1
|
Mykchaylova O, Besarab A, Negriyko A, Lomberg M, Poyedinok N. Influence of low-intensity artificial light on the fatty acid profile of the biotechnologically important culinary mushroom Pleurotus eryngii in vitro. BMC Biotechnol 2025; 25:24. [PMID: 40128685 PMCID: PMC11934681 DOI: 10.1186/s12896-025-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The problem of searching for environmentally friendly regulators of the biosynthetic activity of edible and medicinal mushrooms is crucial for creating highly effective biotechnologies. One such regulator is light. This study aimed to compare and evaluate the fatty acid profile and fat quality indices of lipids from the mycelial mass of Pleurotus eryngii under various light-emitting diode (LED) and laser light irradiation regimes. METHODS To determine the effect of artificial light on the biosynthetic activity of P. eryngii, an artificial lighting system based on LED matrices with wavelengths of 470 nm (blue), 530 nm (green), and 650 nm (red), as well as an argon gas laser as a coherent visible light source at 488 nm, was used. For all experimental variants, the energy density on the surface of the samples was set to the same, providing an energy dose of 240 mJ/cm2. Irradiation was carried continuously. RESULTS Twenty-seven fatty acids were identified in the studied P. eryngii mycelial mass samples, including nine saturated fatty acids (SFAs), eight monounsaturated fatty acids (MUFAs) and ten polyunsaturated fatty acids (PUFAs). The control sample (without irradiation) contained the lowest number of fatty acids (fourteen). With irradiation in all modes, a decrease in the amount of SFA and the formation of new MUFA and PUFA with a chain length of C20-C24, which were absent in the control, were observed. Blue light stimulated the synthesis of significant amounts of α-linolenic acid (C18:3ω-3). The ratios of ΣPUFA/ΣSFA, ΣPUFA/ΣMUFA and ΣPUFAω-6/ω-3 in the mass of mycelium irradiated with blue light were within the optimal values for the human diet. CONCLUSIONS The selected mycelial photoactivation modes using low-intensity laser and LED light of different spectral composition and coherence may have potential in the biotechnology of submerged cultivation of P. eryngii to obtain mycelial mass with an improved fatty acid profile, which can be considered as a useful source of lipids.
Collapse
Affiliation(s)
- Oksana Mykchaylova
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kyiv, 03056, Ukraine
- Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, Kyiv, 01601, Ukraine
| | - Aleksander Besarab
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kyiv, 03056, Ukraine
| | - Anatoliy Negriyko
- Department of Laser Spectroscopy, Institute of Physics of the National Academy of Sciences of Ukraine, 46, Prospect Nauki, Kyiv, 03039, Ukraine
- Institute of Physics and Technology, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kyiv, 03056, Ukraine
| | - Margarita Lomberg
- Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, Kyiv, 01601, Ukraine.
| | - Natalia Poyedinok
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kyiv, 03056, Ukraine
| |
Collapse
|
2
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
3
|
Vrabl P, Zottele M, Colleselli L, Schinagl CW, Mayerhofer L, Siewert B, Strasser H. Light in the box-photobiological examination chamber with light trap ventilation system for studying fungal surface cultures illustrated with Metarhizium brunneum and Beauveria brongniartii. Fungal Biol Biotechnol 2023; 10:11. [PMID: 37248509 PMCID: PMC10228068 DOI: 10.1186/s40694-023-00159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Due to their versatile way of life as saprophytes, endophytes, and entomopathogens, fungi of the genera Metarhizium and Beauveria are exposed to varying illumination conditions in their natural habitats, which makes a thorough adaptation to light very likely. While the few available studies for these genera support this assumption, research in this field is still in its infancy and the data material restricted to only a few fungal species. Thus, the aim of this work was to explore how light influences growth, conidial production and secondary metabolite formation of two industrial relevant strains of M. brunneum (MA 43, formerly M. anisopliae var. anisopliae BIPESCO 5/F52) and B. brongniartii (BIPESCO 2). To achieve this, we constructed an easily adjustable illumination device for highly standardized photophysiological studies of fungi on Petri dishes, the so-called LIGHT BOX. With the aid of this device, M. brunneum and B. brongniartii were grown on S4G or S2G agar at 25 °C for 14 days either in complete darkness or under constant illumination with red light (λpeak = 635 nm), green light (λpeak = 519 nm) or blue light (λpeak = 452 nm). In addition, for each wavelength the effect of different illumination intensities was tested, i.e., intensities of red light ranging from 22.1 ± 0.1 to 136.5 ± 0.3 µW cm-2, green light from 16.5 ± 0.1 to 96.2 ± 0.1 µW cm-2, and blue light from 56.1 ± 0.2 to 188.9 ± 0.6 µW cm-2. Both fungi strongly responded in terms of growth, conidial production, pigmentation and morphology to changes in the wavelength and irradiation intensity. The wavelength-dependent production of the well-known secondary metabolite oosporein which is secreted by the genus Beauveria in particular, was also increased under green and blue light exposure. The established LIGHT BOX system allows not only to optimize conidial production yields with these biotechnologically relevant fungi, but also allows the photobiological exploration of other fungi.
