1
|
Han R, Su L, Cheng L. Advancing Human Vaccine Development Using Humanized Mouse Models. Vaccines (Basel) 2024; 12:1012. [PMID: 39340042 PMCID: PMC11436046 DOI: 10.3390/vaccines12091012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The development of effective vaccines against infectious diseases remains a critical challenge in global health. Animal models play a crucial role in vaccine development by providing valuable insights into the efficacy, safety, and mechanisms of immune response induction, which guide the design and formulation of vaccines. However, traditional animal models often inadequately recapitulate human immune responses. Humanized mice (hu-mice) models with a functional human immune system have emerged as invaluable tools in bridging the translational gap between preclinical research and clinical trials for human vaccine development. This review summarizes commonly used hu-mice models and advances in optimizing them to improve human immune responses. We review the application of humanized mice for human vaccine development with a focus on HIV-1 vaccines. We also discuss the remaining challenges and improvements needed for the currently available hu-mice models to better facilitate the development and testing of human vaccines for infectious diseases.
Collapse
Affiliation(s)
- Runpeng Han
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Center for AIDS Research, Wuhan University, Wuhan 430071, China
| | - Lishan Su
- Laboratory of Viral Pathogenesis and Immunotherapy, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 02121, USA
| | - Liang Cheng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Center for AIDS Research, Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Damm D, Suleiman E, Wagner JT, Klessing S, Pfister F, Elsayed H, Walkenfort B, Stobrawe J, Mayer J, Lehner E, Müller-Schmucker SM, Hasenberg M, Wyatt RT, Vorauer-Uhl K, Temchura V, Überla K. Modulation of immune responses to liposomal vaccines by intrastructural help. Eur J Pharm Biopharm 2023; 192:112-125. [PMID: 37797679 PMCID: PMC10872448 DOI: 10.1016/j.ejpb.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The encapsulation of HIV-unrelated T helper peptides into liposomal vaccines presenting trimers of the HIV-1 envelope glycoprotein (Env) on the surface (T helper liposomes) may recruit heterologous T cells to provide help for Env-specific B cells. This mechanism called intrastructural help can modulate the HIV-specific humoral immune response. In this study, we used cationic T helper liposomes to induce intrastructural help effects in a small animal model. The liposomes were functionalized with Env trimers by a tag-free approach designed to enable a simplified GMP production. The pre-fusion conformation of the conjugated Env trimers was verified by immunogold electron microscopy (EM) imaging and flow cytometry. The liposomes induced strong activation of Env-specific B cells in vitro. In comparison to previously established anionic liposomes, cationic T helper liposomes were superior in CD4+ T cell activation after uptake by dendritic cells. Moreover, the T helper liposomes were able to target Env-specific B cells in secondary lymphoid organs after intramuscular injection. We also observed efficient T helper cell activation and proliferation in co-cultures with Env-specific B cells in the presence of cationic T helper liposomes. Mouse immunization experiments with cationic T helper liposomes further revealed a modulation of the Env-specific IgG subtype distribution and enhancement of the longevity of antibody responses by ovalbumin- and Hepatitis B (HBV)-specific T cell help. Thus, clinical evaluation of the concept of intrastructural help seems warranted.
Collapse
Affiliation(s)
- Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Ehsan Suleiman
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria.
| | - Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Stephan Klessing
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, 91054 Erlangen, Germany.
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Egypt
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Jule Stobrawe
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Julia Mayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Elisabeth Lehner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Sandra M Müller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany.
| | | | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
3
|
Zhang X, Zhou Z. The Mechanism of bnAb Production and Its Application in Mutable Virus Broad-Spectrum Vaccines: Inspiration from HIV-1 Broad Neutralization Research. Vaccines (Basel) 2023; 11:1143. [PMID: 37514959 PMCID: PMC10384589 DOI: 10.3390/vaccines11071143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Elite controllers among HIV-1-infected individuals have demonstrated a stronger ability to control the viral load in their bodies. Scientists have isolated antibodies with strong neutralizing ability from these individuals, which can neutralize HIV-1 variations; these are known as broadly neutralizing antibodies. The nucleic acid of some viruses will constantly mutate during replication (such as SARS-CoV-2), which will reduce the protective ability of the corresponding vaccines. The immune escape caused by this mutation is the most severe challenge faced by humans in the battle against the virus. Therefore, developing broad-spectrum vaccines that can induce broadly neutralizing antibodies against various viruses and their mutated strains is the best way to combat virus mutations. Exploring the mechanism by which the human immune system produces broadly neutralizing antibodies and its induction strategies is crucial in the design process of broad-spectrum vaccines.
