1
|
Wiendl M, Dedden M, Liu LJ, Schweda A, Paap EM, Ullrich KAM, Hartmann L, Wieser L, Vitali F, Atreya I, Müller TM, Günther C, Atreya R, Neurath MF, Zundler S. Etrolizumab-s fails to control E-Cadherin-dependent co-stimulation of highly activated cytotoxic T cells. Nat Commun 2024; 15:1043. [PMID: 38310086 PMCID: PMC10838339 DOI: 10.1038/s41467-024-45352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Despite promising preclinical and earlier clinical data, a recent phase III trial on the anti-β7 integrin antibody etrolizumab in Crohn's disease (CD) did not reach its primary endpoint. The mechanisms leading to this outcome are not well understood. Here we characterize the β7+ T cell compartment from patients with CD in comparison to cells from individuals without inflammatory bowel disease. By flow cytometric, transcriptomic and functional profiling of circulating T cells, we find that triple-integrin-expressing (α4+β7+β1hi) T cells have the potential to home to the gut despite α4β7 blockade and have a specific cytotoxic signature. A subset of triple-integrin-expressing cells readily acquires αE expression and could be co-stimulated via E-Cadherin-αEβ7 interactions in vitro. Etrolizumab-s fails to block such αEβ7 signalling at high levels of T cell stimulation. Consistently, in CD patients treated with etrolizumab, T cell activation correlates with cytotoxic signatures. Collectively, our findings might add one important piece to the puzzle to explain phase III trial results with etrolizumab, while they also highlight that αEβ7 remains an interesting target for future therapeutic approaches in inflammatory bowel disease.
Collapse
Affiliation(s)
- Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Li-Juan Liu
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Schweda
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Paap
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karen A-M Ullrich
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Hartmann
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luisa Wieser
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Francesco Vitali
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| | - Tanja M Müller
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
2
|
Peña-Juárez MC, Guadarrama-Escobar OR, Serrano-Castañeda P, Méndez-Albores A, Vázquez-Durán A, Vera-Graziano R, Rodríguez-Pérez B, Salgado-Machuca M, Anguiano-Almazán E, Morales-Florido MI, Rodríguez-Cruz IM, Escobar-Chávez JJ. Synergistic Effect of Retinoic Acid and Lactoferrin in the Maintenance of Gut Homeostasis. Biomolecules 2024; 14:78. [PMID: 38254678 PMCID: PMC10813542 DOI: 10.3390/biom14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Lactoferrin (LF) is a glycoprotein that binds to iron ions (Fe2+) and other metallic ions, such as Mg2+, Zn2+, and Cu2+, and has antibacterial and immunomodulatory properties. The antibacterial properties of LF are due to its ability to sequester iron. The immunomodulatory capability of LF promotes homeostasis in the enteric environment, acting directly on the beneficial microbiota. LF can modulate antigen-presenting cell (APC) biology, including migration and cell activation. Nonetheless, some gut microbiota strains produce toxic metabolites, and APCs are responsible for initiating the process that inhibits the inflammatory response against them. Thus, eliminating harmful strains lowers the risk of inducing chronic inflammation, and consequently, metabolic disease, which can progress to type 2 diabetes mellitus (T2DM). LF and retinoic acid (RA) exhibit immunomodulatory properties such as decreasing cytokine production, thus modifying the inflammatory response. Their activities have been observed both in vitro and in vivo. The combined, simultaneous effect of these molecules has not been studied; however, the synergistic effect of LF and RA may be employed for enhancing the secretion of humoral factors, such as IgA. We speculate that the combination of LF and RA could be a potential prophylactic alternative for the treatment of metabolic dysregulations such as T2DM. The present review focuses on the importance of a healthy diet for a balanced gut and describes how probiotics and prebiotics with immunomodulatory activity as well as inductors of differentiation and cell proliferation could be acquired directly from the diet or indirectly through the oral administration of formulations aimed to maintain gut health or restore a eubiotic state in an intestinal environment that has been dysregulated by external factors such as stress and a high-fat diet.
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Omar Rodrigo Guadarrama-Escobar
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Pablo Serrano-Castañeda
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Betsabé Rodríguez-Pérez
- Laboratorio de Servicio de Análisis de Propóleos (LASAP), Unidad de Investigación Multidisciplinaria (UIM), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Mariana Salgado-Machuca
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Ericka Anguiano-Almazán
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Miriam Isabel Morales-Florido
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
- Laboratorio de Farmacia Molecular y Liberación Controlada, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Isabel Marlene Rodríguez-Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional e Alta Especialidad de Sumpango, Carretera Zumpango-Jilotzingo #400, Barrio de Santiago, 2ª Sección, Zumpango 55600, Mexico;
| | - José Juan Escobar-Chávez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| |
Collapse
|
3
|
Besendorf L, Müller TM, Geppert CI, Schneider I, Mühl L, Atreya I, Vitali F, Atreya R, Neurath MF, Zundler S. Vedolizumab blocks α4β7 integrin-mediated T cell adhesion to MAdCAM-1 in microscopic colitis. Therap Adv Gastroenterol 2022; 15:17562848221098899. [PMID: 35784193 PMCID: PMC9244938 DOI: 10.1177/17562848221098899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In Crohn's disease and ulcerative colitis, the anti-α4β7 integrin antibody vedolizumab has demonstrated efficacy in phase III trials and has been successfully used under real-world conditions. Occasionally, it has also been used in other forms of inflammatory bowel disease (IBD) such as microscopic colitis (MC). However, the mechanisms of vedolizumab in MC have not been studied to date. Therefore, we aimed to investigate the expression and functional role of gut-homing integrins and in particular α4β7 integrin in a cohort study in MC. METHODS We studied the expression of gut homing integrins on T cells from patients with MC and healthy controls by flow cytometry. To investigate the function of α4β7 integrin in MC and the potential of vedolizumab to block it, we used dynamic adhesion assays and transmigrations assays. Moreover, we describe two clinical cases of MC patients treated with vedolizumab. RESULTS A specific profile of gut homing markers can be found on T cells from patients with MC. α4β7 integrin functionally leads to firm adhesion to MAdCAM-1 and supports transmigration. Vedolizumab is able to block both processes. In two cases of MC, we observed reduced clinical symptoms and histologic improvement upon therapy with vedolizumab. CONCLUSION Our data suggest that α4β7 mediates gut homing of T cells also in MC and that, on single cell level, vedolizumab blocks the function of α4β7 in MC. Thus, we provide mechanistic evidence supporting vedolizumab as promising therapeutic option for MC.
