1
|
Srinivasan S, Limani F, Hanzlova M, La Batide-Alanore S, Klotz S, Hnasko TS, Steinkellner T. Evidence for low affinity of GABA at the vesicular monoamine transporter VMAT2 - Implications for transmitter co-release from dopamine neurons. Neuropharmacology 2025; 270:110367. [PMID: 39961377 DOI: 10.1016/j.neuropharm.2025.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Midbrain dopamine (DA) neurons comprise a heterogeneous population of cells. For instance, some DA neurons express the vesicular glutamate transporter VGLUT2 allowing these cells to co-release DA and glutamate. Additionally, GABA may be co-released from DA neurons. However, most cells do not express the canonical machinery to synthesize GABA or the vesicular GABA transporter VGAT. Instead, GABA seems to be taken up into DA neurons by a plasmalemmal GABA transporter (GAT1) and stored in synaptic vesicles via the vesicular monoamine transporter VMAT2. Yet, it remains unclear whether GABA indeed interacts with VMAT2. Here, we used radiotracer flux measurements in VMAT2 expressing HEK-293 cells and synaptic vesicles from male and female mice to determine whether GABA qualifies as substrate at VMAT2. We found that GABA reduced uptake of VMAT2 substrates in mouse synaptic vesicle preparations from striatum and cerebellum at millimolar concentrations but had no effect in VMAT2-expressing HEK-293 cells. Interestingly, while the closely related amino acid glycine did not affect substrate uptake at VMAT2 in mouse synaptic vesicles, the amino sulfonic acid taurine reduced uptake similar to GABA. Lastly, we discovered that the majority of mouse and human midbrain DA neurons in the substantia nigra of either sex expressed VMAT2 and GAT1 suggesting that most of them could be capable of co-releasing DA and GABA. Together, our findings suggest that GABA is a low-affinity substrate at VMAT2 with potential implications for basal ganglia physiology and disease.
Collapse
Affiliation(s)
- Sivakumar Srinivasan
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Fabian Limani
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michaela Hanzlova
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Ségolène La Batide-Alanore
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Veterans Affairs, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
2
|
Varga AG, Reid BT, Maletz SN, Dossat AM, Levitt ES. Opposing control of the respiratory brainstem on multiple timescales achieved by transmitter co-release from the locus coeruleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639476. [PMID: 40027822 PMCID: PMC11870594 DOI: 10.1101/2025.02.21.639476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The locus coeruleus (LC) provides widespread noradrenergic (NAergic) modulation throughout the brain to influence a wide range of functions, including breathing. Although both anatomical and physiological evidence supports the involvement of the LC in both the upstream integration and the downstream modulation of breathing, the circuitry behind the latter is unknown. Here, we show that NAergic LC neurons send projections to the Kӧlliker-Fuse nucleus (KF), a critical site in the control of breathing. Long duration activation of NAergic LC neuron terminals in pontine slices induces persistent inhibitory and excitatory NA currents or increases firing rate in postsynaptic KF neurons. Short stimulation on the other hand leads to the VGluT2-dependent release of glutamate that may be co-released with NA in a monosynaptic circuit. Together these results demonstrate that LC neurons can exert flexible, opposing effects on different timescales via glutamatergic and NAergic signaling onto a key respiratory brainstem nucleus.
Collapse
|
3
|
Buck SA, Mabry SJ, Glausier JR, Banks-Tibbs T, Ward C, Kozel J, Fu C, Fish KN, Lewis DA, Logan RW, Freyberg Z. Aging disrupts the coordination between mRNA and protein expression in mouse and human midbrain. Mol Psychiatry 2025:10.1038/s41380-025-02909-1. [PMID: 39875589 DOI: 10.1038/s41380-025-02909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no difference in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th+/Vglut2+ neurons, Th and Vglut2 transcripts decreased with aging. However, Th and Vglut2 protein levels in striatal synaptic release sites (e.g., terminals and axonal projections) did not differ throughout aging. Similar to the mouse, an initial study of human brain showed no effect of aging on midbrain neuron number with a concomitant decrease in TH and VGLUT2 mRNA expression. Unlike in mice, the density of striatal TH+ dopaminergic terminals was lower in aged human subjects. However, TH and VGLUT2 protein levels were unaffected in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th+ neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel J Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Caroline Ward
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenesis Kozel
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Gaertner Z, Oram C, Schneeweis A, Schonfeld E, Bolduc C, Chen C, Dombeck D, Parisiadou L, Poulin JF, Awatramani R. Molecular and spatial transcriptomic classification of midbrain dopamine neurons and their alterations in a LRRK2 G2019S model of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597807. [PMID: 38895448 PMCID: PMC11185743 DOI: 10.1101/2024.06.06.597807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Several studies have revealed that midbrain dopamine (DA) neurons, even within a single neuroanatomical area, display heterogeneous properties. In parallel, studies using single cell profiling techniques have begun to cluster DA neurons into subtypes based on their molecular signatures. Recent work has shown that molecularly defined DA subtypes within the substantia nigra (SNc) display distinctive anatomic and functional properties, and differential vulnerability in Parkinson's disease (PD). Based on these provocative results, a granular understanding of these putative subtypes and their alterations in PD models, is imperative. We developed an optimized pipeline for single-nuclear RNA sequencing (snRNA-seq) and generated a high-resolution hierarchically organized map revealing 20 molecularly distinct DA neuron subtypes belonging to three main families. We integrated this data with spatial MERFISH technology to map, with high definition, the location of these subtypes in the mouse midbrain, revealing heterogeneity even within neuroanatomical sub-structures. Finally, we demonstrate that in the preclinical LRRK2G2019S knock-in mouse model of PD, subtype organization and proportions are preserved. Transcriptional alterations occur in many subtypes including those localized to the ventral tier SNc, where differential expression is observed in synaptic pathways, which might account for previously described DA release deficits in this model. Our work provides an advancement of current taxonomic schemes of the mouse midbrain DA neuron subtypes, a high-resolution view of their spatial locations, and their alterations in a prodromal mouse model of PD.
Collapse
Affiliation(s)
- Zachary Gaertner
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cameron Oram
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Amanda Schneeweis
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elan Schonfeld
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
| | - Cyril Bolduc
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Chuyu Chen
- Northwestern University Feinberg School of Medicine, Dept of Pharmacology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Dombeck
- Northwestern University, Dept of Neurobiology, Evanston, IL 60201
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Loukia Parisiadou
- Northwestern University Feinberg School of Medicine, Dept of Pharmacology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jean-Francois Poulin
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Rajeshwar Awatramani
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
5
|
Hirai H, Konno K, Yamasaki M, Watanabe M, Sakaba T, Hashimotodani Y. Distinct release properties of glutamate/GABA co-transmission serve as a frequency-dependent filtering of supramammillary inputs. eLife 2024; 13:RP99711. [PMID: 39680436 DOI: 10.7554/elife.99711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Glutamate and GABA co-transmitting neurons exist in several brain regions; however, the mechanism by which these two neurotransmitters are co-released from the same synaptic terminals remains unclear. Here, we show that the supramammillary nucleus (SuM) to dentate granule cell synapses, which co-release glutamate and GABA, exhibit differences between glutamate and GABA release properties in paired-pulse ratio, Ca2+-sensitivity, presynaptic receptor modulation, and Ca2+ channel-vesicle coupling configuration. Moreover, uniquantal synaptic responses show independent glutamatergic and GABAergic responses. Morphological analysis reveals that most SuM terminals form distinct glutamatergic and GABAergic synapses in proximity, each characterized by GluN1 and GABAAα1 labeling, respectively. Notably, glutamate/GABA co-transmission exhibits distinct short-term plasticities, with frequency-dependent depression of glutamate and frequency-independent stable depression of GABA. Our findings suggest that glutamate and GABA are co-released from different synaptic vesicles within the SuM terminals, and reveal that distinct transmission modes of glutamate/GABA co-release serve as frequency-dependent filters of SuM inputs.
Collapse
Affiliation(s)
- Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | | |
Collapse
|
6
|
Conrad WS, Oriol L, Kollman GJ, Faget L, Hnasko TS. Proportion and distribution of neurotransmitter-defined cell types in the ventral tegmental area and substantia nigra pars compacta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582356. [PMID: 38464250 PMCID: PMC10925288 DOI: 10.1101/2024.02.28.582356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Most studies on the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) have focused on dopamine neurons and their role in processes such as motivation, learning, movement, and associated disorders such as addiction and Parkinson's disease. However there has been increasing attention on other VTA and SNc cell types that release GABA, glutamate, or a combination of neurotransmitters. Yet the relative distributions and proportions of neurotransmitter-defined cell types across VTA and SNc has remained unclear. Here, we used fluorescent in situ hybridization in male and female mice to label VTA and SNc neurons that expressed mRNA encoding the canonical vesicular transporters for dopamine, GABA, or glutamate: vesicular monoamine transporter (VMAT2), vesicular GABA transporter (VGAT), and vesicular glutamate transporter (VGLUT2). Within VTA, we found that no one type was particularly more abundant, instead we observed similar numbers of VMAT2+ (44%), VGAT+ (37%) and VGLUT2+ (41%) neurons. In SNc we found that a slight majority of neurons expressed VMAT2 (54%), fewer were VGAT+ (42%), and VGLUT2+ neurons were least abundant (16%). Moreover, 20% of VTA neurons and 10% of SNc neurons expressed more than one vesicular transporter, including 45% of VGLUT2+ neurons. We also assessed within VTA and SNc subregions and found remarkable heterogeneity in cell-type composition. And by quantifying density across both anterior-posterior and medial-lateral axes we generated heatmaps to visualize the distribution of each cell type. Our data complement recent single-cell RNAseq studies and support a more diverse landscape of neurotransmitter-defined cell types in VTA and SNc than is typically appreciated.
