1
|
Mirfakhraie N, Shoorei H, Abedpour N, Javanmard MZ. Co-treatment with bone marrow-derived mesenchymal stem cells and curcumin improved angiogenesis in myocardium in a rat model of MI. Mol Biol Rep 2024; 51:261. [PMID: 38302805 DOI: 10.1007/s11033-023-09180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The cardioprotective properties of mesenchymal stem cells and the therapeutic potential of curcumin (CUR) have been explored. Combining these approaches may enhance stem cell effectiveness and expedite healing. This study aimed to investigate the synergistic effects of co-treating bone marrow mesenchymal stem cells (BMSCs) with curcumin on vascular endothelial growth factor (VEGF) levels, in a rat model of myocardial ischemia (MI). METHODS AND RESULTS Sixty-five male rats were divided into four groups: G1 (healthy control), G2 (MI induced by isoproterenol hydrochloride), G3 (treated with BMSCs), and G4 (co-treated with curcumin and BMSCs). Blood and tissue samples were collected at specific time points (day 1, 7, 15 and 21) after MI induction. Serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin I (cTnI), aspartate aminotransferase (AST), CK-MB and VEGF were measured. VEGF mRNA and protein expression were evaluated using RT-qPCR and Western blot techniques. Histopathological assessments were performed using H&E staining and CD31 immunofluorescence staining. VEGF expression significantly increased on days 7 and 15 in the CUR-BMSCs group, peaking on day 7. Western blot analysis confirmed elevated VEGF protein expression on days 7 and 15 post-MI. ELISA results demonstrated increased serum VEGF levels on days 7 and 15, reaching the highest level on day 7 in CUR-BMSCs-treated animals. Treated groups showed lower levels of LDH, AST, CK, CK-MB and cTnI compared to the untreated MI group. H&E staining revealed improved myocardial structure, increased formation of new capillaries, in both treatment groups compared to the MI group. CONCLUSION Combining curcumin with BMSCs promotes angiogenesis in the infarcted myocardium after 15 days of MI induction. These findings suggest the potential of this combined therapy approach for enhancing cardiac healing and recovery.
Collapse
Affiliation(s)
- Niki Mirfakhraie
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Abedpour
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoumeh Zirak Javanmard
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Sacco AM, Castaldo C, Di Meglio FD, Nurzynska D, Palermi S, Spera R, Gnasso R, Zinno G, Romano V, Belviso I. The Long and Winding Road to Cardiac Regeneration. APPLIED SCIENCES 2023; 13:9432. [DOI: 10.3390/app13169432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Franca Di Di Meglio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Stefano Palermi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rocco Spera
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rossana Gnasso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Zinno
- Department of Clinical and Surgical Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
3
|
Petrova V, Vachkova E. Outlook of Adipose-Derived Stem Cells: Challenges to Their Clinical Application in Horses. Vet Sci 2023; 10:vetsci10050348. [PMID: 37235430 DOI: 10.3390/vetsci10050348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose tissue is recognized as the major endocrine organ, potentially acting as a source of mesenchymal stem cells for various applications in regenerative medicine. Athletic horses are often exposed to traumatic injuries, resulting in severe financial losses. The development of adipose-derived stem cells' regenerative potential depends on many factors. The extraction of stem cells from subcutaneous adipose tissue is non-invasive, non-traumatic, cheaper, and safer than other sources. Since there is a lack of unique standards for identification, the isolated cells and applied differentiation protocols are often not species-specific; therefore, the cells cannot reveal their multipotent properties, so their stemness features remain questionable. The current review discusses some aspects of the specificity of equine adipose stem cells concerning their features, immunophenotyping, secretome profile, differentiation abilities, culturing conditions, and consequent possibilities for clinical application in concrete disorders. The presented new approaches elucidate the possibility of the transition from cell-based to cell-free therapy with regenerative purposes in horses as an alternative treatment to cellular therapy. In conclusion, their clinical benefits should not be underestimated due to the higher yield and the physiological properties of adipose-derived stem cells that facilitate the healing and tissue regeneration process and the ability to amplify the effects of traditional treatments. More profound studies are necessary to apply these innovative approaches when treating traumatic disorders in racing horses.
Collapse
Affiliation(s)
- Valeria Petrova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
4
|
Yang YS, Liu MH, Yan ZW, Chen GQ, Huang Y. FAM122A Is Required for Mesendodermal and Cardiac Differentiation of Embryonic Stem Cells. Stem Cells 2023; 41:354-367. [PMID: 36715298 PMCID: PMC10498146 DOI: 10.1093/stmcls/sxad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 01/31/2023]
Abstract
Mesendodermal specification and cardiac differentiation are key issues for developmental biology and heart regeneration medicine. Previously, we demonstrated that FAM122A, a highly conserved housekeeping gene, is an endogenous inhibitor of protein phosphatase 2A (PP2A) and participates in multifaceted physiological and pathological processes. However, the in vivo function of FAM122A is largely unknown. In this study, we observed that Fam122 deletion resulted in embryonic lethality with severe defects of cardiovascular developments and significantly attenuated cardiac functions in conditional cardiac-specific knockout mice. More importantly, Fam122a deficiency impaired mesendodermal specification and cardiac differentiation from mouse embryonic stem cells but showed no influence on pluripotent identity. Mechanical investigation revealed that the impaired differentiation potential was caused by the dysregulation of histone modification and Wnt and Hippo signaling pathways through modulation of PP2A activity. These findings suggest that FAM122A is a novel and critical regulator in mesendodermal specification and cardiac differentiation. This research not only significantly extends our understanding of the regulatory network of mesendodermal/cardiac differentiation but also proposes the potential significance of FAM122A in cardiac regeneration.
Collapse
Affiliation(s)
- Yun-Sheng Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| | - Zhao-Wen Yan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Song BW, Lee CY, Kim R, Kim WJ, Lee HW, Lee MY, Kim J, Jeong JY, Chang W. Multiplexed targeting of miRNA-210 in stem cell-derived extracellular vesicles promotes selective regeneration in ischemic hearts. Exp Mol Med 2021; 53:695-708. [PMID: 33879860 PMCID: PMC8102609 DOI: 10.1038/s12276-021-00584-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/02/2023] Open
Abstract
Extracellular vesicles (EVs) are cell derivatives containing diverse cellular molecules, have various physiological properties and are also present in stem cells used for regenerative therapy. We selected a "multiplexed target" that demonstrates multiple effects on various cardiovascular cells, while functioning as a cargo of EVs. We screened various microRNAs (miRs) and identified miR-210 as a candidate target for survival and angiogenic function. We confirmed the cellular and biological functions of EV-210 (EVs derived from ASCmiR-210) secreted from adipose-derived stem cells (ASCs) transfected with miR-210 (ASCmiR-210). Under hypoxic conditions, we observed that ASCmiR-210 inhibits apoptosis by modulating protein tyrosine phosphatase 1B (PTP1B) and death-associated protein kinase 1 (DAPK1). In hypoxic endothelial cells, EV-210 exerted its angiogenic capacity by inhibiting Ephrin A (EFNA3). Furthermore, EV-210 enhanced cell survival under the control of PTP1B and induced antiapoptotic effects in hypoxic H9c2 cells. In cardiac fibroblasts, the fibrotic ratio was reduced after exposure to EV-210, but EVs derived from ASCmiR-210 did not communicate with fibroblasts. Finally, we observed the functional restoration of the ischemia/reperfusion-injured heart by maintaining the intercommunication of EVs and cardiovascular cells derived from ASCmiR-210. These results suggest that the multiplexed target with ASCmiR-210 is a useful tool for cardiovascular regeneration.