Collapse
Affiliation(s)
- Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| | - Maria Zottele
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Lucia Colleselli
- Department of Biotechnology & Food Engineering, MCI-The Entrepreneurial School, Maximilianstraße 2, A-6020, Innsbruck, Austria
| | - Christoph Walter Schinagl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
- Department of Biotechnology & Food Engineering, MCI-The Entrepreneurial School, Maximilianstraße 2, A-6020, Innsbruck, Austria
| | - Laura Mayerhofer
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Hermann Strasser
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Lee JH, Kwon YB, Roh YH, Choi IL, Kim J, Kim Y, Yoon HS, Kang HM. Effect of Various LED Light Qualities, Including Wide Red Spectrum-LED, on the Growth and Quality of Mini Red Romaine Lettuce (cv. Breen). PLANTS (BASEL, SWITZERLAND) 2023; 12:2056. [PMID: 37653973 PMCID: PMC10223557 DOI: 10.3390/plants12102056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Recently, LEDs with various light qualities have been used in closed plant factories, and they are known to have different effects on the growth and quality of crops. Therefore, this study was conducted to investigate the change in growth and quality in mini red romaine lettuce using LEDs with various light qualities. Wide red spectrum (WRS)-LEDs, blue (B)-LEDs, blue + red (BR)-LEDs, red (R)-LEDs, and white (W)-LEDs were used as the artificial light sources. Regarding growth, the R-LED treatment showed the most positive effect, but the leaf shape was not normal and the Hunter b* value was not suitable because it was higher than that of the other treatments. The Hunter a*, SPAD, and NDVI values of the B- and BR-LED treatments were effective, but this was not the case for those of the R- and W-LED treatments. The anthocyanin reflectance index 1 (ARI1) was 20 times higher in the B-LED treatment than in the R-LED treatment, and the ascorbic acid content was the highest in the WRS-LED treatment. In the sensory evaluation, bitterness and sweetness showed opposite tendencies. Regarding the overall preference, the BR-LED treatment received the highest score. Correlation analysis showed that the bitterness was closely correlated with the anthocyanin content and leaf color. Taken together, BR-LEDs provided a good top fresh weight, dark red leaves, and high anthocyanin and ascorbic acid contents, with the highest overall preference; therefore, BR-LEDs were the most suitable for the cultivation of mini red romaine lettuce.
Collapse
Affiliation(s)
- Joo Hwan Lee
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.H.L.); (Y.B.K.); (Y.H.R.)
| | - Yong Beom Kwon
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.H.L.); (Y.B.K.); (Y.H.R.)
| | - Yoo Han Roh
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.H.L.); (Y.B.K.); (Y.H.R.)
| | - In-Lee Choi
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jidong Kim
- FutureGreen Co., Ltd., Yongin 17095, Republic of Korea;
| | - Yongduk Kim
- Cheorwon Plasma Research Institute, Cheorwon 24062, Republic of Korea;
| | - Hyuk Sung Yoon
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ho-Min Kang
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.H.L.); (Y.B.K.); (Y.H.R.)
