted in a significant loss of bone mass in the ipsilateral side compared to the contralateral side. Bone mass for the ipsilateral bones of the Plac NC group were significantly reduced by 3.8% in the femur and 3.5% in the tibia compared to the contralateral limb. The percent diminution was reduced for OPG treated mice compared to the Plac NC group for both the femur and tibia. In the femur, the percent reduction of ipsilateral bone mass was reduced to 1.0% (LOW), 1.3% (MED) and 1.6% (HI) compared to the contralateral limb. In the tibia, loss of bone mass in the ipsilateral limb was reduced to 1.4% (LOW), 1.4% (MED), and 2.4% (HI) compared to the contralateral. OPG also decreased the amount of tibial endocortical resorption compared to the Plac NC group. In summary, OPG mitigated bone loss caused by damage to the sciatic nerve.
Collapse
Affiliation(s)
- T A Bateman
- Department of Aerospace Engineering Sciences, BioServe Space Technologies, University of Colorado, Boulder 80309-0429, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Seto H, Aoki K, Kasugai S, Ohya K. Trabecular bone turnover, bone marrow cell development, and gene expression of bone matrix proteins after low calcium feeding in rats. Bone 1999; 25:687-95. [PMID: 10593414 DOI: 10.1016/s8756-3282(99)00229-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Low-calcium-fed animals have been accepted as one of the experimental models showing a reduction in bone mass. However, the effects of short-term low-calcium feeding on bone turnover, the development of osteoprogenitor cells, and gene expression of bone matrix proteins have not been reported. In this study, we examined the effect of a low-calcium diet on rat tibia and analyzed the changes in the bone by histomorphometry, bone marrow cell culture, and in situ and Northern hybridization of the bone matrix proteins. Rats were fed either a low-calcium diet (0.05% Ca) or a normal calcium diet (0.5% Ca) using the pair feeding technique. They were killed at day 0, 12 h, and days 1, 2, and 3. In the low-calcium group, the serum parathyroid hormone (PTH) level was temporarily increased in 12 h after feeding the low-calcium diet. Bone mineral density in the trabecular bone was significantly decreased from 1 day after the low-calcium feeding, but cortical bone did not show any changes during the experimental period. The bone volume per tissue volume in the proximal tibia also decreased from day 1 in the low-calcium group. The number of osteoclasts and osteoblasts on the trabecular bone surface was increased in the low-calcium group compared with the normal-calcium group. An ex vivo study showed that the number of progenitors of osteoclasts and osteoblasts in bone marrow was also increased in the low-calcium group of rats. The localization of type I collagen mRNA was observed in osteoblasts in the low-calcium group. The Northern hybridization study showed that the gene expression of type I collagen, osteopontin, and osteocalcin was increased at day 3 in the low-calcium group. These results indicated that the trabecular bone surface quickly responded to the low-calcium feeding and that bone remodeling activity was activated probably by PTH. The changes in bone marrow cell populations and the gene expression of bone matrix proteins are closely associated with increased bone turnover induced by the low-calcium diet, resulting in rapid bone loss of the trabecular bone.