Collapse
Affiliation(s)
- Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Won Jung Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Hee Won Lee
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, Republic of Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
6
|
Jahn SK, Hennicke T, Kassack MU, Drews L, Reichert AS, Fritz G. Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118711. [PMID: 32224192 DOI: 10.1016/j.bbamcr.2020.118711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Cardiotoxicity is a highly relevant, because often life-threatening, adverse effect of doxorubicin (Doxo)-based anticancer therapy. Here, we investigated the Doxo-response of cardiovascular stem/progenitor cells employing a mouse embryonic stem cell (mESC)-based in vitro differentiation model. Endothelial progenitor cells revealed a pronounced Doxo sensitivity as compared to mESC, differentiated endothelial-like (EC) and cardiomyocyte-like cells (CM) and CM progenitors, which rests on the activation of senescence. Doxo treatment of EC progenitors altered protein expression of individual endothelial markers, actin cytoskeleton morphology, mRNA expression of genes related to mitochondrial functions, autophagy, apoptosis, and DNA repair as well as mitochondrial DNA content, respiration and ATP production in the surviving differentiated EC progeny. By contrast, LDL uptake, ATP-stimulated Ca2+ release, and cytokine-stimulated ICAM-1 expression remained unaffected by the anthracycline treatment. Thus, exposure of EC progenitors to Doxo elicits isolated and persistent dysfunctions in the surviving EC progeny. In conclusion, we suggest that Doxo-induced injury of EC progenitors adds to anthracycline-induced cardiotoxicity, making this cell-type a preferential target for pharmacoprotective and regenerative strategies.
Collapse
Affiliation(s)
- Sarah K Jahn
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Tatiana Hennicke
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
7
|
A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 2018; 8:13532. [PMID: 30201959 PMCID: PMC6131510 DOI: 10.1038/s41598-018-31848-x] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
The myocardium behaves like a sophisticated orchestra that expresses its true potential only if each member performs the correct task harmonically. Recapitulating its complexity within engineered 3D functional constructs with tailored biological and mechanical properties, is one of the current scientific priorities in the field of regenerative medicine and tissue engineering. In this study, driven by the necessity of fabricating advanced model of cardiac tissue, we present an innovative approach consisting of heterogeneous, multi-cellular constructs composed of Human Umbilical Vein Endothelial Cells (HUVECs) and induced pluripotent cell-derived cardiomyocytes (iPSC-CMs). Cells were encapsulated within hydrogel strands containing alginate and PEG-Fibrinogen (PF) and extruded through a custom microfluidic printing head (MPH) that allows to precisely tailor their 3D spatial deposition, guaranteeing a high printing fidelity and resolution. We obtained a 3D cardiac tissue compose of iPSC-derived CMs with a high orientation index imposed by the different defined geometries and blood vessel-like shapes generated by HUVECs which, as demonstrated by in vivo grafting, better support the integration of the engineered cardiac tissue with host’s vasculature.
Collapse
|
8
|
Shin S, Choi JW, Lim S, Lee S, Jun EY, Sun HM, Kim IK, Lee HB, Kim SW, Hwang KC. Anti-apoptotic effects of adipose-derived adherent stromal cells in mesenchymal stem cells exposed to oxidative stress. Cell Biochem Funct 2018; 36:263-272. [PMID: 29920999 DOI: 10.1002/cbf.3338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 01/28/2023]
Abstract
Adipose-derived stromal vascular fractions (SVFs) are a heterogeneous collection of cells, and their regenerative modality has been applied in various animal experiments and clinical trials. Despite the attractive advantages of SVFs in clinical interventions, the recent status of clinical studies involving the application of SVFs in many diseases has not been fully evaluated. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types despite their low numbers in heart tissue. Here, we sought to determine if SVF implantation into impaired heart tissue affected endogenous MSCs in the heart. Therefore, we investigated the expression levels of proteins associated with oxidation, inflammation, and apoptosis in MSCs co-cultured with adipose-derived adherent stromal cells (ADASs) from 6 donors' SVFs under oxidative stress conditions for their roles in many physiological processes in the heart. Interestingly, p53 pathway proteins and mitogen-activated protein kinase (MAPK) signalling pathway components were up-regulated by H2 O2 but exhibited a downward trend in MSCs co-cultured with ADASs. These data suggest that ADASs may inhibit oxidative stress-induced apoptosis in MSCs via the p53 and MAPK pathways. Our findings also suggest that the positive effects of SVF implantation into damaged heart tissue may be attributed to the various responses of MSCs. This finding may provide new insights for the clinical application of adipose-derived SVF transplantation in cardiac diseases. SIGNIFICANCE OF THE STUDY We investigated the expression levels of proteins associated with oxidation, inflammation, and apoptosis in MSCs co-cultured with isolated ADASs from 6 donors' SVFs under oxidative stress conditions. Our results imply that isolated ADASs from SVFs may inhibit oxidative stress-induced cell cycle arrest and/or apoptosis in MSCs via a p53-dependent pathway. Furthermore, we identified an anti-apoptotic mechanism involving oxidative stress-induced apoptosis by adipose-derived ADASs in MSCs for the first time. Our findings suggest that the positive effects of SVF implantation into damaged heart tissue may be attributed to the various actions of MSCs.
Collapse
Affiliation(s)
- Sunhye Shin
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jung-Won Choi
- Department of Health and Environment, College of Engineering, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea.,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea.,International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea.,International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Eun-Young Jun
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea.,Cell Therapy Center, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Hyun-Min Sun
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea.,Cell Therapy Center, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea.,Cell Therapy Center, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Hoon-Bum Lee
- Department of Plastic and Reconstructive Surgery, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea.,International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea.,International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| |
Collapse
|
9
|
Insight into stem cell regulation from sub-lethally irradiated worms. Gene 2018; 662:37-45. [PMID: 29627527 DOI: 10.1016/j.gene.2018.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
Despite the significant advances in the comprehension of stem cell control network, the nature of extrinsic signals regulating their dynamic remains to be understood. In this paper, we take advantage of the stem cell repopulation process that follows low-dose X-ray treatment in planarians to identify genes, preferentially enriched in differentiated cells, whose expression is activated during the process. Genetic silencing of some of them impaired the stem cell repopulation, suggesting a tight extrinsic control of stem cell activity.
Collapse
|
10
|
Ma D, Tu C, Sheng Q, Yang Y, Kan Z, Guo Y, Shyr Y, Scott IC, Lou X. Dynamics of Zebrafish Heart Regeneration Using an HPLC-ESI-MS/MS Approach. J Proteome Res 2018; 17:1300-1308. [PMID: 29369637 DOI: 10.1021/acs.jproteome.7b00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Failure to properly repair damaged due to myocardial infarction is a major cause of heart failure. In contrast with adult mammals, zebrafish hearts show remarkable regenerative capabilities after substantial damage. To characterize protein dynamics during heart regeneration, we employed an HPLC-ESI-MS/MS (mass spectrometry) approach. Myocardium tissues were taken from sham-operated fish and ventricle-resected sample at three different time points (2, 7, and 14 days); dynamics of protein expression were analyzed by an ion-current-based quantitative platform. More than 2000 protein groups were quantified in all 16 experiments. Two hundred and nine heart-regeneration-related protein groups were quantified and clustered into six time-course patterns. Functional analysis indicated that multiple molecular function and metabolic pathways were involved in heart regeneration. Interestingly, Ingenuity Pathway Analysis revealed that P53 signaling was inhibited during the heart regeneration, which was further verified by real-time quantitative polymerase chain reaction (Q-PCR). In summary, we applied systematic proteomics analysis on regenerating zebrafish heart, uncovered the dynamics of regenerative genes expression and regulatory pathways, and provided invaluable insight into design regenerative-based strategies in human hearts.
