1
|
Zhu J, Yu P, Zhang X, Li X, Huang J, Zhao S, Ruan Q, He Y, Zhou Y, Bao K, Xiu J, Deng L, Liu Y, Liu Y, Chen S, Chen K, Chen L. Preoperative systemic immune-inflammation index as a predictor of contrast-induced acute kidney injury in coronary artery disease: a multicenter cohort study. Ren Fail 2025; 47:2474204. [PMID: 40125941 PMCID: PMC11934181 DOI: 10.1080/0886022x.2025.2474204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Inflammation is a key contributor to contrast-induced acute kidney injury (CI-AKI), yet its predictive role remains unclear. The systemic immune-inflammation index (SII) is a novel inflammatory biomarker, but its association with CI-AKI risk in coronary artery disease (CAD) patients undergoing coronary angiography is not well established. This study aimed to evaluate the relationship between preoperative SII and CI-AKI in a large multicenter cohort. METHODS This retrospective cohort study analyzed CAD patients from five tertiary hospitals in China (2007-2020). Patients were stratified into SII tertiles, and multivariable logistic regression, restricted cubic splines (RCS), and two-piecewise logistic regression models were employed to assess the association between SII and CI-AKI risk. RESULTS Among 30,822 patients, 3,246 (10.5%) developed CI-AKI. Higher preoperative SII levels were associated with increased CI-AKI risk ([SII-M vs. SII-L]: OR = 1.22, 95% CI [1.09-1.36], p = 0.001; [SII-H vs. SII-L]: OR = 1.70, 95% CI [1.53-1.90], p < 0.001). RCS analysis demonstrated a nonlinear relationship (p for nonlinearity = 0.008). The inflection point was at 19.12 × 1011/L. Below this inflection point, each 100-unit increase in SII correlated with a 5% higher CI-AKI risk (OR = 1.05, 95% CI [1.04-1.06], p < 0.001), while no significant association was observed above this level. CONCLUSION Preoperative SII may be an independent predictor of CI-AKI risk in CAD patients undergoing undergoing coronary angiography, demonstrating a nonlinear dose-response relationship with a significant threshold effect. These findings suggest that SII may serve as a useful biomarker for early CI-AKI risk stratification in clinical practice.
Collapse
Affiliation(s)
- Jinlong Zhu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Pei Yu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiaoying Zhang
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiaoming Li
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jiaming Huang
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Shumin Zhao
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qingyan Ruan
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yibo He
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yang Zhou
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Kunming Bao
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jiaming Xiu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Lin Deng
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yunchen Liu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yong Liu
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shiqun Chen
- Global Health Research Center, Guangdong Provincial People’ s Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou, China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Liling Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
2
|
Lai Y, Liu S, Song C, Long T, Song L, Jiang M. An update on the role and mechanisms of periodontitis in cardiovascular diseases. Cell Signal 2025; 132:111770. [PMID: 40164419 DOI: 10.1016/j.cellsig.2025.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Despite extensive studies into the causes and therapies for CVDs, their incidence and prevalence continue to increase. Periodontitis is a multifactorial, chronic inflammatory disease related to systemic health. Current research suggests that periodontitis may be an unconventional risk factor for CVDs and it may increase the risk of CVDs such as atherosclerosis, coronary heart disease, myocardial infarction, hypertension, heart failure as well as cardiomyopathy. For all these reasons, it is quite plausible that prevention of periodontitis has an impact on the onset or progression of CVDs. Therefore, in this review, we investigated the association between periodontitis caused by oral microorganisms and different CVDs. In addition, we discuss the various mechanisms by which periodontitis contributes to the onset and progression of CVDs. Our review aims to raise global awareness of periodontitis, particularly its role in CVDs, provide a basis for the prevention and treatment of CVDs and offer potential therapeutic targets.
Collapse
Affiliation(s)
- Yuping Lai
- The Huankui Academy, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Sibo Liu
- The Queen Mary school, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Chenxin Song
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Ting Long
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi Province 330000, China; The Institute of Periodontal Disease, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi Province 330000, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi Province 330000, China
| | - Li Song
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi Province 330000, China; The Institute of Periodontal Disease, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi Province 330000, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi Province 330000, China.
| | - Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
3
|
Abe K, Yokota S, Matsumoto S, Ujiie H, Kikuchi E, Satoh K, Ishisaki A, Chosa N. Proinflammatory cytokine-induced matrix metalloproteinase-9 expression in temporomandibular joint osteoarthritis is regulated by multiple intracellular mitogen-activated protein kinase pathways. J Oral Biosci 2025; 67:100609. [PMID: 39755166 DOI: 10.1016/j.job.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs. METHODS FLS1 cells (mouse TMJ-derived synovial cell line) were treated with tumor necrosis factor alpha (TNF-α) or interleukin (IL)-1β in the presence or absence of mitogen-activated protein kinase (MAPK) inhibitors. The mRNA expression levels of MMP-2 and MMP-9 were examined by reverse transcription-quantitative polymerase chain reaction. Additionally, the phosphorylation status of extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK in the FLS1 cells treated with TNF-α or IL-1β was evaluated by performing western blotting analysis. RESULTS TNF-α and IL-1β significantly increased the expression of MMP-9 in the FLS1 cells; however, MMP-2 expression remained unaffected. Mitogen-activated protein kinase kinase (MEK) and p38 MAPK inhibitors significantly suppressed cytokine-induced MMP-9 upregulation. Conversely, Jun amino-terminal kinase (JNK) inhibitors further increased MMP-9 expression in the cells treated with TNF-α or IL-1β. Moreover, TNF-α and IL-1β enhanced ERK1/2 and p38 MAPK phosphorylation in the FLS1 cells. CONCLUSIONS TNF-α and IL-1β induced MMP-9 expression in the FLS1 cells via the MEK/ERK and p38 MAPK pathways and suppressed it via the JNK pathway. Thus, proinflammatory cytokines control MMP-9 expression in TMJ-OA by regulating multiple MAPK pathways.
Collapse
Affiliation(s)
- Karen Abe
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan; Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate, 020-8505, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Shikino Matsumoto
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate, 020-8505, Japan
| | - Hayato Ujiie
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Emiko Kikuchi
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate, 020-8505, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate, 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
4
|
Zhang X, Zhang P, Chen X, Liu X, Liu W, Hu X, Sun C, Wang X, Shi J. Deubiquitinase OTUD7B Regulates Cell Proliferation in Breast Cancer. Clin Breast Cancer 2025; 25:122-132.e2. [PMID: 39581816 DOI: 10.1016/j.clbc.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE The deubiquitylase OTUD7B plays a facilitates role in lung tumorigenesis through VEGF protein, but its role in breast cancer remains unclear. In the present study, we proposed to explore the role of deubiquitylase OTUD7B in breast cancer. METHODS The expression of OTUD7B in breast cancer and adjacent tissues was detected. The role of OTUD7B in cell proliferation and invasion of breast cancer cell lines such as MCF-7 and MDA-MB-453 was explored. RESULTS OTUD7B is highly expressed in human breast cancer tissues and its higher expression correlates with better survival of patients. Further mechanistic studies reveal that OTUD7B associates with RASGRF1 and PLCE1 to disrupt RAS signaling pathway. Knockdown of OTUD7B results in decreasing levels of RASGRF1 protein, suppression cell growth and invasion in breast cancer. Collectively, our results reveal a previously unappreciated anti-oncogentic role OTUD7B involved in RAS signaling pathway in breast cancer and indicate that deubiquitylases could induce tumor-suppressing or tumor-promoting activities in a cell- and tissue-dependent context.
Collapse
Affiliation(s)
- Xiu Zhang
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Peng Zhang
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Xiang Chen
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Xianyi Liu
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Wenwen Liu
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Xi Hu
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Chengcheng Sun
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Xiaochun Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China.
| | - Jianhong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China.
| |
Collapse
|
5
|
Dong Y, Zhang Q, Xie R, Zhao J, Han Z, Li Y, Yu H, Zhang Y. Tremella fuciformis Berk Alleviated Atherosclerosis Symptoms via Nuclear Factor-Kappa B-Mediated Inflammatory Response in ApoE -/- Mice. Nutrients 2024; 17:160. [PMID: 39796594 PMCID: PMC11722796 DOI: 10.3390/nu17010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Atherosclerosis, a persistent inflammatory disease marked by the presence of atherosclerotic plaques or fibrous plaques, is a significant contributor to the onset of the development of cardiovascular disease. Tremella fuciformis Berk contains various active ingredients that have anti-inflammatory, antioxidant, and hypolipidemic properties. Nevertheless, the potential effects of T. fuciformis on atherosclerosis have not been systematically reported. METHOD In this study, ApoE-/- mice were employed as models of atherosclerosis caused by a high-fat diet (HFD) to investigate the effect of T. fuciformis. Gut microbiota and serum metabolism analysis were performed to elucidate the potential mechanism of T. fuciformis for its anti-atherosclerosis effects. RESULTS T. fuciformis significantly decreased the aortic root wall thickness and the area of lipid droplets, regulated lipid levels, and inhibited fat accumulation to improve aortic root lesions. Furthermore, T. fuciformis significantly altered serum metabolite (including diethyl phthalate and succinate) levels, regulated the abundance of microbiota, such as Coriobacteriaceae_UCG-002 and Alistipes, and suppressed the inflammatory response to ameliorate atherosclerosis via the nuclear factor-kappa B (NF-κB)-mediated inflammatory response in HFD-induced ApoE-/- mice. CONCLUSIONS These results offer a theoretical basis and data to support T. fuciformis as a potential strategy for treating atherosclerosis.
Collapse
Affiliation(s)
- Yihao Dong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (Q.Z.); (R.X.); (J.Z.); (Z.H.); (Y.L.)
| | - Qinchun Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (Q.Z.); (R.X.); (J.Z.); (Z.H.); (Y.L.)
| | - Rui Xie
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (Q.Z.); (R.X.); (J.Z.); (Z.H.); (Y.L.)
| | - Jundi Zhao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (Q.Z.); (R.X.); (J.Z.); (Z.H.); (Y.L.)
| | - Zhihua Han
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (Q.Z.); (R.X.); (J.Z.); (Z.H.); (Y.L.)