Collapse
Affiliation(s)
- Laura Besendorf
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja M. Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Carol-Immanuel Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Schneider
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Mühl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Francesco Vitali
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
4
|
Sidell N, Kane MA. Actions of Retinoic Acid in the Pathophysiology of HIV Infection. Nutrients 2022; 14:nu14081611. [PMID: 35458172 PMCID: PMC9029687 DOI: 10.3390/nu14081611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (RA) plays a key role in tissue homeostasis and mucosal immunity. RA is produced by gut-associated dendritic cells, which are among the first cells encountered by HIV. Acute HIV infection results in rapid reduction of RA levels and dysregulation of immune cell populations whose identities and function are largely controlled by RA. Here, we discuss the potential link between the roles played by RA in shaping intestinal immune responses and the manifestations and pathogenesis of HIV-associated enteropathy and similar conditions observed in SIV-infected non-human primate models. We also present data demonstrating the ability of RA to enhance the activation of replication-competent viral reservoirs from subjects on suppressive anti-retroviral therapy. The data suggest that retinoid supplementation may be a useful adjuvant for countering the pathologic condition of the gastro-intestinal tract associated with HIV infection and as part of a strategy for reactivating viral reservoirs as a means of depleting latent viral infection.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (N.S.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Correspondence: (N.S.); (M.A.K.)
| |
Collapse
|
5
|
Mena J, Alloza I, Tulloch Navarro R, Aldekoa A, Díez García J, Villanueva Etxebarria A, Lindskog C, Antigüedad A, Boyero S, Mendibe-Bilbao MDM, Álvarez de Arcaya A, Sánchez Menoyo JL, Midaglia L, Villarrubia N, Malhotra S, Montalban X, Villar LM, Comabella M, Vandenbroeck K. Genomic Multiple Sclerosis Risk Variants Modulate the Expression of the ANKRD55- IL6ST Gene Region in Immature Dendritic Cells. Front Immunol 2022; 12:816930. [PMID: 35111166 PMCID: PMC8801523 DOI: 10.3389/fimmu.2021.816930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Intronic single-nucleotide polymorphisms (SNPs) in the ANKRD55 gene are associated with the risk for multiple sclerosis (MS) and rheumatoid arthritis by genome-wide association studies (GWAS). The risk alleles have been linked to higher expression levels of ANKRD55 and the neighboring IL6ST (gp130) gene in CD4+ T lymphocytes of healthy controls. The biological function of ANKRD55, its role in the immune system, and cellular sources of expression other than lymphocytes remain uncharacterized. Here, we show that monocytes gain capacity to express ANKRD55 during differentiation in immature monocyte-derived dendritic cells (moDCs) in the presence of interleukin (IL)-4/granulocyte-macrophage colony-stimulating factor (GM-CSF). ANKRD55 expression levels are further enhanced by retinoic acid agonist AM580 but downregulated following maturation with interferon (IFN)-γ and lipopolysaccharide (LPS). ANKRD55 was detected in the nucleus of moDC in nuclear speckles. We also analyzed the adjacent IL6ST, IL31RA, and SLC38A9 genes. Of note, in healthy controls, MS risk SNP genotype influenced ANKRD55 and IL6ST expression in immature moDC in opposite directions to that in CD4+ T cells. This effect was stronger for a partially correlated SNP, rs13186299, that is located, similar to the main MS risk SNPs, in an ANKRD55 intron. Upon analysis in MS patients, the main GWAS MS risk SNP rs7731626 was associated with ANKRD55 expression levels in CD4+ T cells. MoDC-specific ANKRD55 and IL6ST mRNA levels showed significant differences according to the clinical form of the disease, but, in contrast to healthy controls, were not influenced by genotype. We also measured serum sgp130 levels, which were found to be higher in homozygotes of the protective allele of rs7731626. Our study characterizes ANKRD55 expression in moDC and indicates monocyte-to-dendritic cell (Mo-DC) differentiation as a process potentially influenced by MS risk SNPs.
Collapse
Affiliation(s)
- Jorge Mena
- Inflammation & Biomarkers Group, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iraide Alloza
- Inflammation & Biomarkers Group, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Raquel Tulloch Navarro
- Inflammation & Biomarkers Group, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Aldekoa
- Inflammation & Biomarkers Group, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Javier Díez García
- Microscopy Facility, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Villanueva Etxebarria
- Kronikgune Institute for Health Services Research, Barakaldo, Spain
- Health Service Research Network on Chronic Diseases Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Bizkaia, Spain
- Osakidetza-Basque Health Service, Research Unit, Galdakao University Hospital, Galdakao, Spain
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alfredo Antigüedad
- Department of Neurology, Cruces University Hospital, Osakidetza-Basque Health Service, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Sabas Boyero
- Department of Neurology, Cruces University Hospital, Osakidetza-Basque Health Service, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - María del Mar Mendibe-Bilbao
- Department of Neurology, Cruces University Hospital, Osakidetza-Basque Health Service, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Amaya Álvarez de Arcaya
- Department of Neurology, Txagorritxu University Hospital, Osakidetza-Basque Health Service, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - José Luis Sánchez Menoyo
- Department of Neurology, Galdakao-Usansolo University Hospital, Osakidetza-Basque Health Service, Biocruces-Bizkaia Health Research Institute, Galdakao, Spain
| | - Luciana Midaglia
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Sunny Malhotra
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Koen Vandenbroeck
- Inflammation & Biomarkers Group, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco (UPV/EHU), Barrio Sarriena, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Retinoic Acid-Containing Liposomes for the Induction of Antigen-Specific Regulatory T Cells as a Treatment for Autoimmune Diseases. Pharmaceutics 2021; 13:pharmaceutics13111949. [PMID: 34834364 PMCID: PMC8620283 DOI: 10.3390/pharmaceutics13111949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
The current treatment of autoimmune and chronic inflammatory diseases entails systemic immune suppression, which is associated with increased susceptibility to infections. To restore immune tolerance and reduce systemic side effects, a targeted approach using tolerogenic dendritic cells (tolDCs) is being explored. tolDCs are characterized by the expression of CD11c, the major histocompatibility complex (MHC)II and low levels of co-stimulatory molecules CD40 and CD86. In this study, tolDCs were generated using a human-proteoglycan-derived peptide (hPG) and all-trans retinoic acid (RA). RA-tolDCs not only display a tolerogenic phenotype but also can induce an antigen-specific regulatory T cell (Treg) response in vitro. However, further analysis showed that RA-tolDCs make up a heterogeneous population of DCs, with only a small proportion being antigen-associated tolDCs. To increase the homogeneity of this population, 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG)-containing liposomes were used to encapsulate the relevant antigen together with RA. These liposomes greatly enhanced the proportion of antigen-associated tolDCs in culture. In addition, in mice, we showed that the liposomal co-delivery of antigen and RA can be a more targeted approach to induce antigen-specific tolerance compared to the injection of RA-tolDCs, and that these liposomes can stimulate the generation of antigen-specific Tregs. This work highlights the importance of the co-delivery of an antigen and immunomodulator to minimize off-target effects and systemic side effects and provides new insights in the use of RA for antigen-specific immunotherapy for autoimmune and chronic inflammatory diseases.