Collapse
Affiliation(s)
- Danjun Ma
- College of Mechanical Engineering, Dongguan University of Technology , 1 Daxue Road, Dongguan, Guangdong 523808, China
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York 14260, United States
| | - Quanhu Sheng
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University School of Medicine , 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
| | - Yuxi Yang
- Model Animal Research Center, Nanjing University , Nanjing 210093, China
| | - Zhisheng Kan
- Department of Neurosurgery, Beijing Anzhen Hospital, Capital Medical University , Beijing 100029, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Comprehensive Cancer Center , Albuquerque, New Mexico 87131, United States
| | - Yu Shyr
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University School of Medicine , 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children , Toronto, Ontario M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Xin Lou
- Model Animal Research Center, Nanjing University , Nanjing 210093, China
| |
Collapse
|
11
|
Potential Role of Exosomes in Mending a Broken Heart: Nanoshuttles Propelling Future Clinical Therapeutics Forward. Stem Cells Int 2017; 2017:5785436. [PMID: 29163642 PMCID: PMC5662033 DOI: 10.1155/2017/5785436] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation therapy is a promising adjunct for regenerating damaged heart tissue; however, only modest improvements in cardiac function have been observed due to poor survival of transplanted cells in the ischemic heart. Therefore, there remains an unmet need for therapies that can aid in attenuating cardiac damage. Recent studies have demonstrated that exosomes released by stem cells could serve as a potential cell-free therapeutic for cardiac repair. These exosomes/nanoshuttles, once thought to be merely a method of waste disposal, have been shown to play a crucial role in physiological functions including short- and long-distance intercellular communication. In this review, we have summarized studies demonstrating the potential role of exosomes in improving cardiac function, attenuating cardiac fibrosis, stimulating angiogenesis, and modulating miRNA expression. Furthermore, exosomes carry an important cargo of miRNAs and proteins that could play an important role as a diagnostic marker for cardiovascular disease post-myocardial infarction. Although there is promising evidence from preclinical studies that exosomes released by stem cells could serve as a potential cell-free therapeutic for myocardial repair, there are several challenges that need to be addressed before exosomes could be fully utilized as off-the-shelf therapeutics for cardiac repair.
Collapse
|
12
|
Graham E, Bergmann O. Dating the Heart: Exploring Cardiomyocyte Renewal in Humans. Physiology (Bethesda) 2017; 32:33-41. [PMID: 27927803 DOI: 10.1152/physiol.00015.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regenerative mechanisms reported in the hearts of lower vertebrates have been recapitulated in the mammalian milieu, and recent studies have provided strong evidence for cardiomyocyte turnover in humans. These findings speak to an emerging consensus that adult mammalian cardiomyocytes do have the ability to divide, and it stands to reason that enrichment of this innate proliferative capacity should prove essential for complete cardiac regeneration.
Collapse
Affiliation(s)
- Evan Graham
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; and
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; and.,DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Abstract
The underlying cause of systolic heart failure is the inability of the adult mammalian heart to regenerate damaged myocardium. In contrast, some vertebrate species and immature mammals are capable of full cardiac regeneration following multiple types of injury through cardiomyocyte proliferation. Little is known about what distinguishes proliferative cardiomyocytes from terminally differentiated, nonproliferative cardiomyocytes. Recently, several reports have suggested that oxygen metabolism and oxidative stress play a pivotal role in regulating the proliferative capacity of mammalian cardiomyocytes. Moreover, reducing oxygen metabolism in the adult mammalian heart can induce cardiomyocyte cell cycle reentry through blunting oxidative damage, which is sufficient for functional improvement following myocardial infarction. Here we concisely summarize recent findings that highlight the role of oxygen metabolism and oxidative stress in cardiomyocyte cell cycle regulation, and discuss future therapeutic approaches targeting oxidative metabolism to induce cardiac regeneration.
Collapse
Affiliation(s)
- Wataru Kimura
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki , Japan
| | - Yuji Nakada
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Hesham A Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas.,Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
14
|
Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int 2016; 2016:8305624. [PMID: 28101109 PMCID: PMC5215608 DOI: 10.1155/2016/8305624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/16/2016] [Indexed: 12/26/2022] Open
Abstract
Embryonic Stem (ES) or induced Pluripotent Stem (iPS) cells are important sources for cardiomyocyte generation, targeted for regenerative therapies. Several in vitro protocols are currently utilized for their differentiation, but the value of cell-based approaches remains unclear. Here, we characterized a cardiovascular progenitor population derived during ES differentiation, after selection based on VE-cadherin promoter (Pvec) activity. ESCs were genetically modified with an episomal vector, allowing the expression of puromycin resistance gene, under Pvec activity. Puromycin-surviving cells displayed cardiac and endothelial progenitor cells characteristics. Expansion and self-renewal of this cardiac and endothelial dual-progenitor population (CEDP) were achieved by Wnt/β-catenin pathway activation. CEDPs express early cardiac developmental stage-specific markers but not markers of differentiated cardiomyocytes. Similarly, CEDPs express endothelial markers. However, CEDPs can undergo differentiation predominantly to cTnT+ (~47%) and VE-cadherin+ (~28%) cells. Transplantation of CEDPs in the left heart ventricle of adult rats showed that CEDPs-derived cells survive and differentiate in vivo for at least 14 days after transplantation. A novel, dual-progenitor population was isolated during ESCs differentiation, based on Pvec activity. This lineage can self-renew, permitting its maintenance as a source of cardiovascular progenitor cells and constitutes a useful source for regenerative approaches.
Collapse
|
15
|
Marro J, Pfefferli C, de Preux Charles AS, Bise T, Jaźwińska A. Collagen XII Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during Ontogenesis and Regeneration. PLoS One 2016; 11:e0165497. [PMID: 27783651 PMCID: PMC5081208 DOI: 10.1371/journal.pone.0165497] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022] Open
Abstract
Zebrafish heart regeneration depends on cardiac cell proliferation, epicardium activation and transient reparative tissue deposition. The contribution and the regulation of specific collagen types during the regenerative process, however, remain poorly characterized. Here, we identified that the non-fibrillar type XII collagen, which serves as a matrix-bridging component, is expressed in the epicardium of the zebrafish heart, and is boosted after cryoinjury-induced ventricular damage. During heart regeneration, an intense deposition of Collagen XII covers the outer epicardial cap and the interstitial reparative tissue. Analysis of the activated epicardium and fibroblast markers revealed a heterogeneous cellular origin of Collagen XII. Interestingly, this matrix-bridging collagen co-localized with fibrillar type I collagen and several glycoproteins in the post-injury zone, suggesting its role in tissue cohesion. Using SB431542, a selective inhibitor of the TGF-β receptor, we showed that while the inhibitor treatment did not affect the expression of collagen 12 and collagen 1a2 in the epicardium, it completely suppressed the induction of both genes in the fibrotic tissue. This suggests that distinct mechanisms might regulate collagen expression in the outer heart layer and the inner injury zone. On the basis of this study, we postulate that the TGF-β signaling pathway induces and coordinates formation of a transient collagenous network that comprises fibril-forming Collagen I and fiber-associated Collagen XII, both of which contribute to the reparative matrix of the regenerating zebrafish heart.