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (Q.Z.); (R.X.); (J.Z.); (Z.H.); (Y.L.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (Q.Z.); (R.X.); (J.Z.); (Z.H.); (Y.L.)
| |
Collapse
|
6
|
Wang Y, Chen Y, Zhou T, Li J, Zhang N, Liu N, Zhou P, Mao Y. A novel multifunctional nanocomposite hydrogel orchestrates the macrophage reprogramming-osteogenesis crosstalk to boost bone defect repair. J Nanobiotechnology 2024; 22:702. [PMID: 39533396 PMCID: PMC11558876 DOI: 10.1186/s12951-024-02996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Repairing bone defects is a complex cascade reaction process, as immune system regulation, vascular growth, and osteogenic differentiation are essential. Thus, developing a tissue-engineered biomaterial that caters to the complex healing process of bone regeneration remains a major clinical challenge. In the study, Ca2+-TA-rGO (CTAG)/GelMA hydrogels were synthesized by binding Ca2+ using metal chelation to graphene oxide (GO) nanosheets reduced by tannic acid (TA-rGO) and doping them into gelatin methacrylate (GelMA) hydrogels. TA and rGO exhibited biocompatibility and immunomodulatory properties in this composite, while Ca2+ promoted bone formation and angiogenesis. This novel nanocomposite hydrogel demonstrated good mechanical properties, degradability, and conductivity, and it could achieve slow Ca2+ release during bone regeneration. Both in vitro and in vivo experiments revealed that CTAG/GelMA hydrogel modulated macrophage reprogramming and induced a shift from macrophages to healing-promoting M2 macrophages during the inflammatory phase, promoted vascular neovascularization, and facilitated osteoblast differentiation during bone formation. Moreover, CTAG/GelMA hydrogel could downregulate the NF-κB signaling pathway, offering new insights into regulating macrophage reprogramming-osteogenic crosstalk. Conclusively, this novel multifunctional nanocomposite hydrogel provides a multistage treatment for bone and orchestrates macrophage reprogramming-osteogenic crosstalk to boost bone repair.
Collapse
Affiliation(s)
- Ying Wang
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Yedan Chen
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Tao Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Jingze Li
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Na Zhang
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Na Liu
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Pinghui Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China.
| | - Yingji Mao
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China.
- Anhui Nerve Regeneration Technology and Medical New Materials Engineering Research Center, Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
7
|
Bułdak Ł, Bołdys A, Skudrzyk E, Machnik G, Okopień B. Liraglutide Therapy in Obese Patients Alters Macrophage Phenotype and Decreases Their Tumor Necrosis Factor Alpha Release and Oxidative Stress Markers-A Pilot Study. Metabolites 2024; 14:554. [PMID: 39452935 PMCID: PMC11509483 DOI: 10.3390/metabo14100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: Obesity is one of the major healthcare challenges. It affects one in eight people around the world and leads to several comorbidities, including type 2 diabetes, hyperlipidemia, and arterial hypertension. GLP-1 analogs have become major players in the therapy of obesity, leading to significant weight loss in patients. However, benefits resulting from their usage seem to be greater than simple appetite reduction and glucose-lowering potential. Recent data show better cardiovascular outcomes, which are connected with the improvements in the course of atherosclerosis. Macrophages are crucial cells in the forming and progression of atherosclerotic lesions. Previously, it was shown that in vitro treatment with GLP-1 analogs can affect macrophage phenotype, but there is a paucity of in vivo data. Objective: To evaluate the influence of in vivo treatment with liraglutide on basic phenotypic and functional markers of macrophages. Methods: Basic phenotypic features were assessed (including inducible nitric oxide synthase, arginase 1 and mannose receptors), proinflammatory cytokine (IL-1β, TNFα) release, and oxidative stress markers (reactive oxygen species, malondialdehyde) in macrophages obtained prior and after 3-month therapy with liraglutide in patients with obesity. Results: Three-month treatment with subcutaneous liraglutide resulted in the alteration of macrophage phenotype toward alternative activation (M2) with accompanying reduction in the TNFα release and diminished oxidative stress markers. Conclusions: Our results show that macrophages in patients treated with GLP-1 can alter their phenotype and function. Those findings may at least partly explain the pleiotropic beneficial cardiovascular effects seen in subjects treated with GLP-1 analogs.
Collapse
Affiliation(s)
- Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
8
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
9
|
He W, Tu S, Han J, Cui H, Lai L, Ye Y, Dai T, Yuan Y, Ji L, Luo J, Ren W, Wu A. Mild phototherapy mediated by IR780-Gd-OPN nanomicelles suppresses atherosclerotic plaque progression through the activation of the HSP27-regulated NF-κB pathway. Acta Biomater 2024; 182:199-212. [PMID: 38734283 DOI: 10.1016/j.actbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Reducing plaque lipid content and enhancing plaque stability without causing extensive apoptosis of foam cells are ideal requirements for developing a safe and effective treatment of atherosclerosis. In this study, we synthesized IR780-Gd-OPN nanomicelles by conjugating osteopontin (OPN) and loading a gadolinium-macrocyclic ligand (Gd-DOTA) onto near-infrared dye IR780-polyethylene glycol polymer. The nanomicelles were employed for mild phototherapy of atherosclerotic plaques and dual-mode imaging with near-infrared fluorescence and magnetic resonance. In vitro results reveal that the mild phototherapy mediated by IR780-Gd-OPN nanomicelles not only activates heat shock protein (HSP) 27 to protect foam cells against apoptosis but also inhibits the nuclear factor kappa-B (NF-κB) pathway to regulate lipid metabolism and macrophage polarization, thereby diminishing the inflammatory response. In vivo results further validate that mild phototherapy effectively reduces plaque lipid content and size while simultaneously enhancing plaque stability by regulating the ratio of M1 and M2-type macrophages. In summary, this study presents a promising approach for developing a safe and highly efficient method for the precise therapeutic visualization of atherosclerosis. STATEMENT OF SIGNIFICANCE: The rupture of unstable atherosclerotic plaques is a major cause of high mortality rates in cardiovascular diseases. Therefore, the ideal outcome of atherosclerosis treatment is to reduce plaque size while enhancing plaque stability. To address this challenge, we designed IR780-Gd-OPN nanomicelles for mild phototherapy of atherosclerosis. This treatment can effectively reduce plaque size while significantly improving plaque stability by increasing collagen fiber content and elevating the ratio of M2/M1 macrophages, which is mainly attributed to the inhibition of the NF-κB signaling pathway by mild phototherapy-activated HSP27. In summary, our proposed mild phototherapy strategy provides a promising approach for safe and effective treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wenming He
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Shuangshuang Tu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Jinru Han
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haijing Cui
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Liangxue Lai
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yonglong Ye
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Ting Dai
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Yannan Yuan
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Lili Ji
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Jiayong Luo
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| |
Collapse
|
10
|
Peng D, Zhuge F, Wang M, Zhang B, Zhuang Z, Zhou R, Zhang Y, Li J, Yu Z, Shi J. Morus alba L. (Sangzhi) alkaloids mitigate atherosclerosis by regulating M1/M2 macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155526. [PMID: 38564921 DOI: 10.1016/j.phymed.2024.155526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is an important cause of cardiovascular disease, posing a substantial health risk. Recognized as a chronic inflammatory disorder, AS hinges on the pivotal involvement of macrophages in arterial inflammation, participating in its formation and progression. Sangzhi alkaloid (SZ-A) is a novel natural alkaloid extracted from the mulberry branches, has extensive pharmacological effects and stable pharmacokinetic characteristics. However, the effects and mechanisms of SZ-A on AS remain unclear. PURPOSE To explore the effect and underlying mechanisms of SZ-A on inflammation mediated by macrophages and its role in AS development. METHODS Atherosclerosis was induced in vivo in apolipoprotein E-deficient mice through a high-fat and high-choline diet. We utilized macrophages and vascular endothelial cells to investigate the effects of SZ-A on macrophage polarization and its anti-inflammatory properties on endothelial cells in vitro. The transcriptomic analyses were used to investigate the major molecule that mediates cell-cell interactions and the antiatherogenic mechanisms of SZ-A based on AS, subsequently validated in vivo and in vitro. RESULTS SZ-A demonstrated a significant inhibition in vascular inflammation and alleviation of AS severity by mitigating macrophage infiltration and modulating M1/M2 macrophage polarization in vitro and in vivo. Moreover, SZ-A effectively reduced the release of the proinflammatory mediator C-X-C motif chemokine ligand (CXCL)-10, predominantly secreted by M1 macrophages. This reduction in CXCL-10 contributed to improved endothelial cell function, reduced recruitment of additional macrophages, and inhibited the inflammatory amplification effect. This ultimately led to the suppression of atherogenesis. CONCLUSION SZ-A exhibited potent anti-inflammatory effects by inhibiting macrophage-mediated inflammation, providing a new therapeutic avenue against AS. This is the first study demonstrating the efficacy of SZ-A in alleviating AS severity and offers novel insights into its anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Dandan Peng
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Mingwei Wang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Binbin Zhang
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenjie Zhuang
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Run Zhou
- College of Nursing, Hangzhou Normal University, Zhejiang, China
| | - Yuanyuan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Zhenqiu Yu
- Guizhou Medical University, Guiyang, Guizhou, China; The Department of Hypertension, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Junping Shi
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou, Zhejiang, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Xu Y, Li W, Chen Y, Xu T, Sun Y. STAM2 negatively regulates the MyD88-mediated NF-κB signaling pathway in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109550. [PMID: 38593891 DOI: 10.1016/j.fsi.2024.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/10/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Signal transducing adapter molecule 2 (STAM2), a member of the Signal Transducing Adapter Molecule (STAM) family, is a protein with significant implications in diverse signaling pathways and endocytic membrane trafficking. However, the role of the STAM2, especially in fish, remains largely unknown. In this study, we discovered that STAM2 negatively regulates the NF-κB signaling pathway, and its inhibitory effect is enhanced upon LPS induction. Our study confirmed that STAM2 can enhance the degradation of myeloid differentiation primary-response protein 88 (MyD88), an upstream regulator of NF-κB pathway. Furthermore, the UIM domain of STAM2 is important for the inhibition of MyD88. Mechanistically, STAM2 inhibits the NF-κB signaling pathway by targeting the MyD88 autophagy pathway. In addition, we showed that STAM2 promotes the proliferation of Vibrio harveyi. In summary, our study reveals that STAM2 inhibits NF-κB signaling activation and mediates innate immunity in teleost via the autophagy pathway.