Collapse
Affiliation(s)
- H Seto
- Department of Dental Pharmacology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
33
|
Sakai A, Sakata T, Ikeda S, Uchida S, Okazaki R, Norimura T, Hori M, Nakamura T. Intermittent administration of human parathyroid Hormone(1-34) prevents immobilization-related bone loss by regulating bone marrow capacity for bone cells in ddY mice. J Bone Miner Res 1999; 14:1691-9. [PMID: 10491216 DOI: 10.1359/jbmr.1999.14.10.1691] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ddY mice, 6 weeks of age, were neurectomized (Nx) in the right hindlimbs and sham-operated (Sham) in the left limbs for evaluation of the effects of intermittent injections of human parathyroid hormone (hPTH) on trabecular bone turnover and bone marrow cell development in unloaded and loaded limbs. Mice were given subcutaneous injections of hPTH(1-34) five times a week at a dose of 0 (vehicle), 4 (low dose), or 40 (high dose) microg/kg of body weight for 2, 4, or 6 weeks. Histomorphometric analyses of the trabecular bone of the proximal tibiae revealed that high-dose hPTH injections preserved the trabecular bone volume of the Nx limbs, which was reduced after neurectomy, at the same level as that of the contralateral Sham limbs. The mineral apposition rate in the Nx limbs was elevated to values above even that of the Sham limbs by high-dose hPTH injections. The bone formation rate reduced by neurectomy was maintained at the Sham level by low- and high-dose hPTH injections. The neurectomy-induced increase in osteoclast number was suppressed by high-dose hPTH injections. In the bone marrow cells, the numbers of nonadherent and adherent cells per tibia obtained from the Nx and Sham limbs did not change. The hPTH injections decreased the numbers of nonadherent cells and increased those of adherent cells in both the Nx and the Sham limbs, but the effects were less marked in the Nx than in the Sham limbs even at high-dose injections. The formation of osteogenic nodules in the marrow cultures obtained from the Nx limbs was decreased after surgery and was maintained at the level of the Sham limbs by high-dose hPTH injections. The number of osteoclast-like multinucleated cells was reduced in the Sham limbs by high-dose hPTH injections. The value was increased at 2 weeks after neurectomy, but it was maintained at the Sham level by high-dose hPTH injections through the experimental period. The numbers of colony forming units-fibroblastic, which were reduced by neurectomy, and those of colony forming units for granulocytes and macrophages were not altered by hPTH injections. These results demonstrate that intermittent high-dose hPTH administration in the Nx limbs as well as in the contralateral Sham limbs has similar anabolic effects, stimulating osteoblast cell lineage and suppressing osteoclast cell lineage. The anabolic effects at 4 microg were reduced, but the effects at 40 microg seemed to be less affected by unloading due to sciatic neurectomy.
Collapse
Affiliation(s)
- A Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jämsä T, Koivukangas A, Ryhänen J, Jalovaara P, Tuukkanen J. Femoral neck is a sensitive indicator of bone loss in immobilized hind limb of mouse. J Bone Miner Res 1999; 14:1708-13. [PMID: 10491218 DOI: 10.1359/jbmr.1999.14.10.1708] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was carried out to evaluate a unilateral hind limb immobilization model in the mouse. The right legs of male mice (age 10-12 weeks) were immobilized for 3 weeks against the abdomen by an elastic bandage. Body weight decreased significantly during the immobilization. Peripheral quantitative computed tomography (pQCT) analysis showed that the cross-sectional cortical area (CSA), the bone mineral content (BMC), and the bone mineral density (BMD) of the tibial diaphysis were lower in both legs of the immobilized animals than in age-matched controls, but the difference was mainly due to weight reduction. At the tibial metaphysis, CSA, BMC, and BMD were reduced in both legs of the immobilized animals, even after weight adjustment. At the femoral neck, CSA, BMC, and BMD were significantly lower in both legs of the immobilized animals, and the difference between the hind legs of the immobilized animals was also highly significant. The findings of the pQCT study were in good agreement with the changes in mechanical strength. The tibia was a more sensitive indicator of diaphyseal bone weakening than the femur when measuring the bending breaking force of the diaphysis. The femoral neck showed significantly decreased strength, and the difference between the immobilized leg and the contralateral leg was most clearly seen in lateral loading. We conclude that 3 weeks of hind limb immobilization weakened the tibia and femur significantly compared with their contralateral counterparts. The reduction was more significantly seen in the mechanical bending strength than in the pQCT evaluation, and the femoral neck was the most sensitive indicator of bone weakening.