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
5
|
Bayram ÖS, Bayram Ö. An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms. J Fungi (Basel) 2023; 9:jof9050591. [PMID: 37233302 DOI: 10.3390/jof9050591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Zhu L, Su Y, Ma Z, Guo L, Yang S, Yu H. Comparative proteomic analysis reveals differential protein expression of Hypsizygus marmoreus in response to different light qualities. Int J Biol Macromol 2022; 223:1320-1334. [PMID: 36395936 DOI: 10.1016/j.ijbiomac.2022.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Light is important environmental stress that influences the growth, development, and metabolism of Hypsizygus marmoreus (white var.). However, the molecular basis of the light effect on H. marmoreus remains unclear. In this study, a label-free comparative proteomic analysis was applied to investigate the global protein expression profile of H. marmoreus mycelia growing under white, red, green, and blue light qualities and darkness (control). Among 3149 identified proteins in H. marmoreus, 2288 were found to be expressed in all tested conditions. Data of Each light quality was compared with darkness for further analysis, numerous differentially expressed proteins (DEPs) were identified and the white light group showed the most. All the up-regulated and down-regulated DEPs were annotated and analyzed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The KEGG enrichment analysis revealed that light stress was associated with primary metabolism, glycolysis/gluconeogenesis, MAPK, proteasome, and carbohydrate-active enzyme pathways. This study advances valuable insights into the molecular mechanisms underlying the role of different light qualities in mushroom growth and development.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China
| | - Yao Su
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China
| | - Zhiheng Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Cerón-Bustamante M, Balducci E, Beccari G, Nicholson P, Covarelli L, Benincasa P. Effect of light spectra on cereal fungal pathogens, a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Schmoll M, Hinterdobler W. Tools for adapting to a complex habitat: G-protein coupled receptors in Trichoderma. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:65-97. [PMID: 36357080 DOI: 10.1016/bs.pmbts.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sensing the environment and interpretation of the received signals are crucial competences of living organisms in order to properly adapt to their habitat, succeed in competition and to reproduce. G-protein coupled receptors (GPCRs) are members of a large family of sensors for extracellular signals and represent the starting point of complex signaling cascades regulating a plethora of intracellular physiological processes and output pathways in fungi. In Trichoderma spp. current research involves a wide range of topics from enzyme production, light response and secondary metabolism to sexual and asexual development as well as biocontrol, all of which require delicate balancing of resources in response to the environmental challenges or biotechnological needs at hand, which are crucially impacted by the surroundings of the fungi and their intercellular signaling cascades triggering a precisely tailored response. In this review we summarize recent findings on sensing by GPCRs in Trichoderma, including the function of pheromone receptors, glucose sensing by CSG1 and CSG2, regulation of secondary metabolism by GPR8 and impacts on mycoparasitism by GPR1. Additionally, we provide an overview on structural determinants, posttranslational modifications and interactions for regulation, activation and signal termination of GPCRs in order to inspire future in depth analyses of their function and to understand previous regulatory outcomes of natural and biotechnological processes modulated or enabled by GPCRs.
Collapse
Affiliation(s)
- Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
9
|
Schwechheimer C, Schröder PM, Blaby-Haas CE. Plant GATA Factors: Their Biology, Phylogeny, and Phylogenomics. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:123-148. [PMID: 35130446 DOI: 10.1146/annurev-arplant-072221-092913] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
GATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined. In recent years, knowledge about the biological role and regulation of plant GATAs has substantially improved. Individual family members have been implicated in the regulation of photomorphogenic growth, chlorophyll biosynthesis, chloroplast development, photosynthesis, and stomata formation, as well as root, leaf, and flower development. In this review, we summarize the current knowledge of plant GATA factors. Using phylogenomic analysis, we trace the evolutionary origin of the GATA classes in the green lineage and examine their relationship to animal and fungal GATAs. Finally, we speculate about a possible conservation of GATA-regulated functions across the animal, fungal, and plant kingdoms.
Collapse
Affiliation(s)
- Claus Schwechheimer
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | - Peter Michael Schröder
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | - Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA;
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
10
|
Li XP, Ji HY, Wang WJ, Shen WH, Wang JW. Effects of Blue Light on Hypocrellin A Production in Shiraia Mycelium Cultures. Photochem Photobiol 2022; 98:1343-1354. [PMID: 35506756 DOI: 10.1111/php.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
Abstract
Blue light is a crucial environmental cue for fungi. Hypocrellin A (HA) is a photoactive perylenequinone from Shiraia with strong antimicrobial and anticancer properties. In this study, effects of the illumination of blue light-emitting diode (LED) at 470 nm on Shiraia sp. S8 was investigated. Blue light at 50-200 lx and 4-6 h/day could enhance HA content in the mycelia, but suppress it at 300-400 lx or with longer exposure (8-24 h/day). The intermittent blue light (6 h/day) at 200 lx not only enhanced the fungal conidiation, but stimulated HA production without any growth retardation. The generation of fungal reactive oxygen species (ROS) was induced to up-regulate HA biosynthetic gene expressions. When the culture was maintained under the intermittent blue light for 8 days, HA production reached 242.76 mg/L, 2.27-fold of the dark control. On the other hand, both the degradation of HA and down-regulation of HA biosynthetic genes occurred under long exposure time (8-24 h/day), leading to the suppression of HA production. These results provide a basis for understanding the regulation of blue light on the biosynthesis of fungal photoactivated perylenequinones, and the application of a novel light elicitation to Shiraia mycelium cultures for enhanced HA production.