Collapse
Affiliation(s)
- Yan Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenxin Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
12
|
You Y, Zeng N, Wu W, Liu B, Rong S, Xu D. Association of Serum Homocysteine With Peripheral Arterial Disease in Patients Without Diabetes: A Study Based on National Health and Nutrition Examination Survey Database. Am J Cardiol 2024; 218:16-23. [PMID: 38458582 DOI: 10.1016/j.amjcard.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
This study aimed to investigate the association of serum homocysteine (Hcy) levels with peripheral arterial disease (PAD) in patients without diabetes on the basis of data from the National Health and Nutrition Examination Survey. The study used data from 3 survey cycles (1999 to 2004) in the National Health and Nutrition Examination Survey database as the research dataset. Serum Hcy levels were considered an independent variable, whereas PAD was a dependent variable. Weighted logistic regression and restricted cubic spline methods were used to explore the relation between Hcy level and PAD risk in patients without diabetes. A total of 4,819 samples were included. In the weighted logistics regression model, a significant positive association was observed between Hcy levels and the risk of PAD (odds ratio >1, p <0.05). Subgroup analysis results indicated a particularly significant association between Hcy levels and PAD risk in the older population (age ≥60 years), those with a history of smoking, and those without a history of myocardial infarction (all odds ratio >1, p <0.05) (p <0.05). Exploring the nonlinear association between Hcy levels and PAD risk through restricted cubic spline curves revealed an overall significant trend (p allover <0.05). In conclusion, elevated Hcy levels increased the risk of PAD, with a more pronounced effect observed in populations of patients without diabetes, especially in older patients (age ≥60 years), those with smoking history, and those without a history of myocardial infarction.
Collapse
Affiliation(s)
- Yi You
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Naxin Zeng
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Wengao Wu
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Boyang Liu
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Sheng Rong
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Dong Xu
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China.
| |
Collapse
|
13
|
Abhirami N, Chandran M, Ramadasan A, Bhasura D, Plakkal Ayyappan J. Myrtenal exhibits cardioprotective effects by attenuating the pathological progression associated with myocardial infarction. Fundam Clin Pharmacol 2024; 38:276-289. [PMID: 37990640 DOI: 10.1111/fcp.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Myocardial infarction poses major risks to human health because of their incredibly high rates of morbidity and mortality. Infarctions are more likely to develop as a result of dysregulation of cell death. Myrtenal can be considered for their bioactive beneficial activity in the context of cardiovascular pathologies and, particularly, in the protection toward oxidative stress followed by ischemic injury. OBJECTIVE This study aimed to put limelight on the antioxidant, anti-apoptotic, and antibacterial properties of Myrtenal. METHODS An in vitro model of oxidative stress-induced injury was entrenched in H9c2 cells using hydrogen peroxide, and the effects of Myrtenal were investigated. The MTT, cellular enzyme level, staining, and flow cytometry analysis were used to examine protective, antioxidant, and anti-apoptotic effects. The gene expressions were detected by qPCR. Antibacterial effect and biofilm formation were also done. RESULT The findings revealed that Myrtenal alone had negligible cytotoxic effects and that Myrtenal protects H9c2 against H2 O2 -induced cell death at micromolar concentrations. Myrtenal pre-treatment inhibited the generation of reactive oxygen species (ROS) as well as remarkably decreased the fluorescence intensity of ROS. Additionally, Myrtenal considerably increased the synthesis of antioxidant enzymes while dramatically decreasing the production of MDA and LDH. qPCR demonstrated the downregulation of Cas-9, TNF-α, NF-κB, P53, BAX, iNOS, and IL-6 expression while an upregulation of Bcl-2 expression in Myrtenal pre-treated groups. Myrtenal also holds the magnificent property of inhibiting bacterial growth. CONCLUSION Myrtenal ameliorates H2 O2 -induced cardiomyocyte injury and protects cardiomyocyte by inhibiting oxidative stress, inflammation, and apoptosis and may be a promise drug for the treatment of heart diseases.
Collapse
Affiliation(s)
- N Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram, India
| | - Mahesh Chandran
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Athira Ramadasan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram, India
| | - Dhanalekshmi Bhasura
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
- Centre for Advanced Cancer Research (CACR), Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
14
|
Li GL, Han YQ, Su BQ, Yu HS, Zhang S, Yang GY, Wang J, Liu F, Ming SL, Chu BB. Porcine reproductive and respiratory syndrome virus 2 hijacks CMA-mediated lipolysis through upregulation of small GTPase RAB18. PLoS Pathog 2024; 20:e1012123. [PMID: 38607975 PMCID: PMC11014436 DOI: 10.1371/journal.ppat.1012123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.
Collapse
Affiliation(s)
- Guo-Li Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Ying-Qian Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Bing-Qian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Hai-Shen Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Shuang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan Province, China
| |
Collapse
|
15
|
Zhu K, Wang X, Weng Y, Mao G, Bao Y, Lou J, Wu S, Jin W, Tang L. Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway. Cardiovasc Drugs Ther 2024; 38:69-78. [PMID: 36194354 DOI: 10.1007/s10557-022-07383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Sulfated galactofucan (SWZ-4), which was extracted from Sargassum thunbergii, has recently been reported to show anti-inflammatory and anticancer properties. The present study aimed to evaluate whether SWZ-4 attenuates atherosclerosis in apolipoprotein E-knockout (ApoE-KO) mice by suppressing the inflammatory response through the TLR4/MyD88/NF-κB signaling pathway. METHODS Male ApoE-KO mice were fed with a high-fat diet for 16 weeks and intraperitoneally injected with SWZ-4. RAW246.7 cells were treated with lipopolysaccharide (LPS) and SWZ-4. Atherosclerotic lesions were measured by Sudan IV and oil red O staining. Serum lipid profiles, inflammatory cytokines, and mRNA and protein expression levels were evaluated. RESULTS SWZ-4 decreased serum TNF-α, IL-6 and IL-1 levels, but did not reduce blood lipid profiles. SWZ-4 downregulated the mRNA and protein expression of TLR4 and MyD88, reduced the phosphorylation of p65, and attenuated atherosclerosis in the ApoE-KO mice (p < 0.01). In LPS-stimulated RAW 264.7 cells, SWZ-4 inhibited proinflammatory cytokine production and the mRNA expression of TLR4, MyD88, and p65 and reduced the protein expression of TLR4 and MyD88 and the phosphorylation of p65 (p < 0.01). CONCLUSION These results suggest that SWZ-4 may exert an anti-inflammatory effect on ApoE-KO atherosclerotic mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway in macrophages and therefore may be a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Kefu Zhu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Xihao Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Shaoze Wu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China.
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
16
|
Li Z, Lai J, Wen L, Chen Q, Tan R, Zhong X, Liu Y, Liu Y. Higher Levels of Blood Selenium are Associated with Higher Levels of Serum Lipid Profile in US Adults with CKD: Results from NHANES 2013-2018. Biol Trace Elem Res 2023; 201:5501-5511. [PMID: 36973606 DOI: 10.1007/s12011-023-03608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
The association between selenium (Se) and lipid profile has been controversial in different populations, and the aim of the study was to investigate the relationship between Se and lipid profile in patients with chronic kidney disease (CKD). A total of 861 US adult patients with CKD (male: female = 404:457) from the National Health and Nutrition Examination Survey database were enrolled in this cross-sectional study. We used smoothing spline plots and multivariate binary logistic regression analyses to elucidate the relationships between blood Se and lipid profile. Multivariate adjusted smoothing spline plots showed that higher levels of blood Se were associated with higher levels of serum remnant cholesterol (RC), total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels. Threshold and saturation effects were also observed between serum RC, TC, TG, LDL-C, and blood Se. In multivariate binary logistic regression analyses, the fully adjusted model showed that as blood Se increases by every 1 µg/L, the OR of high RC, high TG and high LDL-C in patients was 1.012 (95% CI: 1.001, 1.023 P = 0.046), 1.011 (95% CI: 1.001, 1.021 P = 0.043) and 1.009 (95% CI: 1.003, 1.016 P = 0.012), respectively. Furthermore, stratified analyses showed that the associations between blood Se and high RC/high TG were significantly stronger in patients aged < 65 years. Higher levels of blood Se were associated with increased serum lipid profile levels and increased risk of high RC, high TC, high LDL-C, and low HDL-C dyslipidemia in adult patients with CKD in the US. However, the real associations between blood Se and lipid profiles in this population should be verified in future prospective and randomized trials.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jiahui Lai
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen-University, Guangzhou, China
| | - Luona Wen
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Qiongmei Chen
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Rongshao Tan
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xiaoshi Zhong
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yun Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| | - Yan Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
17
|
Bhargava P, Dinh D, Teramayi F, Silberg A, Petler N, Anderson AM, Clemens DM, O’Connor MS. Selective Removal of 7KC by a Novel Atherosclerosis Therapeutic Candidate Reverts Foam Cells to a Macrophage-like Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563623. [PMID: 37961383 PMCID: PMC10634755 DOI: 10.1101/2023.10.23.563623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The removal of the toxic oxidized cholesterol, 7-ketocholesterol (7KC), from cells through the administration of therapeutics has the potential to treat atherosclerosis and various other pathologies. While cholesterol is a necessary building block for homeostasis, oxidation of cholesterol can lead to the formation of toxic oxysterols involved in various pathologies, the most prominent of which is 7KC, which is formed through the non-enzymatic oxidation of cholesterol. Oxidized LDL (oxLDL) particles, highly implicated in heart disease, contain high levels of 7KC, and molecular 7KC is implicated in the pathogenesis of numerous diseases, including multiple sclerosis, hypercholesterolemia, sickle cell anemia, and multiple age related diseases. Of particular interest is the role of 7KC in the progression of atherosclerosis, with several studies associating elevated levels of 7KC with the etiology of the disease or in the transition of macrophages to foam cells. This research aims to elucidate the molecular mechanisms of UDP-003, a novel therapeutic, in mitigating the harmful effects of 7KC in mouse and human monocyte and macrophage cell lines. Experimental evidence demonstrates that administration of UDP-003 can reverse the foam cell phenotype, rejuvenating these cells by returning phagocytic function and decreasing both reactive oxygen species (ROS) and intracellular lipid droplet accumulation. Furthermore, our data suggests that the targeted removal of 7KC from foam cells with UDP-003 can potentially prevent and reverse atherosclerotic plaque formation. UDP-003 has the potential to be the first disease-modifying therapeutic approach to treating atherosclerotic disease.
