1
|
Sasikala M, Mohan S, Karuppaiah A, Karthick V, Ragul PA, Nagarajan A. NanoFlora: Unveiling the therapeutic potential of Ipomoea aquatica nanoparticles. J Genet Eng Biotechnol 2025; 23:100470. [PMID: 40074444 PMCID: PMC11915003 DOI: 10.1016/j.jgeb.2025.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Improving the pharmacokinetics of drugs is achieved through nano formulations and the role of natural product in the synthesis of nanomaterials is gaining prominence due to its eco-friendly nature, cost-effectiveness, and demonstrated efficacy. Metal nanoparticles (NPs) derived from Ipomoea aquatica Forsskal have been synthesized and evaluated for their antioxidant and antidiabetic properties towards enhancing the anticancer activity of the plant extracts. METHODOLOGY Hydroalcoholic extract was obtained from the entire Ipomoea aquatica plant and utilized as a key ingredient in the green synthesis of metal NPs. The characterization of the synthesized NPs involved UV/visible and FT-IR spectroscopic analyses, along with particle size determination using Zetasizer technology. Antioxidant activity was assessed through DPPH radical scavenging assays, while antidiabetic potential was evaluated via alpha-amylase inhibitory activity using HPTLC bioautography. RESULTS The formation of silver nanoparticles (AgNPs) was confirmed by a color change from light brown to dark brown. UV-VIS spectrum analysis showed strong absorbance between 380 and 400 nm, with a peak at 428 nm, indicating successful synthesis via bioreduction by Ipomoea aquatica extract. FT-IR spectra revealed phytochemicals like flavonoids and proteins, with shifts in peak positions confirming AgNP formation. DLS showed an average particle size of 36.27 nm, and TEM images confirmed spherical morphology. The AgNPs exhibited significant antioxidant and antidiabetic activities, outperforming standards such as ascorbic acid and Glibenclamide. Toxicity prediction identified the extract as slightly toxic, guiding safe dose administration. CONCLUSION The study underscores the potential of plant-based nanoparticles in scavenging free radicals and supporting cytotoxicity, thus hinting at their potential role in cancer therapy. Moreover, the nanoparticles derived from Ipomoea aquatica exhibit promising antioxidant and antidiabetic activities compared to the crude plant extract. This research paves the way for further exploration of Ipomoea aquatica nanoparticles as a novel therapeutic intervention for various diseases.
Collapse
Affiliation(s)
- Manickavasagam Sasikala
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| | - Sellappan Mohan
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| | - Arjunan Karuppaiah
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India; PSG College of Pharmacy, Peelamedu, Avinashi Road, Coimbatore 641004, India
| | - Vedi Karthick
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India
| | - Palanigoundar Atheyannan Ragul
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India
| | - Arumugam Nagarajan
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| |
Collapse
|
2
|
Zheltonozhskaya T, Akopova O, Dąbrowska I, Permyakova N, Klepko V, Klymchuk D. Hybrid nanocarriers with different densities of silver nanoparticles formation features and antimicrobial properties. Sci Rep 2025; 15:6757. [PMID: 40000675 PMCID: PMC11862223 DOI: 10.1038/s41598-025-89021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This work presents the synthesis and characterization of silica/polyacrylamide hybrid carriers Hyb1 and Hyb2 containing different amounts and lengths of grafted PAAm chains, as well as the formation mechanism, structure, and antibacterial efficacy of their nanocomposites with silver nanoparticles (AgNPs). The main difference between Hyb1 and Hyb2 carriers, such as the thickness and permeability of the PAAm "corona", is highlighted. Using the methods of potentiometry, UV-Vis spectroscopy, TEM and viscometry, the influence of the hybrid structure and concentration of reagents on the two-stage process of reduction of Ag+ ions with sodium borohydride in Hyb1-2 aqueous solutions was established. A strong binding of Ag+ ions to both hybrid matrices at the first stage of reduction and a significant influence of the concentration of Ag-salt (and reducing agent) on the rate of accumulation and yield of AgNPs at the second stage were shown. The presence of two types of AgNPs (internal and external) in the resulting nanocomposites was revealed, resulting from the reduction process both in the internal space of the hybrid "corona" and on its surface. The average size of external AgNPs was larger than internal ones and increased with increasing concentration of Ag-salt (and reducing agent). The role of purification in creating more uniform AgNP/Hyb nanocomposites is demonstrated. High antibacterial effectiveness against S. aureus, E. coli, and P. aeruginosa was established using well diffusion and broth microdilution methods. The obtained MIC values ~ (1.25-2.5)·10-3 kg/m3) are compared to those of potent antibiotics such as ciprofloxacin, ceftriaxone and tetracycline.