Collapse
Affiliation(s)
- William S Conrad
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Lucie Oriol
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Grace J Kollman
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Lauren Faget
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Thomas S Hnasko
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase MD 20815, USA
| |
Collapse
|
7
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Apuschkin M, Burm HB, Schmidt JH, Skov LJ, Andersen RC, Bowin CF, Støier JF, Jensen KL, Posselt LP, Dmytriyeva O, Sørensen AT, Egerod KL, Holst B, Rickhag M, Schwartz TW, Gether U. An atlas of GPCRs in dopamine neurons: Identification of the free fatty acid receptor 4 as a regulator of food and water intake. Cell Rep 2024; 43:114509. [PMID: 39003735 DOI: 10.1016/j.celrep.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Midbrain dopaminergic neurons (DANs) are subject to extensive metabotropic regulation, but the repertoire of G protein-coupled receptors (GPCRs) present in these neurons has not been mapped. Here, we isolate DANs from Dat-eGFP mice to generate a GPCR atlas by unbiased qPCR array expression analysis of 377 GPCRs. Combined with data mining of scRNA-seq databases, we identify multiple receptors in DAN subpopulations with 38 of these receptors representing the majority of transcripts. We identify 41 receptors expressed in midbrain DANs but not in non-DAN midbrain cells, including the free fatty acid receptor 4 (FFAR4). Functional expression of FFAR4 is validated by ex vivo Ca2+ imaging, and in vivo experiments support that FFAR4 negatively regulates food and water intake and bodyweight. In addition to providing a critical framework for understanding metabotropic DAN regulation, our data suggest fatty acid sensing by FFAR4 as a mechanism linking high-energy intake to the dopamine-reward pathway.
Collapse
Affiliation(s)
- Mia Apuschkin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hayley B Burm
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jan H Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise J Skov
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rita C Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carl-Fredrik Bowin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonatan F Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kathrine L Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Leonie P Posselt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristoffer L Egerod
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology and Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Thue W Schwartz
- Novo Nordic Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
9
|
Buck SA, Mabry SJ, Glausier JR, Banks-Tibbs T, Ward C, Kozel JG, Fu C, Fish KN, Lewis DA, Logan RW, Freyberg Z. Aging disrupts the coordination between mRNA and protein expression in mouse and human midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596950. [PMID: 38854057 PMCID: PMC11160743 DOI: 10.1101/2024.06.01.596950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no changes in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th +/Vglut2 + neurons, Th and Vglut2 transcripts decreased with aging. Importantly, striatal Th and Vglut2 protein expression remained unchanged. In translating our findings to humans, we found no midbrain neurodegeneration during aging and identified age-related decreases in TH and VGLUT2 mRNA expression similar to mouse. Unlike mice, we discovered diminished density of striatal TH+ dopaminergic terminals in aged human subjects. However, TH and VGLUT2 protein expression were unchanged in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th + neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.
Collapse
Affiliation(s)
- Silas A. Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel J. Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Caroline Ward
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenesis Gayden Kozel
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Gao R, Schneider AM, Mulloy SM, Lee AM. Expression pattern of nicotinic acetylcholine receptor subunit transcripts in neurons and astrocytes in the ventral tegmental area and locus coeruleus. Eur J Neurosci 2024; 59:2225-2239. [PMID: 37539749 PMCID: PMC10838369 DOI: 10.1111/ejn.16109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Acetylcholine is the endogenous agonist for the neuronal nicotinic acetylcholine receptor (nAChR) system, which is involved in attention, memory, affective behaviours and substance use disorders. Brain nAChRs are highly diverse with 11 different subunits that can form multiple receptor subtypes, each with distinct receptor and pharmacological properties. Different neuronal cell types can also express different nAChR subtypes, resulting in highly complex cholinergic signalling. Identifying which nAChR subunit transcripts are expressed in cell types can provide an indication of which nAChR combinations are possible and which receptor subtypes may be most pharmacologically relevant to target. In addition to differences in expression across cell types, nAChRs also undergo changes in expression levels from adolescence to adulthood. In this study, we used fluorescent in situ hybridization to identify and quantify the expression of α4, α5, α6, β2 and β3 nAChR subunit transcripts in dopaminergic, GABAergic, glutamatergic and noradrenergic neurons and astrocytes in the ventral tegmental area (VTA) and locus coeruleus (LC) in adult and adolescent, male and female C57BL/6J mice. There were distinct differences in the pattern of nAChR subunit transcript expression between the two brain regions. LC noradrenergic neurons had high prevalence of α6, β2 and β3 expression, with very low expression of α4, suggesting the α6(non-α4)β2β3 receptor as a main subtype in these neurons. VTA astrocytes from adult mice showed greater prevalence of α5, α6, β2 and β3 transcript compared with adolescent mice. These data highlight the complex nAChR expression patterns across brain region and cell type.
Collapse
Affiliation(s)
- Runbo Gao
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amelia M. Schneider
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah M. Mulloy
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna M. Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Holly EN, Galanaugh J, Fuccillo MV. Local regulation of striatal dopamine: A diversity of circuit mechanisms for a diversity of behavioral functions? Curr Opin Neurobiol 2024; 85:102839. [PMID: 38309106 PMCID: PMC11066854 DOI: 10.1016/j.conb.2024.102839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
Striatal dopamine governs a wide range of behavioral functions, yet local dopamine concentrations can be dissociated from somatic activity. Here, we discuss how dopamine's diverse roles in behavior may be driven by local circuit mechanisms shaping dopamine release. We first look at historical and recent work demonstrating that striatal circuits interact with dopaminergic terminals to either initiate the release of dopamine or modulate the release of dopamine initiated by spiking in midbrain dopamine neurons, with particular attention to GABAergic and cholinergic local circuit mechanisms. Then we discuss some of the first in vivo studies of acetylcholine-dopamine interactions in striatum and broadly discuss necessary future work in understanding the roles of midbrain versus striatal dopamine regulation.
Collapse
Affiliation(s)
- Elizabeth N Holly
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave, Newark, NJ 07102, USA. https://twitter.com/ENHolly
| | - Jamie Galanaugh
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA. https://twitter.com/jamie_galanaugh
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Patel JC, Sherpa AD, Melani R, Witkovsky P, Wiseman MR, O'Neill B, Aoki C, Tritsch NX, Rice ME. GABA co-released from striatal dopamine axons dampens phasic dopamine release through autoregulatory GABA A receptors. Cell Rep 2024; 43:113834. [PMID: 38431842 PMCID: PMC11089423 DOI: 10.1016/j.celrep.2024.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.
Collapse
Affiliation(s)
- Jyoti C Patel
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | - Ang D Sherpa
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; Center for Neural Science New York University, 4 Washington Place, New York, NY 10003, USA
| | - Riccardo Melani
- NYU Neuroscience Institute, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Madeline R Wiseman
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Brian O'Neill
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Chiye Aoki
- NYU Neuroscience Institute, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; Center for Neural Science New York University, 4 Washington Place, New York, NY 10003, USA
| | - Nicolas X Tritsch
- NYU Neuroscience Institute, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
13
|
Warlow SM, Singhal SM, Hollon NG, Faget L, Dowlat DS, Zell V, Hunker AC, Zweifel LS, Hnasko TS. Mesoaccumbal glutamate neurons drive reward via glutamate release but aversion via dopamine co-release. Neuron 2024; 112:488-499.e5. [PMID: 38086374 PMCID: PMC10922836 DOI: 10.1016/j.neuron.2023.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2023] [Accepted: 11/06/2023] [Indexed: 02/10/2024]
Abstract
Ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) drive reward-related motivation. Although dopamine neurons are predominant, a substantial glutamatergic projection is also present, and a subset of these co-release both dopamine and glutamate. Optogenetic stimulation of VTA glutamate neurons not only supports self-stimulation but can also induce avoidance behavior, even in the same assay. Here, we parsed the selective contribution of glutamate or dopamine co-release from VTA glutamate neurons to reinforcement and avoidance. We expressed channelrhodopsin-2 (ChR2) in mouse VTA glutamate neurons in combination with CRISPR-Cas9 to disrupt either the gene encoding vesicular glutamate transporter 2 (VGLUT2) or tyrosine hydroxylase (Th). Selective disruption of VGLUT2 abolished optogenetic self-stimulation but left real-time place avoidance intact, whereas CRISPR-Cas9 deletion of Th preserved self-stimulation but abolished place avoidance. Our results demonstrate that glutamate release from VTA glutamate neurons is positively reinforcing but that dopamine release from VTA glutamate neurons can induce avoidance behavior.