Collapse
Affiliation(s)
- Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hong Yao Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Juan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Low- or high-white light irradiance induces similar conidial stress tolerance in Metarhizium robertsii. Arch Microbiol 2021; 204:83. [PMID: 34958400 DOI: 10.1007/s00203-021-02730-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
White light during mycelial growth influences high conidial stress tolerance of the insect-pathogenic fungus Metarhizium robertsii, but little is known if low- or high-white light irradiances induce different stress tolerances. The fungus was grown either in the dark using two culture media: on minimal medium (Czapek medium without sucrose = MM) or on potato dextrose agar (PDA) or PDA medium under five different continuous white light irradiances. The stress tolerances of conidia produced on all treatments were evaluated by conidial germination on PDA supplemented with KCl for osmotic stress or on PDA supplemented with menadione for oxidative stress. Conidia produced on MM in the dark were more tolerant to osmotic and oxidative stress than conidia produced on PDA in the dark or under the light. For osmotic stress, growth under the lower to higher irradiances produced conidia with similar tolerances but more tolerant than conidia produced in the dark. For oxidative stress, conidia produced under the white light irradiances were generally more tolerant to menadione than conidia produced in the dark. Moreover, conidia produced in the dark germinated at the same speed when incubated in the dark or under lower irradiance treatment. However, at higher irradiance, conidial germination was delayed compared to germination in the dark, which germinated faster. Therefore, growth under light from low to high irradiances induces similar conidial higher stress tolerances; however, higher white light irradiances cause a delay in germination speed.
Collapse
|
12
|
Luo W, Wang Y, Yang P, Qu Y, Yu X. Multilevel Regulation of Carotenoid Synthesis by Light and Active Oxygen in Blakeslea trispora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10974-10988. [PMID: 34510898 DOI: 10.1021/acs.jafc.1c03389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although Blakeslea trispora has been used for industrial production of β-carotene, the effects of light and oxidative stress on its synthesis have not been fully clarified. The present study focuses on the effects of light and reactive oxygen species (ROS) on carotenoid synthesis and their multilevel regulation in B. trispora. Blue light significantly influenced the intracellular ROS levels, carotenoid contents, and transcription of carotenoid structural genes, while ROS levels were positively correlated with intracellular carotenoid contents and transcriptional levels of carotenoid structural genes. Blue light and ROS were both significant factors affecting carotenoid synthesis with a significant interaction between them. Irradiation by pulsed blue light and (or) addition of generating agents for active oxygen could partially compensate for the inhibition derived from the transcription inhibitor (dactinomycin) and translation inhibitor (cycloheximide) on the multilevel phenotype. Therefore, blue light and ROS act on the transcription and translation of carotenoid structural genes to promote the accumulation of carotenoid in B. trispora.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Ying Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
13
|
Świderska-Burek U, Daub ME, Thomas E, Jaszek M, Pawlik A, Janusz G. Phytopathogenic Cercosporoid Fungi-From Taxonomy to Modern Biochemistry and Molecular Biology. Int J Mol Sci 2020; 21:E8555. [PMID: 33202799 PMCID: PMC7697478 DOI: 10.3390/ijms21228555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Phytopathogenic cercosporoid fungi have been investigated comprehensively due to their important role in causing plant diseases. A significant amount of research has been focused on the biology, morphology, systematics, and taxonomy of this group, with less of a focus on molecular or biochemical issues. Early and extensive research on these fungi focused on taxonomy and their classification based on in vivo features. Lately, investigations have mainly addressed a combination of characteristics such as morphological traits, host specificity, and molecular analyses initiated at the end of the 20th century. Some species that are important from an economic point of view have been more intensively investigated by means of genetic and biochemical methods to better understand the pathogenesis processes. Cercosporin, a photoactivated toxin playing an important role in Cercospora diseases, has been extensively studied. Understanding cercosporin toxicity in relation to reactive oxygen species (ROS) production facilitated the discovery and regulation of the cercosporin biosynthesis pathway, including the gene cluster encoding pathway enzymes. Furthermore, these fungi may be a source of other biotechnologically important compounds, e.g., industrially relevant enzymes. This paper reviews methods and important results of investigations of this group of fungi addressed at different levels over the years.