Collapse
Affiliation(s)
- Jan Marro
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | - Thomas Bise
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Tahara N, Brush M, Kawakami Y. Cell migration during heart regeneration in zebrafish. Dev Dyn 2016; 245:774-87. [PMID: 27085002 PMCID: PMC5839122 DOI: 10.1002/dvdy.24411] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/17/2016] [Accepted: 04/12/2016] [Indexed: 12/27/2022] Open
Abstract
Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Michael Brush
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
17
|
HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS One 2016; 11:e0158358. [PMID: 27355368 PMCID: PMC4927095 DOI: 10.1371/journal.pone.0158358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/14/2016] [Indexed: 01/09/2023] Open
Abstract
Cardiac cell formation, cardiomyogenesis, is critically dependent on oxygen availability. It is known that hypoxia, a reduced oxygen level, modulates the in vitro differentiation of pluripotent cells into cardiomyocytes via hypoxia inducible factor-1alpha (HIF-1α)-dependent mechanisms. However, the direct impact of HIF-1α deficiency on the formation and maturation of cardiac-like cells derived from mouse embryonic stem cells (mESC) in vitro remains to be elucidated. In the present study, we demonstrated that HIF-1α deficiency significantly altered the quality and quantity of mESC-derived cardiomyocytes. It was accompanied with lower mRNA and protein levels of cardiac cell specific markers (myosin heavy chains 6 and 7) and with a decreasing percentage of myosin heavy chain α and β, and cardiac troponin T-positive cells. As to structural aspects of the differentiated cardiomyocytes, the localization of contractile proteins (cardiac troponin T, myosin heavy chain α and β) and the organization of myofibrils were also different. Simultaneously, HIF-1α deficiency was associated with a lower percentage of beating embryoid bodies. Interestingly, an observed alteration in the in vitro differentiation scheme of HIF-1α deficient cells was accompanied with significantly lower expression of the endodermal marker (hepatic nuclear factor 4 alpha). These findings thus suggest that HIF-1α deficiency attenuates spontaneous cardiomyogenesis through the negative regulation of endoderm development in mESC differentiating in vitro.
Collapse
|
18
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
19
|
Falkenham A, Myers T, Wong C, Legare JF. Implications for the role of macrophages in a model of myocardial fibrosis: CCR2(-/-) mice exhibit an M2 phenotypic shift in resident cardiac macrophages. Cardiovasc Pathol 2016; 25:390-8. [PMID: 27327107 DOI: 10.1016/j.carpath.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Macrophages (MΦ) are functionally diverse and dynamic. Until recently, cardiac MΦ were assumed to be monocyte derived; however, resident cardiac MΦ (rCMΦ), present at baseline, were identified in myocardia and have been implicated in cardiac healing. Previously, we demonstrated that CCR2(-/-) mice are protected from myocardial fibrosis - an observation initially attributed to changes in infiltrating monocytes. Here, we reexplored this observation in the context of our new understanding of rCMΦ. METHODS Male CCR2(-/-) and C57BL/6 hearts were digested and purified to a single cell suspension, incubated with fluorophore-linked antibodies (CCR2, CX3CR1, CD11b, Ly6C, TNF-α, and IL-10), and assessed by flow cytometry. Differentiated MΦ were cocultured with fibroblasts in order to characterize how MΦ phenotype influences fibroblast activation. Fibroblasts were characterized for their expression of smooth muscle cell actin (SMA). RESULTS A significant decrease in Ly6C expression was observed in the CCR2(-/-) cardiac MΦ population relative to WT, which corresponded with significantly lower TNF-α expression and significantly higher IL-10 expression. Using in vitro coculture system, classical MΦ promoted fibroblast activation relative to nonclassical MΦ. CONCLUSION CCR2(-/-) rCMΦ favor a more antiinflammatory phenotype relative to WT controls. Moreover, a shift toward the antiinflammatory promotes proliferation, but not activation in vitro. Together, these observations suggest that antiinflammatory cardiac MΦ populations may inhibit myocardial fibrosis in a pathological setting by preventing the activation of fibroblasts. NEWS AND NOTEWORTHY Here, we provide novel evidence for baseline differences in rCMΦ phenotypes (i.e. classical vs. nonclassical) and how these differences could modulate cardiac healing. Importantly, we observed differences in how classical vs. nonclassical MΦ influenced fibroblast activation, which could, in turn, affect fibrosis.
Collapse
Affiliation(s)
- Alec Falkenham
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.
| | - Tanya Myers
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Chloe Wong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jean Francois Legare
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Surgery, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
20
|
Wang L, Liu Z, Yin C, Zhou Y, Liu J, Qian L. Improved Generation of Induced Cardiomyocytes Using a Polycistronic Construct Expressing Optimal Ratio of Gata4, Mef2c and Tbx5. J Vis Exp 2015. [PMID: 26649751 DOI: 10.3791/53426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Direct conversion of cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs) holds great potential for regenerative medicine by offering alternative strategies for treatment of heart disease. This conversion has been achieved by forced expression of defined factors such as Gata4 (G), Mef2c (M) and Tbx5 (T). Traditionally, iCMs are generated by a cocktail of viruses expressing these individual factors. However, reprogramming efficiency is relatively low and most of the in vitro G,M,T-transduced fibroblasts do not become fully reprogrammed, making it difficult to study the reprogramming mechanisms. We recently have shown that the stoichiometry of G,M,T is crucial for efficient iCM reprogramming. An optimal stoichiometry of G,M,T with relative high level of M and low levels of G and T achieved by using our polycistronic MGT vector (hereafter referred to as MGT) significantly increased reprogramming efficiency and improved iCM quality in vitro. Here we provide a detailed description of the methodology used to generate iCMs with MGT construct from cardiac fibroblasts. Isolation of cardiac fibroblasts, generation of virus for reprogramming and evaluation of the reprogramming process are also included to provide a platform for efficient and reproducible generation of iCMs.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Ziqing Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Chaoying Yin
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Yang Zhou
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill;
| |
Collapse
|
21
|
Kim JT, Chung HJ, Seo JY, Yang YI, Choi MY, Kim HI, Yang TH, Lee WJ, Youn YC, Kim HJ, Kim YM, Lee H, Jang YS, Lee SJ. A fibrin-supported myocardial organ culture for isolation of cardiac stem cells via the recapitulation of cardiac homeostasis. Biomaterials 2015; 48:66-83. [DOI: 10.1016/j.biomaterials.2015.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/11/2015] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
|
22
|
Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, Billings J, Mohammadzadeh R, Wood J, Warburton D, Kaartinen V, Lien CL. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol 2015; 399:91-99. [PMID: 25555840 PMCID: PMC4339535 DOI: 10.1016/j.ydbio.2014.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/05/2023]
Abstract
Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury.
Collapse
Affiliation(s)
- Ali Darehzereshki
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California
| | - Nicole Rubin
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California
| | - Laurent Gamba
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California
| | - Jieun Kim
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California
| | - James Fraser
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California
| | - Ying Huang
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California
| | - Joshua Billings
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California
| | - Robabeh Mohammadzadeh
- Broad Center of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - John Wood
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - David Warburton
- The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Ching-Ling Lien
- Heart Institute, Los Angeles, California; The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, California; Department of Surgery, Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
23
|
Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the zebrafish. PLoS One 2014; 9:e115604. [PMID: 25532015 PMCID: PMC4274112 DOI: 10.1371/journal.pone.0115604] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022] Open
Abstract
Aims While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters. Methods and Results Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored. Conclusion Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models.