Collapse
Affiliation(s)
- Prerna Bhargava
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | - Darren Dinh
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | - Fadzai Teramayi
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | - Ana Silberg
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | - Noa Petler
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | | | | | | |
Collapse
|
18
|
Huang HT, Lv WQ, Xu FY, Wang XL, Yao YL, Su LJ, Zhao HJ, Huang Y. Mechanism of Yiqi Huoxue Huatan recipe in the treatment of coronary atherosclerotic disease through network pharmacology and experiments. Medicine (Baltimore) 2023; 102:e34178. [PMID: 37390239 PMCID: PMC10313272 DOI: 10.1097/md.0000000000034178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
In recent years, with population aging and economic development, morbidity and mortality of atherosclerotic cardiovascular disease associated with atherosclerosis (AS) have gradually increased. In this study, a combination of network pharmacology and experimental verification was used to systematically explore the action mechanism of Yiqi Huoxue Huatan Recipe (YHHR) in the treatment of coronary atherosclerotic heart disease (CAD). We searched and screened the active ingredients of Coptis chinensis, Astragalus membranaceus, Salvia miltiorrhiza, and Hirudo. We also searched multiple databases for related target genes corresponding to the compounds and CAD. STRING was used to construct the protein-protein interaction (PPI) network of genes. Metascape was used to perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for common targets to analyze the main pathways, and finally, the molecular docking and main possible pathways were verified by experimental studies. Firstly, a total of 1480 predicted target points were obtained through the Swiss Target Prediction database. After screening, merging, and deleting duplicate values, a total of 768 targets were obtained. Secondly, "Coronary atherosclerotic heart disease" was searched in databases such as the OMIM, GeneCards, and TTD. 1844 disease-related targets were obtained. Among PPI network diagram of YHHR-CAD, SRC had the highest degree value, followed by AKT1, TP53, hsp90aa1 and mapk3. The KEGG pathway bubble diagram was drawn using Chiplot, the Signal pathways such as NF kappa B signaling pathway, Lipid and AS, and Apelin signaling pathway are closely related to the occurrence of CAD. The PCR and Western blot methods were used to detect the expression of NF-κB p65. When compared with that in the model group, the expression of NF-κB p65mRNA decreased in the low-concentration YHHR group, with P < .05, while the expression of NF-κB p65mRNA decreased significantly in the high-concentration YHHR group, with P < .01. On the other hand, when compared with that in the model group, the expression of NF-κB p65 decreased in the low-concentration YHHR group, but was not statistically significant, while the expression of NF-κB p65 was significant in the high-concentration YHHR group, and has statistical significance with P < .05. YHHR has been shown to resist inflammation and AS through the SRC/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | - Wen-Qing Lv
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei-Yue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiao-Long Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Li Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Jie Su
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han-Jun Zhao
- Shanghai Pudong New District Zhoupu Hospital, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
20
|
Shen Y, Gao Y, Fu J, Wang C, Tang Y, Chen S, Zhao Y. Lack of Rab27a attenuates foam cell formation and macrophage inflammation in uremic apolipoprotein E knockout mice. J Mol Histol 2023:10.1007/s10735-023-10125-w. [PMID: 37166546 DOI: 10.1007/s10735-023-10125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
As the most common cardiovascular disease, atherosclerosis (AS), is a leading cause of high mortality in patients with chronic renal failure. Rab27a has been reported to regulate the progression of cardiovascular and renal diseases. Nevertheless, little studies investigated the role and mechanism of Rab27a in uremic-accelerated AS (UAAS). An animal model of UAAS was established in apolipoprotein E knockout (apoE-/-) mice using 5/6 nephrectomy (NX). We conducted in vitro and in vivo functional experiments to explore the role of Rab27a in UAAS, including the presence of oxidized low-density lipoprotein (ox-LDL). Rab27a expression was upregulated in the plaque tissues of NX apoE-/- mice. The knockout of Rab27a (Rab27a-/-) reduced AS-induced artery injury, as manifested by the reductions of plaque area, collagen deposition, inflammation and lipid droplet. Besides, cholesterol efflux was increased, while the expression of lipid metabolism-related proteins and the secretions of pro-inflammatory factors were decreased in ox-LDL-induced NX Rab27a-/- apoE-/- mice group. Further, Rab27a deletion inhibited the activation of nuclear factor κB (NF-κB) pathway. In conclusion, our study indicated that Rab27a deficiency attenuated foam cell formation and macrophage inflammation, depending on the NF-κB pathway activation, to inhibit AS progression in uremic apoE-/- mice. This finding may provide a new targeting strategy for UAAS therapy.
Collapse
Affiliation(s)
- Yan Shen
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China.
| | - Yajuan Gao
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Jiani Fu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Cui Wang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Yali Tang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Shengnan Chen
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Yan Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
21
|
Al-Hawary SIS, Jasim SA, Romero-Parra RM, Bustani GS, Hjazi A, Alghamdi MI, Kareem AK, Alwaily ER, Zabibah RS, Gupta J, Mahmoudi R, Hosseini-Fard S. NLRP3 inflammasome pathway in atherosclerosis: Focusing on the therapeutic potential of non-coding RNAs. Pathol Res Pract 2023; 246:154490. [PMID: 37141699 DOI: 10.1016/j.prp.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome pathway has a critical role in the pathogenesis of atherosclerosis. Activation of this pathway is implicated in the subendothelial inflammation and atherosclerosis progression. The NLRP3 inflammasome are cytoplasmic sensors with the distinct capacity to identify a wide range of inflammation-related signals, which enhance NLRP3 inflammasome assembly and allow it to trigger inflammation. This pathway is triggered by a variety of intrinsic signals which exist in atherosclerotic plaques, like cholesterol crystals and oxidized LDL. Further pharmacological findings indicated that NLRP3 inflammasome enhanced caspase-1-mediated secretion of pro-inflammatory mediators like interleukin (IL)- 1β/18. Newly published cutting-edge studies suggested that non-coding RNAs (ncRNAs) including microRNAs (miRNAs, miRs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are major modulators of NLRP3 inflammasome in atherosclerosis. Therefore, in this review, we aimed to discuss the NLRP3 inflammasome pathway, biogenesis of ncRNAs as well as the modulatory role of ncRNAs in regulating the various mediators of NLRP3 inflammasome pathway including TLR4, NF-kB, NLRP3, and caspase 1. We also discussed the importance of NLRP3 inflammasome pathway-related ncRNAs as a diagnostic biomarker in atherosclerosis and current therapeutics in the modulation of NLRP3 inflammasome in atherosclerosis. Finally, we speak about the limitations and future prospects of ncRNAs in regulating inflammatory atherosclerosis via the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedreza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Pan Y, Feng X, Song W, Zhou X, Zhou Z, Chen G, Shen T, Zhang X. Effects and Potential Mechanism of Zhuyu Pill Against Atherosclerosis: Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:597-612. [PMID: 36866196 PMCID: PMC9970883 DOI: 10.2147/dddt.s398808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is an immunoinflammatory disease associated with dyslipidemia. Zhuyu Pill (ZYP) is a classic Chinese herbal compound that has been shown to exhibit anti-inflammatory and lipid-lowering effects on AS in our previous studies. However, the underlying mechanisms by which ZYP ameliorates atherosclerosis have not yet been fully investigated. In this study, network pharmacology and in vivo experiments were conducted to explore the underlying pharmacological mechanisms of ZYP on ameliorating AS. METHODS The active ingredients of ZYP were acquired from our previous study. The putative targets of ZYP relevant to AS were obtained from TCMSP, SwissTargetPrediction, STITCH, DisGeNET, and GeneCards databases. Protein-protein interactions (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted using the Cytoscape software. Furthermore, in vivo experiments were carried out for target validation in apolipoprotein E (ApoE) -/- mice. RESULTS Animal experiments revealed that ZYP ameliorated AS mainly through lowering blood lipids, alleviating vascular inflammation, and decreasing the levels of vascular cell adhesion molecule-1 (VCAM1), intercellular adhesion molecule-1 (ICAM1), monocyte chemotactic protein-1 (MCP-1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). Additionally, the results of Real-Time quantitative PCR revealed that ZYP inhibited the gene expressions of mitogen-activated protein kinase (MAPK) p38, extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) p65. The Immunohistochemistry and Western blot assays showed the inhibitory effect of ZYP on the proteins level of p38, p-p38, p65, and p-p65. CONCLUSION This study has provided valuable evidence on the pharmacological mechanisms of action of ZYP in ameliorating AS that will be useful for forming the rationale of future research studying the cardio-protection and anti-inflammation effects of ZYP.