Collapse
|
7
|
Phillips BE, Garciafigueroa Y, Engman C, Liu W, Wang Y, Lakomy RJ, Meng WS, Trucco M, Giannoukakis N. Arrest in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoantigen-Decorated All- trans Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Front Immunol 2021; 12:586220. [PMID: 33763059 PMCID: PMC7982719 DOI: 10.3389/fimmu.2021.586220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes (T1D) is a disorder of impaired glucoregulation due to lymphocyte-driven pancreatic autoimmunity. Mobilizing dendritic cells (DC) in vivo to acquire tolerogenic activity is an attractive therapeutic approach as it results in multiple and overlapping immunosuppressive mechanisms. Delivery of agents that can achieve this, in the form of micro/nanoparticles, has successfully prevented a number of autoimmune conditions in vivo. Most of these formulations, however, do not establish multiple layers of immunoregulation. all-trans retinoic acid (RA) together with transforming growth factor beta 1 (TGFβ1), in contrast, has been shown to promote such mechanisms. When delivered in separate nanoparticle vehicles, they successfully prevent the progression of early-onset T1D autoimmunity in vivo. Herein, we show that the approach can be simplified into a single microparticle formulation of RA + TGFβ1 with surface decoration with the T1D-relevant insulin autoantigen. We show that the onset of hyperglycemia is prevented when administered into non-obese diabetic mice that are at the mid-stage of active islet-selective autoimmunity. Unexpectedly, the preventive effects do not seem to be mediated by increased numbers of regulatory T-lymphocytes inside the pancreatic lymph nodes, at least following acute administration of microparticles. Instead, we observed a mild increase in the frequency of regulatory B-lymphocytes inside the mesenteric lymph nodes. These data suggest additional and potentially-novel mechanisms that RA and TGFβ1 could be modulating to prevent progression of mid-stage autoimmunity to overt T1D. Our data further strengthen the rationale to develop RA+TGFβ1-based micro/nanoparticle “vaccines” as possible treatments of pre-symptomatic and new-onset T1D autoimmunity.
Collapse
Affiliation(s)
- Brett E Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wen Liu
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States.,Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yiwei Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Robert J Lakomy
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Snyder LM, Arora J, Kennett MJ, Weaver V, Cantorna MT. Retinoid Signaling in Intestinal Epithelial Cells Is Essential for Early Survival From Gastrointestinal Infection. Front Immunol 2020; 11:559635. [PMID: 33117344 PMCID: PMC7578243 DOI: 10.3389/fimmu.2020.559635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin A deficiency (A–) increases morbidity and mortality to gastrointestinal (GI) infection. Blocking retinoid signaling (dominant negative retinoic acid receptor, dnRAR) in intestinal epithelial cells (IEC, IECdnRAR) had no effect on vitamin A absorption, the expression of tight junction proteins or the integrity of the barrier. Immune cells in the gut were present in normal frequencies in the IECdnRAR mice, with the exception of the T cell receptor (TCR)αβ+/CD8αα cells, which were significantly lower than in wildtype littermates. Challenging the IECdnRAR mice with dextran sodium sulfate to induce colitis or Citrobacter rodentium infection resulted in similar disease to wildtype littermates. Feeding mice vitamin A deficient diets reduced vitamin A status and the A– IECdnRAR mice developed more severe colitis and C. rodentium infection. In particular, retinoid signaling in the IEC was crucial for the A– host to survive early infection following C. rodentium. Treating A– mice with retinoic acid (RA) beginning on the day of infection protects most mice from early lethality. However, RA treatment of the A– IECdnRAR mice was ineffective for preventing lethality following C. rodentium infection. Retionid signaling in IEC is critical, especially when there are reduced levels of dietary vitamin A. IEC are direct targets of vitamin A for mounting early defense against infection.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States.,Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States
| | - Juhi Arora
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Veronika Weaver
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Margherita T Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
9
|
Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J Nutr Biochem 2020; 80:108360. [PMID: 32163821 PMCID: PMC7242157 DOI: 10.1016/j.jnutbio.2020.108360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
The metabolism of macro- and micronutrients is a complex and highly regulated biological process. An imbalance in the metabolites and their signaling networks can lead to nonresolving inflammation and consequently to the development of chronic inflammatory-associated diseases. Therefore, identifying the accumulated metabolites and altered pathways during inflammatory disorders would not only serve as "real-time" markers but also help in the development of nutritional therapeutics. In this review, we explore recent research that has delved into elucidating the effects of carbohydrate/calorie restriction, protein malnutrition, lipid emulsions and micronutrient deficiencies on metabolic health and inflammation. Moreover, we describe the integrated stress response in terms of amino acid starvation and lipemia and how this modulates new age diseases such as inflammatory bowel disease and atherosclerosis. Lastly, we explain the latest research on metaflammation and inflammaging. This review focuses on multiple signaling pathways, including, but not limited to, the FGF21-β-hydroxybutryate-NLRP3 axis, the GCN2-eIF2α-ATF4 pathway, the von Hippel-Lindau/hypoxia-inducible transcription factor pathway and the TMAO-PERK-FoxO1 axis. Additionally, throughout the review, we explain how the gut microbiota responds to altered nutrient status and also how antimicrobial peptides generated from nutrient-based signaling pathways can modulate the gut microbiota. Collectively, it must be emphasized that metabolic starvation and inflammation are strongly regulated by both environmental (i.e., nutrition, gut microbiome) and nonenvironmental (i.e., genetics) factors, which can influence the susceptibility to inflammatory disorders.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Abokor
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614.