Collapse
Affiliation(s)
- Shelley M Warlow
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Sarthak M Singhal
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nick G Hollon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Dina S Dowlat
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
14
|
Cho W, Jung M, Yoon SH, Jeon J, Oh MA, Kim JY, Park M, Kang CM, Chung TD. On-Site Formation of Functional Dopaminergic Presynaptic Terminals on Neuroligin-2-Modified Gold-Coated Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3082-3092. [PMID: 38206769 DOI: 10.1021/acsami.3c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Advancements in neural interface technologies have enabled the direct connection of neurons and electronics, facilitating chemical communication between neural systems and external devices. One promising approach is a synaptogenesis-involving method, which offers an opportunity for synaptic signaling between these systems. Janus synapses, one type of synaptic interface utilizing synaptic cell adhesion molecules for interface construction, possess unique features that enable the determination of location, direction of signal flow, and types of neurotransmitters involved, promoting directional and multifaceted communication. This study presents the first successful establishment of a Janus synapse between dopaminergic (DA) neurons and abiotic substrates by using a neuroligin-2 (NLG2)-mediated synapse-inducing method. NLG2 immobilized on gold-coated microspheres can induce synaptogenesis upon contact with spatially isolated DA axons. The induced DA Janus synapses exhibit stable synaptic activities comparable to that of native synapses over time, suggesting their suitability for application in neural interfaces. By calling for DA presynaptic organizations, the NLG2-immobilized abiotic substrate is a promising tool for the on-site detection of synaptic dopamine release.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minji Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjung Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung Mu Kang
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Li M, Yang G. A mesocortical glutamatergic pathway modulates neuropathic pain independent of dopamine co-release. Nat Commun 2024; 15:643. [PMID: 38245542 PMCID: PMC10799877 DOI: 10.1038/s41467-024-45035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Dysfunction in the mesocortical pathway, connecting the ventral tegmental area (VTA) to the prefrontal cortex, has been implicated in chronic pain. While extensive research has focused on the role of dopamine, the contribution of glutamatergic signaling in pain modulation remains unknown. Using in vivo calcium imaging, we observe diminished VTA glutamatergic activity targeting the prelimbic cortex (PL) in a mouse model of neuropathic pain. Optogenetic activation of VTA glutamatergic terminals in the PL alleviates neuropathic pain, whereas inhibiting these terminals in naïve mice induces pain-like responses. Importantly, this pain-modulating effect is independent of dopamine co-release, as demonstrated by CRISPR/Cas9-mediated gene deletion. Furthermore, we show that VTA neurons primarily project to excitatory neurons in the PL, and their activation restores PL outputs to the anterior cingulate cortex, a key region involved in pain processing. These findings reveal a distinct mesocortical glutamatergic pathway that critically modulates neuropathic pain independent of dopamine signaling.
Collapse
Affiliation(s)
- Miao Li
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Zhou J, Zhang Z, Wu M, Liu H, Pang Y, Bartlett A, Peng Z, Ding W, Rivkin A, Lagos WN, Williams E, Lee CT, Miyazaki PA, Aldridge A, Zeng Q, Salinda JLA, Claffey N, Liem M, Fitzpatrick C, Boggeman L, Yao Z, Smith KA, Tasic B, Altshul J, Kenworthy MA, Valadon C, Nery JR, Castanon RG, Patne NS, Vu M, Rashid M, Jacobs M, Ito T, Osteen J, Emerson N, Lee J, Cho S, Rink J, Huang HH, Pinto-Duartec A, Dominguez B, Smith JB, O'Connor C, Zeng H, Chen S, Lee KF, Mukamel EA, Jin X, Margarita Behrens M, Ecker JR, Callaway EM. Brain-wide correspondence of neuronal epigenomics and distant projections. Nature 2023; 624:355-365. [PMID: 38092919 PMCID: PMC10719087 DOI: 10.1038/s41586-023-06823-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.
Collapse
Affiliation(s)
- Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Zhuzhu Zhang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - May Wu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yan Pang
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zihao Peng
- School of Mathematics and Computer Science, Nanchang University, Nanchang, China
- Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, China
| | - Wubin Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Angeline Rivkin
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Will N Lagos
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elora Williams
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cheng-Ta Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Paula Assakura Miyazaki
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - J L Angelo Salinda
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Naomi Claffey
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michelle Liem
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Conor Fitzpatrick
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mia A Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cynthia Valadon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Neelakshi S Patne
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Minh Vu
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mohammad Rashid
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matthew Jacobs
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Ito
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia Osteen
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nora Emerson
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jasper Lee
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Silvia Cho
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jon Rink
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hsiang-Hsuan Huang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - António Pinto-Duartec
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bertha Dominguez
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jared B Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Shengbo Chen
- Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, China
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Xin Jin
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Edward M Callaway
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
17
|
Zell V, Teuns G, Needham AS, Mukherjee S, Roscoe N, Le M, Fourgeaud L, Woodruff G, Bhattacharya A, Marella M, Bonaventure P, Drevets WC, Balana B. Characterization of Selective M 5 Acetylcholine Muscarinic Receptor Modulators on Dopamine Signaling in the Striatum. J Pharmacol Exp Ther 2023; 387:226-234. [PMID: 37679045 DOI: 10.1124/jpet.123.001737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The type-5 muscarinic acetylcholine receptor (mAChR, M5) is almost exclusively expressed in dopamine (DA) neurons of the ventral tegmental area and substantia nigra pars compacta; therefore, they are ideally located to modulate DA signaling and underlying behaviors. However, the role of M5 in shaping DA release is still poorly characterized. In this study, we first quantitatively mapped the expression of M5 in different neurons of the mouse midbrain, then used voltammetry in mouse striatum to evaluate the effect of M5-selective modulators on DA release. The M5 negative allosteric modulator ML375 significantly decreased electrically evoked DA release and blocked the effect of Oxotremorine-M (Oxo-M; nonselective mAChR agonist) on DA release in the presence of an acetylcholine nicotinic receptor blocker. Conversely, the M5 positive allosteric modulator VU 0365114 significantly increased electrically evoked DA release and the Oxo-M effect on DA release. We then assessed M5's impact on mesolimbic circuit function in vivo. Although psychostimulant-induced locomotor activity models in knockout mice have previously been used to characterize the role of M5 in DA transmission, the results of these studies conflict, leading us to select a different in vivo model, namely a cocaine self-administration paradigm. In contrast to a previous study that also used this model, in the current study, administration of ML375 did not decrease cocaine self-administration in rats (using fixed and progressive ratio). These conflicting results illustrate the complexity of M5 modulation and the need to further characterize its involvement in the regulation of dopamine signaling, central to multiple neuropsychiatric diseases. SIGNIFICANCE STATEMENT: This work describes the type-5 muscarinic receptor (M5) pattern of expression within the midbrain as well as its physiological modulation by selective compounds at the axon terminal level in the striatum, where M5 directly shapes dopamine transmission. It offers the first direct readout of mesolimbic dopamine release modulation by M5, highlighting its role in regulating neurocircuits implicated in the pathophysiology of neuropsychiatric disorders such as substance use disorders, major depressive disorder, and schizophrenia.
Collapse
Affiliation(s)
- Vivien Zell
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Greetje Teuns
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Alexandra Stormy Needham
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Sruti Mukherjee
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Nathaniel Roscoe
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Michelle Le
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Lawrence Fourgeaud
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Grace Woodruff
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Anindya Bhattacharya
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Mathieu Marella
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Pascal Bonaventure
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Wayne C Drevets
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Bartosz Balana
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| |
Collapse
|
18
|
Boyd SL, Kuhn NC, Patterson JR, Stoll AC, Zimmerman SA, Kolanowski MR, Neubecker JJ, Luk KC, Ramsson ES, Sortwell CE, Bernstein AI. Developmental exposure to the Parkinson's disease-associated organochlorine pesticide dieldrin alters dopamine neurotransmission in α-synuclein pre-formed fibril (PFF)-injected mice. Toxicol Sci 2023; 196:99-111. [PMID: 37607008 PMCID: PMC10613968 DOI: 10.1093/toxsci/kfad086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.