Collapse
|
24
|
Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 2014; 56:92-106. [DOI: 10.1016/j.biocel.2014.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
|
25
|
Abstract
Recent studies in Drosophila, Hydra, planarians, zebrafish, mice, indicate that cell death can open paths to regeneration in adult animals. Indeed injury can induce cell death, itself triggering regeneration following an immediate instructive mechanism, whereby the dying cells release signals that induce cellular responses over short and/or long-range distances. Cell death can also provoke a sustained derepressing response through the elimination of cells that suppress regeneration in homeostatic conditions. Whether common properties support what we name "regenerative cell death," is currently unclear. As key parameters, we review here the injury proapoptotic signals, the signals released by the dying cells, the cellular responses, and their respective timing. ROS appears as a common signal triggering cell death through MAPK and/or JNK pathway activation. But the modes of ROS production vary, from a brief pulse upon wounding, to repeated waves as observed in the zebrafish fin where ROS supports two peaks of cell death. Indeed regenerative cell death can be restricted to the injury phase, as in Hydra, Drosophila, or biphasic, immediate, and delayed, as in planarians and zebrafish. The dying cells release in a caspase-dependent manner a variety of signaling molecules, cytokines, growth factors, but also prostaglandins or ATP as recorded in Drosophila, Hydra, mice, and zebrafish, respectively. Interestingly, the ROS-producing cells often resist to cell death, implying a complex paracrine mode of signaling to launch regeneration, involving ROS-producing cells, ROS-sensing cells that release signaling molecules upon caspase activation, and effector cells that respond to these signals by proliferating, migrating, and/or differentiating.
Collapse
Affiliation(s)
- Sophie Vriz
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; University Paris-Diderot, Paris, France
| | - Silke Reiter
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Switzerland.
| |
Collapse
|
26
|
Kimura W, Muralidhar S, Canseco DC, Puente B, Zhang CC, Xiao F, Abderrahman YH, Sadek HA. Redox signaling in cardiac renewal. Antioxid Redox Signal 2014; 21:1660-73. [PMID: 25000143 PMCID: PMC4175032 DOI: 10.1089/ars.2014.6029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Utilizing oxygen (O2) through mitochondrial oxidative phosphorylation enables organisms to generate adenosine triphosphate (ATP) with a higher efficiency than glycolysis, but it results in increased reactive oxygen species production from mitochondria, which can result in stem cell dysfunction and senescence. RECENT ADVANCES In the postnatal organism, the hematopoietic system represents a classic example of the role of stem cells in cellular turnover and regeneration. However, in other organs such as the heart, both the degree and source of cellular turnover have been heavily contested. CRITICAL ISSUES Although recent evidence suggests that the major source of the limited cardiomyocyte turnover in the adult heart is cardiomyocyte proliferation, the identity and potential role of undifferentiated cardiac progenitor cells remain controversial. Several types of cardiac progenitor cells have been identified, and several studies have identified an important role of redox and metabolic regulation in survival and differentiation of cardiac progenitor cells. Perhaps a simple way to approach these controversies is to focus on the multipotentiality characteristics of a certain progenitor population, and not necessarily its ability to give rise to all cell types within the heart. In addition, it is important to note that cycling cells in the heart may express markers of differentiation or may be truly undifferentiated, and for the purpose of this review, we will refer to these cycling cells as progenitors. FUTURE DIRECTIONS We propose that hypoxia, redox signaling, and metabolic phenotypes are major regulators of cardiac renewal, and may prove to be important therapeutic targets for heart regeneration.
Collapse
Affiliation(s)
- Wataru Kimura
- 1 Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center , Dallas, Texas
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Diman NYSG, Brooks G, Kruithof BPT, Elemento O, Seidman JG, Seidman CE, Basson CT, Hatcher CJ. Tbx5 is required for avian and Mammalian epicardial formation and coronary vasculogenesis. Circ Res 2014; 115:834-44. [PMID: 25245104 DOI: 10.1161/circresaha.115.304379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Holt-Oram syndrome is an autosomal dominant heart-hand syndrome caused by mutations in the TBX5 gene. Overexpression of Tbx5 in the chick proepicardial organ impaired coronary blood vessel formation. However, the potential activity of Tbx5 in the epicardium itself, and the role of Tbx5 in mammalian coronary vasculogenesis, remains largely unknown. OBJECTIVE To evaluate the consequences of altered Tbx5 gene dosage during proepicardial organ and epicardial development in the embryonic chick and mouse. METHODS AND RESULTS Retroviral-mediated knockdown or upregulation of Tbx5 expression in the embryonic chick proepicardial organ and proepicardial-specific deletion of Tbx5 in the embryonic mouse (Tbx5(epi-/)) impaired normal proepicardial organ cell development, inhibited epicardial and coronary blood vessel formation, and altered developmental gene expression. The generation of epicardial-derived cells and their migration into the myocardium were impaired between embryonic day (E) 13.5 to 15.5 in mutant hearts because of delayed epicardial attachment to the myocardium and subepicardial accumulation of epicardial-derived cells. This caused defective coronary vasculogenesis associated with impaired vascular smooth muscle cell recruitment and reduced invasion of cardiac fibroblasts and endothelial cells into myocardium. In contrast to wild-type hearts that exhibited an elaborate ventricular vascular network, Tbx5(epi-/-) hearts displayed a marked decrease in vascular density that was associated with myocardial hypoxia as exemplified by hypoxia inducible factor-1α upregulation and increased binding of hypoxyprobe-1. Tbx5(epi-/-) mice with such myocardial hypoxia exhibited reduced exercise capacity when compared with wild-type mice. CONCLUSIONS Our findings support a conserved Tbx5 dose-dependent requirement for both proepicardial and epicardial progenitor cell development in chick and in mouse coronary vascular formation.
Collapse
Affiliation(s)
- Nata Y S-G Diman
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Gabriel Brooks
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Boudewijn P T Kruithof
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Olivier Elemento
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - J G Seidman
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Christine E Seidman
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Craig T Basson
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.).
| | - Cathy J Hatcher
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.).
| |
Collapse
|
28
|
Itou J, Akiyama R, Pehoski S, Yu X, Kawakami H, Kawakami Y. Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish. Dev Dyn 2014; 243:1477-86. [PMID: 25074230 DOI: 10.1002/dvdy.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The zebrafish heart regenerates after various severe injuries. Common processes of heart regeneration are cardiomyocyte proliferation, activation of epicardial tissue, and neovascularization. In order to further characterize heart regeneration processes, we introduced milder injuries and compared responses to those induced by ventricular apex resection, a widely used injury method. We used scratching of the ventricular surface and puncturing of the ventricle with a fine tungsten needle as injury-inducing techniques. RESULTS Scratching the ventricular surface induced subtle cardiomyocyte proliferation and responses of the epicardium. Endothelial cell accumulation was limited to the surface of the heart. Ventricular puncture induced cardiomyocyte proliferation, endocardial and epicardial activation, and neo-vascularization, similar to the resection method. However, the degree of the responses was milder, correlating with milder injury. Sham operation induced epicardial aldh1a2 expression but not tbx18 and WT1. CONCLUSIONS Puncturing the ventricle induces responses equivalent to resection at milder degrees in a shorter time frame and can be used as a simple injury model. Scratching the ventricle did not induce heart regeneration and can be used for studying wound responses to epicardium.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | | | |
Collapse
|
29
|
Matar AA, Chong JJ. Stem cell therapy for cardiac dysfunction. SPRINGERPLUS 2014; 3:440. [PMID: 25191634 PMCID: PMC4153875 DOI: 10.1186/2193-1801-3-440] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/11/2014] [Indexed: 01/05/2023]
Abstract
Following significant injury, the heart undergoes induced compensation and gradually deteriorates towards impending heart failure. Current therapy slows but does not halt the resultant adverse remodeling. Stem cell therapy, however, has the potential to regenerate or repair infarcted heart tissue and therefore is a promising therapeutic strategy undergoing intensive investigation. Due to the wide range of stem cells investigated, it is difficult to navigate this field. This review aims to summarize the main types of stem cells (both of cardiac and extra-cardiac origin) that possess promising therapeutic potential. Particular focus is placed on clinical trials supporting this therapeutic strategy.