Collapse
Affiliation(s)
- Tatyana Zheltonozhskaya
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine.
| | - Olga Akopova
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., Kiev, 01601, Ukraine
| | - Irena Dąbrowska
- Institute of Biology and Medicine of the Taras Shevchenko National University of Kyiv, 2 Hlushkova Avenue, Kyiv, 03127, Ukraine
| | - Nataliya Permyakova
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
| | - Valeriy Klepko
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
| | - Dmitro Klymchuk
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereschenkovska Str., Kyiv, 01601, Ukraine
| |
Collapse
|
3
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
4
|
Harwansh RK, Deshmukh R, Shukla VP, Khunt D, Prajapati BG, Rashid S, Ali N, Elossaily GM, Suryawanshi VK, Kumar A. Recent Advancements in Gallic Acid-Based Drug Delivery: Applications, Clinical Trials, and Future Directions. Pharmaceutics 2024; 16:1202. [PMID: 39339238 PMCID: PMC11435332 DOI: 10.3390/pharmaceutics16091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gallic acid (GA) is a well-known herbal bioactive compound found in many herbs and foods like tea, wine, cashew nuts, hazelnuts, walnuts, plums, grapes, mangoes, blackberries, blueberries, and strawberries. GA has been reported for several pharmacological activities, such as antioxidant, inflammatory, antineoplastic, antimicrobial, etc. Apart from its incredible therapeutic benefits, it has been associated with low permeability and bioavailability issues, limiting their efficacy. GA belongs to BCS (Biopharmaceutics classification system) class III (high solubility and low probability). In this context, novel drug delivery approaches played a vital role in resolving these GA issues. Nanocarrier systems help improve drug moiety's physical and chemical stability by encapsulating them into a lipidic or polymeric matrix or core system. In this regard, researchers have developed a wide range of nanocarrier systems for GA, including liposomes, transfersomes, niosomes, dendrimers, phytosomes, micelles, nanoemulsions, metallic nanoparticles, solid lipid nanoparticles (SLNs), nanoparticles, nanostructured lipid carriers, polymer conjugates, etc. In the present review, different search engines like Scopus, PubMed, ScienceDirect, and Google Scholar have been referred to for acquiring recent information on the theme of the work. Therefore, this review paper aims to emphasize several novel drug delivery systems, patents, and clinical updates of GA.
Collapse
Affiliation(s)
- Ranjit K. Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Vijay Pratap Shukla
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar 382027, India;
| | - Bhupendra Gopalbhai Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | | | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
5
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Grumezescu AM, Antohi AM, Nicolae CL. Metallic nanomaterials - targeted drug delivery approaches for improved bioavailability, reduced side toxicity, and enhanced patient outcomes. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:145-158. [PMID: 39020529 PMCID: PMC11384046 DOI: 10.47162/rjme.65.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This paper explores the integral role of metallic nanomaterials in drug delivery, specifically focusing on their unique characteristics and applications. Exhibiting unique size, shape, and surface features, metallic nanoparticles (MNPs) (e.g., gold, iron oxide, and silver NPs) present possibilities for improving medication efficacy while minimizing side effects. Their demonstrated success in improving drug solubility, bioavailability, and targeted release makes them promising carriers for treating a variety of diseases, including inflammation and cancer, which has one of the highest rates of mortality in the world. Furthermore, it is crucial to acknowledge some limitations of MNPs in drug delivery before successfully incorporating them into standard medical procedures. Thus, challenges such as potential toxicity, issues related to long-term safety, and the need for standardized production methods will also be addressed.
Collapse
Affiliation(s)
- George Alexandru Croitoru
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
6
|
Mishra S, Garg P, Srivastava S, Srivastava P. Br - nanoconjugate enhances the antibacterial efficacy of nimboloide against Flavobacterium columnare infection in Labeo rohita: A nanoinformatics approach. Microb Pathog 2024; 189:106575. [PMID: 38423405 DOI: 10.1016/j.micpath.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The bacterial pathogen, Flavobacterium columnare causes columnaris disease in Labeo rohita globally. Major effects of this bacterial infection include skin rashes and gill necrosis. Nimbolide, the key ingredient of the leaf extract of Azadirachta indica possesses anti-bacterial properties effective against many microorganisms. Nano-informatics plays a promising role in drug development and its delivery against infections caused by multi-drug-resistant bacteria. Currently, studies in the disciplines of dentistry, food safety, bacteriology, mycology, virology, and parasitology are being conducted to learn more about the wide anti-virulence activity of nimbolide. METHODS The toxicity of nimbolide was predicted to determine its dosage for treating bacterial infection in Labeo rohita. Further, comparative 3-D structure prediction and docking studies are done for nimbolide conjugated nanoparticles with several key target receptors to determine better natural ligands against columnaris disease. The nanoparticle conjugates are being designed using in-silico approaches to study molecular docking interactions with the target receptor. RESULTS Bromine conjugated nimbolide shows the best molecular interaction with the target receptors of selected species ie L rohita. Nimbolide comes under the class III level of toxic compound so, attempts are made to reduce the dosage of the compound without compromising its efficiency. Further, bromine is also used as a common surfactant and can eliminate heavy metals from wastewater. CONCLUSION The dosage of bromine-conjugated nimbolide can be reduced to a non-toxic level and thus the efficiency of the Nimbolide can be increased. Moreover, it can be used to synthesize nanoparticle composites which have potent antibacterial activity towards both gram-positive and gram-negative bacteria. This material also forms a good coating on the surface and kills both airborne and waterborne bacteria.