Collapse
Affiliation(s)
- Xinyu Zhang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, Wagh K, McMichael AJ, Kelsoe G, Hahn BH, Alt F, Shaw GM. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol 2023; 23:142-158. [PMID: 35962033 PMCID: PMC9372928 DOI: 10.1038/s41577-022-00753-w] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
After nearly four decades of research, a safe and effective HIV-1 vaccine remains elusive. There are many reasons why the development of a potent and durable HIV-1 vaccine is challenging, including the extraordinary genetic diversity of HIV-1 and its complex mechanisms of immune evasion. HIV-1 envelope glycoproteins are poorly recognized by the immune system, which means that potent broadly neutralizing antibodies (bnAbs) are only infrequently induced in the setting of HIV-1 infection or through vaccination. Thus, the biology of HIV-1-host interactions necessitates novel strategies for vaccine development to be designed to activate and expand rare bnAb-producing B cell lineages and to select for the acquisition of critical improbable bnAb mutations. Here we discuss strategies for the induction of potent and broad HIV-1 bnAbs and outline the steps that may be necessary for ultimate success.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kshitij Wagh
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Li X, Liao D, Li Z, Li J, Diaz M, Verkoczy L, Gao F. Autoreactivity and broad neutralization of antibodies against HIV-1 are governed by distinct mutations: Implications for vaccine design strategies. Front Immunol 2022; 13:977630. [PMID: 36479128 PMCID: PMC9720396 DOI: 10.3389/fimmu.2022.977630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Many of the best HIV-1 broadly neutralizing antibodies (bnAbs) known have poly-/autoreactive features that disfavor normal B cell development and maturation, posing a major hurdle in developing an effective HIV-1 vaccine. Key to resolving this problem is to understand if, and to what extent, neutralization breadth-conferring mutations acquired by bnAbs contribute to their autoreactivity. Here, we back-mutated all known changes made by a prototype CD4 binding site-directed bnAb lineage, CH103-106, during its later maturation steps. Strikingly, of 29 mutations examined, only four were crucial for increased autoreactivity, with minimal or no impact on neutralization. Furthermore, three of these residues were clustered in the heavy chain complementarity-determining region 2 (HCDR2). Our results demonstrate that broad neutralization activity and autoreactivity in the CH103-106 bnAb lineage can be governed by a few, distinct mutations during maturation. This provides strong rationale for developing immunogens that favor bnAb lineages bearing "neutralization-only" mutations into current HIV-1 vaccine designs.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Dongmei Liao
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Zhengyang Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Marilyn Diaz
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Laurent Verkoczy
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdongg, China
| |
Collapse
|
6
|
Contribution of rare mutational outcomes to broadly neutralizing antibodies. Acta Biochim Biophys Sin (Shanghai) 2022; 54:820-827. [PMID: 35713319 PMCID: PMC9828561 DOI: 10.3724/abbs.2022065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antibodies are important immune molecules that are elicited by B cells to protect our bodies during viral infections or vaccinations. In humans, the antibody repertoire is diversified by programmed DNA lesion processes to ensure specific and high affinity binding to various antigens. Broadly neutralizing antibodies (bnAbs) are antibodies that have strong neutralizing activities against different variants of a virus. bnAbs such as anti-HIV bnAbs often have special characteristics including insertions and deletions, long complementarity determining region 3 (CDR3), and high frequencies of mutations, often at improbable sites of the variable regions. These unique features are rare mutational outcomes that are acquired during antibody diversification processes. In this review, we will discuss possible mechanisms that generate these rare antibody mutational outcomes. The understanding of the mechanisms that generate these rare mutational outcomes during antibody diversification will have implications in vaccine design strategies to elicit bnAbs.