| |
Collapse
|
10
|
Gao YL, Shao LH, Dong LH, Chang PY. Gut commensal bacteria, Paneth cells and their relations to radiation enteropathy. World J Stem Cells 2020; 12:188-202. [PMID: 32266051 PMCID: PMC7118286 DOI: 10.4252/wjsc.v12.i3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical "button" because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy.
Collapse
Affiliation(s)
- Yan-Li Gao
- Department of Pediatric Ultrasound, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hong Shao
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China.
| |
Collapse
|
11
|
Okeke EB, Uzonna JE. The Pivotal Role of Regulatory T Cells in the Regulation of Innate Immune Cells. Front Immunol 2019; 10:680. [PMID: 31024539 PMCID: PMC6465517 DOI: 10.3389/fimmu.2019.00680] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
The distinction between innate and adaptive immunity is one of the basic tenets of immunology. The co-operation between these two arms of the immune system is a major determinant of the resistance or susceptibility of the host following pathogen invasion. Hence, this interactive co-operation between cells of the innate and adaptive immunity is of significant interest to immunologists. The sub-population of CD4+ T cells with regulatory phenotype (regulatory T cells; Tregs), which constitute a part of the adaptive immune system, have been widely implicated in the regulation of the immune system and maintenance of immune homeostasis. In the last two decades, there has been an explosion in research describing the role of Tregs and their relevance in several immunopathologies ranging from inflammation to cancer. The majority of these studies focus on the role of Tregs on the cells of the adaptive immune system. Recently, there is significant interest in the role of Tregs on cells of the innate immune system. In this review, we examine the literature on the role of Tregs in immunology. Specifically, we focus on the emerging knowledge of Treg interaction with dendritic cells, macrophages, neutrophils, and γδ T cells. We highlight this interaction as an important link between innate and adaptive immune systems which also indicate the far-reaching role of Tregs in the regulation of immune responses and maintenance of self-tolerance and immune homeostasis.
Collapse
Affiliation(s)
- Emeka B Okeke
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Jude E Uzonna
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Huang W, Yu J, Jones JW, Carter CL, Pierzchalski K, Tudor G, Booth C, MacVittie TJ, Kane MA. Proteomic Evaluation of the Acute Radiation Syndrome of the Gastrointestinal Tract in a Murine Total-body Irradiation Model. HEALTH PHYSICS 2019; 116:516-528. [PMID: 30624357 PMCID: PMC6384135 DOI: 10.1097/hp.0000000000000951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Radiation exposure to the gastrointestinal system contributes to the acute radiation syndrome in a dose- and time-dependent manner. Molecular mechanisms that lead to the gastrointestinal acute radiation syndrome remain incompletely understood. Using a murine model of total-body irradiation, C57BL/6J male mice were irradiated at 8, 10, 12, and 14 Gy and assayed at day 1, 3, and 6 after exposure and compared to nonirradiated (sham) controls. Tryptic digests of gastrointestinal tissues (upper ileum) were analyzed by liquid chromatography-tandem mass spectrometry on a Waters nanoLC coupled to a Thermo Scientific Q Exactive hybrid quadrupole-orbitrap mass spectrometer. Pathway and gene ontology analysis were performed with Qiagen Ingenuity, Panther GO, and DAVID databases. A number of trends were identified in our proteomic data including pronounced protein changes as well as protein changes that were consistently up regulated or down regulated at all time points and dose levels interrogated. Time- and dose-dependent protein changes, canonical pathways affected by irradiation, and changes in proteins that serve as upstream regulators were also identified. Additionally, proteins involved in key processes including inflammation, radiation, and retinoic acid signaling were identified. The proteomic profiling conducted here represents an untargeted systems biology approach to identify acute molecular events that will be useful for a greater understanding of animal models and may be potentially useful toward the development of medical countermeasures and/or biomarkers.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Keely Pierzchalski
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | | | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room 723, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
13
|
RARα supports the development of Langerhans cells and langerin-expressing conventional dendritic cells. Nat Commun 2018; 9:3896. [PMID: 30254197 PMCID: PMC6156335 DOI: 10.1038/s41467-018-06341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
Langerhans cells (LC) are the prototype langerin-expressing dendritic cells (DC) that reside specifically in the epidermis, but langerin-expressing conventional DCs also reside in the dermis and other tissues, yet the factors that regulate their development are unclear. Because retinoic acid receptor alpha (RARα) is highly expressed by LCs, we investigate the functions of RARα and retinoic acid (RA) in regulating the langerin-expressing DCs. Here we show that the development of LCs from embryonic and bone marrow-derived progenitors and langerin+ conventional DCs is profoundly regulated by the RARα-RA axis. During LC differentiation, RARα is required for the expression of a LC-promoting transcription factor Runx3, but suppresses that of LC-inhibiting C/EBPβ. RARα promotes the development of LCs and langerin+ conventional DCs only in hypo-RA conditions, a function effectively suppressed at systemic RA levels. Our findings identify positive and negative regulatory mechanisms to tightly regulate the development of the specialized DC populations. Langerhans cells (LC) and langerin-expressing conventional dendritic cells are made from distinct progenitors and enriched in the distinct microenvironments of the skin. Here the authors show that these immune cells are regulated by retinoic acid receptor alpha (RARα) via simultaneous induction of LC-promoting Runx3 and repression of LC-inhibiting C/EBPβ.