Collapse
Affiliation(s)
- Sanjana Mishra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India.
| |
Collapse
|
7
|
Alamri ES, El Rabey HA. The Protective Effects of Vanillic Acid and Vanillic Acid-Coated Silver Nanoparticles (AgNPs) in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2024; 2024:4873544. [PMID: 38577302 PMCID: PMC10994697 DOI: 10.1155/2024/4873544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
The production of nanoparticles enhances the bioactivity of biological molecules for drug delivery to diseased sites. This study explains how silver nanoparticle (AgNP) coating enhanced the protection effects of vanillic acid in male diabetic rats with streptozotocin- (STZ-) induced diabetes. Twenty-four rats were divided into four groups (n = 6) for this investigation. The first group (G1) is untreated, whereas diabetes was induced in the other three groups through STZ injection. Diabetic rats that were not getting therapy were included in the second group (G2, STZ-positive), whereas the other diabetic rats were divided into the third group (G3, vanillic acid-treated) and the fourth group (G4, vanillic acid-coated AgNPs treated). The treatment lasted four weeks. In G2, the induction of diabetes significantly (at P = 0.05) increased in serum glucose, glycated proteins, renal indices, interleukin-6 (IL-6), K+, immunoglobulins, and lipid peroxidation, while decreased Ca++, Na+, and other antioxidants in the kidney tissue homogenate. In addition, pathological altered signs were present in the pancreas and kidneys of diabetic rats. The renal and pancreatic tissues were effectively enhanced by vanillic acid or vanillic acid-coated AgNPs, bringing them very close to their prediabetic conditions. Vanillic acid-coated AgNPs offered a stronger defense against STZ-induced diabetes and lessened the effects of hyperglycemia compared to ordinary vanillic acid. Additionally, using vanillic acid coated with silver nanoparticles greatly increased the antioxidant and antidiabetic activity and reduced inflammation when compared to using vanillic acid alone.
Collapse
Affiliation(s)
- Eman S. Alamri
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Haddad A. El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| |
Collapse
|
8
|
Velasco-Ortega E, Jiménez-Guerra A, Ortiz-Garcia I, Nuñez-Márquez E, Moreno-Muñoz J, Gil J, Delgado LM, Rondón-Romero JL, Monsalve-Guil L. Silver coating on dental implant-abutment connection screws as potential strategy to prevent loosening and minimizing bacteria adhesion. Front Bioeng Biotechnol 2024; 11:1293582. [PMID: 38264580 PMCID: PMC10803504 DOI: 10.3389/fbioe.2023.1293582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction: One of the main problems for the long-term behavior of dental implants are loosening of the implant-abutment connection screws and bacterial infiltration. The aim of this work is to increase the screw fixation by silver coating, providing superior mechanical retaining and antibacterial effect. Methods: Eighty dental implants with their abutments and screws have been studied. Twenty screws were not coated and were used as a control while the rest of screws were silver coated by sputtering, with three different thickness: 10, 20 and 40 μm and 20 screws per each thickness. Coating morphology and thickness were determined by scanning electron microscopy using image analysis systems. The screws were tightened for each of the thicknesses and the control with two torques 15 Ncm and 20 Ncm and tested under mechanical fatigue simulating oral stresses up to a maximum of 500,000 cycles. The remaining torques at different cycles were determined with a high-sensitivity torquemeter. Cell viability assays were performed with SaOs-2 osteoblasts and microbiological studies were performed against Streptococcus gordonii and Enterococcus faecalis bacteria strains, determining their metabolic activity and viability using live/dead staining. Results: It was observed a decrease in torque as cycles increase. For a preload of 15 Ncm at 100,000 cycles, the loosening was complete and, for 20 Ncm at 500,000 cycles, 85% of torque was lost. The silver coatings retained the torque, especially the one with a thickness of 40 μm, retaining 90% of the initial torque at 500,000 cycles. It was observed that osteoblastic viability values did not reach 70%, which could indicate a slight cytotoxic effect in contact with cells or tissues; however, the screw should not be in direct contact with tissue or living cells. Silver coating induced a significant reduction of the bacteria metabolic activity for Streptococcus gordonii and Enterococcus faecalis, around 90% and 85% respectively. Discussion: Therefore, this coating may be of interest to prevent loosening of implant systems with a worthy antibacterial response.