Collapse
Affiliation(s)
- Amer A Matar
- Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - James Jh Chong
- Sydney Medical School, University of Sydney, Sydney, NSW Australia ; Department of Cardiology, Westmead Hospital, Sydney, NSW Australia ; Centre for Heart Research, Westmead Millennium Institute, Sydney, NSW Australia
| |
Collapse
|
30
|
Schindler YL, Garske KM, Wang J, Firulli BA, Firulli AB, Poss KD, Yelon D. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 2014; 141:3112-22. [PMID: 25038045 DOI: 10.1242/dev.106336] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine.
Collapse
Affiliation(s)
- Yocheved L Schindler
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kristina M Garske
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jinhu Wang
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Beth A Firulli
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth D Poss
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Abstract
Human heart failure (HF) is one of the leading causes of morbidity and mortality worldwide. Currently, heart transplantation and implantation of mechanical devices represent the only available treatments for advanced HF. Two alternative strategies have emerged to treat patients with HF. One approach relies on transplantation of exogenous stem cells (SCs) of non-cardiac or cardiac origin to induce cardiac regeneration and improve ventricular function. Another complementary strategy relies on stimulation of the endogenous regenerative capacity of uninjured cardiac progenitor cells to rebuild cardiac muscle and restore ventricular function. Various SC types and delivery strategies have been examined in the experimental and clinical settings; however, neither the ideal cell type nor the cell delivery method for cardiac cell therapy has yet emerged. Although the use of bone marrow (BM)-derived cells, most frequently exploited in clinical trials, appears to be safe, the results are controversial. Two recent randomized trials have failed to document any beneficial effects of intracardiac delivery of autologous BM mononuclear cells on cardiac function of patients with HF. The remarkable discovery that various populations of cardiac progenitor cells (CPCs) are present in the adult human heart and that it possesses limited regeneration capacity has opened a new era in cardiac repair. Importantly, unlike BM-derived SCs, autologous CPCs from myocardial biopsies cultured and subsequently delivered by coronary injection to patients have given positive results. Although these data are promising, a better understanding of how to control proliferation and differentiation of CPCs, to enhance their recruitment and survival, is required before CPCs become clinically applicable therapeutics.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA
| | | |
Collapse
|
32
|
Xiong JW, Chang NN. Recent advances in heart regeneration. ACTA ACUST UNITED AC 2014; 99:160-9. [PMID: 24078494 DOI: 10.1002/bdrc.21039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/25/2022]
Abstract
Although cardiac stem cells (CSCs) and tissue engineering are very promising for cardiac regenerative medicine, studies with model organisms for heart regeneration will provide alternative therapeutic targets and opportunities. Here, we present a review on heart regeneration, with a particular focus on the most recent work in mouse and zebrafish. We attempt to summarize the recent progresses and bottlenecks of CSCs and tissue engineering for heart regeneration; and emphasize what we have learned from mouse and zebrafish regenerative models on discovering crucial genetic and epigenetic factors for stimulating heart regeneration; and speculate the potential application of these regenerative factors for heart failure. A brief perspective highlights several important and promising research directions in this exciting field.
Collapse
Affiliation(s)
- Jing-Wei Xiong
- are from Institute of Molecular Medicine, Peking University, Beijing, 100871, China and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | | |
Collapse
|
33
|
Abstract
The epicardium is the mesothelial outer layer of the vertebrate heart. It plays an important role during cardiac development by, among other functions, nourishing the underlying myocardium, contributing to cardiac fibroblasts and giving rise to the coronary vasculature. The epicardium also exerts key functions during injury responses in the adult and contributes to cardiac repair. In this article, we review current knowledge on the cellular and molecular mechanisms underlying epicardium formation in the zebrafish, a teleost fish, which is rapidly gaining status as an animal model in cardiovascular research, and compare it with the mechanisms described in other vertebrate models. We moreover describe the expression patterns of a subset of available zebrafish Wilms' tumor 1 transgenic reporter lines and discuss their specificity, applicability and limitations in the study of epicardium formation.
Collapse
|
34
|
Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest 2014; 124:1382-92. [PMID: 24569380 DOI: 10.1172/jci72181] [Citation(s) in RCA: 616] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022] Open
Abstract
Myocardial infarction (MI) leads to cardiomyocyte death, which triggers an immune response that clears debris and restores tissue integrity. In the adult heart, the immune system facilitates scar formation, which repairs the damaged myocardium but compromises cardiac function. In neonatal mice, the heart can regenerate fully without scarring following MI; however, this regenerative capacity is lost by P7. The signals that govern neonatal heart regeneration are unknown. By comparing the immune response to MI in mice at P1 and P14, we identified differences in the magnitude and kinetics of monocyte and macrophage responses to injury. Using a cell-depletion model, we determined that heart regeneration and neoangiogenesis following MI depends on neonatal macrophages. Neonates depleted of macrophages were unable to regenerate myocardia and formed fibrotic scars, resulting in reduced cardiac function and angiogenesis. Immunophenotyping and gene expression profiling of cardiac macrophages from regenerating and nonregenerating hearts indicated that regenerative macrophages have a unique polarization phenotype and secrete numerous soluble factors that may facilitate the formation of new myocardium. Our findings suggest that macrophages provide necessary signals to drive angiogenesis and regeneration of the neonatal mouse heart. Modulating inflammation may provide a key therapeutic strategy to support heart regeneration.
Collapse
|
35
|
Abstract
OPINION STATEMENT Myocardial infarction is the most common cause of cardiac injury in humans and results in acute loss of large numbers of myocardial cells. Unfortunately, the mammalian heart is unable to replenish the cells that are lost following a myocardial infarction and an eventual progression to heart failure can often occur as a result. Regenerative medicine based approaches are actively being developed; however, a complete blueprint on how mammalian hearts can regenerate is still missing. Knowledge gained from studying animal models, such as zebrafish, newt, and neonatal mice, that can naturally regenerate their hearts after injury have provided an understanding of the molecular mechanisms involved in heart repair and regeneration. This research offers novel strategies to overcome the limited regenerative response observed in human patients.
Collapse
|
36
|
Lenkowski JR, Raymond PA. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40:94-123. [PMID: 24412518 DOI: 10.1016/j.preteyeres.2013.12.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Kimura W, Sadek HA. The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc Diagn Ther 2013; 2:278-89. [PMID: 24282728 DOI: 10.3978/j.issn.2223-3652.2012.12.02] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022]
Abstract
Resident stem cells persist throughout the entire lifetime of an organism where they replenishing damaged cells. Numerous types of resident stem cells are housed in a low-oxygen tension (hypoxic) microenvironment, or niches, which seem to be critical for survival and maintenance of stem cells. Recently our group has identified the adult mammalian epicardium and subepicardium as a hypoxic niche for cardiac progenitor cells. Similar to hematopoietic stem cells (LT-HSCs), progenitor cells in the hypoxic epicardial niche utilize cytoplasmic glycolysis instead of mitochondrial oxidative phosphorylation, where hypoxia inducible factor 1α (Hif-1α) maintains them in glycolytic undifferentiated state. In this review we summarize the relationship between hypoxic signaling and stem cell function, and discuss potential roles of several cardiac stem/progenitor cells in cardiac homeostasis and regeneration.