Collapse
|
14
|
Lind A, Siersema PD, Kusters JG, Konijn T, Mebius RE, Koenderman L. The Microenvironment in Barrett's Esophagus Tissue Is Characterized by High FOXP3 and RALDH2 Levels. Front Immunol 2018; 9:1375. [PMID: 29967615 PMCID: PMC6015910 DOI: 10.3389/fimmu.2018.01375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
Metaplasia in Barrett’s esophagus (BE) is characterized by the transition of squamous epithelium into intestinal-type columnar epithelium. The immune response in BE shares many similarities with the response found in the gut, which is different from the response found in a normal-looking esophagus. Here, we investigated the role of the genes associated with the retinoic acid (RA) pathway in BE, as RA is important not only in shaping the gut’s immune response but also in the induction of metaplasia in vitro. mRNA was isolated from esophageal and duodenal biopsies from BE (n = 14), reflux esophagitis patients (n = 9), and controls (n = 12). cDNA was made and qPCR was performed. The expression of RALDH1, CYP26A1, MAdCAM1 were similar for both the BE and duodenum, but different when compared to squamous esophageal epithelium. BE was characterized by a higher expression of RALDH2 and FOXP3, compared to the duodenum. In BE, RALDH2 correlated with expression of the myeloid dendritic cell-specific genes: CD11c and CD1c. Also, RALDH2 expression correlated with RAR-β and FOXP3. Hierarchical clustering on the expression of multiple relevant genes demonstrated that BE, duodenum, and SQ tissues are clustered as three different groups. The differential expression of RA-specific genes and dendritic cell (DC)-subsets indicates that BE resembles duodenal tissue. The higher expression of RALDH2 and FOXP3 in BE points at a mechanism associated with a possible anti-inflammatory microenvironment. This aberrant immune regulation might contribute to the altered tissue and immune responses found in BE.
Collapse
Affiliation(s)
- Alexandra Lind
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter D Siersema
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johannes G Kusters
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
15
|
Yokota-Nakatsuma A. [Retinoic Acid Prevents Dendritic Cells from Inducing Novel Inflammatory T Cells That Produce Abundant Interleukin-13]. YAKUGAKU ZASSHI 2017; 137:1491-1496. [PMID: 29199257 DOI: 10.1248/yakushi.17-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin A (VA) plays critical roles in gut homeostasis. Dendritic cells in mesenteric lymph nodes (MLN-DCs) can metabolize VA to retinoic acid (RA), thereby inducing gut-tropic lymphocytes and enhancing peripheral differentiation of regulatory T cells expressing forkhead box P3. We found that MLN-DCs from VA-deficient mice induced a distinct inflammatory T helper type 2 (Th2)-cell subset that produced abundant interleukin-13 (IL-13) and expressed receptors for homing to skin and inflammatory sites but not to the intestine. IL-6-neutralizing antibodies or RA abrogated the induction of this subset. On the other hand, RA receptor antagonists allowed MLN-DCs from VA-sufficient mice to induce a similar T-cell subset. IL-6 induced the differentiation of this subset from naive CD4+ T cells upon activation with antibodies against CD3 and CD28, and RA receptor antagonists enhanced this induction. It has been considered that VA deficiency reduces Th2-dependent antibody responses. However, oral administration of an antigen to VA-deficient mice failed to induce immune tolerance but primed strong IL-13-dependent immunoglobulin G1 (IgG1) responses and IgE responses that caused skin allergy. These results suggest that MLN-DCs possess the latent ability to induce IL-13-producing inflammatory Th2 cells and that RA prevents them from inducing IL-13-dependent allergic or inflammatory responses to orally administered antigens.
Collapse
Affiliation(s)
- Aya Yokota-Nakatsuma
- Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
16
|
Cantorna MT. Comment on "Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells". THE JOURNAL OF IMMUNOLOGY 2017; 198:4188. [PMID: 28533278 DOI: 10.4049/jimmunol.1700411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Margherita T Cantorna
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
17
|
Yokota-Nakatsuma A, Ohoka Y, Takeuchi H, Song SY, Iwata M. Beta 1-integrin ligation and TLR ligation enhance GM-CSF-induced ALDH1A2 expression in dendritic cells, but differentially regulate their anti-inflammatory properties. Sci Rep 2016; 6:37914. [PMID: 27897208 PMCID: PMC5126582 DOI: 10.1038/srep37914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Retinoic acid (RA)–producing CD103+ mature dendritic cells (DCs) in mesenteric lymph nodes (MLNs) play crucial roles in gut immunity. GM-CSF and RA contribute to the expression of the RA-producing enzyme ALDH1A2. However, additional signals appeared to be required for inducing ALDH1A2high mature DCs from immature DCs. We found here that TLR ligands (Ls) and immobilized E-cadherin could provide such signals in FLT3-L–generated bone marrow (BM)–derived DCs after treatment with GM-CSF and the RA receptor agonist Am80. The TLR-L-treated DCs produced proinflammatory cytokines unlike normal ALDH1A2high MLN-DCs, whereas the E-cadherin-treated DCs did not. Immobilized VCAM-1 and semaphorin 7 A exerted effects similar to those of E-cadherin. Soluble anti-integrin β1 antibodies or inhibitors of integrin signaling molecules suppressed the effects of these immobilized proteins, whereas immobilized anti-integrin β1 antibodies enhanced the GM-CSF/Am80-induced ALDH1A2 expression without inducing proinflammatory cytokines. Sequential stimulation of splenic pre-DCs with GM-CSF/Am80 and immobilized E-cadherin or anti-integrin β1 antibody also induced differentiation to mature DCs with high ALDH activity. The E-cadherin-treated BM-DCs induced gut-tropic Foxp3+ T cells and alleviated DSS–induced colitis, whereas the TLR-L-treated DCs aggravated DSS–induced colitis. The results suggest that integrin β1-mediated signals contribute to the differentiation and maturation of RA-producing anti-inflammatory DCs.