Collapse
Affiliation(s)
- T Jämsä
- Technical Services Unit, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
35
|
Sakata T, Sakai A, Tsurukami H, Okimoto N, Okazaki Y, Ikeda S, Norimura T, Nakamura T. Trabecular bone turnover and bone marrow cell development in tail-suspended mice. J Bone Miner Res 1999; 14:1596-604. [PMID: 10469289 DOI: 10.1359/jbmr.1999.14.9.1596] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To clarify the relationship between the changes of trabecular bone turnover and bone marrow cell development during mechanical unloading and reloading, we performed experiments with tail-suspended mice. At 8 weeks of age, 150 male ddY mice were divided into three body weight-matched groups. Mice of group 1 were euthanized at the start of tail suspension (day 0) as a baseline control. The mice of group 2 were subjected to hindlimb unloading by tail suspension for 14 days and reloading for the subsequent 14 days. The mice of group 3 were normally loaded as age-matched controls. Mice of groups 2 and 3 were sacrificed at 7, 14, and 28 days after the start of the experiment. In the first experiment (histomorphometric study of tibiae), unloading for 7 and 14 days and reloading for the subsequent 14 days significantly decreased the bone volume compared with that in the age-matched controls, respectively. Unloading for 7 and 14 days also significantly reduced the bone formation rate (BFR/BS), respectively, but reloading for the subsequent 14 days restored BFR/BS to the control level. While the unloading for 7 and 14 days significantly increased both the osteoclast surface (Oc.S/BS) and the osteoclast number (Oc.N/BS), the reloading for the subsequent 14 days decreased Oc.S/BS and Oc. N/BS, respectively. In the second experiment (bone marrow cell culture study of tibiae), unloading for 7 and 14 days reduced the adherent stromal cell number, without significance. Unloading for 7 days significantly decreased the mineralized nodule formation. Reloading for the subsequent 14 days markedly increased the adherent stromal cell number and the mineralized nodule formation. Unloading for 7 days significantly increased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. These data clearly demonstrate that unloading reduces bone formation and increases bone resorption, and subsequent reloading restores reduced bone formation and suppresses increased bone resorption, closely associated with the changes in adherent stromal cell number, mineralized nodule formation, and the number of TRAP-positive multinucleated cells.
Collapse
Affiliation(s)
- T Sakata
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kodama Y, Dimai HP, Wergedal J, Sheng M, Malpe R, Kutilek S, Beamer W, Donahue LR, Rosen C, Baylink DJ, Farley J. Cortical tibial bone volume in two strains of mice: effects of sciatic neurectomy and genetic regulation of bone response to mechanical loading. Bone 1999; 25:183-90. [PMID: 10456383 DOI: 10.1016/s8756-3282(99)00155-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although C3H/HeJ (C3H) and C57BL/6J (B6) mice are similar in body size (and adult weight), and have bones of similar external size, C3H mice have higher peak bone densities than B6 mice (e.g., 53% higher peak bone density in the femora). The current studies were intended to assess the role of mechanical loading/unloading as a possible determinant of the bone density difference between these inbred strains of mice and, specifically, to assess the effect of sciatic neurectomy on histomorphometric indices of bone formation and resorption in the tibiae of female C3H and B6 mice. Groups of 10 mice of each strain were subjected to left-side sciatic neurectomy (left hindlimb immobilization) or a sham procedure. The contralateral (right) legs of each mouse were used as controls. Four weeks of immobilization produced no systemic changes in bone formation indices in either strain of mice (i.e., no change in serum alkaline phosphatase or serum osteocalcin). However, histomorphometric assessments at the tibiofibular junction showed that 4 weeks of immobilization caused a time-dependent decrease in the length of the endosteal bone forming perimeter (e.g., 14% of control single-labeled, noneroded surface at 4 weeks, p < 0.005) with a concomitant increase in the length of the endosteal bone resorbing perimeter (i.e., 424% of control eroded surface at 4 weeks, p < 0.005), in the B6 mice. These effects were associated with an increase in medullary area (132% of control, p < 0.05) at this site, in the B6 mice. The pattern of response was different in the tibiae of the C3 mice-a much smaller decrease in bone forming perimeter (88% of control at 4 weeks, p < 0.05), with no associated increase in bone resorbing perimeter, and no change in medullary area. Similar effects were seen at a second cross-sectional sampling site, in the proximal tibia. Together, these findings indicate that B6 mice are more sensitive to endosteal bone loss from hindlimb immobilization than C3H mice.