Collapse
Affiliation(s)
- Eugenio Velasco-Ortega
- Comprehensive Dentistry for Adults and Gerodontology, Master in Implant Dentistry, Faculty of Dentistry, University of Seville, Seville, Spain
| | - Alvaro Jiménez-Guerra
- Comprehensive Dentistry for Adults and Gerodontology, Master in Implant Dentistry, Faculty of Dentistry, University of Seville, Seville, Spain
| | - Iván Ortiz-Garcia
- Comprehensive Dentistry for Adults and Gerodontology, Master in Implant Dentistry, Faculty of Dentistry, University of Seville, Seville, Spain
| | - Enrique Nuñez-Márquez
- Comprehensive Dentistry for Adults and Gerodontology, Master in Implant Dentistry, Faculty of Dentistry, University of Seville, Seville, Spain
| | - Jesús Moreno-Muñoz
- Comprehensive Dentistry for Adults and Gerodontology, Master in Implant Dentistry, Faculty of Dentistry, University of Seville, Seville, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Luis Rondón-Romero
- Comprehensive Dentistry for Adults and Gerodontology, Master in Implant Dentistry, Faculty of Dentistry, University of Seville, Seville, Spain
| | - Loreto Monsalve-Guil
- Comprehensive Dentistry for Adults and Gerodontology, Master in Implant Dentistry, Faculty of Dentistry, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Sahoo B, Rath SK, Champati BB, Panigrahi LL, Pradhan AK, Nayak S, Kar BR, Jha S, Arakha M. Photocatalytic activity of biosynthesized silver nanoparticle fosters oxidative stress at nanoparticle interface resulting in antimicrobial and cytotoxic activities. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988223 DOI: 10.1002/tox.23787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Inside the biological milieu, nanoparticles with photocatalytic activity have potential to trigger cell death non-specifically due to production of reactive oxygen species (ROS) upon reacting with biological entities. Silver nanoparticle (AgNP) possessing narrow band gap energy can exhibit high light absorption property and significant photocatalytic activity. This study intends to explore the effects of ROS generated due to photocatalytic activity of AgNP on antimicrobial and cytotoxic propensities. To this end, AgNP was synthesized using the principle of green chemistry from the peel extract of Punica granatum L., and was characterized using UV-Vis spectroscope, transmission electron microscope and x-ray diffraction, and so forth. The antimicrobial activity of AgNP against studied bacteria indicated that, ROS generated at AgNP interface develop stress on bacterial membrane leading to bacterial cell death, whereas Alamar Blue dye reduction assay indicated that increased cytotoxic activity with increasing concentrations of AgNP. The γH2AX activity assay revealed that increasing the concentrations of AgNP increased DNA damaging activity. The results altogether demonstrated that both antimicrobial and cytotoxic propensities are triggered primarily due interfacial ROS generation by photocatalytic AgNP, which caused membrane deformation in bacteria and DNA damage in HT1080 cells resulting in cell death.