Collapse
Affiliation(s)
- Sierra L Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Anna C Stoll
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Sydney A Zimmerman
- Biomedical Sciences Department, Grand Valley State University, Allendale, MI, USA
| | - Mason R Kolanowski
- Biomedical Sciences Department, Grand Valley State University, Allendale, MI, USA
| | - Joseph J Neubecker
- Biomedical Sciences Department, Grand Valley State University, Allendale, MI, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Ramsson
- Biomedical Sciences Department, Grand Valley State University, Allendale, MI, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
19
|
Vrettou M, Thalhammer SB, Svensson AL, Dumas S, Nilsson KW, Wallén-Mackenzie Å, Fredriksson R, Nylander I, Comasco E. Vesicular glutamate transporter 2 expression in the ventral tegmental area of outbred male rats following exposure to nicotine and alcohol. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 8:100180. [PMID: 37533815 PMCID: PMC10391930 DOI: 10.1016/j.dadr.2023.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Background Initiation of use/co-use of nicotine and alcohol, commonly occurring in an episodic manner during adolescence, can imprint vulnerability to the developing brain and lead to addiction. The ventral tegmental area (VTA) is a key heterogeneous region of the mesocorticolimbic circuit involved in the binge-drinking and intoxication step of the addiction circuit. Higher human post-mortem VTA expression of vesicular glutamate transporter 2 (VGLUT2), a marker of the glutamatergic phenotype also expressed in dopaminergic [Tyrosine Hydroxylase (Th)-positive] neurons, has been associated with chronic nicotine use and co-use with alcohol. Methods The present study aimed to map and characterize the Vglut2- and Th-expressing neurons in the VTA of adolescent male rats exposed or not to prolonged (six-weeks) episodic (three consecutive days/week) nicotine and/or alcohol administration. Nicotine (0.35 mg/kg free base) was injected subcutaneously, whereas alcohol (2 g/kg 20%) was administrated via gavage. Vglut2 and Th mRNA was assessed in the anterior and posterior VTA by use of in situ hybridization. Results The profile of neurons varied with substance-exposure among VTA subregions. Th-only expressing neurons were more abundant in the posterior VTA of the group exposed to nicotine-only, compared to controls. The same neurons were, on the contrary, less present in the anterior VTA of animals exposed to alcohol-only, who also displayed a higher number of Vglut2-expressing neurons in the lateral anterior VTA. Conclusions VTA Vglut2- and Th-only neurons seem differentially involved in the effects of adolescent episodic nicotine and alcohol exposure in the anterior and posterior VTA.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Bernhard Thalhammer
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anne-Lie Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Kent W Nilsson
- Centre for Clinical Research Västerås, Uppsala University, Västmanland County Hospital Västerås, Sweden
| | | | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Olejniczak I, Begemann K, Wilhelm I, Oster H. The circadian neurobiology of reward. Acta Physiol (Oxf) 2023; 237:e13928. [PMID: 36625310 DOI: 10.1111/apha.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Circadian clocks are important regulators of physiology and behavior. In the brain, circadian clocks have been described in many centers of the central reward system. They affect neurotransmitter signaling, neuroendocrine circuits, and the sensitivity to external stimulation. Circadian disruption affects reward signaling, promoting the development of behavioral and substance use disorders. In this review, we summarize our current knowledge of circadian clock-reward crosstalk. We show how chronodisruption affects reward signaling in different animal models. We then translate these findings to circadian aspects of human reward (dys-) function and its clinical implications. Finally, we devise approaches to and challenges in implementing the concepts of circadian medicine in the therapy of substance use disorders.
Collapse
Affiliation(s)
- Iwona Olejniczak
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kimberly Begemann
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ines Wilhelm
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.,Translational Psychiatry Unit, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
D1 receptor-expressing neurons in ventral tegmental area alleviate mouse anxiety-like behaviors via glutamatergic projection to lateral septum. Mol Psychiatry 2023; 28:625-638. [PMID: 36195641 PMCID: PMC9531220 DOI: 10.1038/s41380-022-01809-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
Dopamine (DA) acts as a key regulator in controlling emotion, and dysfunction of DA signal has been implicated in the pathophysiology of some psychiatric disorders, including anxiety. Ventral tegmental area (VTA) is one of main regions with DA-producing neurons. VTA DAergic projections in mesolimbic brain regions play a crucial role in regulating anxiety-like behaviors, however, the function of DA signal within VTA in regulating emotion remains unclear. Here, we observe that pharmacological activation/inhibition of VTA D1 receptors will alleviate/aggravate mouse anxiety-like behaviors, and knockdown of VTA D1 receptor expression also exerts anxiogenic effect. With fluorescence in situ hybridization and electrophysiological recording, we find that D1 receptors are functionally expressed in VTA neurons. Silencing/activating VTA D1 neurons bidirectionally modulate mouse anxiety-like behaviors. Furthermore, knocking down D1 receptors in VTA DA and glutamate neurons elevates anxiety-like state, but in GABA neurons has the opposite effect. In addition, we identify the glutamatergic projection from VTA D1 neurons to lateral septum is mainly responsible for the anxiolytic effect induced by activating VTA D1 neurons. Thus, our study not only characterizes the functional expression of D1 receptors in VTA neurons, but also uncovers the pivotal role of DA signal within VTA in mediating anxiety-like behaviors.
Collapse
|
22
|
Buck SA, Quincy Erickson-Oberg M, Logan RW, Freyberg Z. Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 2022; 27:3583-3591. [PMID: 35681081 PMCID: PMC9712151 DOI: 10.1038/s41380-022-01649-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023]
Abstract
Dopamine (DA) and glutamate neurotransmission are strongly implicated in schizophrenia pathophysiology. While most studies focus on contributions of neurons that release only DA or glutamate, neither DA nor glutamate models alone recapitulate the full spectrum of schizophrenia pathophysiology. Similarly, therapeutic strategies limited to either system cannot effectively treat all three major symptom domains of schizophrenia: positive, negative, and cognitive symptoms. Increasing evidence suggests extensive interactions between the DA and glutamate systems and more effective treatments may therefore require the targeting of both DA and glutamate signaling. This offers the possibility that disrupting DA-glutamate circuitry between these two systems, particularly in the striatum and forebrain, culminate in schizophrenia pathophysiology. Yet, the mechanisms behind these interactions and their contributions to schizophrenia remain unclear. In addition to circuit- or system-level interactions between neurons that solely release either DA or glutamate, here we posit that functional alterations involving a subpopulation of neurons that co-release both DA and glutamate provide a novel point of integration between DA and glutamate systems, offering a key missing link in our understanding of schizophrenia pathophysiology. Better understanding of mechanisms underlying DA/glutamate co-release from these neurons may therefore shed new light on schizophrenia pathophysiology and lead to more effective therapeutics.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M Quincy Erickson-Oberg
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Chadwick SR, Güler AD. Local Drd1-neurons input to subgroups of arcuate AgRP/NPY-neurons. iScience 2022; 25:104605. [PMID: 35789850 PMCID: PMC9250019 DOI: 10.1016/j.isci.2022.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Obesity is a pandemic afflicting more than 300 million people worldwide, driven by consumption of calorically dense and highly rewarding foods. Dopamine (DA) signaling has been implicated in neural responses to highly palatable nutrients, but the exact mechanisms through which DA modulates homeostatic feeding circuits remains unknown. A subpopulation of arcuate (ARC) agouti-related peptide (AgRP)/neuropeptide Y (NPY) (ARCAgRP/NPY+) neurons express the D(1A) dopamine receptor (Drd1) and are stimulated by DA, suggesting one potential avenue for dopaminergic regulation of food intake. Using patch clamp electrophysiology, we evaluated the responses of ARC Drd1-expressing (ARCDrd1+) neurons to overnight fasting and leptin. Collectively, ARCDrd1+ neurons were less responsive to caloric deficit than ARCAgRP/NPY+ neurons; however, ARCDrd1+ neurons were inhibited by the satiety hormone leptin. Using Channelrhodopsin-2-Assisted Circuit Mapping, we identified novel subgroups of ARCDrd1+ neurons that inhibit or excite ARCAgRP/NPY+ neurons. These findings suggest dopamine receptive neurons have multimodal actions in food intake circuits.
Collapse
Affiliation(s)
- Sean R. Chadwick
- Program in Fundamental Neuroscience and the Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali D. Güler
- Program in Fundamental Neuroscience and the Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
24
|
Soden ME, Yee JX, Cuevas B, Rastani A, Elum J, Zweifel LS. Distinct Encoding of Reward and Aversion by Peptidergic BNST Inputs to the VTA. Front Neural Circuits 2022; 16:918839. [PMID: 35860212 PMCID: PMC9289195 DOI: 10.3389/fncir.2022.918839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides play an important role in modulating mesolimbic system function. However, while synaptic inputs to the ventral tegmental area (VTA) have been extensively mapped, the sources of many neuropeptides are not well resolved. Here, we mapped the anatomical locations of three neuropeptide inputs to the VTA: neurotensin (NTS), corticotrophin releasing factor (CRF), and neurokinin B (NkB). Among numerous labeled inputs we identified the bed nucleus of the stria terminalis (BNST) as a major source of all three peptides, containing similar numbers of NTS, CRF, and NkB VTA projection neurons. Approximately 50% of BNST to VTA inputs co-expressed two or more of the peptides examined. Consistent with this expression pattern, analysis of calcium dynamics in the terminals of these inputs in the VTA revealed both common and distinct patterns of activation during appetitive and aversive conditioning. These data demonstrate additional diversification of the mesolimbic dopamine system through partially overlapping neuropeptidergic inputs.