Collapse
|
7
|
Williams WB, Wiehe K, Saunders KO, Haynes BF. Strategies for induction of HIV-1 envelope-reactive broadly neutralizing antibodies. J Int AIDS Soc 2021; 24 Suppl 7:e25831. [PMID: 34806332 PMCID: PMC8606870 DOI: 10.1002/jia2.25831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION A primary focus of HIV-1 vaccine development is the activation of B cell receptors for naïve or precursor broadly neutralizing antibodies (bnAbs), followed by expansion and maturation of bnAb B cell lineage intermediates leading to highly affinity-matured bnAbs. HIV-1 envelope (Env) encodes epitopes for bnAbs of different specificities. Design of immunogens to induce bnAb precursors of different specificities and mature them into bnAb status is a goal for HIV-1 vaccine development. We review vaccine strategies for bnAb lineages development and highlight the immunological barriers that these strategies must overcome to generate bnAbs. METHODS We provide perspectives based on published research articles and reviews. DISCUSSION The recent Antibody Mediated Protection (AMP) trial that tested the protective efficacy of one HIV-1 Env bnAb specificity demonstrated that relatively high levels of long-lasting serum titers of multiple specificities of bnAbs will be required for protection from HIV-1 transmission. Current vaccine efforts for induction of bnAb lineages are focused on immunogens designed to expand naïve HIV-1 bnAb precursor B cells following the recent success of vaccine-induction of bnAb precursor B cells in macaques and humans. BnAb precursor B cells serve as templates for priming-immunogen design. However, design of boosting immunogens for bnAb maturation requires knowledge of the optimal immunogen design and immunological environment for bnAb B cell lineage affinity maturation. BnAb lineages acquire rare genetic changes as mutations during B cell maturation. Moreover, the immunological environment that supports bnAb development during HIV-1 infection is perturbed with an altered B cell repertoire and dysfunctional immunoregulatory controls, suggesting that in normal settings, bnAb development will be disfavoured. Thus, strategies for vaccine induction of bnAbs must circumvent immunological barriers for bnAb development that normally constrain bnAb B cell affinity maturation. CONCLUSIONS A fully protective HIV-1 vaccine needs to induce durable high titers of bnAbs that can be generated by a sequential set of Env immunogens for expansion and maturation of bnAb B cell lineages in a permitted immunological environment. Moreover, multiple specificities of bnAbs will be required to be sufficiently broad to prevent the escape of HIV-1 strains during transmission.
Collapse
Affiliation(s)
- Wilton B. Williams
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Kevin Wiehe
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Kevin O. Saunders
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of ImmunologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Barton F. Haynes
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of ImmunologyDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
8
|
Crooks ET, Almanza F, D’Addabbo A, Duggan E, Zhang J, Wagh K, Mou H, Allen JD, Thomas A, Osawa K, Korber BT, Tsybovsky Y, Cale E, Nolan J, Crispin M, Verkoczy LK, Binley JM. Engineering well-expressed, V2-immunofocusing HIV-1 envelope glycoprotein membrane trimers for use in heterologous prime-boost vaccine regimens. PLoS Pathog 2021; 17:e1009807. [PMID: 34679128 PMCID: PMC8565784 DOI: 10.1371/journal.ppat.1009807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 vaccine immunofocusing strategies may be able to induce broadly-reactive neutralizing antibodies (NAbs). Here, we engineered a panel of diverse, membrane-resident native HIV-1 trimers vulnerable to two broad targets-the V2 apex and fusion peptide (FP). Selection criteria included i) high expression and ii) infectious function, so that trimer neutralization sensitivity can be profiled in pseudovirus (PV) assays. Initially, we boosted the expression of 17 candidate trimers by truncating gp41 and introducing a gp120-gp41 SOS disulfide to prevent gp120 shedding. "Repairs" were made to fill glycan holes and eliminate other strain-specific aberrations. A new neutralization assay allowed PV infection when our standard assay was insufficient. Trimers with exposed V3 loops, a target of non-NAbs, were discarded. To try to increase V2-sensitivity, we removed clashing glycans and modified the C-strand. Notably, a D167N mutation improved V2-sensitivity in several cases. Glycopeptide analysis of JR-FL trimers revealed near complete sequon occupation and that filling the N197 glycan hole was well-tolerated. In contrast, sequon optimization and inserting/removing glycans at other positions frequently had global "ripple" effects on glycan maturation and sequon occupation throughout the gp120 outer domain and gp41. V2 MAb CH01 selectively bound to trimers with small high mannose glycans near the base of the V1 loop, thereby avoiding clashes. Knocking in a rare N49 glycan was found to perturb gp41 glycans, increasing FP NAb sensitivity-and sometimes improving expression. Finally, a biophysical analysis of VLPs revealed that i) ~25% of particles bear Env spikes, ii) spontaneous particle budding is high and only increases 4-fold upon Gag transfection, and iii) Env+ particles express ~30-40 spikes. Taken together, we identified 7 diverse trimers with a range of sensitivities to two targets to allow rigorous testing of immunofocusing vaccine concepts.