Collapse
Affiliation(s)
- Aya Yokota-Nakatsuma
- Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki-shi, Kagawa, Japan.,Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan
| | - Yoshiharu Ohoka
- Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki-shi, Kagawa, Japan.,Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan
| | - Hajime Takeuchi
- Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki-shi, Kagawa, Japan.,Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan
| | - Si-Young Song
- Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan.,Institute of Neuroscience, Tokushima Bunri University, Shido, Sanuki-shi, Kagawa, Japan
| | - Makoto Iwata
- Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki-shi, Kagawa, Japan.,Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
18
|
Ito K, Zolfaghari R, Hao L, Ross AC. Inflammation rapidly modulates the expression of ALDH1A1 (RALDH1) and vimentin in the liver and hepatic macrophages of rats in vivo. Nutr Metab (Lond) 2014; 11:54. [PMID: 25926859 PMCID: PMC4414379 DOI: 10.1186/1743-7075-11-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/16/2014] [Indexed: 12/21/2022] Open
Abstract
Background Members of the ALDH1 protein family, known as retinal dehydrogenases (RALDH), produce retinoic acid (RA), a metabolite of vitamin A, and may also oxidize other lipid aldehydes. Of three related ALDH1 genes, ALDH1A1 is most highly expressed in liver. ALDH1A1 is also rapidly gaining importance as a stem cell marker. We hypothesized that ALDH1A1 may have a broad cellular distribution in the liver, and that its expression may be regulated by RA and perturbed by inflammation. Methods Studies were conducted in vitamin A-deficient and –adequate rats that were further treated with all-trans-RA or lipopolysaccharide (LPS) to induce a state of moderate inflammation. RALDH1A1 expression was determined by quantitative PCR and RALDH1, as well as marker gene expression, was determined by immunocytochemical methods. Results Inflammation reduced ALDH1A1 mRNA in whole liver regardless of the level of vitamin A in the diet (P < 0.05), while treatment with RA reduced ALDH1A1 expression only in chow-fed rats. ALDH1A1 protein exhibited diffuse staining in hepatocytes, with greater intensity in the periportal region including surrounding bile ducts. Six h after administration of LPS, portal region macrophages were more numerous and some of these cells contained ALDH1A1. Vimentin, which was used as a marker for stellate cells and fibroblasts, was increased by LPS, P = 0.011 vs. without LPS, in both ED1 (CD68)-positive macrophages and fibroblastic stellate-like cells in the parenchyma as well as portal regions. Alpha-smooth muscle actin staining was intense around blood vessels, but did not change after LPS or RA, nor overlap with staining for vimentin. Conclusions Acute inflammation rapidly downregulates ALDH1A1 expression in whole liver while increasing its expression in periportal macrophages. Changes in ALDH1A1 expression appear to be part of the early acute-phase inflammatory response, which has been shown to alter the expression of other retinoid homeostatic genes. In addition, the rapid strong response of vimentin expression after treatment with LPS suggests that increased vimentin may be a useful marker of early hepatic inflammation.
Collapse
Affiliation(s)
- Kyoko Ito
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Reza Zolfaghari
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lei Hao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Graduate Program in Nutrition, The Pennsylvania State University, University Park, PA 16802 USA
| | - A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Center for Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Huck Institutes for Life Sciences and Department of Nutritional Sciences, Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16803 USA
| |
Collapse
|
19
|
Yokota-Nakatsuma A, Takeuchi H, Ohoka Y, Kato C, Song SY, Hoshino T, Yagita H, Ohteki T, Iwata M. Retinoic acid prevents mesenteric lymph node dendritic cells from inducing IL-13-producing inflammatory Th2 cells. Mucosal Immunol 2014; 7:786-801. [PMID: 24220301 DOI: 10.1038/mi.2013.96] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 10/12/2013] [Indexed: 02/04/2023]
Abstract
The vitamin A (VA) metabolite retinoic acid (RA) affects the properties of T cells and dendritic cells (DCs). In VA-deficient mice, we observed that mesenteric lymph node (MLN)-DCs induce a distinct inflammatory T helper type 2 (Th2)-cell subset that particularly produces high levels of interleukin (IL)-13 and tumor necrosis factor-α (TNF-α). This subset expressed homing receptors for skin and inflammatory sites, and was mainly induced by B220(-)CD8α(-)CD11b(+)CD103(-) MLN-DCs in an IL-6- and OX40 ligand-dependent manner, whereas RA inhibited this induction. The corresponding MLN-DC subset of VA-sufficient mice induced a similar T-cell subset in the presence of RA receptor antagonists. IL-6 induced this subset differentiation from naive CD4(+) T cells upon activation with antibodies against CD3 and CD28. Transforming growth factor-β inhibited this induction, and reciprocally enhanced Th17 induction. Treatment with an agonistic anti-OX40 antibody and normal MLN-DCs enhanced the induction of general inflammatory Th2 cells. In VA-deficient mice, proximal colon epithelial cells produced TNF-α that may have enhanced OX40 ligand expression in MLN-DCs. The repeated oral administrations of a T cell-dependent antigen primed VA-deficient mice for IL-13-dependent strong immunoglobulin G1 (IgG1) responses and IgE responses that caused skin allergy. These results suggest that RA inhibits allergic responses to oral antigens by preventing MLN-DCs from inducing IL-13-producing inflammatory Th2 cells.