Collapse
Affiliation(s)
- Y Kodama
- Jerry L. Pettis Memorial Veterans Medical Center, Loma Linda, CA 92357, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Waki Y, Horita T, Miyamoto K, Ohya K, Kasugai S. Effects of XT-44, a phosphodiesterase 4 inhibitor, in osteoblastgenesis and osteoclastgenesis in culture and its therapeutic effects in rat osteopenia models. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:477-83. [PMID: 10361888 DOI: 10.1254/jjp.79.477] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have reported that denbufylline, a phosphodiesterase 4 (PDE4) inhibitor, inhibits bone loss in Walker256/S tumor-bearing rats, suggesting therapeutic potentiality of a PDE4 inhibitor in osteopenia. In the present study, effects of a new PDE4 inhibitor, 1-n-butyl-3-n-propylxanthine (XT-44), in bone were evaluated in cell cultures and animal experiments. In rat bone marrow culture, XT-44 stimulated mineralized-nodule formation, whereas it inhibited osteoclast-like cell formation in mouse bone marrow culture. In Walker256/S-bearing rats (6-week-old female Wistar Imamichi rats), rapid decrease in bone mineral density (BMD) was prominent, and oral administration of XT-44 (0.3 mg/kg, every 2 days) inhibited the decrease in BMD. In the second animal experiment, female Wistar rats (6-week-old) were sciatic neurectomized, and XT-44 was orally administered to these rats every 2 days for 4 weeks. XT-44 administration (0.3 mg/kg) recovered BMD in these neurectomized animals. Furthermore, 19-week-old, female Wistar rats were ovariectomized (OVX), and 15 weeks after surgery, these rats were orally administered XT-44 every 2 days for 8 weeks. XT-44 treatment (1 mg/kg) increased the BMD of OVX rats. These results indicate that XT-44 could be a candidate as a therapeutic drug for treating osteopenia including osteoporosis.
Collapse
Affiliation(s)
- Y Waki
- Department of Pharmacology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
38
|
Sakai A, Nishida S, Okimoto N, Okazaki Y, Hirano T, Norimura T, Suda T, Nakamura T. Bone marrow cell development and trabecular bone dynamics after ovariectomy in ddy mice. Bone 1998; 23:443-51. [PMID: 9823451 DOI: 10.1016/s8756-3282(98)00121-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To clarify the relationship between the sequential changes of trabecular bone turnover and bone marrow cell development in ovariectomized (ovx) mice, bilateral tibiae of 8-week-old ddy mice were obtained. Histomorphometric analyses of the trabecular bone of the proximal tibia of ovx mice revealed increases in the bone formation rate and the osteoclast surface for the first 28 days postovariectomy. The trabecular bone volume showed a rapid decrease for the first 28 days and a steady state for the subsequent 14 days. In bone marrow cell culture experiments, the numbers of total and nonadherent bone marrow cells per tibia obtained from the ovx mice increased. The formation of osteogenic nodules and osteoclast-like multinucleated cells in the marrow cultures obtained from ovx limbs showed a significant increase on days 14 and 28 and returned to the sham-operated level by day 42. The numbers of colony forming units (fibroblastic) and colony forming units (granulocytes and macrophages) that developed from the marrow cells did not differ between the ovx and sham limbs at any time during the study period. Fluorescence-activated cell-sorter analysis revealed no population changes in the cell development of macrophages. These results demonstrate that there are two stages in the development of osteopenia after ovx. During the first 28 days after ovx, the ovariectomy enhances the developmental process from bone marrow stromal cells to osteoblasts and the terminal differentiation from osteoclast precursors to mature osteoclasts. The trabecular bone turnover also increases. In the subsequent 14 days, the changes in the osteogenic and osteoclastogenic potentials of the bone marrow cells are alleviated and the trabecular bone dynamics are in a steady state. The changes in bone marrow cell development are closely associated with those at the trabecular bone surface.
Collapse
Affiliation(s)
- A Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|