Collapse
Affiliation(s)
- Marta E. Soden
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Joshua X. Yee
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Beatriz Cuevas
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Ariana Rastani
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jordan Elum
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Steinkellner T, Conrad WS, Kovacs I, Rissman RA, Lee EB, Trojanowski JQ, Freyberg Z, Roy S, Luk KC, Lee VM, Hnasko TS. Dopamine neurons exhibit emergent glutamatergic identity in Parkinson's disease. Brain 2022; 145:879-886. [PMID: 35258081 PMCID: PMC9050538 DOI: 10.1093/brain/awab373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/07/2023] Open
Abstract
Loss of midbrain dopamine neurons causes the cardinal symptoms of Parkinson's disease. However, not all dopamine neurons are equally vulnerable and a better understanding of the cell-type specific properties relating to selective dopamine neuron degeneration is needed. Most midbrain dopamine neurons express the vesicular glutamate transporter VGLUT2 during development and a subset continue to express low levels of VGLUT2 in adulthood, enabling the co-release of glutamate. Moreover, VGLUT2 expression in dopamine neurons can be neuroprotective since its genetic disruption was shown to sensitize dopamine neurons to neurotoxins. Here, we show that in response to toxic insult, and in two distinct models of alpha-synuclein stress, VGLUT2 dopamine neurons were resilient to degeneration. Dopamine neurons expressing VGLUT2 were enriched whether or not insult induced dopamine neuron loss, suggesting that while VGLUT2 dopamine neurons are more resilient, VGLUT2 expression can also be transcriptionally upregulated by injury. Finally, we observed that VGLUT2 expression was enhanced in surviving dopamine neurons from post-mortem Parkinson's disease individuals. These data indicate that emergence of a glutamatergic identity in dopamine neurons may be part of a neuroprotective response in Parkinson's disease.
Collapse
Affiliation(s)
- Thomas Steinkellner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - William S Conrad
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Imre Kovacs
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary Freyberg
- Departments of Psychiatry and Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Subhojit Roy
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
26
|
Wilson L, Lee CA, Mason CF, Khodjaniyazova S, Flores KB, Muddiman DC, Sombers LA. Simultaneous Measurement of Striatal Dopamine and Hydrogen Peroxide Transients Associated with L-DOPA Induced Rotation in Hemiparkinsonian Rats. ACS MEASUREMENT SCIENCE AU 2022; 2:120-131. [PMID: 36785724 PMCID: PMC9838821 DOI: 10.1021/acsmeasuresciau.1c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder commonly treated with levodopa (L-DOPA), which eventually induces abnormal involuntary movements (AIMs). The neurochemical contributors to these dyskinesias are unknown; however, several lines of evidence indicate an interplay of dopamine (DA) and oxidative stress. Here, DA and hydrogen peroxide (H2O2) were simultaneously monitored at discrete recording sites in the dorsal striata of hemiparkinsonian rats using fast-scan cyclic voltammetry. Mass spectrometry imaging validated the lesions. Hemiparkinsonian rats exhibited classic L-DOPA-induced AIMs and rotations as well as increased DA and H2O2 tone over saline controls after 1 week of treatment. By week 3, DA tone remained elevated beyond that of controls, but H2O2 tone was largely normalized. At this time point, rapid chemical transients were time-locked with spontaneous bouts of rotation. Striatal H2O2 rapidly increased with the initiation of contraversive rotational behaviors in lesioned L-DOPA animals, in both hemispheres. DA signals simultaneously decreased with rotation onset. The results support a role for these striatal neuromodulators in the adaptive changes that occur with L-DOPA treatment in PD and reveal a precise interplay between DA and H2O2 in the initiation of involuntary locomotion.
Collapse
Affiliation(s)
- Leslie
R. Wilson
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Christie A. Lee
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Catherine F. Mason
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Sitora Khodjaniyazova
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Kevin B. Flores
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - David C. Muddiman
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
27
|
Melani R, Tritsch NX. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep 2022; 39:110716. [PMID: 35443174 PMCID: PMC9097974 DOI: 10.1016/j.celrep.2022.110716] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA)-releasing neurons in the substantia nigra pars compacta (SNcDA) inhibit target cells in the striatum through postsynaptic activation of γ-aminobutyric acid (GABA) receptors. However, the molecular mechanisms responsible for GABAergic signaling remain unclear, as SNcDA neurons lack enzymes typically required to produce GABA or package it into synaptic vesicles. Here, we show that aldehyde dehydrogenase 1a1 (Aldh1a1), an enzyme proposed to function as a GABA synthetic enzyme in SNcDA neurons, does not produce GABA for synaptic transmission. Instead, we demonstrate that SNcDA axons obtain GABA exclusively through presynaptic uptake using the membrane GABA transporter Gat1 (encoded by Slc6a1). GABA is then packaged for vesicular release using the vesicular monoamine transporter Vmat2. Our data therefore show that presynaptic transmitter recycling can substitute for de novo GABA synthesis and that Vmat2 contributes to vesicular GABA transport, expanding the range of molecular mechanisms available to neurons to support inhibitory synaptic communication. Melani and Tritsch demonstrate that inhibitory co-transmission from midbrain dopaminergic neurons does not depend on cell-autonomous GABA synthesis but instead on presynaptic import from the extracellular space through the membrane transporter Gat1 and that GABA loading into synaptic vesicles relies on the vesicular monoamine transporter Vmat2.
Collapse
Affiliation(s)
- Riccardo Melani
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
28
|
Dvořáček J, Bednářová A, Krishnan N, Kodrík D. Dopaminergic muhsroom body neurons in Drosophila: flexibility of neuron identity in a model organism? Neurosci Biobehav Rev 2022; 135:104570. [DOI: 10.1016/j.neubiorev.2022.104570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
|
29
|
Serra GP, Guillaumin A, Dumas S, Vlcek B, Wallén-Mackenzie Å. Midbrain Dopamine Neurons Defined by TrpV1 Modulate Psychomotor Behavior. Front Neural Circuits 2021; 15:726893. [PMID: 34858142 PMCID: PMC8632262 DOI: 10.3389/fncir.2021.726893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Dopamine (DA) neurons of the ventral tegmental area (VTA) continue to gain attention as far more heterogeneous than previously realized. Within the medial aspect of the VTA, the unexpected presence of TrpV1 mRNA has been identified. TrpV1 encodes the Transient Receptor Potential cation channel subfamily V member 1, TRPV1, also known as the capsaicin receptor, well recognized for its role in heat and pain processing by peripheral neurons. In contrast, the brain distribution of TrpV1 has been debated. Here, we hypothesized that the TrpV1+ identity defines a distinct subpopulation of VTA DA neurons. To explore these brain TrpV1+ neurons, histological analyses and Cre-driven mouse genetics were employed. TrpV1 mRNA was most strongly detected at the perinatal stage forming a band of scattered neurons throughout the medial VTA, reaching into the posterior hypothalamus. Within the VTA, the majority of TrpV1 co-localized with both Tyrosine hydroxylase (Th) and Vesicular monoamine transporter 2 (Vmat2), confirming a DA phenotype. However, TrpV1 also co-localized substantially with Vesicular glutamate transporter 2 (Vglut2), representing the capacity for glutamate (GLU) release. These TrpV1+/Th+/Vglut2+/Vmat2+ neurons thus constitute a molecularly and anatomically distinct subpopulation of DA-GLU co-releasing neurons. To assess behavioral impact, a TrpV1Cre -driven strategy targeting the Vmat2 gene in mice was implemented. This manipulation was sufficient to alter psychomotor behavior induced by amphetamine. The acute effect of the drug was accentuated above control levels, suggesting super-sensitivity in the drug-na ve state resembling a "pre-sensitized" phenotype. However, no progressive increase with repeated injections was observed. This study identifies a distinct TrpV1+ VTA subpopulation as a critical modulatory component in responsiveness to amphetamine. Moreover, expression of the gene encoding TRPV1 in selected VTA neurons opens up for new possibilities in pharmacological intervention of this heterogeneous, but clinically important, brain area.
Collapse
Affiliation(s)
- Gian Pietro Serra
- Unit of Comparative Physiology, Department of Organism Biology, Uppsala University, Uppsala, Sweden
| | - Adriane Guillaumin
- Unit of Comparative Physiology, Department of Organism Biology, Uppsala University, Uppsala, Sweden
| | | | - Bianca Vlcek
- Unit of Comparative Physiology, Department of Organism Biology, Uppsala University, Uppsala, Sweden
| | - Åsa Wallén-Mackenzie
- Unit of Comparative Physiology, Department of Organism Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Ducrot C, Bourque MJ, Delmas CVL, Racine AS, Guadarrama Bello D, Delignat-Lavaud B, Domenic Lycas M, Fallon A, Michaud-Tardif C, Burke Nanni S, Herborg F, Gether U, Nanci A, Takahashi H, Parent M, Trudeau LE. Dopaminergic neurons establish a distinctive axonal arbor with a majority of non-synaptic terminals. FASEB J 2021; 35:e21791. [PMID: 34320240 DOI: 10.1096/fj.202100201rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Chemical neurotransmission typically occurs through synapses. Previous ultrastructural examinations of monoamine neuron axon terminals often failed to identify a pre- and postsynaptic coupling, leading to the concept of "volume" transmission. Whether this results from intrinsic properties of these neurons remains undefined. We find that dopaminergic neurons in vitro establish a distinctive axonal arbor compared to glutamatergic or GABAergic neurons in both size and propensity of terminals to avoid direct contact with target neurons. While most dopaminergic varicosities are active and contain exocytosis proteins like synaptotagmin 1, only ~20% of these are synaptic. The active zone protein bassoon was found to be enriched in dopaminergic terminals that are in proximity to a target cell. Finally, we found that the proteins neurexin-1αSS4- and neuroligin-1A+B play a critical role in the formation of synapses by dopamine (DA) neurons. Our findings suggest that DA neurons are endowed with a distinctive developmental connectivity program.