Collapse
Affiliation(s)
- Wataru Kimura
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
38
|
Abstract
A number of new and innovative approaches for repairing damaged myocardium are currently undergoing investigation, with several encouraging results. In addition to the progression of stem cell-based approaches and gene therapy/silencing methods, evidence continues to emerge that protein therapeutics may be used to directly promote cardiac repair and even regeneration. However, proteins are often limited in their therapeutic potential by short local half-lives and insufficient bioavailability and bioactivity, and many academic laboratories studying cardiovascular diseases are more comfortable with molecular and cellular biology than with protein biochemistry. Protein engineering has been used broadly to overcome weaknesses traditionally associated with protein therapeutics and has the potential to specifically enhance the efficacy of molecules for cardiac repair. However, protein engineering as a strategy has not yet been used in the development of cardiovascular therapeutics to the degree that it has been used in other fields. In this review, we discuss the role of engineered proteins in cardiovascular therapies to date. Further, we address the promise of applying emerging protein engineering technologies to cardiovascular medicine and the barriers that must be overcome to enable the ultimate success of this approach.
Collapse
Affiliation(s)
- Steven M Jay
- From the Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
39
|
Kyritsis N, Kizil C, Brand M. Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 2013; 24:128-35. [PMID: 24029244 DOI: 10.1016/j.tcb.2013.08.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/11/2023]
Abstract
Injuries in the central nervous system (CNS) are one of the leading causes of mortality or persistent disabilities in humans. One of the reasons why humans cannot recover from neuronal loss is the limited regenerative capacity of their CNS. By contrast, non-mammalian vertebrates exhibit widespread regeneration in diverse tissues including the CNS. Understanding those mechanisms activated during regeneration may improve the regenerative outcome in the severed mammalian CNS. Of those mechanisms, recent evidence suggests that inflammation may be important in regeneration. In this review we compare the different events following acute CNS injury in mammals and non-mammalian vertebrates. We also discuss the involvement of the immune response in initiating regenerative programs and how immune cells and neural stem/progenitor cells (NSPCs) communicate.
Collapse
Affiliation(s)
- Nikos Kyritsis
- DFG Center for Regenerative Therapies Dresden - Cluster of Excellence (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Caghan Kizil
- DFG Center for Regenerative Therapies Dresden - Cluster of Excellence (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Michael Brand
- DFG Center for Regenerative Therapies Dresden - Cluster of Excellence (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
40
|
|
41
|
Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proc Natl Acad Sci U S A 2013; 110:13416-21. [PMID: 23901114 DOI: 10.1073/pnas.1309810110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Certain lower vertebrates like zebrafish activate proliferation of spared cardiomyocytes after cardiac injury to regenerate lost heart muscle. Here, we used translating ribosome affinity purification to profile translating RNAs in zebrafish cardiomyocytes during heart regeneration. We identified dynamic induction of several Jak1/Stat3 pathway members following trauma, events accompanied by cytokine production. Transgenic Stat3 inhibition in cardiomyocytes restricted injury-induced proliferation and regeneration, but did not reduce cardiogenesis during animal growth. The secreted protein Rln3a was induced in a Stat3-dependent manner by injury, and exogenous Rln3 delivery during Stat3 inhibition stimulated cardiomyocyte proliferation. Our results identify an injury-specific cardiomyocyte program essential for heart regeneration.
Collapse
|
42
|
Abstract
Zebrafish (Danio rerio) are an excellent vertebrate model for studying heart development, regeneration and cardiotoxicity. Zebrafish embryos exposed during the temporal window of epicardium development to the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibit severe heart malformations. TCDD exposure prevents both proepicardial organ (PE) and epicardium development. Exposure later in development, after the epicardium has formed, does not produce cardiac toxicity. It is not until the adult zebrafish heart is stimulated to regenerate does TCDD again cause detrimental effects. TCDD exposure prior to ventricular resection prevents cardiac regeneration. It is likely that TCDD-induced inhibition of epicardium development and cardiac regeneration occur via a common mechanism. Here, we describe experiments that focus on the epicardium as a target and sensor of zebrafish heart toxicity.
Collapse
Affiliation(s)
- Peter Hofsteen
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Jessica Plavicki
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Richard E. Peterson
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Warren Heideman
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
43
|
Wurzinger G, Nuster R, Schmitner N, Gratt S, Meyer D, Paltauf G. Simultaneous three-dimensional photoacoustic and laser-ultrasound tomography. BIOMEDICAL OPTICS EXPRESS 2013; 4:1380-9. [PMID: 24010000 PMCID: PMC3756579 DOI: 10.1364/boe.4.001380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/27/2013] [Accepted: 07/17/2013] [Indexed: 05/19/2023]
Abstract
A tomographic setup that provides the co-registration of photoacoustic (PA) and ultrasound (US) images is presented. For pulse-echo US-tomography laser-induced broadband plane ultrasonic waves are produced by illuminating an optically absorbing target with a short near-infrared laser pulse. Part of the same pulse is frequency doubled and used for the generation of PA waves within the object of interest. The laser-generated plane waves are scattered at the imaging object and measured with the same interferometric detector that also acquires the photoacoustic signals. After collection and separation of the data image reconstruction is done using back-projection resulting in three-dimensional, co-registered PA and US images. The setup is characterized and the resolution in PA and US mode is estimated to be about 85 µm and 40 µm, respectively. Besides measurements on phantoms the performance is also tested on a biological sample.
Collapse
Affiliation(s)
- Gerhild Wurzinger
- Department of Physics, Karl-Franzens Universitaet Graz, Graz, Austria
| | - Robert Nuster
- Department of Physics, Karl-Franzens Universitaet Graz, Graz, Austria
| | - Nicole Schmitner
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Sibylle Gratt
- Department of Physics, Karl-Franzens Universitaet Graz, Graz, Austria
| | - Dirk Meyer
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Günther Paltauf
- Department of Physics, Karl-Franzens Universitaet Graz, Graz, Austria
| |
Collapse
|
44
|
Huang Y, Harrison MR, Osorio A, Kim J, Baugh A, Duan C, Sucov HM, Lien CL. Igf Signaling is Required for Cardiomyocyte Proliferation during Zebrafish Heart Development and Regeneration. PLoS One 2013; 8:e67266. [PMID: 23840646 PMCID: PMC3694143 DOI: 10.1371/journal.pone.0067266] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/14/2013] [Indexed: 12/26/2022] Open
Abstract
Unlike its mammalian counterpart, the adult zebrafish heart is able to fully regenerate after severe injury. One of the most important events during the regeneration process is cardiomyocyte proliferation, which results in the replacement of lost myocardium. Growth factors that induce cardiomyocyte proliferation during zebrafish heart regeneration remain to be identified. Signaling pathways important for heart development might be reutilized during heart regeneration. IGF2 was recently shown to be important for cardiomyocyte proliferation and heart growth during mid-gestation heart development in mice, although its role in heart regeneration is unknown. We found that expression of igf2b was upregulated during zebrafish heart regeneration. Following resection of the ventricle apex, igf2b expression was detected in the wound, endocardium and epicardium at a time that coincides with cardiomyocyte proliferation. Transgenic zebrafish embryos expressing a dominant negative form of Igf1 receptor (dn-Igf1r) had fewer cardiomyocytes and impaired heart development, as did embryos treated with an Igf1r inhibitor. Moreover, inhibition of Igf1r signaling blocked cardiomyocyte proliferation during heart development and regeneration. We found that Igf signaling is required for a subpopulation of cardiomyocytes marked by gata4:EGFP to contribute to the regenerating area. Our findings suggest that Igf signaling is important for heart development and myocardial regeneration in zebrafish.