Collapse
Affiliation(s)
- Yingying Pan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xianrong Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wei Song
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Gaoyang Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
23
|
Hypotheses on Atherogenesis Triggering: Does the Infectious Nature of Atherosclerosis Development Have a Substruction? Cells 2023; 12:cells12050707. [PMID: 36899843 PMCID: PMC10001176 DOI: 10.3390/cells12050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since the end of the 20th century, it has been clear that atherosclerosis is an inflammatory disease. However, the main triggering mechanism of the inflammatory process in the vascular walls is still unclear. To date, many different hypotheses have been put forward to explain the causes of atherogenesis, and all of them are supported by strong evidence. Among the main causes of atherosclerosis, which underlies these hypotheses, the following can be mentioned: lipoprotein modification, oxidative transformation, shear stress, endothelial dysfunction, free radicals' action, homocysteinemia, diabetes mellitus, and decreased nitric oxide level. One of the latest hypotheses concerns the infectious nature of atherogenesis. The currently available data indicate that pathogen-associated molecular patterns from bacteria or viruses may be an etiological factor in atherosclerosis. This paper is devoted to the analysis of existing hypotheses for atherogenesis triggering, and special attention is paid to the contribution of bacterial and viral infections to the pathogenesis of atherosclerosis and cardiovascular disease.
Collapse
|
24
|
Zhang Y, Zhang Y, Song C, Zhao X, Ai B, Wang Y, Zhou L, Zhu J, Feng C, Xu L, Wang Q, Sun H, Fang Q, Xu X, Li E, Li C. CRdb: a comprehensive resource for deciphering chromatin regulators in human. Nucleic Acids Res 2023; 51:D88-D100. [PMID: 36318256 PMCID: PMC9825595 DOI: 10.1093/nar/gkac960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Chromatin regulators (CRs) regulate epigenetic patterns on a partial or global scale, playing a critical role in affecting multi-target gene expression. As chromatin immunoprecipitation sequencing (ChIP-seq) data associated with CRs are rapidly accumulating, a comprehensive resource of CRs needs to be built urgently for collecting, integrating, and processing these data, which can provide abundant annotated information on CR upstream and downstream regulatory analyses as well as CR-related analysis functions. This study established an integrative CR resource, named CRdb (http://cr.liclab.net/crdb/), with the aim of curating a large number of available resources for CRs and providing extensive annotations and analyses of CRs to help biological researchers clarify the regulation mechanism and function of CRs. The CRdb database comprised a total of 647 CRs and 2,591 ChIP-seq samples from more than 300 human tissues and cell types. These samples have been manually curated from NCBI GEO/SRA and ENCODE. Importantly, CRdb provided the abundant and detailed genetic annotations in CR-binding regions based on ChIP-seq. Furthermore, CRdb supported various functional annotations and upstream regulatory information on CRs. In particular, it embedded four types of CR regulatory analyses: CR gene set enrichment, CR-binding genomic region annotation, CR-TF co-occupancy analysis, and CR regulatory axis analysis. CRdb is a useful and powerful resource that can help in exploring the potential functions of CRs and their regulatory mechanism in diseases and biological processes.
Collapse
Affiliation(s)
- Yimeng Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | | | | | - Xilong Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Yuezhu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Liwei Zhou
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Qiuyu Wang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hong Sun
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Qiaoli Fang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Xiaozheng Xu
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Chunquan Li
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South
| |
Collapse
|
25
|
Wang D, Tan Z, Yang J, Li L, Li H, Zhang H, Liu H, Liu Y, Wang L, Li Q, Guo H. Perfluorooctane sulfonate promotes atherosclerosis by modulating M1 polarization of macrophages through the NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114384. [PMID: 36512850 DOI: 10.1016/j.ecoenv.2022.114384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a widely used and distributed perfluorinated compounds and is reported to be harmful to cardiovascular health; however, the direct association between PFOS exposure and atherosclerosis and the underlying mechanisms remain unknown. Therefore, this study aimed to investigate the effects of PFOS exposure on the atherosclerosis progression and the underlying mechanisms. PFOS was administered through oral gavage to apolipoprotein E-deficient (ApoE-/-) mice for 12 weeks. PFOS exposure significantly increased pulse wave velocity (PWV) and intima-media thickness (IMT), increased aortic plaque burden and vulnerability, and elevated serum lipid and inflammatory cytokine levels. PFOS promoted aortic and RAW264.7 M1 macrophage polarization, which increased the secretion of nitric oxide synthase (iNOS) and pro-inflammatory factors (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], and interleukin-1β [IL-1β]), and suppressed M2 macrophage polarization, which decreased the expression of CD206, arginine I (Arg-1), and interleukin-10 (IL-10). Moreover, PFOS activated nuclear factor-kappa B (NF-κB) in the aorta and macrophages. BAY11-7082 was used to inhibit NF-κB-alleviated M1 macrophage polarization and the inflammatory response induced by PFOS in RAW264.7 macrophages. Our results are the first to reveal the acceleratory effect of PFOS on the atherosclerosis progression in ApoE-/- mice, which is associated with the NF-κB activation of macrophages to M1 polarization to induce inflammation.
Collapse
Affiliation(s)
- Dan Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Zhenzhen Tan
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Longfei Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Haoran Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, China
| | - Heqiong Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Yi Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.
| | - Huicai Guo
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
26
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
27
|
Sun B, Li F, Zhang X, Wang W, Shao J, Zheng Y. Delphinidin-3- O-glucoside, an active compound of Hibiscus sabdariffa calyces, inhibits oxidative stress and inflammation in rabbits with atherosclerosis. PHARMACEUTICAL BIOLOGY 2022; 60:247-254. [PMID: 35130117 PMCID: PMC8823684 DOI: 10.1080/13880209.2021.2017469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Delphinidin-3-O-glucoside (DP) is a bioactive compound of Hibiscus sabdariffa L. (Malvaceae) (Roselle) calyces and exerts endothelial protection and lipid-lowering activities, which provided a basis for the prevention and treatment of cardiovascular diseases. OBJECTIVES To investigate the therapeutic effects of DP against atherosclerosis. MATERIALS AND METHODS A rabbit model of atherosclerosis (AS) was established by 12 weeks of a high-fat diet (HFD). The rabbits were divided into five groups: control, AS, simvastatin (4 mg/kg), and two DP groups (10 and 20 mg/kg). After treatment with DP or simvastatin by oral gavage for 12 weeks, the lipid profiles were measured. Histopathological assessment of the aorta was performed by H&E staining. Oxidative stress and inflammation-related markers were analyzed by ELISA kit and real-time RT-PCR. RESULTS DP (20 mg/kg) decreased serum TG (2.36 ± 0.66 vs. 4.33 ± 0.27 mmol/L for the AS group), TC, LDL-C, and HDL-C (all p < 0.05). DP (20 mg/kg) also reduced lipid levels in the liver and aorta. DP (20 mg/kg) down-regulated the mRNA levels of IL-6, VCAM-1, and NF-κB and up-regulated the mRNA levels of GSH-PX and SOD1. CONCLUSIONS This study proved that DP alleviated the HFD-induced oxidative stress and inflammation in atherosclerosis rabbits. These results provided the scientific basis for developing novel therapies.
Collapse
Affiliation(s)
- Bo Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Vascular Surgery, Weifang People’s Hospital, Weifang, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiang Shao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Wang R, Zhao J, Jin J, Tian Y, Lan L, Wang X, Zhu L, Wang J. WY-14643 attenuates lipid deposition via activation of the PPARα/CPT1A axis by targeting Gly335 to inhibit cell proliferation and migration in ccRCC. Lipids Health Dis 2022; 21:121. [DOI: 10.1186/s12944-022-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Histologically, cytoplasmic deposits of lipids and glycogen are common in clear cell renal cell carcinoma (ccRCC). Owing to the significance of lipid deposition in ccRCC, numerous trials targeting lipid metabolism have shown certain therapeutic potential. The agonism of peroxisome proliferator-activated receptor-α (PPARα) via ligands, including WY-14,643, has been considered a promising intervention for cancers.
Methods
First, the effects of WY-14,643 on malignant behaviors were investigated in ccRCC in vitro. After RNA sequencing, the changes in lipid metabolism, especially neutral lipids and glycerol, were further evaluated. Finally, the underlying mechanisms were revealed.
Results
Phenotypically, the proliferation and migration of ccRCC cells treated with WY-14,643 were significantly inhibited in vitro. A theoretical functional mechanism was proposed in ccRCC: WY-14,643 mediates lipid consumption by recognizing carnitine palmitoyltransferase 1 A (CPT1A). Activation of PPARα using WY-14,643 reduces lipid deposition by increasing the CPT1A level, which also suppresses the NF-κB signaling pathway. Spatially, WY-14,643 binds and activates PPARα by targeting Gly335.
Conclusion
Overall, WY-14,643 suppresses the biological behaviors of ccRCC in terms of cell proliferation, migration, and cell cycle arrest. Furthermore, its anticancer properties are mediated by the inhibition of lipid accumulation, at least in part, through the PPARα/CPT1A axis by targeting Gly335, as part of the process, NF-κB signaling is also suppressed. Pharmacological activation of PPARα might offer a new treatment option for ccRCC.