Collapse
Affiliation(s)
- Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Margaret E. Daub
- Department Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA; (M.E.D.); (E.T.)
| | - Elizabeth Thomas
- Department Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA; (M.E.D.); (E.T.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.J.); (A.P.); (G.J.)
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.J.); (A.P.); (G.J.)
| | - Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.J.); (A.P.); (G.J.)
| |
Collapse
|
14
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
15
|
Pawlik A, Jaszek M, Stefaniuk D, Świderska-Burek U, Mazur A, Wielbo J, Koper P, Żebracki K, Janusz G. Combined Effect of Light and Nutrients on the Micromorphology of the White rot Fungus Cerrena Unicolor. Int J Mol Sci 2020; 21:E1678. [PMID: 32121417 PMCID: PMC7084710 DOI: 10.3390/ijms21051678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Light influences developmental pathways in fungi. Recent transcriptomic and biochemical analyses have demonstrated that light influences the metabolism of a white-rot basidiomycete Cerrena unicolor. However, the expression profile of genes involved in the growth and development, or micromorphological observations of the mycelium in response to variable lighting and culturing media, have not performed. We aim to reveal the effect of light and nutrients on C. unicolor growth and a potential relationship between the culture medium and lighting conditions on fungus micromorphological structures. Confocal laser scanning microscopy and scanning electron microscopy were employed for morphological observations of C. unicolor mycelium cultivated in red, blue, green, and white light and darkness on mineral and sawdust media. A comprehensive analysis of C. unicolor differentially expressed genes (DEGs) was employed to find global changes in the expression profiles of genes putatively involved in light-dependent morphogenesis. Both light and nutrients influenced C. unicolor growth and development. Considerable differences in the micromorphology of the mycelia were found, which were partially reflected in the functional groups of DEGs observed in the fungus transcriptomes. A complex cross-interaction of nutritional and environmental signals on C. unicolor growth and morphology was suggested. The results are a promising starting point for further investigations of fungus photobiology.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
16
|
Thoma F, Somborn-Schulz A, Schlehuber D, Keuter V, Deerberg G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:497. [PMID: 32391040 PMCID: PMC7193822 DOI: 10.3389/fpls.2020.00497] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/02/2020] [Indexed: 05/05/2023]
Abstract
In contrast to the primary metabolism, responsible for essential synthesis mechanisms and mass balance in plants, the secondary metabolism is not of particular importance for each cell but for the plant organism as its whole. Most of these metabolites show antioxidant properties and are beneficial for human health. In order to affect accumulation of those metabolites, light is an essential factor. It is possible to select various combinations of light intensity and light quality to address corresponding photoreceptors and synthesis. However, the plethora of additional variables considering environmental conditions such as temperature, relative humidity or cultivation method complicate defining specific "light recipes". This review summarizes experiments dealing with consumable leafy greens such as lettuce or basil and the enhancement of three selected metabolites - anthocyanins, carotenoids and flavonols.
Collapse
|
17
|
Abstract
The blast disease, caused by the ascomycete Magnaporthe oryzae, poses a great threat to rice production worldwide. Increasing use of fungicides and/or blast-resistant varieties of rice (Oryza sativa) has proved to be ineffective in long-term control of blast disease under field conditions. To develop effective and durable resistance to blast, it is important to understand the cellular mechanisms underlying pathogenic development in M. oryzae. In this review, we summarize the latest research in phototropism, autophagy, nutrient and redox signaling, and intrinsic phytohormone mimics in M. oryzae for cellular and metabolic adaptation(s) during its interactions with the host plants.
Collapse
Affiliation(s)
- Yi Zhen Deng
- Integrative Microbiology Research Centre and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore 117604;
| |
Collapse
|
18
|
Dias LP, Pedrini N, Braga GUL, Ferreira PC, Pupin B, Araújo CAS, Corrochano LM, Rangel DEN. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biol 2019; 124:263-272. [PMID: 32389288 DOI: 10.1016/j.funbio.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023]
Abstract
Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena, Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata), Facultad de Ciencias Médicas, La Plata, 1900, Argentina
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Paulo C Ferreira
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | - Breno Pupin
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | | | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, 41080, Seville, Spain
| | | |
Collapse
|
19
|
Panzer S, Brych A, Batschauer A, Terpitz U. Opsin 1 and Opsin 2 of the Corn Smut Fungus Ustilago maydis Are Green Light-Driven Proton Pumps. Front Microbiol 2019; 10:735. [PMID: 31024506 PMCID: PMC6467936 DOI: 10.3389/fmicb.2019.00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 01/19/2023] Open
Abstract
In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.