Collapse
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Constantin V L Delmas
- Department of Psychiatry and Neurosciences, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Anne-Sophie Racine
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Dainelys Guadarrama Bello
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Matthew Domenic Lycas
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Aurélie Fallon
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Charlotte Michaud-Tardif
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Samuel Burke Nanni
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Freja Herborg
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ulrik Gether
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Antonio Nanci
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neurosciences, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| |
Collapse
|
31
|
Abstract
An organism's survival can depend on its ability to recall and navigate to spatial locations associated with rewards, such as food or a home. Accumulating research has revealed that computations of reward and its prediction occur on multiple levels across a complex set of interacting brain regions, including those that support memory and navigation. However, how the brain coordinates the encoding, recall and use of reward information to guide navigation remains incompletely understood. In this Review, we propose that the brain's classical navigation centres - the hippocampus and the entorhinal cortex - are ideally suited to coordinate this larger network by representing both physical and mental space as a series of states. These states may be linked to reward via neuromodulatory inputs to the hippocampus-entorhinal cortex system. Hippocampal outputs can then broadcast sequences of states to the rest of the brain to store reward associations or to facilitate decision-making, potentially engaging additional value signals downstream. This proposal is supported by recent advances in both experimental and theoretical neuroscience. By discussing the neural systems traditionally tied to navigation and reward at their intersection, we aim to offer an integrated framework for understanding navigation to reward as a fundamental feature of many cognitive processes.
Collapse
|
32
|
TNFα increases tyrosine hydroxylase expression in human monocytes. NPJ Parkinsons Dis 2021; 7:62. [PMID: 34285243 PMCID: PMC8292430 DOI: 10.1038/s41531-021-00201-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Most, if not all, peripheral immune cells in humans and animals express tyrosine hydroxylase (TH), the rate limiting enzyme in catecholamine synthesis. Since TH is typically studied in the context of brain catecholamine signaling, little is known about changes in TH production and function in peripheral immune cells. This knowledge gap is due, in part, to the lack of an adequately sensitive assay to measure TH in immune cells expressing lower TH levels compared to other TH expressing cells. Here, we report the development of a highly sensitive and reproducible Bio-ELISA to quantify picogram levels of TH in multiple model systems. We have applied this assay to monocytes isolated from blood of persons with Parkinson's disease (PD) and to age-matched, healthy controls. Our study unexpectedly revealed that PD patients' monocytes express significantly higher levels of TH protein in peripheral monocytes relative to healthy controls. Tumor necrosis factor (TNFα), a pro-inflammatory cytokine, has also been shown to be increased in the brains and peripheral circulation in human PD, as well as in animal models of PD. Therefore, we investigated a possible connection between higher levels of TH protein and the known increase in circulating TNFα in PD. Monocytes isolated from healthy donors were treated with TNFα or with TNFα in the presence of an inhibitor. Tissue plasminogen activator (TPA) was used as a positive control. We observed that TNFα stimulation increased both the number of TH+ monocytes and the quantity of TH per monocyte, without increasing the total numbers of monocytes. These results revealed that TNFα could potentially modify monocytic TH production and serve a regulatory role in peripheral immune function. The development and application of a highly sensitive assay to quantify TH in both human and animal cells will provide a novel tool for further investigating possible PD immune regulatory pathways between brain and periphery.
Collapse
|
33
|
Li X, Wang W, Yan J, Zeng F. Glutamic Acid Transporters: Targets for Neuroprotective Therapies in Parkinson's Disease. Front Neurosci 2021; 15:678154. [PMID: 34220434 PMCID: PMC8242205 DOI: 10.3389/fnins.2021.678154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly individuals. At present, no effective drug has been developed to treat PD. Although a variety of drugs exist for the symptomatic treatment of PD, they all have strong side effects. Most studies on PD mainly focus on dopaminergic neurons. This review highlights the function of glutamic acid transporters (GLTs), including excitatory amino acid transporters (EAATs) and vesicular glutamate transporters (VGLUTs), during the development of PD. In addition, using bioinformatics, we compared the expression of different types of glutamate transporter genes in the cingulate gyrus of PD patients and healthy controls. More importantly, we suggest that the functional roles of glutamate transporters may prove beneficial in the treatment of PD. In summary, VGLUTs and EAATs may be potential targets in the treatment of PD. VGLUTs and EAATs can be used as clinical drug targets to achieve better efficacy. Through this review article, we hope to enable future researchers to improve the condition of PD patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jianghong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
34
|
Eskenazi D, Malave L, Mingote S, Yetnikoff L, Ztaou S, Velicu V, Rayport S, Chuhma N. Dopamine Neurons That Cotransmit Glutamate, From Synapses to Circuits to Behavior. Front Neural Circuits 2021; 15:665386. [PMID: 34093138 PMCID: PMC8170480 DOI: 10.3389/fncir.2021.665386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Discovered just over 20 years ago, dopamine neurons have the ability to cotransmit both dopamine and glutamate. Yet, the functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are just emerging. This review article encompasses the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that cotransmit glutamate. Since its discovery in dopamine neuron cultures, further work in vivo confirmed dopamine neuron glutamate cotransmission across species. From there, growing interest has led to research related to neural functioning including roles in synaptic signaling, development, and behavior. Functional connectome mapping reveals robust connections in multiple forebrain regions to various cell types, most notably to cholinergic interneurons in both the medial shell of the nucleus accumbens and the lateral dorsal striatum. Glutamate markers in dopamine neurons reach peak levels during embryonic development and increase in response to various toxins, suggesting dopamine neuron glutamate cotransmission may serve neuroprotective roles. Findings from behavioral analyses reveal prominent roles for dopamine neuron glutamate cotransmission in responses to psychostimulants, in positive valence and cognitive systems and for subtle roles in negative valence systems. Insight into dopamine neuron glutamate cotransmission informs the pathophysiology of neuropsychiatric disorders such as addiction, schizophrenia and Parkinson Disease, with therapeutic implications.
Collapse
Affiliation(s)
- Daniel Eskenazi
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Lauren Malave
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, United States
| | - Leora Yetnikoff
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, United States
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| | - Samira Ztaou
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Vlad Velicu
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
35
|
16p11.2 deletion is associated with hyperactivation of human iPSC-derived dopaminergic neuron networks and is rescued by RHOA inhibition in vitro. Nat Commun 2021; 12:2897. [PMID: 34006844 PMCID: PMC8131375 DOI: 10.1038/s41467-021-23113-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
Reciprocal copy number variations (CNVs) of 16p11.2 are associated with a wide spectrum of neuropsychiatric and neurodevelopmental disorders. Here, we use human induced pluripotent stem cells (iPSCs)-derived dopaminergic (DA) neurons carrying CNVs of 16p11.2 duplication (16pdup) and 16p11.2 deletion (16pdel), engineered using CRISPR-Cas9. We show that 16pdel iPSC-derived DA neurons have increased soma size and synaptic marker expression compared to isogenic control lines, while 16pdup iPSC-derived DA neurons show deficits in neuronal differentiation and reduced synaptic marker expression. The 16pdel iPSC-derived DA neurons have impaired neurophysiological properties. The 16pdel iPSC-derived DA neuronal networks are hyperactive and have increased bursting in culture compared to controls. We also show that the expression of RHOA is increased in the 16pdel iPSC-derived DA neurons and that treatment with a specific RHOA-inhibitor, Rhosin, rescues the network activity of the 16pdel iPSC-derived DA neurons. Our data suggest that 16p11.2 deletion-associated iPSC-derived DA neuron hyperactivation can be rescued by RHOA inhibition.