Collapse
|
29
|
Non-canonical NF-κB contributes to endothelial pyroptosis and atherogenesis dependent on IRF-1. Transl Res 2022; 255:1-13. [PMID: 36384204 DOI: 10.1016/j.trsl.2022.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
Cell inflammation and death are closely linked processes contributing to endothelial dysfunction, which plays a critical role in atherogenesis. Activation of the NLRP3 inflammasome causes pyroptosis, the Gasdermin D (GSDMD)-mediated inflammatory cell death. The non-canonical NF-κB pathway has been implicated in inflammation; however, its role in NLRP3 inflammasome-mediated endothelial dysfunction has not been investigated. This study investigated a role for the non-canonical NF-κB pathway in regulating endothelial pyroptosis as it relates to atherogenesis. Immunohistochemistry indicated inflammasome activation in the endothelial cells (EC) of human atherosclerotic arteries. Flow cytometry and Western blot analysis revealed that oxidized low-density lipoprotein (oxLDL) activated the NLRP3 inflammasome, concomitant with the activation of non-canonical NF-κB in primary human aortic EC. Interference of NF-κB inducing kinase (NIK), the key regulator of the non-canonical pathway, significantly attenuated oxLDL- or LPS/ATP-induced NLRP3 inflammasome activation, pyroptosis, IL-1β, and IL-18 secretion. In contrast, overexpression of NIK exacerbated these responses. Chromatin immunoprecipitation revealed that activation of the non-canonical NF-κB pathway upregulated the transcription factor IRF-1 through RelB/p52 binding to its promoter region at -782/-770. In addition to the known target CASP1, RNA sequencing further identified GSDMD as a target gene of IRF-1. IRF-1 but not RelB/p52 interacted with the GSDMD promoter at -526/-515 and the CASP1 promoter at -11/10 to promote the expression and CASP1-mediated activation of GSDMD. Consistent with the observations in cultured endothelium, endothelial-specific deficiency of NIK or IRF-1 attenuated atherosclerosis in high-fat diet-fed Apoe-null mice. These data demonstrate that the non-canonical NF-κB pathway contributes to NLRP3 inflammasome-mediated endothelial pyroptosis and the development of atherosclerosis through GSDMD activation in a manner dependent on IRF-1. Further investigation may facilitate the identification of specific therapeutic targets for atherosclerotic heart diseases.
Collapse
|
30
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Zou T, Gao S, Yu Z, Zhang F, Yao L, Xu M, Li J, Wu Z, Huang Y, Wang S. Salvianolic acid B inhibits RAW264.7 cell polarization towards the M1 phenotype by inhibiting NF-κB and Akt/mTOR pathway activation. Sci Rep 2022; 12:13857. [PMID: 35974091 PMCID: PMC9381594 DOI: 10.1038/s41598-022-18246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
M1 macrophages secrete a large number of proinflammatory factors and promote the expansion of atherosclerotic plaques and processes. Salvianolic acid B (Sal B) exerts anti-inflammatory, antitumor and other effects, but no study has addressed whether Sal B can regulate the polarization of macrophages to exert these anti-atherosclerotic effects. Therefore, we investigated the inhibition of Sal B in M1 macrophage polarization and the underlying mechanism. The effects of different treatments on cell viability, gene expression and secretion of related proteins, phenotypic markers and cytokines were detected by MTT and western blot assays, RT‒qPCR and ELISAs. Cell viability was not significantly changed when the concentration of Sal B was less than 200 μM, and Lipopolysaccharide (LPS) (100 ng/mL) + interferon-γ (IFN-γ) (2.5 ng/mL) successfully induced M1 polarization. RT‒qPCR and ELISAs indicated that Sal B can downregulate M1 marker (Inducible Nitric Oxide Synthase (iNOS), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6)) and upregulate M2 marker (Arginase-1 (Arg-1) and Interleukin-10 (IL-10)) expression. Western blotting was performed to measure the expression of Nuclear Factor-κB (NF-κB), p-Akt, p-mTOR, LC3-II, Beclin-1, and p62, and the results suggested that Sal B inhibits the M1 polarization of RAW264.7 macrophages by promoting autophagy via the NF-κB signalling pathway. The study indicated that Sal B inhibits M1 macrophage polarization by inhibiting NF-κB signalling pathway activation and downregulating Akt/mTOR activation to promote autophagy.
Collapse
Affiliation(s)
- Tao Zou
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shan Gao
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, 610000, China
| | - Zhaolan Yu
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fuyong Zhang
- Department of Pharmacy, People's Hospital of Deyang City, Deyang, 618000, China
| | - Lan Yao
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Mengyao Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Junxin Li
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yilan Huang
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
32
|
Cheng W, Cui C, Liu G, Ye C, Shao F, Bagchi AK, Mehta JL, Wang X. NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovasc Drugs Ther 2022; 37:571-584. [PMID: 35796905 DOI: 10.1007/s10557-022-07362-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Atherosclerosis is the basis of major CVDs - myocardial ischemia, heart failure, and stroke. Among numerous functional molecules, the transcription factor nuclear factor κB (NF-κB) has been linked to downstream target genes involved in atherosclerosis. The activation of the NF-κB family and its downstream target genes in response to environmental and cellular stress, hypoxia, and ischemia initiate different pathological events such as innate and adaptive immunity, and cell survival, differentiation, and proliferation. Thus, NF-κB is a potential therapeutic target in the treatment of atherosclerosis and related CVDs. Several biologics and small molecules as well as peptide/proteins have been shown to regulate NF-κB dependent signaling pathways. In this review, we will focus on the function of NF-κB in CVDs and the role of NF-κB inhibitors in the treatment of CVDs.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Can Cui
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fang Shao
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450046, China
| | - Ashim K Bagchi
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.
| | - Xianwei Wang
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China. .,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
33
|
Li X, Guo D, Zhou W, Hu Y, Zhou H, Chen Y. Oxidative Stress and Inflammation Markers Associated with Multiple Peripheral Artery Occlusions in Elderly Patients. Angiology 2022; 74:472-487. [PMID: 35786005 DOI: 10.1177/00033197221111860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Pro-oxidative stress and pro-inflammatory responses can influence each other in the development of atherosclerosis. This study evaluated the relationship between oxidative stress, inflammation, and multiple peripheral artery occlusions in elderly patients (age mean 71.2 ± 8.1 years). Methods: A total of 723 participants were enrolled: 67 healthy subjects, 214 patients with common iliac artery occlusions, 224 patients with popliteal artery occlusions, and 218 patients with femoral artery occlusions. We measured oxidative stress biomarkers (malondialdehyde [MDA], F2-isoprostane [F2-isoP], total oxidant status [TOS], and ischemia-modified albumin [IMA]) and the expressions of molecules in mimecan (MIME)/nuclear factor kappa B (NF-κB)/P53/Toll-like receptor 4 (TLR4) signaling pathway in older patients with multiple peripheral artery occlusions. Results: The levels of MDA, F2-isoP, TOS, IMA, MIME, NF-κB, P53, and TLR4 were increased in the single-site peripheral artery occlusive group when compared with healthy controls (P < .001) and were further increased in the multiple-site peripheral artery occlusive group compared with the single-site peripheral artery occlusive group (P < .001). Conclusion: Oxidative stress may promote inflammatory signaling pathways and lead to multiple peripheral artery occlusions in elderly patients.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Wenhang Zhou
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Youdong Hu
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Hualan Zhou
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Ying Chen
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| |
Collapse
|
34
|
He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol Ther 2022; 235:108152. [PMID: 35122834 DOI: 10.1016/j.pharmthera.2022.108152] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Atherosclerotic vascular disease and its complications are among the top causes of mortality worldwide. In the vascular lumen, atherosclerotic plaques are not randomly distributed. Instead, they are preferentially localized at the curvature and bifurcations along the arterial tree, where shear stress is low or disturbed. Numerous studies demonstrate that endothelial cell phenotypic change (e.g., inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, endothelial-mesenchymal transition, endothelial permeability, epigenetic regulation, and endothelial metabolic adaptation) induced by oscillatory shear force play a fundamental role in the initiation and progression of atherosclerosis. Mechano-sensors, adaptor proteins, kinases, and transcriptional factors work closely at different layers to transduce the shear stress force from the plasma membrane to the nucleus in endothelial cells, thereby controlling the expression of genes that determine cell fate and phenotype. An in-depth understanding of these mechano-sensitive signaling cascades shall provide new translational strategies for therapeutic intervention of atherosclerotic vascular disease. This review updates the recent advances in endothelial mechano-transduction and its role in the pathogenesis of atherosclerosis, and highlights the perspective of new anti-atherosclerosis therapies through targeting these mechano-regulated signaling molecules.
Collapse
Affiliation(s)
- Lei He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Guanxinping Tablets Inhibit ET-1-Induced Proliferation and Migration of MOVAS by Suppressing Activated PI3K/Akt/NF- κB Signaling Cascade. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9485463. [PMID: 35685734 PMCID: PMC9173997 DOI: 10.1155/2022/9485463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2021] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
Abstract
Background/Aim Abnormal proliferation and migration of vascular smooth muscle cells is one of the main causes of atherosclerosis (AS). Therefore, the suppression of abnormal proliferation and migration of smooth muscle cells are the important means for the prevention and inhibition of AS. The clinical effects of Guanxinping (GXP) tablets and preliminary clinical research on the topic have proved that GXP can effectively treat coronary heart disease, but its underlying mechanism remains unclear. This study aimed to confirm the inhibitory effect of GXP on the abnormal proliferation of mouse aortic vascular smooth muscle (MOVAS) cells and to explore the underlying mechanism. Methods MOVAS cells were divided into two major groups: physiological and pathological groups. In the physiological group, MOVAS cells were directly stimulated with GXP, whereas in the pathological group, the cells were stimulated by endothelin-1 (ET-1) before intervention by GXP. At the same time, atorvastatin calcium, which effectively inhibits the abnormal proliferation of MOVAS cells, was used in the negative control group. CCK8 assay, scratch test, ELISA, Western blotting, and immunofluorescence staining were performed to observe the proliferation and migration of MOVAS cells and the expression levels of related factors after drug intervention in each group. Results In the physiological group, GXP had no significant effect on the proliferation and migration of MOVAS cells and the related factors. In the pathological group, a high dose of GXP reduced the abnormal proliferation and migration of MOVAS cells. Further, it reduced the expression levels of PI3K; inhibited the phosphorylation of Akt (protein kinase B); upregulated IκB-α levels; prevented nuclear factor kappa B (NF-κB) from entering the nucleus; downregulated the expression of interleukin 6 (IL6), IL-1β, and iNOS; and upregulated the ratio of apoptosis-related factor Bax/Bcl-2. There was no significant difference between the high-dose GXP group and the atorvastatin calcium group (negative control group). Conclusion Our findings revealed that GXP was able to inhibit the proliferation and migration of MOVAS cells by regulating the PI3K/Akt/NF-κB pathway.