Collapse
Affiliation(s)
- Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Annika Brych
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| |
Collapse
|
20
|
Pawlik A, Ruminowicz-Stefaniuk M, Frąc M, Mazur A, Wielbo J, Janusz G. The wood decay fungus Cerrena unicolor adjusts its metabolism to grow on various types of wood and light conditions. PLoS One 2019; 14:e0211744. [PMID: 30721259 PMCID: PMC6363171 DOI: 10.1371/journal.pone.0211744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cerrena unicolor is a wood-degrading basidiomycete with ecological and biotechnological importance. Comprehensive Biolog-based analysis was performed to assess the metabolic capabilities and sensitivity to chemicals of C. unicolor FCL139 growing in various sawdust substrates and light conditions. The metabolic preferences of the fungus towards utilization of specific substrates were shown to be correlated with the sawdust medium applied for fungus growth and the light conditions. The highest catabolic activity of C. unicolor was observed after fungus precultivation on birch and ash sawdust media. The fungus growing in the dark showed the highest metabolic activity which was indicated by capacity to utilize a broad spectrum of compounds and the decomposition of 74/95 of the carbon sources. In all the culture light conditions, p-hydroxyphenylacetic acid was the most readily metabolized compound. The greatest tolerance to chemicals was also observed during C. unicolor growth in darkness. The fungus was the most sensitive to nitrogen compounds and antibiotics, but more resistant to chelators. Comparative analysis of C. unicolor and selected wood-decay fungi from different taxonomic and ecological groups revealed average catabolic activity of the fungus. However, C. unicolor showed outstanding capabilities to catabolize salicin and arbutin. The obtained picture of C. unicolor metabolism showed that the fungus abilities to decompose woody plant material are influenced by various environmental factors.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
21
|
Pawlik A, Mazur A, Wielbo J, Koper P, Żebracki K, Kubik-Komar A, Janusz G. RNA Sequencing Reveals Differential Gene Expression of Cerrena Unicolor in Response to Variable Lighting Conditions. Int J Mol Sci 2019; 20:ijms20020290. [PMID: 30642073 PMCID: PMC6358801 DOI: 10.3390/ijms20020290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/16/2022] Open
Abstract
To elucidate the light-dependent gene expression in Cerrena unicolor FCL139, the transcriptomes of the fungus growing in white, blue, green, and red lighting conditions and darkness were analysed. Among 10,413 all-unigenes detected in C. unicolor, 7762 were found to be expressed in all tested conditions. Transcripts encoding putative fungal photoreceptors in the C. unicolor transcriptome were identified. The number of transcripts uniquely produced by fungus ranged from 20 during its growth in darkness to 112 in the green lighting conditions. We identified numerous genes whose expression differed substantially between the darkness (control) and each of the light variants tested, with the greatest number of differentially expressed genes (DEGs) (454 up- and 457 down-regulated) observed for the white lighting conditions. The DEGs comprised those involved in primary carbohydrate metabolism, amino acid metabolism, autophagy, nucleotide repair systems, signalling pathways, and carotenoid metabolism as defined using Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The analysis of the expression profile of genes coding for lignocellulose-degrading enzymes suggests that the wood-degradation properties of C. unicolor may be independent of the lighting conditions and may result from the overall stimulation of fungal metabolism by daylight.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Piotr Koper
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Agnieszka Kubik-Komar
- Chair of Applied Mathematics and Informatics, Lublin University of Life Sciences, Akademicka 13 St., 20-950 Lublin, Poland.