Collapse
|
36
|
Chen L, Ru Q, Xiong Q, Zhou M, Yue K, Wu Y. The Role of Chinese Herbal Therapy in Methamphetamine Abuse and its Induced Psychiatric Symptoms. Front Pharmacol 2021; 12:679905. [PMID: 34040537 PMCID: PMC8143530 DOI: 10.3389/fphar.2021.679905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
Repeated intake of methamphetamine (METH) leads to drug addiction, the inability to control intake, and strong drug cravings. It is also likely to cause psychiatric impairments, such as cognitive impairment, depression, and anxiety. Because the specific neurobiological mechanisms involved are complex and have not been fully and systematically elucidated, there is no established pharmacotherapy for METH abuse. Studies have found that a variety of Chinese herbal medicines have significant therapeutic effects on neuropsychiatric symptoms and have the advantage of multitarget comprehensive treatment. We conducted a systematic review, from neurobiological mechanisms to candidate Chinese herbal medicines, hoping to provide new perspectives and ideas for the prevention and treatment of METH abuse.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
37
|
Ducrot C, Trudeau LÉ. The challenging diversity of neurons in the ventral tegmental area: A commentary of Miranda-Barrientos, J. et al., Eur J Neurosci 2021. Eur J Neurosci 2021; 54:4085-4087. [PMID: 33942393 DOI: 10.1111/ejn.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/29/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, CNS Research Group (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, CNS Research Group (GRSNC), Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
38
|
Buck SA, Torregrossa MM, Logan RW, Freyberg Z. Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. FEBS J 2021; 288:1462-1474. [PMID: 32702182 PMCID: PMC7854787 DOI: 10.1111/febs.15496] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Projections of ventral tegmental area dopamine (DA) neurons to the medial shell of the nucleus accumbens have been increasingly implicated as integral to the behavioral and physiological changes involved in the development of substance use disorders (SUDs). Recently, many of these nucleus accumbens-projecting DA neurons were found to also release the neurotransmitter glutamate. This glutamate co-release from DA neurons is critical in mediating the effect of drugs of abuse on addiction-related behaviors. Potential mechanisms underlying the role(s) of dopamine/glutamate co-release in contributing to SUDs are unclear. Nevertheless, an important clue may relate to glutamate's ability to potentiate loading of DA into synaptic vesicles within terminals in the nucleus accumbens in response to drug-induced elevations in neuronal activity, enabling a more robust release of DA after stimulation. Here, we summarize how drugs of abuse, particularly cocaine, opioids, and alcohol, alter DA release in the nucleus accumbens medial shell, examine the potential role of DA/glutamate co-release in mediating these effects, and discuss future directions for further investigating these mechanisms.
Collapse
Affiliation(s)
- Silas A. Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary M. Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Zachary Freyberg
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Liu Y, McNally GP. Dopamine and relapse to drug seeking. J Neurochem 2021; 157:1572-1584. [PMID: 33486769 DOI: 10.1111/jnc.15309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
The actions of dopamine are essential to relapse to drug seeking but we still lack a precise understanding of how dopamine achieves these effects. Here we review recent advances from animal models in understanding how dopamine controls relapse to drug seeking. These advances have been enabled by important developments in understanding the basic neurochemical, molecular, anatomical, physiological and functional properties of the major dopamine pathways in the mammalian brain. The literature shows that although different forms of relapse to seeking different drugs of abuse each depend on dopamine, there are distinct dopamine mechanisms for relapse. Different circuit-level mechanisms, different populations of dopamine neurons and different activity profiles within these dopamine neurons, are important for driving different forms of relapse. This diversity highlights the need to better understand when, where and how dopamine contributes to relapse behaviours.
Collapse
Affiliation(s)
- Yu Liu
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
41
|
Single-Cell Technologies in Parkinson׳s Disease. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Zell V, Steinkellner T, Hollon NG, Warlow SM, Souter E, Faget L, Hunker AC, Jin X, Zweifel LS, Hnasko TS. VTA Glutamate Neuron Activity Drives Positive Reinforcement Absent Dopamine Co-release. Neuron 2020; 107:864-873.e4. [PMID: 32610039 PMCID: PMC7780844 DOI: 10.1016/j.neuron.2020.06.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/21/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
Abstract
Like ventral tegmental area (VTA) dopamine (DA) neurons, VTA glutamate neuron activity can support positive reinforcement. However, a subset of VTA neurons co-release DA and glutamate, and DA release might be responsible for behavioral reinforcement induced by VTA glutamate neuron activity. To test this, we used optogenetics to stimulate VTA glutamate neurons in which tyrosine hydroxylase (TH), and thus DA biosynthesis, was conditionally ablated using either floxed Th mice or viral-based CRISPR/Cas9. Both approaches led to loss of TH expression in VTA glutamate neurons and loss of DA release from their distal terminals in nucleus accumbens (NAc). Despite loss of the DA signal, optogenetic activation of VTA glutamate cell bodies or axon terminals in NAc was sufficient to support reinforcement. These results suggest that glutamate release from VTA is sufficient to promote reinforcement independent of concomitant DA co-release, establishing a non-DA mechanism by which VTA activity can support reward-seeking behaviors.
Collapse
Affiliation(s)
- Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas Steinkellner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nick G Hollon
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shelley M Warlow
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Souter
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Research Service VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
43
|
Johnson KA, Voyvodic L, Loewinger GC, Mateo Y, Lovinger DM. Operant self-stimulation of thalamic terminals in the dorsomedial striatum is constrained by metabotropic glutamate receptor 2. Neuropsychopharmacology 2020; 45:1454-1462. [PMID: 31995814 PMCID: PMC7360544 DOI: 10.1038/s41386-020-0626-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
Abstract
Dorsal striatal manipulations including stimulation of dopamine release and activation of medium spiny neurons (MSNs) are sufficient to drive reinforcement-based learning. Glutamatergic innervation of the striatum by the cortex and thalamus is a critical determinant of MSN activity and local regulation of dopamine release. However, the relationship between striatal glutamatergic afferents and behavioral reinforcement is not well understood. We evaluated the reinforcing properties of optogenetic stimulation of thalamostriatal terminals, which are associated with vesicular glutamate transporter 2 (Vglut2) expression, in the dorsomedial striatum (DMS), a region implicated in goal-directed behaviors. In mice expressing channelrhodopsin-2 (ChR2) under control of the Vglut2 promoter, optical stimulation of the DMS reinforced operant lever-pressing behavior. Mice also acquired operant self-stimulation of thalamostriatal terminals when ChR2 expression was virally targeted to the intralaminar thalamus. Stimulation trains that supported operant responding evoked dopamine release in the DMS and excitatory postsynaptic currents in DMS MSNs. Our previous work demonstrated that the presynaptic G protein-coupled receptor metabotropic glutamate receptor 2 (mGlu2) robustly inhibits glutamate and dopamine release induced by activation of thalamostriatal afferents. Thus, we examined the regulation of thalamostriatal self-stimulation by mGlu2. Administration of an mGlu2/3 agonist or an mGlu2-selective positive allosteric modulator reduced self-stimulation. Conversely, blockade of these receptors increased thalamostriatal self-stimulation, suggesting that endogenous activation of these receptors negatively modulates the reinforcing properties of thalamostriatal activity. These findings demonstrate that stimulation of thalamic terminals in the DMS is sufficient to reinforce a self-initiated action, and that thalamostriatal reinforcement is constrained by mGlu2 activation.
Collapse
Affiliation(s)
- Kari A. Johnson
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD 20852 USA ,0000 0001 0421 5525grid.265436.0Present Address: Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, C2019, Bethesda, MD 20814 USA
| | - Lucas Voyvodic
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD 20852 USA
| | - Gabriel C. Loewinger
- 000000041936754Xgrid.38142.3cDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Yolanda Mateo
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD 20852 USA
| | - David M. Lovinger
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD 20852 USA
| |
Collapse
|
44
|
Gretenkord S, Olthof BMJ, Stylianou M, Rees A, Gartside SE, LeBeau FEN. Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D 1 -like receptors. Eur J Neurosci 2020; 52:2915-2930. [PMID: 31891427 PMCID: PMC7497269 DOI: 10.1111/ejn.14665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
The role of dopamine in regulating sleep-state transitions during, both natural sleep and under anaesthesia, is still unclear. Recording in vivo in the rat mPFC under urethane anaesthesia, we observed predominantly slow wave activity (SWA) of <1 Hz in the local field potential interrupted by occasional spontaneous transitions to a low-amplitude-fast (LAF) pattern of activity. During periods of SWA, transitions to LAF activity could be rapidly and consistently evoked by electrical stimulation of the ventral tegmental area (VTA). Spontaneous LAF activity, and that evoked by stimulation of the VTA, consisted of fast oscillations similar to those seen in the rapid eye movement (REM)-like sleep state. Spontaneous and VTA stimulation-evoked LAF activity occurred simultaneously along the dorsoventral extent of all mPFC subregions. Evoked LAF activity depended on VTA stimulation current and could be elicited using either regular (25-50 Hz) or burst stimulation patterns and was reproducible upon repeated stimulation. Simultaneous extracellular single-unit recordings showed that during SWA, presumed pyramidal cells fired phasically and almost exclusively on the Up state, while during both spontaneous and VTA-evoked LAF activity, they fired tonically. The transition to LAF activity evoked by VTA stimulation depended on dopamine D1 -like receptor activation as it was almost completely blocked by systemic administration of the D1 -like receptor antagonist SCH23390. Overall, our data demonstrate that activation of dopamine D1 -like receptors in the mPFC is important for regulating sleep-like state transitions.