Collapse
Affiliation(s)
- A Yokota-Nakatsuma
- 1] Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan [2] JST, CREST, Tokyo, Japan
| | - H Takeuchi
- 1] Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan [2] JST, CREST, Tokyo, Japan
| | - Y Ohoka
- 1] Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan [2] JST, CREST, Tokyo, Japan
| | - C Kato
- Institute of Neuroscience, Tokushima Bunri University, Kagawa, Japan
| | - S-Y Song
- 1] JST, CREST, Tokyo, Japan [2] Institute of Neuroscience, Tokushima Bunri University, Kagawa, Japan
| | - T Hoshino
- Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - H Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - T Ohteki
- 1] JST, CREST, Tokyo, Japan [2] Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Iwata
- 1] Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan [2] JST, CREST, Tokyo, Japan
| |
Collapse
|
20
|
Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice. PLoS One 2014; 9:e83575. [PMID: 24465383 PMCID: PMC3894962 DOI: 10.1371/journal.pone.0083575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023] Open
Abstract
The objective of the study was to identify immune cell populations, in addition to Foxp3+ T-regulatory cells, that participate in the mechanisms of action of tolerogenic dendritic cells shown to prevent and reverse type 1 diabetes in the Non-Obese Diabetic (NOD) mouse strain. Co-culture experiments using tolerogenic dendritic cells and B-cells from NOD as well as transgenic interleukin-10 promoter-reporter mice along with transfer of tolerogenic dendritic cells and CD19+ B-cells into NOD and transgenic mice, showed that these dendritic cells increased the frequency and numbers of interleukin-10-expressing B-cells in vitro and in vivo. The expansion of these cells was a consequence of both the proliferation of pre-existing interleukin-10-expressing B-lymphocytes and the conversion of CD19+ B-lymphcytes into interleukin-10-expressing cells. The tolerogenic dendritic cells did not affect the suppressive activity of these B-cells. Furthermore, we discovered that the suppressive murine B-lymphocytes expressed receptors for retinoic acid which is produced by the tolerogenic dendritic cells. These data assist in identifying the nature of the B-cell population increased in response to the tolerogenic dendritic cells in a clinical trial and also validate very recent findings demonstrating a mechanistic link between human tolerogenic dendritic cells and immunosuppressive regulatory B-cells.
Collapse
|
21
|
Martin JCJ, Bériou G, Heslan M, Chauvin C, Utriainen L, Aumeunier A, Scott CL, Mowat A, Cerovic V, Houston SA, Leboeuf M, Hubert FX, Hémont C, Merad M, Milling S, Josien R. Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunol 2014; 7:101-13. [PMID: 23653115 PMCID: PMC4291114 DOI: 10.1038/mi.2013.28] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/08/2013] [Indexed: 02/04/2023]
Abstract
Interleukin-22 (IL-22) is mainly produced at barrier surfaces by T cells and innate lymphoid cells and is crucial to maintain epithelial integrity. However, dysregulated IL-22 action leads to deleterious inflammation and is involved in diseases such as psoriasis, intestinal inflammation, and cancer. IL-22 binding protein (IL-22BP) is a soluble inhibitory IL-22 receptor and may represent a crucial regulator of IL-22. We show both in rats and mice that, in the steady state, the main source of IL-22BP is constituted by a subset of conventional dendritic cells (DCs) in lymphoid and non-lymphoid tissues. In mouse intestine, IL-22BP was specifically expressed in lamina propria CD103(+)CD11b(+) DC. In humans, IL-22BP was expressed in immature monocyte-derived DC and strongly induced by retinoic acid but dramatically reduced upon maturation. Our data suggest that a subset of immature DCs may actively participate in the regulation of IL-22 activity in the gut by producing high levels of IL-22BP.
Collapse
Affiliation(s)
- JCJ Martin
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France,CHU Nantes, Laboratoire d’immunologie, Nantes, F-44000, France,Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| | - G Bériou
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France
| | - M Heslan
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France
| | - C Chauvin
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France
| | - L Utriainen
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - A Aumeunier
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - CL Scott
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - A Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - V Cerovic
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - SA Houston
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - M Leboeuf
- Department of Gene and Cell medicine and the Department of Medicine, Mount Sinai School of Medicine, New York 10029, USA
| | - FX Hubert
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France,Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| | - C Hémont
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France,CHU Nantes, Laboratoire d’immunologie, Nantes, F-44000, France,Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| | - M Merad
- Department of Gene and Cell medicine and the Department of Medicine, Mount Sinai School of Medicine, New York 10029, USA
| | - S Milling
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - R Josien
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France,CHU Nantes, Laboratoire d’immunologie, Nantes, F-44000, France,Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| |
Collapse
|
22
|
Altered inactivation of commensal LPS due to acyloxyacyl hydrolase deficiency in colonic dendritic cells impairs mucosal Th17 immunity. Proc Natl Acad Sci U S A 2013; 111:373-8. [PMID: 24344308 DOI: 10.1073/pnas.1311987111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interleukin (IL) 17-secreting CD4(+) helper T cells (Th17 cells) are essential for host defense at mucosal surfaces, and Th17 cell dysregulation can result in autoimmunity. Exposure to microbial products, such as bacterial LPS, can affect the ability of dendritic cells (DCs) to polarize Th17 cells. Acyloxyacyl hydrolase (AOAH) is a mammalian enzyme expressed by antigen (Ag)-presenting cells that deacylates and thereby inactivates LPS in host tissues. We hypothesized that inactivation of intestinal microbiota-derived LPS by AOAH influences the ability of DCs to polarize and generate Th17 effector cells. We found that LPS-containing Gram-negative microbiota augmented the differentiation of Ag-specific Th17 cells, and identified a colonic DC subset (CD103(+)CD11b(+)ALDH(-)) displaying a unique capacity to both express AOAH and polarize Th17 cells. Compared with WT, these Aoah(-/-) colonic DCs produce less IL-6, resulting in diminished Ag-specific Th17 polarization and increased regulatory T-cell induction in vitro. Oral administration of LPS led to reduced IL-6 production from CD103(+)CD11b(+)ALDH(-) colonic DCs in Aoah(-/-) mice compared with Aoah(+/+) mice, resulting in an abrogated Ag-specific Th17 response in the colon after mucosal immunization that could be rescued by systemic delivery of recombinant IL-6. These data identify the ability of AOAH to modulate microbiota signals that drive Th17 polarization and influence mucosal T-cell immunity, and suggest that host pathways to handle microbiota-derived products may be targeted to modulate Th17 responses in the context of inflammatory disorders or infection at mucosal surfaces.