Collapse
|
36
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Chen Q, Wei Y, Zhao Y, Xie X, Kuang N, Wei Y, Yu M, Hu T. Intervening Effects and Molecular Mechanism of Quercitrin on PCV2-Induced Histone Acetylation, Oxidative Stress and Inflammatory Response in 3D4/2 Cells. Antioxidants (Basel) 2022; 11:antiox11050941. [PMID: 35624806 PMCID: PMC9137775 DOI: 10.3390/antiox11050941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is the main pathogen causing porcine circovirus-associated diseases (PCVD/PCVADs), and infection of the host induces immunosuppression. Since quercitrin (QUE) has anti-inflammatory and antiviral activity, it is worth exploiting in animal diseases. In this study, the interventional effects and the molecular mechanism of QUE on PCV2-induced oxidative stress and inflammatory responses in 3D4/2 cells and the modulation of histone acetylation modifications were investigated. The ROS production was measured by DCFH-DA fluorescent probes. HAT and HDAC enzyme activity were determined by ELISA. Histone acetylation, oxidative stress and inflammation-related gene expression levels were measured by q-PCR. Histone H3 and H4 (AcH3 and AcH4) acetylation, oxidative stress and inflammation-related protein expression levels were measured by Western blot. The results showed that QUE treatment at different concentrations on PCV2-infected 3D4/2 cells was able to attenuate the production of ROS. Moreover, QUE treatment could also intervene in oxidative stress and decrease the enzyme activity of HAT and the mRNA expression level of HAT1, while it increased the enzyme activity of HDAC and HDAC1 mRNA expression levels and downregulated histone H3 and H4 (AcH3 and AcH4) acetylation modification levels. In addition, QUE treatment even downregulated the mRNA expression levels of IL-6, IL-8, IκB, AKT and p38, but upregulated the mRNA expression levels of IL-10, SOD, GPx1, p65, Keap1, Nrf2, HO-1 and NQO1. As to protein expression, QUE treatment downregulated the levels of iNOS, p-p65 and IL-8 as well as the phosphorylation expression of IκB and p38, while it upregulated the levels of HO-1 and NQO1. It was shown that QUE at 25, 50 or 100 μmol/L regulated p38MAPK and PI3K/AKT signaling pathways by downregulating cellular histone acetylation modification levels while inhibiting the NF-κB inflammatory signaling pathway and activating the Nrf2/HO-1 antioxidant signaling pathway, thus regulating the production of inflammatory and antioxidant factors and exerting both anti-inflammatory and antioxidant effects.
Collapse
|
38
|
Modified Yuejuwan Inhibited Cholesterol Accumulation and Inflammation in THP-1 Macrophage-Derived Foam Cells by Inhibiting the Activity of the TRIM37/TRAF2/NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6400517. [PMID: 35310029 PMCID: PMC8930229 DOI: 10.1155/2022/6400517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
Background This study aimed to explore the function of modified Yuejuwan (MYJ) on THP-1 macrophage-derived foam cells. Methods First, human THP-cells were obtained, and then, grouping was made to the following: control group, foaming group, foaming group +0.2 mg/mL Jiawei Yueju pill, foaming group +0.5 mg/mL Jiawei Yueju pill, and foaming group +1 mg/mL Jiawei Yueju pill. An Oil Red O staining assay was used to examine the uptake of oxidatively modified low-density lipoprotein (oxLDL). The secretion of interleukin (IL)-1β and tumor necrosis factor (TNF)-α were determined using an enzyme-linked immunosorbent assay (ELISA). Real-time quantitative PCR (qRT-PCR) and Western blot were used to quantify genes and proteins expression levels. Results Our results indicated that MYJ inhibited the accumulation of total cholesterol (TC), free cholesterol (FC), and cholesteryl ester (CE) in foam cells. Moreover, the secretion of IL-1β and TNF-α also downregulated in foam cells after treatment of MYJ. Furthermore, we found that tripartite motif-containing 37 (TRIM37) was significantly upregulated in foam cells. Knockdown of TRIM37 promoted cholesterol efflux and presented an anti-inflammation effect in foam cells. Furthermore, TRIM37 positively mediated the translocation of NF-κB to nuclear. It negatively regulated its ubiquitination in foam cells after interacting with TRAF2. Importantly, MYJ profoundly suppressed the function of TRIM37 in foam cells and functioned as a TRIM37 inhibitor. Conclusions This study demonstrated that MYJ might alleviate oxLDL-induced foam cell formation by inhibiting the TRIM37/TRAF2/NF-κB pathway activity. MYJ was a potential agent in preventing atherosclerosis and indicated its potential signaling pathway in foam cells.
Collapse
|
39
|
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063346. [PMID: 35328769 PMCID: PMC8954705 DOI: 10.3390/ijms23063346] [Citation(s) in RCA: 367] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the main risk factor for cardiovascular disease (CVD), which is the leading cause of mortality worldwide. Atherosclerosis is initiated by endothelium activation and, followed by a cascade of events (accumulation of lipids, fibrous elements, and calcification), triggers the vessel narrowing and activation of inflammatory pathways. The resultant atheroma plaque, along with these processes, results in cardiovascular complications. This review focuses on the different stages of atherosclerosis development, ranging from endothelial dysfunction to plaque rupture. In addition, the post-transcriptional regulation and modulation of atheroma plaque by microRNAs and lncRNAs, the role of microbiota, and the importance of sex as a crucial risk factor in atherosclerosis are covered here in order to provide a global view of the disease.
Collapse
Affiliation(s)
- Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | | | - Iraide Alloza
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Koen Vandenbroeck
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| |
Collapse
|
40
|
Li B, Li H, Dai L, Liu C, Wang L, Li Q, Gu C. NIK-SIX1 signalling axis regulates high glucose-induced endothelial cell dysfunction and inflammation. Autoimmunity 2022; 55:86-94. [PMID: 34894925 DOI: 10.1080/08916934.2021.2015579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction and inflammation are the main manifestations of diabetes-associated atherosclerosis. This paper studied the roles of NF-κB-inducing kinase (NIK) and sine oculis homeobox homolog 1 (SIX1) in regulating high glucose-induced endothelial dysfunction and inflammation. The expression of NIK and SIX1 in human umbilical vein endothelial cells (HUVECs) was silenced by transfection with the specific shRNAs. HUVECs exposed to high glucose were considered as a cell model of endothelial dysfunction. Expression of NIK and SIX1 following transfection was measured by qRT-PCR and western blotting analysis. The proliferation, migration, and inflammation of HUVECs were evaluated by EdU staining, scratch test, ELISA, and western blotting. High glucose (30 mM) significantly decreased the proliferation and migration of HUVECs. High glucose-induced the expression of adhesion molecules VCAM-1 and ICAM-1. Moreover, high glucose increased the release of IL-1β, IL-6, TNF-α, and MCP-1. Transfection of cells with NIK shRNA significantly reversed the toxic effects of high glucose on HUVECs. Of contrast, SIX1 shRNA accelerated the effects of high glucose on HUVECs. NIK shRNA inhibited the accumulation of RelA, RelB, and p52. Meanwhile, NIK shRNA led to SIX1 downregulation which further induced the activation of the NF-κB pathway. NIK-SIX1 signalling axis was suggested to be critical in the regulation of high glucose-induced endothelial dysfunction and inflammation. SIX1 may function as an immunological gatekeeper to control the excessive inflammation mediated by NIK in diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haiming Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Longsheng Dai
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changcheng Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liangshan Wang
- Department of Cardiac Surgery Intensive Care Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qin Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengxiong Gu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Zhang J, Xie M, Huang X, Chen G, Yin Y, Lu X, Feng G, Yu R, Chen L. The Effects of Porphyromonas gingivalis on Atherosclerosis-Related Cells. Front Immunol 2022; 12:766560. [PMID: 35003080 PMCID: PMC8734595 DOI: 10.3389/fimmu.2021.766560] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis (AS), one of the most common types of cardiovascular disease, has initially been attributed to the accumulation of fats and fibrous materials. However, more and more researchers regarded it as a chronic inflammatory disease nowadays. Infective disease, such as periodontitis, is related to the risk of atherosclerosis. Porphyromonas gingivalis (P. gingivalis), one of the most common bacteria in stomatology, is usually discovered in atherosclerotic plaque in patients. Furthermore, it was reported that P. gingivalis can promote the progression of atherosclerosis. Elucidating the underlying mechanisms of P. gingivalis in atherosclerosis attracted attention, which is thought to be crucial to the therapy of atherosclerosis. Nevertheless, the pathogenesis of atherosclerosis is much complicated, and many kinds of cells participate in it. By summarizing existing studies, we find that P. gingivalis can influence the function of many cells in atherosclerosis. It can induce the dysfunction of endothelium, promote the formation of foam cells as well as the proliferation and calcification of vascular smooth muscle cells, and lead to the imbalance of regulatory T cells (Tregs) and T helper (Th) cells, ultimately promoting the occurrence and development of atherosclerosis. This article summarizes the specific mechanism of atherosclerosis caused by P. gingivalis. It sorts out the interaction between P. gingivalis and AS-related cells, which provides a new perspective for us to prevent or slow down the occurrence and development of AS by inhibiting periodontal pathogens.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
42
|
Liu Y, He X, Di Z, Du X. Study on the Active Constituents and Molecular Mechanism of Zhishi Xiebai Guizhi Decoction in the Treatment of CHD Based on UPLC-UESI-Q Exactive Focus, Gene Expression Profiling, Network Pharmacology, and Experimental Validation. ACS OMEGA 2022; 7:3925-3939. [PMID: 35155889 PMCID: PMC8829943 DOI: 10.1021/acsomega.1c04491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
As one of the most common clinical cardiovascular diseases (CVDs), coronary heart disease (CHD) is the most common cause of death in the world. It has been confirmed that Zhishi Xiebai Guizhi decoction (ZXGD), a classical prescription of the traditional Chinese medicine (TCM), has achieved certain effects in the treatment of CHD; however, the mechanism still remains controversial. In this paper, an integrated approach, including UPLC-UESI-Q Exactive Focus, gene expression profiling, network pharmacology, and experimental validation, was introduced to systematically investigate the mechanism of ZXGD in the treatment of CHD. First, UPLC-UESI-Q Exactive Focus was applied to identify the chemical compounds of ZXGD. Then, the targets of the components for ZXGD were predicted by MedChem Studio software embed in the integrative pharmacology-based research platform of TCM, and the differentially expressed genes (DEGs) of CHD were obtained by gene expression profiling in gene expression omnibus database. The common genes of the above two genes were obtained by Venn analysis as the targets of GXGD in treatment with CHD. Third, the core targets were screened out by protein-protein interaction network analysis, and the kyoto encyclopedia of genes and genomes pathway enrichment analysis was performed by the database for annotation, visualization, and integrated discovery bioinformatics resources. After that, the formula-herb-compound-target-pathway network was constructed to explore the mechanism of ZXGD in the treatment of CHD. Finally, molecular docking and the vitro experiment were carried out to validate some key targets. As a result, a total of 39 compounds, 12 core targets, and 4 pathways contributed to ZXGD for the treatment of CHD. This study preliminarily provided a foundation for the study on the mechanism against CHD for ZXGD and may be a reference for the compatibility mechanism and the extended application of TCM compound prescription.