Collapse
Affiliation(s)
- Sabine Gretenkord
- Biosciences InstituteMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| | - Bas M. J. Olthof
- Biosciences InstituteMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| | - Myrto Stylianou
- Biosciences InstituteMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| | - Adrian Rees
- Biosciences InstituteMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| | - Sarah E. Gartside
- Biosciences InstituteMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| | - Fiona E. N. LeBeau
- Biosciences InstituteMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
45
|
Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020; 98:1046-1069. [PMID: 32056298 PMCID: PMC7183907 DOI: 10.1002/jnr.24587] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
The striatal dopamine system has long been studied in the context of reward learning, motivation, and movement. Given the prominent role dopamine plays in a variety of adaptive behavioral states, as well as diseases like addiction, it is essential to understand the full complexity of dopamine neurons and the striatal systems they target. A growing number of studies are uncovering details of the heterogeneity in dopamine neuron subpopulations. Here, we review that work to synthesize current understanding of dopamine system heterogeneity across three levels, anatomical organization, functions in behavior, and modes of action, wherein we focus on signaling profiles and local mechanisms for modulation of dopamine release. Together, these studies reveal new and emerging dimensions of the striatal dopamine system, informing its contribution to dynamic motivational and decision-making processes.
Collapse
Affiliation(s)
- Anne L. Collins
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| | - Benjamin T. Saunders
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| |
Collapse
|
46
|
Lahiri AK, Bevan MD. Dopaminergic Transmission Rapidly and Persistently Enhances Excitability of D1 Receptor-Expressing Striatal Projection Neurons. Neuron 2020; 106:277-290.e6. [PMID: 32075716 PMCID: PMC7182485 DOI: 10.1016/j.neuron.2020.01.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/26/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Substantia nigra dopamine neurons have been implicated in the initiation and invigoration of movement, presumably through their modulation of striatal projection neuron (SPN) activity. However, the impact of native dopaminergic transmission on SPN excitability has not been directly demonstrated. Using perforated patch-clamp recording, we found that optogenetic stimulation of nigrostriatal dopamine axons rapidly and persistently elevated the excitability of D1 receptor-expressing SPNs (D1-SPNs). The evoked firing of D1-SPNs increased within hundreds of milliseconds of stimulation and remained elevated for ≥ 10 min. Consistent with the negative modulation of depolarization- and Ca2+-activated K+ currents, dopaminergic transmission accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, and transiently diminished action potential afterhyperpolarization. Persistent modulation was protein kinase A dependent and associated with a reduction in action potential threshold. Together, these data demonstrate that dopaminergic transmission potently increases D1-SPN excitability with a time course that could support subsecond and sustained behavioral control.
Collapse
Affiliation(s)
- Asha K Lahiri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Poulin JF, Gaertner Z, Moreno-Ramos OA, Awatramani R. Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches. Trends Neurosci 2020; 43:155-169. [PMID: 32101709 PMCID: PMC7285906 DOI: 10.1016/j.tins.2020.01.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/13/2019] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Abstract
Dysfunctional dopamine (DA) signaling has been associated with a broad spectrum of neuropsychiatric disorders, prompting investigations into how midbrain DA neuron heterogeneity may underpin this variety of behavioral symptoms. Emerging literature indeed points to functional heterogeneity even within anatomically defined DA clusters. Recognizing the need for a systematic classification scheme, several groups have used single-cell profiling to catalog DA neurons based on their gene expression profiles. We aim here not only to synthesize points of congruence but also to highlight key differences between the molecular classification schemes derived from these studies. In doing so, we hope to provide a common framework that will facilitate investigations into the functions of DA neuron subtypes in the healthy and diseased brain.
Collapse
Affiliation(s)
- Jean-Francois Poulin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zachary Gaertner
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
48
|
Nasirova N, Quina LA, Agosto-Marlin IM, Ramirez JM, Lambe EK, Turner EE. Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J Comp Neurol 2020; 528:283-307. [PMID: 31396962 PMCID: PMC6889053 DOI: 10.1002/cne.24753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/13/2023]
Abstract
Cholinergic transmission shapes the maturation of glutamatergic circuits, yet the developmental sources of acetylcholine have not been systematically explored. Here, we have used Cre-recombinase-mediated genetic labeling to identify and map both mature and developing CNS neurons that express choline acetyltransferase (ChAT). Correction of a significant problem with a widely used ChatCre transgenic line ensures that this map does not contain expression artifacts. ChatCre marks all known cholinergic systems in the adult brain, but also identifies several brain areas not usually regarded as cholinergic, including specific thalamic and hypothalamic neurons, the subiculum, the lateral parabrachial nucleus, the cuneate/gracilis nuclei, and the pontocerebellar system. This ChatCre fate map suggests transient developmental expression of a cholinergic phenotype in areas important for cognition, motor control, and respiration. We therefore examined expression of ChAT and the vesicular acetylcholine transporter in the embryonic and early postnatal brain to determine the developmental timing of this transient cholinergic phenotype, and found that it mirrored the establishment of relevant glutamatergic projection pathways. We then used an intersectional genetic strategy combining ChatCre with Vglut2Flp to show that these neurons adopt a glutamatergic fate in the adult brain. The transient cholinergic phenotype of these glutamatergic neurons suggests a homosynaptic source of acetylcholine for the maturation of developing glutamatergic synapses. These findings thus define critical windows during which specific glutamatergic circuits may be vulnerable to disruption by nicotine in utero, and suggest new mechanisms for pediatric disorders associated with maternal smoking, such as sudden infant death syndrome.
Collapse
Affiliation(s)
- Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Lely A. Quina
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | | | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Evelyn K. Lambe
- Departments of Physiology, Obstetrics and Gynecology, and Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children’s Research Institute
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle WA, 98101
| |
Collapse
|
49
|
Dumas S, Wallén-Mackenzie Å. Developmental Co-expression of Vglut2 and Nurr1 in a Mes-Di-Encephalic Continuum Preceeds Dopamine and Glutamate Neuron Specification. Front Cell Dev Biol 2019; 7:307. [PMID: 31850343 PMCID: PMC6892754 DOI: 10.3389/fcell.2019.00307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022] Open
Abstract
Midbrain dopamine (DA) neurons exist as several subtypes and are found in a heterogeneous environment including GABAergic and glutamatergic neurons as well as various types of co-releasing neurons. Developmental programs underlying this heterogeneity have remained elusive. In this study, combinatorial mRNA analysis was performed at stages when neuronal phenotypes are first specified. Vesicular transporters for dopamine and other monoamines (VMAT2), GABA (VIAAT), and glutamate (VGLUT2) were assessed by systematically applying fluorescent in situ hybridization through the mes-di-encephalon of the mouse embryo at embryonal days (E) 9.5–14.5. The results show that early differentiating dopamine neurons express the gene encoding VGLUT2 before onset of any dopaminergic markers. Prior to its down-regulation in maturing dopamine neurons, Vglut2 mRNA co-localizes extensively with Tyrosine hydroxylase (Th) and Nurr1, commonly used as markers for DA neurons. Further, Vglut2 and Nurr1 mRNAs are shown to overlap substantially in diencephalic neurons that maintain a glutamatergic phenotype. The results suggest that Vglut2/Nurr1-double positive cells give rise both to dopaminergic and glutamatergic neurons within the mes-di-encephalic area. Finally, analysis of markers representing subtypes of dopamine neurons, including the newly described NeuroD6 subtype, shows that certain subtype specifications arise early. Histological findings are outlined in the context of neuroanatomical concepts and the prosomeric model of brain development. The study contributes to the current decoding of the recently discovered heterogeneity among neurons residing along the cephalic flexure.
Collapse
Affiliation(s)
| | - Åsa Wallén-Mackenzie
- Department of Organismal Biology, Unit of Comparative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Lipton DM, Maeder CI, Shen K. Rapid Assembly of Presynaptic Materials behind the Growth Cone in Dopaminergic Neurons Is Mediated by Precise Regulation of Axonal Transport. Cell Rep 2019; 24:2709-2722. [PMID: 30184504 PMCID: PMC6179448 DOI: 10.1016/j.celrep.2018.07.096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 06/21/2018] [Accepted: 07/27/2018] [Indexed: 11/15/2022] Open
Abstract
The proper assembly of neural circuits depends on the process of synaptogenesis, or the formation of synapses between partner neurons. Using the dopaminergic PDE neurons in C. elegans, we developed an in vivo system to study the earliest steps of the formation of en passant presynaptic specializations behind an extending growth cone. We find that presynaptic materials coalesce into puncta in as little as a few minutes and that both synaptic vesicle (SV) and active zone (AZ) proteins arrive nearly simultaneously at the nascent sites of synapse formation. We show that precise regulation of UNC-104/Kinesin-3 determines the distribution of SV proteins along the axon. The localization of AZ proteins to en passant puncta, however, is largely independent of the major axonal kinesins: UNC-104/Kinesin-3 and UNC-116/ Kinesin-1. Moreover, AZ proteins play a crucial role in recruiting and tethering SV precursors (SVPs). Lipton et al. explore the initial steps of synapse formation in vivo. They find that clustering of major presynaptic material occurs extremely rapidly (<5 min). Both synaptic vesicle precursors and active zone proteins accumulate simultaneously at developing puncta. Precise regulation of the Kinesin-3 activation state strongly influences the positioning of vesicles along the axon during development.
Collapse
Affiliation(s)
- David M Lipton
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA; Neurosciences Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Celine I Maeder
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|