Collapse
Affiliation(s)
- Ying Huang
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Craniofacial Biology Graduate Program, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Michael R. Harrison
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Arthela Osorio
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Jieun Kim
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Aaron Baugh
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Henry M. Sucov
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, United States of America
| | - Ching-Ling Lien
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, United States of America
- Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Heart failure is a major cause of mortality worldwide with a steady increase in prevalence. There is currently no available cure beyond orthotopic heart transplantation, which for a number of reasons is an option only for a small fraction of all patients. Considerable hope has therefore been placed on the possibility of treating a failing heart by replacing lost cardiomyocytes, either through transplantation of various types of stem cells or by boosting endogenous regenerative mechanisms in the heart. Here, we review the current status of stem and progenitor cell-based therapies for heart disease. We discuss the pros and cons of different stem and progenitor cell types that can be considered for transplantation and describe recent advances in the understanding of how cardiomyocytes normally differentiate and how these cells can be generated from more immature cells ex vivo. Finally, we consider the possibility of activation of endogenous stem and progenitor cells to treat heart failure.
Collapse
Affiliation(s)
- E M Hansson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | | |
Collapse
|
46
|
Forsthoefel DJ, James NP, Escobar DJ, Stary JM, Vieira AP, Waters FA, Newmark PA. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev Cell 2013; 23:691-704. [PMID: 23079596 DOI: 10.1016/j.devcel.2012.09.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/12/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022]
Abstract
Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of postmitotic tissues. Understanding how these processes are orchestrated requires characterizing cell-type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling postembryonic organogenesis.
Collapse
Affiliation(s)
- David J Forsthoefel
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Otten C, Abdelilah-Seyfried S. Laser-inflicted injury of zebrafish embryonic skeletal muscle. J Vis Exp 2013:e4351. [PMID: 23407156 DOI: 10.3791/4351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Various experimental approaches have been used in mouse to induce muscle injury with the aim to study muscle regeneration, including myotoxin injections (bupivacaine, cardiotoxin or notexin), muscle transplantations (denervation-devascularization induced regeneration), intensive exercise, but also murine muscular dystrophy models such as the mdx mouse (for a review of these approaches see). In zebrafish, genetic approaches include mutants that exhibit muscular dystrophy phenotypes (such as runzel or sapje) and antisense oligonucleotide morpholinos that block the expression of dystrophy-associated genes. Besides, chemical approaches are also possible, e.g. with Galanthamine, a chemical compound inhibiting acetylcholinesterase, thereby resulting in hypercontraction, which eventually leads to muscular dystrophy. However, genetic and pharmacological approaches generally affect all muscles within an individual, whereas the extent of physically inflicted injuries are more easily controlled spatially and temporally. Localized physical injury allows the assessment of contralateral muscle as an internal control. Indeed, we recently used laser-mediated cell ablation to study skeletal muscle regeneration in the zebrafish embryo, while another group recently reported the use of a two-photon laser (822 nm) to damage very locally the plasma membrane of individual embryonic zebrafish muscle cells. Here, we report a method for using the micropoint laser (Andor Technology) for skeletal muscle cell injury in the zebrafish embryo. The micropoint laser is a high energy laser which is suitable for targeted cell ablation at a wavelength of 435 nm. The laser is connected to a microscope (in our setup, an optical microscope from Zeiss) in such a way that the microscope can be used at the same time for focusing the laser light onto the sample and for visualizing the effects of the wounding (brightfield or fluorescence). The parameters for controlling laser pulses include wavelength, intensity, and number of pulses. Due to its transparency and external embryonic development, the zebrafish embryo is highly amenable for both laser-induced injury and for studying the subsequent recovery. Between 1 and 2 days post-fertilization, somitic skeletal muscle cells progressively undergo maturation from anterior to posterior due to the progression of somitogenesis from the trunk to the tail. At these stages, embryos spontaneously twitch and initiate swimming. The zebrafish has recently been recognized as an important vertebrate model organism for the study of tissue regeneration, as many types of tissues (cardiac, neuronal, vascular etc.) can be regenerated after injury in the adult zebrafish.
Collapse
|
48
|
Liu M, Schmitner N, Sandrian MG, Zabihian B, Hermann B, Salvenmoser W, Meyer D, Drexler W. In vivo three dimensional dual wavelength photoacoustic tomography imaging of the far red fluorescent protein E2-Crimson expressed in adult zebrafish. BIOMEDICAL OPTICS EXPRESS 2013; 4:1846-55. [PMID: 24156048 PMCID: PMC3799650 DOI: 10.1364/boe.4.001846] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 05/19/2023]
Abstract
For the first time the far red fluorescent protein (FP) E2-Crimson genetically expressed in the exocrine pancreas of adult zebrafish has been non-invasively mapped in 3D in vivo using photoacoustic tomography (PAT). The distribution of E2-Crimson in the exocrine pancreas acquired by PAT was confirmed using epifluorescence imaging and histology, with optical coherence tomography (OCT) providing complementary structural information. This work demonstrates the depth advantage of PAT to resolve FP in an animal model and establishes the value of E2-Crimson for PAT studies of transgenic models, laying the foundation for future longitudinal studies of the zebrafish as a model of diseases affecting inner organs.
Collapse
Affiliation(s)
- Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090 Vienna, Austria
| | - Nicole Schmitner
- Institute for Molecular Biology/CMBI, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Michelle G. Sandrian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090 Vienna, Austria
| | - Behrooz Zabihian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090 Vienna, Austria
| | - Boris Hermann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090 Vienna, Austria
| | - Willi Salvenmoser
- Institute for Zoology/CMBI, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute for Molecular Biology/CMBI, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090 Vienna, Austria
| |
Collapse
|
49
|
Ratcliffe E, Glen KE, Naing MW, Williams DJ. Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull 2013; 108:73-94. [PMID: 24200742 DOI: 10.1093/bmb/ldt034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Apart from haematopoietic stem cell transplantation for haematological disorders many stem cell-based therapies are experimental. However, with only 12 years between human embryonic stem cell isolation and the first clinical trial, development of stem cell products for regenerative medicine has been rapid and numerous clinical trials have begun to investigate their therapeutic potential. SOURCE OF DATA This review summarizes key clinical trial data, current and future perspectives on stem cell-based products undergoing clinical trials, based on literature search and author research. AREAS OF AGREEMENT It is widely recognized that the ability to stimulate stem cell differentiation into specialized cells for use as cellular therapies will revolutionize health care and offer major hope for numerous diseases for which there are limited or no therapeutic options. AREAS OF CONTROVERSY Stem cell-based products are unique and cover a large range of disorders to be treated; therefore, there is significant potential for variation in cell source, type, processing manipulation, the bioprocessing approach and scalability, the cost and purity of manufacture, final product quality and mode of action. As such there are gaps in regulatory and manufacturing frameworks and technologies, only a small number of products are currently within late phase clinical trials and few products have achieved commercialization. GROWING POINTS Recent developments are encouraging acceleration through the difficulties encountered en route to clinical trials and commercialization of stem cell therapies. AREAS TIMELY FOR DEVELOPING RESEARCH The field is growing year on year with the first clinical trial using induced pluripotent stem cells anticipated by end 2013.
Collapse
Affiliation(s)
- Elizabeth Ratcliffe
- Healthcare Engineering Research Group, Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | | | | | | |
Collapse
|
50
|
Zebrowski DC, Engel FB. The Cardiomyocyte Cell Cycle in Hypertrophy, Tissue Homeostasis, and Regeneration. Rev Physiol Biochem Pharmacol 2013; 165:67-96. [DOI: 10.1007/112_2013_12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|