Collapse
Affiliation(s)
- Yuan Liu
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
| | - Xu He
- Department
of Integrated Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang 711301, China
| | - Zhibiao Di
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
| | - Xia Du
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
43
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
44
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
45
|
MircoRNA-126-5p inhibits apoptosis of endothelial cell in vascular arterial walls via NF-κB/PI3K/AKT/mTOR signaling pathway in atherosclerosis. J Mol Histol 2022; 53:51-62. [PMID: 34981408 DOI: 10.1007/s10735-021-10041-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Atherosclerosis is considered as a chronic inflammatory disease. MircoRNA-126-5p (miR-126-5p) may be pathophysiological relevant with the apoptotic processes in the endothelial cells in the arterial wall. Here, this study determined the role of circulating atherosclerosis-regulatory miR-126-5p in atherosclerotic mice and explored the possible mechanism in human aortic endothelial cells (HAECs). Atherosclerotic mice model was established, oxidative stress-induced apoptosis of HAECs was analyzed, and nuclear factor kappa B (NF-κB)/PI3K/AKT/mTOR signaling pathway was investigated both in vitro and in vivo. This study showed that miR-126-5p mice had less coronary atherosclerotic plaque and lower blood lipid than control mice after being induced by high cholesterol diet. Apoptosis of endothelial cells was inhibited and NF-κB/PI3K/AKT/mTOR signal pathway was downregulated in miR-126-5p mice compared to control. MiR-126-5p increased proliferation and inhibited apoptosis of HAECs induced by oxidative stress. In vitro assay showed that miR-126-5p regulated apoptosis of HAECs via downregulation of NF-κB-mediated PI3K/AKT/mTOR signaling pathway. In conclusion, these data indicated that transfection of miR-126-5p rescued apoptosis of HAECs and limited atherosclerosis, introducing a potential therapeutic approach for atherosclerosis.
Collapse
|
46
|
Jang YE, Immanuel J, Lee JR, Jang YJ, Kwon YJ, Kwon HS, Shin JW, Yun S. Shinjulactone A Blocks Vascular Inflammation and the Endothelial-Mesenchymal Transition. J Lipid Atheroscler 2022; 11:272-279. [PMID: 36212750 PMCID: PMC9515731 DOI: 10.12997/jla.2022.11.3.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Ye-eun Jang
- Department of Biotechnology, Inje University, Gimhae, Korea
| | | | - Jin-ri Lee
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Yu-jin Jang
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Yun Ju Kwon
- National Institute of Korean Medicine Development, Gyeongsan, Korea
| | - Hyun Sook Kwon
- National Institute of Korean Medicine Development, Gyeongsan, Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Korea
| | - Sanguk Yun
- Department of Biotechnology, Inje University, Gimhae, Korea
| |
Collapse
|
47
|
Mao L, Mostafa R, Ibili E, Fert-Bober J. Role of protein deimination in cardiovascular diseases: potential new avenues for diagnostic and prognostic biomarkers. Expert Rev Proteomics 2021; 18:1059-1071. [PMID: 34929115 DOI: 10.1080/14789450.2021.2018303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arginine deimination (citrullination) is a post-translational modification catalyzed by a family of peptidyl arginine deiminase (PAD) enzymes. Cell-based functional studies and animal models have manifested the key role of PADs in various cardiovascular diseases (CVDs). AREA COVERED This review summarizes the latest developments in the role of PADs in CVD pathogenesis. It focuses on the PAD functions and diverse citrullinated proteins in cardiovascular conditions like deep vein thrombosis, ischemia/reperfusion, and atherosclerosis. Identification of PAD isoforms and citrullinated targets are essential for directing diagnosis and clinical intervention. Finally, anti-citrullinated protein antibodies (ACPAs) are addressed as an independent risk factor for cardiovascular events. A search of PubMed biomedical literature from the past ten years was performed with a combination of the following keywords: PAD/PADI, deimination/citrullination, autoimmune, fibrosis, NET, neutrophil, macrophage, inflammation, inflammasome, cardiovascular, heart disease, myocardial infarction, ischemia, atherosclerosis, thrombosis, and aging. Additional papers from retrieved articles were also considered. EXPERT OPINION PADs are unique family of enzymes that converts peptidyl-arginine to -citrulline in protein permanently. Overexpression or increased activity of PAD has been observed in various CVDs with acute and chronic inflammation as the background. Importantly, far beyond being simply involved in forming neutrophil extracellular traps (NETs), accumulating evidence indicated PAD activation as a trigger for numerous processes, such as transcriptional regulation, endothelial dysfunction, and thrombus formation. In summary, the findings so far have testified the important role of deimination in cardiovascular biology, while more basic and translational studies are essential to further exploration.
Collapse
Affiliation(s)
- Liqun Mao
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rowann Mostafa
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Esra Ibili
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justyna Fert-Bober
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
48
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
49
|
Natural Compound Resveratrol Attenuates TNF-Alpha-Induced Vascular Dysfunction in Mice and Human Endothelial Cells: The Involvement of the NF-κB Signaling Pathway. Int J Mol Sci 2021; 22:ijms222212486. [PMID: 34830366 PMCID: PMC8620472 DOI: 10.3390/ijms222212486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/04/2023] Open
Abstract
Resveratrol, a natural compound in grapes and red wine, has drawn attention due to potential cardiovascular-related health benefits. However, its effect on vascular inflammation at physiologically achievable concentrations is largely unknown. In this study, resveratrol in concentrations as low as 1 μm suppressed TNF-α-induced monocyte adhesion to human EA.hy926 endothelial cells (ECs), a key event in the initiation and development of atherosclerosis. Low concentrations of resveratrol (0.25–2 μm) also significantly attenuated TNF-α-stimulated mRNA expressions of MCP-1/CCL2 and ICAM-1, which are vital mediators of EC-monocyte adhesion molecules and cytokines for cardiovascular plaque formation. Additionally, resveratrol diminished TNF-α-induced IκB-α degradation and subsequent nuclear translocation of NF-κB p65 in ECs. In the animal study, resveratrol supplementation in diet significantly diminished TNF-α-induced increases in circulating levels of adhesion molecules and cytokines, monocyte adhesion to mouse aortic ECs, F4/80-positive macrophages and VCAM-1 expression in mice aortas and restored the disruption in aortic elastin fiber caused by TNF-α treatment. The animal study also confirmed that resveratrol blocks the activation of NF-κB In Vivo. In conclusion, resveratrol at physiologically achievable concentrations displayed protective effects against TNF-α-induced vascular endothelial inflammation in vitro and In Vivo. The ability of resveratrol in reducing inflammation may be associated with its role as a down-regulator of the NF-κB pathway.
Collapse
|
50
|
VSTM1 regulates monocyte/macrophage function via the NF-κB signaling pathway. Open Med (Wars) 2021; 16:1513-1524. [PMID: 34712823 PMCID: PMC8511964 DOI: 10.1515/med-2021-0353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
Objective V-set and transmembrane domain-containing protein 1 (VSTM1) is negatively correlated with inflammation. However, its effect on atherosclerosis (AS) remains largely unexplored. In this study, we aimed to assess the effect of VSTM1 on the biological function of human peripheral blood mononuclear cells /macrophages stimulated by oxidized low-density lipoprotein (ox-LDL). Methods U937 cells were divided into three groups as follows: control group, pLenti-VSTM1 shRNA group (VSTM1 depletion), and pLenti-VSTM1 group (VSTM1 overexpression). Cellular migration, chemotaxis, apoptosis, and secretion of inflammatory factors of monocytes/macrophages stimulated by ox-LDL were studied. Results Overexpression of VSTM1 decreased the proliferation of U937 cells and induced cellular apoptosis. Depletion of VSTM1 enhanced the invasiveness and chemotaxis, increased the inflammatory response, and reduced the incidence of cell necrosis and apoptosis. Nuclear factor κ of B cells (NF-κB) was activated in VSTM1-depleted U937 cells. Conclusion VSTM1 might play an important role in the activation of monocytes/macrophages and participate in the pathogenesis of AS via regulating NF-κB activity.
Collapse
|