Collapse
Affiliation(s)
- Banishree Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sandip Kumar Rath
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bibhuti Bhusan Champati
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Arun Kumar Pradhan
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Bikash Ranjan Kar
- IMS & SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Varun Kumar B, Reddy KH. Synthesis, characterization and antimicrobial activity of novel silver nanoparticles functionalized with nitrogenous ligands. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- B. Varun Kumar
- Department of Chemistry, Sri Krishnadevaraya University, Anantapuramu, AP, India
| | - K. Hussain Reddy
- Department of Chemistry, Sri Krishnadevaraya University, Anantapuramu, AP, India
| |
Collapse
|
11
|
Lawal SK, Olojede SO, Faborode OS, Aladeyelu OS, Matshipi MN, Sulaiman SO, Naidu ECS, Rennie CO, Azu OO. Nanodelivery of antiretroviral drugs to nervous tissues. Front Pharmacol 2022; 13:1025160. [PMID: 36425574 PMCID: PMC9680985 DOI: 10.3389/fphar.2022.1025160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 01/06/2025] Open
Abstract
Despite the development of effective combined antiretroviral therapy (cART), the neurocognitive impairments associated with human immunodeficiency virus (HIV) remain challenging. The presence of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCFB) impedes the adequate penetration of certain antiretroviral drugs into the brain. In addition, reports have shown that some antiretroviral drugs cause neurotoxicity resulting from their interaction with nervous tissues due to long-term systemic exposure. Therefore, the research into the effective therapeutic modality that would cater for the HIV-associated neurocognitive disorders (HAND) and ART toxicity is now receiving broad research attention. Thus, this review explores the latest information in managing HAND using a nanoparticle drug delivery system (NDDS). We discussed the neurotoxicity profile of various approved ART. Also, we explained the applications of silver nanoparticles (AgNPs) in medicine, their different synthesis methods and their interaction with nervous tissues. Lastly, while proposing AgNPs as useful nanoparticles in properly delivering ART to enhance effectiveness and minimize neurocognitive disorders, we hypothesize that the perceived toxicity of AgNPs could be minimized by taking appropriate precautions. One such precaution is using appropriate reducing and stabilizing agents such as trisodium citrate to reduce silver ion Ag + to ground state Ag0 during the synthesis. Also, the usage of medium-sized, spherical-shaped AgNPs is encouraged in AgNPs-based drug delivery to the brain due to their ability to deliver therapeutic agents across BBB. In addition, characterization and functionalization of the synthesized AgNPs are required during the drug delivery approach. Putting all these factors in place would minimize toxicity and enhance the usage of AgNPs in delivering therapeutic agents across the BBB to the targeted brain tissue and could cater for the HIV-associated neurocognitive disorders and neurotoxic effects of antiretroviral drugs (ARDs).
Collapse
Affiliation(s)
- Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Matome Nadab Matshipi
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sheu Oluwadare Sulaiman
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
- Graduate Program in Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Edwin Coleridge Stephen Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological and Translational Medical Sciences, School of Medicine, Hage Geingob Campus, University of Namibia, Windhoek, Namibia
| |
Collapse
|
12
|
Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM. Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines 2022; 10:2792. [PMID: 36359308 PMCID: PMC9687463 DOI: 10.3390/biomedicines10112792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.
Collapse
Affiliation(s)
- Sohail Simon
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Health Platform Diagnostic Unit, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jamie Josephs
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
13
|
Singh A, Boregowda SS, Moin A, Abu Lila AS, Aldawsari MF, Khafagy ES, Alotaibi HF, Jayaramu RA. Biosynthesis of Silver Nanoparticles Using Commiphora mukul Extract: Evaluation of Anti-Arthritic Activity in Adjuvant-Induced Arthritis Rat Model. Pharmaceutics 2022; 14:pharmaceutics14112318. [PMID: 36365137 PMCID: PMC9693186 DOI: 10.3390/pharmaceutics14112318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a major global public health challenge, and novel therapies are required to combat it. Silver nanoparticles (AgNPs) have been employed as delivery vehicles of anti-inflammatory drugs for RA therapy, and it has been recently realized that AgNPs have anti-inflammatory action on their own. However, their conventional synthesis processes might result in cytotoxicity and environmental hazards. Instead, the use of natural products as a reducing and stabilizing agent in the biosynthesis of silver nanoparticles has arisen as an option to decrease the cytotoxic and environmental concerns associated with chemical synthesis of AgNPs. In this study, we challenged the efficacy of Commiphora mukul (guggul) aqueous extract as a reducing and/or capping agent for the biosynthesis of AgNPs. Guggul-mediated biosynthesized silver nanoparticles (G-AgNPs) were characterized via UV-vis spectroscopy, dynamic light scattering, and scanning electron microscopy. In addition, their anti-arthritic potential was evaluated in an adjuvant-induced arthritis (AIA) model. The fabricated NPs showed an absorption peak at 412 nm, corresponding to the typical surface plasmon resonance band of AgNPs. The synthesized G-AgNPs were nearly spherical, with a particle size of 337.6 ± 12.1 nm and a negative surface charge (−18.9 ± 1.8 mV). In AIA rat model, synthesized G-AgNPs exerted a potent anti-inflammatory action, as manifested by a remarkable reduction in paw volume (>40%) along with elicitation of a minimal arthritic score, compared to control rats. In addition, when compared to arthritic rats, treatment with G-AgNPs efficiently restored the activity of antioxidant enzyme, superoxide dismutase, and catalase, indicating the efficiency of synthesized G-AgNPs in alleviating the oxidative stress associated with RA. Finally, histological examination revealed comparatively lower inflammatory cells infiltration in ankle joint tissue upon treatment with G-AgNPs. Collectively, biosynthesized G-AgNPs might represent a plausible therapeutic option for the management of RA.