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
22
|
The contribution of the White Collar complex to Cryptococcus neoformans virulence is independent of its light-sensing capabilities. Fungal Genet Biol 2018; 121:56-64. [PMID: 30266690 DOI: 10.1016/j.fgb.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 01/09/2023]
Abstract
The White Collar complex is responsible for sensing light and transmitting that signal in many fungal species. In Cryptococcus neoformans and C. deneoformans the complex is involved in protection against damage from ultraviolet (UV) light, repression of mating in response to light, and is also required for virulence. The mechanism by which the Bwc1 photoreceptor contributes to virulence is unknown. In this study, a bwc1 deletion mutant of C. neoformans was transformed with three versions of the BWC1 gene, the wild type, BWC1C605A or BWC1C605S, in which the latter two have the conserved cysteine residue replaced with either alanine or serine within the light-oxygen-voltage (LOV) domain that interacts with the flavin chromophore. The bwc1+ BWC1 strain complemented the UV sensitivity and the repression of mating in the light. The bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were not fully complemented for either of the phenotypes, indicating that these BWC1 alleles impair the light responses for strains with them. Transcript analysis showed that neither of the mutated strains (bwc1+ BWC1C605A and bwc1+ BWC1C605S) showed the light-inducible expression pattern of the HEM15 and UVE1 genes as occurs in the wild type strain. These results indicate that the conserved flavin-binding site in the LOV domain of Bwc1 is required for sensing and responding to light in C. neoformans. In contrast to defects in light responses, the wild type, bwc1+ BWC1, bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were equally virulent, whereas the bwc1 knock out mutant was less virulent. Furthermore, pre-exposure of the strains to light prior to inoculation had no influence on the outcome of infection. These findings define a division in function of the White Collar complex in fungi, in that in C. neoformans the role of Bwc1 in virulence is independent of light sensing.
Collapse
|
23
|
Beattie GA, Hatfield BM, Dong H, McGrane RS. Seeing the Light: The Roles of Red- and Blue-Light Sensing in Plant Microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:41-66. [PMID: 29768135 DOI: 10.1146/annurev-phyto-080417-045931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Bridget M Hatfield
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Haili Dong
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Regina S McGrane
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, USA
| |
Collapse
|
24
|
Fuller KK, Dunlap JC, Loros JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 2018; 102:3849-3863. [PMID: 29569180 DOI: 10.1007/s00253-018-8887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA. .,Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
25
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Wang Z, Wang J, Li N, Li J, Trail F, Dunlap JC, Townsend JP. Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol 2017; 27:216-232. [PMID: 29134709 DOI: 10.1111/mec.14425] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023]
Abstract
Understanding the genetic basis of the switch from asexual to sexual lifestyles in response to sometimes rapid environmental changes is one of the major challenges in fungal ecology. Light appears to play a critical role in the asexual-sexual switch-but fungal genomes harbour diverse light sensors. Fungal opsins are homologous to bacterial green-light-sensory rhodopsins, and their organismal functions in fungi have not been well understood. Three of these opsin-like proteins were widely distributed across fungal genomes, but homologs of the Fusarium opsin-like protein CarO were present only in plant-associated fungi. Key amino acids, including potential retinal binding sites, functionally diverged on the phylogeny of opsins. This diversification of opsin-like proteins could be correlated with life history-associated differences among fungi in their expression and function during morphological development. In Neurospora crassa and related species, knockout of the opsin NOP-1 led to a phenotype in the regulation of the asexual-sexual switch, modulating response to both light and oxygen conditions. Sexual development commenced early in ∆nop-1 strains cultured in unsealed plates under constant blue and white light. Furthermore, comparative transcriptomics showed that the expression of nop-1 is light-dependent and that the ∆nop-1 strain abundantly expresses genes involved in oxidative stress response, genes enriched in NAD/NADP binding sites, genes with functions in proton transmembrane movement and catalase activity, and genes involved in the homeostasis of protons. Based on these observations, we contend that light and oxidative stress regulate the switch via light-responsive and ROS pathways in model fungus N. crassa and other fungi.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Junrui Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Department of Plant Pathology, Michigan State University, East Lansing, MI, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Program in Microbiology, Yale University, New Haven, CT, USA
| |
Collapse
|
27
|
Franco DL, Canessa P, Bellora N, Risau-Gusman S, Olivares-Yañez C, Pérez-Lara R, Libkind D, Larrondo LF, Marpegan L. Spontaneous circadian rhythms in a cold-adapted natural isolate of Aureobasidium pullulans. Sci Rep 2017; 7:13837. [PMID: 29062053 PMCID: PMC5653790 DOI: 10.1038/s41598-017-14085-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023] Open
Abstract
Circadian systems enable organisms to synchronize their physiology to daily and seasonal environmental changes relying on endogenous pacemakers that oscillate with a period close to 24 h even in the absence of external timing cues. The oscillations are achieved by intracellular transcriptional/translational feedback loops thoroughly characterized for many organisms, but still little is known about the presence and characteristics of circadian clocks in fungi other than Neurospora crassa. We sought to characterize the circadian system of a natural isolate of Aureobasidium pullulans, a cold-adapted yeast bearing great biotechnological potential. A. pullulans formed daily concentric rings that were synchronized by light/dark cycles and were also formed in constant darkness with a period of 24.5 h. Moreover, these rhythms were temperature compensated, as evidenced by experiments conducted at temperatures as low as 10 °C. Finally, the expression of clock-essential genes, frequency, white collar-1, white collar-2 and vivid was confirmed. In summary, our results indicate the existence of a functional circadian clock in A. pullulans, capable of sustaining rhythms at very low temperatures and, based on the presence of conserved clock-gene homologues, suggest a molecular and functional relationship to well-described circadian systems.