Collapse
|
23
|
Abstract
BACKGROUND In vitro and in vivo data have shown that retinoid treatment promotes an anti-inflammatory milieu with few adverse effects toward the gastrointestinal tract. The in vivo studies reported here further evaluate retinoid effects in 2 mouse models of inflammatory bowel disease. METHOD Chronic dextran sulfate sodium colitis was induced in age- and weight-matched C57Bl/6 mice by 4 cycles of dextran sulfate sodium administration (6-8 animals/group). At cycle 4, animals were administered 13-cis-retinoic acid (isotretinoin, 30 mg/kg) or vehicle (oral gavage) or 4-oxo-13-cis-retinoic acid (15 mg/kg, intraperitoneal) daily. T-cell transfer colitis was induced in CB17 SCID mice by transfer of naive CD4CD62L T cells and treated by transfer of regulatory CD4CD25 T cells (4-6 animals/group); isolated from BALB/c mice after treatment with isotretinoin or vehicle, as above, for 2 weeks. Assessments included endoscopic and histological scores, myeloperoxidase activity, serum cytokines, and plasma isotretinoin levels. RESULTS Retinoid-treated animals with colitis showed comparable changes in myeloperoxidase activity, and endoscopic and histological scores, versus untreated animals with colitis. Modest and comparable changes were seen in body weight and colon length in animals injected with naive T cells from isotretinoin-treated donors versus those injected with T cells from vehicle-treated donors. Retinoid treatment was consistently associated with lower interleukin-12 levels, which, after the transfer of naive T cells from isotretinoin-treated donors, supported isotretinoin-mediated predisposition of naive T cells toward reduced proinflammatory cytokine expression. Colitis had no effect on isotretinoin exposure. CONCLUSIONS Retinoids attenuate the proinflammatory cytokine response in vivo, with only modest effects on body weight and parameters of gastrointestinal morphology.
Collapse
|
24
|
Kim CH. Host and microbial factors in regulation of T cells in the intestine. Front Immunol 2013; 4:141. [PMID: 23772228 PMCID: PMC3677167 DOI: 10.3389/fimmu.2013.00141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/27/2013] [Indexed: 12/19/2022] Open
Abstract
The intestine is divided into specialized tissue areas that provide distinct microenvironments for T cells. Regulation of T-cell responses in the gut has been a major focus of recent research activities in the field. T cells in the intestine are regulated by the interplay between host and microbial factors. In the small intestine, retinoic acid (RA) is a major tissue factor that plays important roles in regulation of immune responses. In the large intestine, the influence of RA diminishes, but that of commensal bacterial products increases. RA, gut microbiota, and inflammatory mediators co-regulate differentiation, distribution, and/or effector functions of T cells. Coordinated regulation of immune responses by these factors promotes well-balanced immunity and immune tolerance. Dysregulation of this process can increase infection and inflammatory diseases.
Collapse
Affiliation(s)
- Chang H Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Center for Cancer Research, Purdue University West Lafayette, IN, USA
| |
Collapse
|
25
|
Wojtal KA, Wolfram L, Frey-Wagner I, Lang S, Scharl M, Vavricka SR, Rogler G. The effects of vitamin A on cells of innate immunity in vitro. Toxicol In Vitro 2013; 27:1525-32. [PMID: 23562973 DOI: 10.1016/j.tiv.2013.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 12/13/2022]
Abstract
Retinoid treatment is suggested to promote development of inflammatory bowel disease, although preclinical studies are not supportive. We evaluated the effect of retinoids on cytokine response in in vitro-differentiated human dendritic cells (ivDCs) and macrophages (ivMACs) derived from healthy human donors and in cultured human THP-1 cells. Effect on human intestinal epithelial cell integrity was also assessed. Each cell type was incubated (±lipopolysaccharide [LPS]) with all-trans retinoic acid (ATRA), 13-cis-RA (isotretinoin) and 4-oxo-13-cis-RA. Cytokine analysis was performed by array analysis. Cultured human endothelial colorectal adenocarcinoma (Caco-2) cells were incubated with these retinoids and media analyzed for leakage by spectrofluorometric analysis. ATRA consistently and significantly inhibited LPS-induced release of the pro-inflammatory cytokines tumor necrosis factor, interleukin (IL)-6, macrophage inflammatory protein (MIP)-1α and MIP-1β. All retinoids tested stimulated release of the anti-inflammatory cytokines granulocyte-macrophage colony-stimulating factor and IL-10, and also monocyte chemotactic protein-1, vascular endothelial growth factor and eotaxin-1. Incubation with retinoids did not significantly alter the permeability of Caco-2 monolayers. Pre-treatment of each cell type with retinoids promoted an anti-inflammatory cytokine profile with only minimal effect on intestinal epithelial cell permeability; consistent with in vivo studies.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University-Hospital of Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
26
|
Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol 2013; 6:14-23. [PMID: 23131785 PMCID: PMC4034055 DOI: 10.1038/mi.2012.96] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucosal tissues are continually bombarded with infectious agents seeking to gain entry into the body. The absence of a tough physical exterior layer surrounding these tissues creates a unique challenge for the immune system, which manages to provide broad protection against a plethora of different organisms with the aid of special adaptations that augment immunity at these vulnerable sites. For example, specialized populations of memory T lymphocytes reside at initial sites of pathogen entry into the body, where they provide an important protective barrier. Similar anatomically-confined populations of pathogen-specific CD8 T cells can be found near the outer margins of the body following recovery from a variety of local infections, where they share very similar phenotypic characteristics. How these tissue-resident T cells are retained in a single anatomic location where they can promote immunity is beginning to be defined. Here, we will review current knowledge of the mechanisms that help establish and maintain these regional lymphocytes in the mucosal tissues and discuss relevant data that enhance our understanding of the contribution of these lymphocyte populations to protective immunity against infectious diseases.
Collapse
|
27
|
Hurst RJM, Else KJ. Retinoic acid signalling in gastrointestinal parasite infections: lessons from mouse models. Parasite Immunol 2012; 34:351-9. [PMID: 22443219 PMCID: PMC3485670 DOI: 10.1111/j.1365-3024.2012.01364.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Retinoic acid or vitamin A is important for an extensive range of biological processes, including immunomodulatory functions, however, its role in gastrointestinal parasite infections is not yet clear. Despite this, parasite infected individuals are often supplemented with vitamin A, given the co-localised prevalence of parasitic infections and vitamin deficiencies. Therefore, it is important to understand the impact of this vitamin on the immune responses to gastrointestinal parasites. Here, we review data regarding the role of retinoic acid signalling in mouse models of intestinal nematode infection, with a view to understanding better the practice of giving vitamin A supplements to worm-infected people.
Collapse
Affiliation(s)
- R J M Hurst
- The University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|