Collapse
Affiliation(s)
- Anupama Singh
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bengaluru 560090, India
| | | | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rajamma Abburu Jayaramu
- Department of Pharmacognosy, KLE College of Pharmacy, Bengaluru 560010, India
- Correspondence:
| |
Collapse
|
14
|
Gökşen Tosun N, Kaplan Ö, Türkekul İ, Gökçe İ, Özgür A. Green synthesis of silver nanoparticles using Schizophyllum commune and Geopora sumneriana extracts and evaluation of their anticancer and antimicrobial activities. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.2010846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nazan Gökşen Tosun
- Department of Biomaterials and Tissue Engineering, Institute of Graduate Studies, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Özlem Kaplan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - İbrahim Türkekul
- Department of Biology, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - İsa Gökçe
- Department of Bioengineering, Faculty of Engineering and Architecture, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Aykut Özgür
- Laboratory and Veterinary Health Program, Department of Veterinary Medicine, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
15
|
Gudkov SV, Serov DA, Astashev ME, Semenova AA, Lisitsyn AB. Ag 2O Nanoparticles as a Candidate for Antimicrobial Compounds of the New Generation. Pharmaceuticals (Basel) 2022; 15:ph15080968. [PMID: 36015116 PMCID: PMC9415021 DOI: 10.3390/ph15080968] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in microorganisms is an important problem of modern medicine which can be solved by searching for antimicrobial preparations of the new generation. Nanoparticles (NPs) of metals and their oxides are the most promising candidates for the role of such preparations. In the last few years, the number of studies devoted to the antimicrobial properties of silver oxide NPs have been actively growing. Although the total number of such studies is still not very high, it is quickly increasing. Advantages of silver oxide NPs are the relative easiness of production, low cost, high antibacterial and antifungal activities and low cytotoxicity to eukaryotic cells. This review intends to provide readers with the latest information about the antimicrobial properties of silver oxide NPs: sensitive organisms, mechanisms of action on microorganisms and further prospects for improving the antimicrobial properties.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
16
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
17
|
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H, Cho JY. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics 2021; 13:2034. [PMID: 34959320 PMCID: PMC8705988 DOI: 10.3390/pharmaceutics13122034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Fazla Rabbi Mashrur
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Anisha Parsub Chhoan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, University of California-Davis, Davis, California, CA 95616, USA;
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | | | | | - Sunggyu Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| | - Hassan Hosseinzadeh
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| |
Collapse
|
18
|
Haque S, Tripathy S, Patra CR. Manganese-based advanced nanoparticles for biomedical applications: future opportunity and challenges. NANOSCALE 2021; 13:16405-16426. [PMID: 34586121 DOI: 10.1039/d1nr04964j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is the most promising technology to evolve in the last decade. Recent research has shown that transition metal nanoparticles especially manganese (Mn)-based nanoparticles have great potential for various biomedical applications due to their unique fundamental properties. Therefore, globally, scientists are concentrating on the development of various new manganese-based nanoparticles (size and shape dependent) due to their indispensable utilities. Although numerous reports are available regarding the use of manganese nanoparticles, there is no comprehensive review highlighting the recent development of manganese-based nanomaterials and their potential applications in the area of biomedical sciences. The present review article provides an overall survey on the recent advancement of manganese nanomaterials in biomedical nanotechnology and other fields. Further, the future perspectives and challenges are also discussed to explore the wider application of manganese nanoparticles in the near future. Overall, this review presents a fundamental understanding and the role of manganese in various fields, which will attract a wider spectrum of the scientific community.
Collapse
Affiliation(s)
- Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| |
Collapse
|
19
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
20
|
Giráldez-Pérez RM, Grueso E, Domínguez I, Pastor N, Kuliszewska E, Prado-Gotor R, Requena-Domenech F. Biocompatible DNA/5-Fluorouracil-Gemini Surfactant-Functionalized Gold Nanoparticles as Promising Vectors in Lung Cancer Therapy. Pharmaceutics 2021; 13:423. [PMID: 33801142 PMCID: PMC8004209 DOI: 10.3390/pharmaceutics13030423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
The design and preparation of novel nanocarriers to transport cancer drugs for chemotherapy purposes is an important line of research in the medical field. A new 5-fluorouracil (5-Fu) transporter was designed based on the use of two new biocompatible gold nanosystems: (i) a gold nanoparticle precursor, Au@16-Ph-16, stabilized with the positively charged gemini surfactant 16-Ph-16, and (ii) the compacted nanocomplexes formed by the precursor and DNA/5-Fu complexes, Au@16-Ph-16/DNA-5-Fu. The physicochemical properties of the obtained nanosystems were studied by using UV-visible spectroscopy, TEM, dynamic light scattering, and zeta potential techniques. Method tuning also requires the use of circular dichroism, atomic force microscopy, and fluorescence spectroscopy techniques for the prior selection of the optimal relative Au@16-Ph-16 and DNA concentrations (R = CAu@16-Ph-16/CDNA), biopolymer compaction/decompaction, and 5-Fu release from the DNA/5-Fu complex. TEM experiments revealed the effective internalization of the both precursor and Au@16-Ph-16/DNA-5-Fu-compacted nanosystems into the cells. Moreover, cytotoxicity assays and internalization experiments using TEM and confocal microscopy showed that the new strategy for 5-Fu administration enhanced efficacy, biocompatibility and selectivity against lung cancer cells. The differential uptake among different formulations is discussed in terms of the physicochemical properties of the nanosystems.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Departments of Cellular Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain;
| | - Elia Grueso
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain;
| | - Inmaculada Domínguez
- Department of Biology and Cellular Biology, University of Seville, 41012 Seville, Spain; (I.D.); (N.P.)