Collapse
Affiliation(s)
- Diana L Franco
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), Universidad Nacional del Comahue, CONICET, CRUB, San Carlos de Bariloche, Río Negro, Argentina.,Departamento de Física Médica Centro Atómico Bariloche and Instituto Balseiro, CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Paulo Canessa
- Centro de Biotecnologia Vegetal, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile
| | - Nicolás Bellora
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), Universidad Nacional del Comahue, CONICET, CRUB, San Carlos de Bariloche, Río Negro, Argentina
| | | | - Consuelo Olivares-Yañez
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Pérez-Lara
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Libkind
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), Universidad Nacional del Comahue, CONICET, CRUB, San Carlos de Bariloche, Río Negro, Argentina
| | - Luis F Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luciano Marpegan
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
28
|
|
29
|
Röhrig J, Yu Z, Chae KS, Kim JH, Han KH, Fischer R. TheAspergillus nidulansVelvet-interacting protein, VipA, is involved in light-stimulated heme biosynthesis. Mol Microbiol 2017; 105:825-838. [DOI: 10.1111/mmi.13739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Julian Röhrig
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| | - Zhenzhong Yu
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| | - Keon-Sang Chae
- Department of Molecular Biology; Chonbuk National University; Jeonju South Korea
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering; Woosuk University; Wanju Jeonbuk 565-701 South Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering; Woosuk University; Wanju Jeonbuk 565-701 South Korea
| | - Reinhard Fischer
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| |
Collapse
|
30
|
Wang F, Song X, Dong X, Zhang J, Dong C. DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris. Appl Microbiol Biotechnol 2017; 101:4645-4657. [PMID: 28409381 DOI: 10.1007/s00253-017-8276-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022]
Abstract
Cryptochromes (CRYs) belong to the photolyase/cryptochrome flavoprotein family, which is widely distributed in all kingdoms. A phylogenetic analysis indicated that three Cordyceps militaris proteins [i.e., cryptochrome DASH (CmCRY-DASH), (6-4) photolyase, and cyclobutane pyrimidine dimer (CPD) class I photolyase] belong to separate fungal photolyase/cryptochrome subfamilies. CmCRY-DASH consists of DNA photolyase and flavin adenine dinucleotide-binding domains, with RGG repeats in a C-terminal extension. Considerably, more carotenoids and cordycepin accumulated in the ΔCmcry-DASH strain than in the wild-type or ΔCmwc-1 strains, indicating an inhibitory role for CmCRY-DASH in these biosynthetic pathways. Fruiting body primordia could form in the ΔCmcry-DASH strain, but the fruiting bodies were unable to elongate normally, differently from the Cmwc-1 disruption strain, where primordium differentiation did not occur. Cmcry-DASH expression is induced by light in the wild-type strain, but not in the ΔCmwc-1 strain. CmCRY-DASH is also necessary for the expression of Cmwc-1, implying that Cmcry-DASH and Cmwc-1 exhibit interdependent expression. The Cmvvd expression levels in the wild-type and ΔCmcry-DASH strains increased considerably following irradiation, while Cmvvd expression in the ΔCmwc-1 strain was not induced by light. It is speculated that the photo adaptation may be faster in the Cmcry-DASH mutant based on Cmvvd transcript dynamics. These results provide new insights into the biological functions of fungal DASH CRYs. Furthermore, the DASH CRYs may regulate fruiting body development and secondary metabolism differently than WC-1.
Collapse
Affiliation(s)
- Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 1st Beichen West Road, Beijing, Chaoyang District, 100101, China
| | - Xinhua Song
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Xiaoming Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 1st Beichen West Road, Beijing, Chaoyang District, 100101, China.,School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Jiaojiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 1st Beichen West Road, Beijing, Chaoyang District, 100101, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 1st Beichen West Road, Beijing, Chaoyang District, 100101, China.
| |
Collapse
|