Collapse
Affiliation(s)
- Emma T. Crooks
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Francisco Almanza
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Erika Duggan
- Scintillon Institute, San Diego, California, United States of America
- Cellarcus BioSciences, La Jolla, California, United States of America
| | - Jinsong Zhang
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Kshitij Wagh
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Huihui Mou
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Alyssa Thomas
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Bette T. Korber
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Yaroslav Tsybovsky
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Evan Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Nolan
- Scintillon Institute, San Diego, California, United States of America
- Cellarcus BioSciences, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Laurent K. Verkoczy
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
9
|
Rubio AA, Filsinger Interrante MV, Bell BN, Brown CL, Bruun TUJ, LaBranche CC, Montefiori DC, Kim PS. A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. J Virol 2021; 95:e0235020. [PMID: 33980592 PMCID: PMC8274607 DOI: 10.1128/jvi.02350-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 μg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University School of Humanities & Sciences, Stanford, California, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin N. Bell
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Clayton L. Brown
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Theodora U. J. Bruun
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter S. Kim
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
10
|
Abbott RK, Crotty S. Factors in B cell competition and immunodominance. Immunol Rev 2020; 296:120-131. [PMID: 32483855 PMCID: PMC7641103 DOI: 10.1111/imr.12861] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The majority of all vaccines work by inducing protective antibody responses. The mechanisms by which the B cells responsible for producing protective antibodies are elicited to respond are not well understood. Interclonal B cell competition to complex antigens, particularly in germinal centers, has emerged as an important hurdle in designing effective vaccines. This review will focus on recent advances in understanding the roles of B cell precursor frequency, B cell receptor affinity for antigen, antigen avidity, and other factors that can substantially alter the outcomes of B cell responses to complex antigens. Understanding the interdependence of these fundamental factors that affect B cell responses can inform current vaccine design efforts for pathogens with complex proteins as candidate immunogens such as HIV, influenza, and coronaviruses.
Collapse
Affiliation(s)
- Robert K. Abbott
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037 USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design. Curr Opin HIV AIDS 2020; 14:294-301. [PMID: 30946041 DOI: 10.1097/coh.0000000000000548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW It is believed that broadly neutralizing antibodies (bNAbs) will be an important component of an effective HIV-1 vaccine. Several immunogens have been designed that can target specific precursor B cells as a first step in a vaccine strategy to elicit bNAbs. RECENT FINDINGS Germline-targeting immunogens have been developed that specifically engage precursors of reproducible classes of anti-HIV antibodies, such as VRC01-class and apex-directed bNAbs. However, these precursors represent only a small portion of the immune repertoire and any antigen will inherently present off-target epitopes to the immune system that may confound bNAb development. Novel animal models are being utilized to understand the competitive fitness of bNAb precursors in the context of immunization with germline-targeting immunogens. In parallel, immunogen design efforts are being pursued to favor the development of bNAb responses over off-target responses following immunization. New studies of bNAb precursor interactions with glycosylated Env variants can inform prime-boost regimens geared towards accelerating bNAb development. SUMMARY Germline-targeting immunogens hold promise as a first step in eliciting a bNAb response through vaccination. A better understating of how efficiently germline-targeting immunogens can specifically target rare bNAb precursors is emerging. In addition, a more comprehensive structure-based understanding of critical barriers to bNAb elicitation, as well as commonalities between bNAb classes can further inform vaccine design.
Collapse
|
12
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|