| | - Nuria Pastor
- Department of Biology and Cellular Biology, University of Seville, 41012 Seville, Spain; (I.D.); (N.P.)
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain;
| | - Francisco Requena-Domenech
- Departments of Cellular Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|
21
|
Sadiqa A, Gilani SR, Anwar A, Mehboob A, Saleem A, Rubab S. Biogenic Fabrication, Characterization and Drug Loaded Antimicrobial Assay of Silver Nanoparticles Using Centratherum anthalminticum (L.) Kuntze. J Pharm Sci 2021; 110:1969-1978. [PMID: 33548246 DOI: 10.1016/j.xphs.2021.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Bionanotechnology is considered a safe and ecofriendly route for the biosynthesis of metal nanoparticles from plant extracts, microorganisms, and biomaterials. The present study was focused on the fabrication of silver nanoparticles (<50 nm) biogenically from the novel Centratherum anthelmminticum's aqueous seed extract. The obtained nanoproduct was evaluated by X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM), UV-Visible spectroscopy, FTIR and Raman spectroscopy. The particle size and surface charge were estimated by Dynamic light scattering (DLS) and Zeta potential measurements. The nanoparticles showed cubic close packed (ccp) morphology with miller indices (111), (200), (220), (311) and (222). The λmax for synthesized silver nanoparticles was measured in the range of 436 nm, 464 nm and 467 nm for 1 mM, 5 mM and 10 mM samples, respectively. The bioreduction of silver ions exhibited a gradual color change which confirms the formation of silver nanoparticles under UV-visible spectrum. Ag-O and Ag-N stretching vibrations corresponding to the bond formation between silver and oxygen of the carboxylate group and nitrogen of amine was corroborated by the presence of a sharp peak in Raman spectra at 245 cm-1. Antimicrobial activity was assessed against eight bacterial and three fungal strains. The silver nanoparticles fabricated from 10 mM AgNO3 solution showed significant results against all Gram-negative bacteria, with the further restriction in growth of C. albicans and A. niger. From in-vitro antimicrobial assay, it was observed that drug-loaded silver nanoparticles (Ciprofloxacin +10 mM) displayed a stronger potential than the synthesized silver nanoparticles and ciprofloxacin alone to restrain the development of E. coli, and E. aerogenes.
Collapse
Affiliation(s)
- Ayesha Sadiqa
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan; Department of Chemistry, University of Lahore, Lahore, Pakistan.
| | - Syeda Rubina Gilani
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | - Aneela Anwar
- Department of Basic Sciences and Humanities, University of Engineering and Technology, New Campus, Lahore, Pakistan.
| | - Adil Mehboob
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | - Aimon Saleem
- Department of Chemistry, University of Lahore, Lahore, Pakistan
| | - Saima Rubab
- Lahore Pharmacy College, A Project of Lahore Medical and Dental College, Lahore, Pakistan
| |
Collapse
|
22
|
Pinzaru I, Sarau C, Coricovac D, Marcovici I, Utescu C, Tofan S, Popovici RA, Manea HC, Pavel IE, Soica C, Dehelean C. Silver Nanocolloids Loaded with Betulinic Acid with Enhanced Antitumor Potential: Physicochemical Characterization and In Vitro Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E152. [PMID: 33435422 PMCID: PMC7828030 DOI: 10.3390/nano11010152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Betulinic acid (BA), a natural compound with various health benefits including selective antitumor activity, has a limited applicability in vivo due to its poor water solubility and bioavailability. Thus, this study focused on obtaining a BA nano-sized formulation with improved solubility and enhanced antitumor activity using silver nanocolloids (SilCo and PEG_SilCo) as drug carriers. The synthesis was performed using a chemical method and the physicochemical characterization was achieved applying UV-Vis absorption, transmission electron microscopy (TEM), Raman and photon correlation spectroscopy (PCS). The biological evaluation was conducted on two in vitro experimental models-hepatocellular carcinoma (HepG2) and lung cancer (A549) cell lines. The physicochemical characterization showed the following results: an average hydrodynamic diameter of 32 nm for SilCo_BA and 71 nm for PEG_SilCo_BA, a spherical shape, and a loading capacity of 54.1% for SilCo_BA and 61.9% for PEG_SilCo_BA, respectively. The in vitro assessment revealed a cell type- and time-dependent cytotoxic effect characterized by a decrease in cell viability as follows: (i) SilCo_BA (66.44%) < PEG_SilCo_BA (72.05%) < BA_DMSO (75.30%) in HepG2 cells, and (ii) SilCo_BA (75.28%) < PEG_SilCo_BA (86.80%) < BA_DMSO (87.99%) in A549 cells. The novel silver nanocolloids loaded with BA induced an augmented anticancer effect as compared to BA alone.
Collapse
Affiliation(s)
- Iulia Pinzaru
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Cristian Sarau
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (C.S.); (C.U.)
| | - Dorina Coricovac
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Crinela Utescu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (C.S.); (C.U.)
| | - Sergiu Tofan
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 9 Revolutiei Bv., 300041 Timisoara, Romania; (S.T.); (R.A.P.)
| | - Ramona Amina Popovici
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 9 Revolutiei Bv., 300041 Timisoara, Romania; (S.T.); (R.A.P.)
| | - Horatiu Cristian Manea
- Faculty of Medicine, “Vasile Goldiș” Western University of Arad, 94 Revolutiei Bv., 310025 Arad, Romania;
- Timisoara Municipal Emergency Clinical Hospital, 5 Take Ionescu Bv., 300062 Timisoara, Romania
| | - Ioana E. Pavel
- Department of Chemistry, Wright State University, Dayton, OH 45435-0001, USA;
| | - Codruta Soica
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Cristina Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| |
Collapse
|
23
|
Yadav S, Prakash J, Shekhar H, Dwivedy A, Patel V, Tiwari S, Vishwakarma N. Green synthesis of silver nanoparticles using Eranthemum Pulchellum (Blue Sage) aqueous leaves extract: Characterization, evaluation of antifungal and antioxidant properties. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2021. [DOI: 10.4103/bbrj.bbrj_63_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Hamida RS, Ali MA, Goda DA, Al-Zaban MI. Lethal Mechanisms of Nostoc-Synthesized Silver Nanoparticles Against Different Pathogenic Bacteria. Int J Nanomedicine 2020; 15:10499-10517. [PMID: 33402822 PMCID: PMC7778443 DOI: 10.2147/ijn.s289243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing antibiotic resistance and the emergence of multidrug-resistant (MDR) pathogens have led to the need to develop new therapeutic agents to tackle microbial infections. Nano-antibiotics are a novel generation of nanomaterials with significant antimicrobial activities that target bacterial defense systems including biofilm formation, membrane permeability, and virulence activity. PURPOSE In addition to AgNO3, the current study aimed to explore for first time the antibacterial potential of silver nanoparticles synthesized by Nostoc sp. Bahar_M (N-SNPs) and their killing mechanisms against Streptococcus mutans, methicillin-resistant Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. METHODS Potential mechanisms of action of both silver species against bacteria were systematically explored using agar well diffusion, enzyme (lactate dehydrogenase (LDH) and ATPase) and antioxidant (glutathione peroxidase and catalase) assays, and morphological examinations. qRT-PCR and SDS-PAGE were employed to investigate the effect of both treatments on mfD, flu, and hly gene expression and protein patterns, respectively. RESULTS N-SNPs exhibited greater biocidal activity than AgNO3 against the four tested bacteria. E. coli treated with N-SNPs showed significant surges in LDH levels, imbalances in other antioxidant and enzyme activities, and marked morphological changes, including cell membrane disruption and cytoplasmic dissolution. N-SNPs caused more significant upregulation of mfD expression and downregulation of both flu and hly expression and increased protein denaturation compared with AgNO3. CONCLUSION N-SNPs exhibited significant inhibitory potential against E. coli by direct interfering with bacterial cellular structures and/or enhancing oxidative stress, indicating their potential for use as an alternative antimicrobial agent. However, the potential of N-SNPs to be usable and biocompatible antibacterial drug will evaluate by their toxicity against normal cells.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mayasar Ibrahim Al-Zaban
- Department of Biology, College of Science Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|