1
|
Zawisza M, Abdullah M, Marcinkowska M, Matras M, Rakus K, Adamek M. Modulation of Sodium and Ammonia Transporters in the Context of Viral Gill Diseases in Common Carp (Cyprinus carpio). JOURNAL OF FISH DISEASES 2025:e14133. [PMID: 40267034 DOI: 10.1111/jfd.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Osmoregulation and ammonia removal are among key physiological processes that take place in gills and affect fish homeostasis and well-being. These processes can be disrupted by numerous environmental factors, but also by viral infections, especially those leading to severe gill disorders. The mechanisms of how viruses disrupt osmoregulation and ammonia removal in fish have not been extensively studied. We propose further exploration of the molecular and functional basis of viral induced gill disorders by studying the gene expression and enzyme activity of Na+/K+-ATPases (NKA) and ammonia transporters in the gills and kidney of common carp during infection with two viruses: carp edema virus (CEV) and cyprinid herpesvirus 3 (CyHV-3). In the case of NKA, the expression of subunit α of selected NKA was affected by both viruses; however, no discernible trends were observed in the gills and kidneys. The enzyme activity of NKA was significantly reduced in the gills during infection with both CEV and CyHV-3. Moreover, our immunohistochemical studies showed that during infection with CEV and CyHV-3, NKA-rich cells are transferred from the primary lamellae to the more superficial space and to the secondary lamellae of the gills. In the case of ammonia transporters, both CEV and CyHV-3 infection resulted in downregulation of the expression of major transporters gdh1, Rhag, and Rhbg, allowing us to partly explain the ammonia accumulation in blood observed during infection with these viruses. This study highlighted that virus induced gill disorders may lead to disruption of osmoregulation and ammonia removal by dysregulating the expression and activity of NKA and ammonia transporters.
Collapse
Affiliation(s)
- Maria Zawisza
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Muhammad Abdullah
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Magdalena Marcinkowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marek Matras
- Department of Parasitology and Invasive Diseases, Bee Diseases and Aquatic Animal Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Rani NA, Robin TB, Prome AA, Ahmed N, Moin AT, Patil RB, Sikder MNA, Bappy MNI, Afrin D, Hossain FMA, Islam T, Zinnah KMA. Development of multi epitope subunit vaccines against emerging carp viruses Cyprinid herpesvirus 1 and 3 using immunoinformatics approach. Sci Rep 2024; 14:11783. [PMID: 38782944 PMCID: PMC11116410 DOI: 10.1038/s41598-024-61074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Cyprinid herpesvirus is a causative agent of a destructive disease in common and koi carp (Cyprinus carpio), which leads to substantial global financial losses in aquaculture industries. Among the strains of C. herpesvirus, C. herpesvirus 1 (CyHV-1) and C. herpesvirus 3 (CyHV-3) are known as highly pathogenic to carp fishes in Europe, Asia, and Africa. To date, no effective vaccine has been developed to combat these viruses. This study aimed to develop unique multi-epitope subunit vaccines targeting the CyHV-1 and CyHV-3 using a reverse vaccinology approach. The study began with a comprehensive literature review to identify the most critical proteins, which were then subjected to in silico analyses to predict highly antigenic epitopes. These analyses involved assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. We constructed two multi-epitope-based vaccines incorporating a suitable adjuvant and appropriate linkers. It revealed that both the vaccines are non-toxic and immunogenic. The tertiary structures of the vaccine proteins were generated, refined, and validated to ensure their suitability. The binding affinity between the vaccine constructs and TLR3 and TLR5 receptors were assessed by molecular docking studies. Molecular dynamics simulations indicated that vaccine construct V1 exhibited greater stability with both TLR3 and TLR5 based on RMSD analysis. Hydrogen bond analysis revealed a stronger binding affinity between the vaccine constructs and TLR5 compared to TLR3. Furthermore, MM-PBSA analysis suggested that both vaccine constructs exhibited a better affinity for TLR5. Considering all aspects, the results suggest that in silico development of CyHV vaccines incorporating multiple epitopes holds promise for management of diseases caused by CyHV-1 and CyHV-3. However, further in vivo trials are highly recommended to validate the efficacies of these vaccines.
Collapse
Affiliation(s)
- Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Rajesh B Patil
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy, Sinhgad Technical Education Society's, Off Sinhgad Road, Vadgaon (Bk), Pune, Maharashtra, 411041, India
| | - Mohammad Nurul Azim Sikder
- Institute of Marine Sciences, Faculty of Marine Sciences and Fisheries, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Dilruba Afrin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Science, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh.
| | - Kazi Md Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
3
|
Zhang W, Wang R, Zou X, Gu C, Yang Q, He M, Xiao W, He L, Zhao M, Yu Z. Comparative genomic analysis of alloherpesviruses: Exploring an available genus/species demarcation proposal and method. Virus Res 2023; 334:199163. [PMID: 37364814 PMCID: PMC10410580 DOI: 10.1016/j.virusres.2023.199163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The family Alloherpesviridae contains herpesviruses of fish and amphibians. Due to the significant economic losses to aquaculture that herpesviruses can cause, the primary areas of research interest are concerning their pathogenesis and prevention. Despite alloherpesvirus genomic sequences becoming more widely accessible, methods regarding their genus/species classification are still relatively unexplored. In the present study, the phylogenetic relationships between 40 completely sequenced alloherpesviruses were illustrated by the viral proteomic tree (ViPTree), which was divided into three monophyletic groups, namely Cyprinivirus, Ictalurivirus and Batrachovirus. Additionally, average nucleotide identity (ANI) and average amino acid identity (AAI) analyses were performed across all available sequences and clearly displayed species boundaries with the threshold value of ANI/AAI set at 90%. Subsequently, core-pan analysis uncovered 809 orthogroups and 11 core genes shared by all 40 alloherpesvirus genome sequences. For the former, a 15 percent identity depicts a clear genus boundary; for the latter, 8 of them may be qualified for phylogenetic analysis based on amino acid or nucleic acid sequences after being verified using maximum likelihood (ML) or neighbor-joining (NJ) phylogenetic trees. Finally, although the dot plot analysis was valid for the members within Ictalurivirus, it was unsuccessful for Cyprinivirus and Batrachovirus. Taken together, the comparison of individual methodologies provides a wide range of alternatives for alloherpesviruses classification under various circumstances.
Collapse
Affiliation(s)
- Wenjie Zhang
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China
| | - Ran Wang
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China
| | - Xiaoxia Zou
- Suining First People's Hospital, Suining, PR China
| | - Congwei Gu
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Qian Yang
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Wudian Xiao
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Lvqin He
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Mingde Zhao
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China; Scholl of Basic Medical Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
4
|
Volpe E, Errani F, Mandrioli L, Ciulli S. Advances in Viral Aquatic Animal Disease Knowledge: The Molecular Methods' Contribution. BIOLOGY 2023; 12:biology12030466. [PMID: 36979158 PMCID: PMC10045235 DOI: 10.3390/biology12030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aquaculture is the fastest-growing food-producing sector, with a global production of 122.6 million tonnes in 2020. Nonetheless, aquatic animal production can be hampered by the occurrence of viral diseases. Furthermore, intensive farming conditions and an increasing number of reared fish species have boosted the number of aquatic animals' pathogens that researchers have to deal with, requiring the quick development of new detection and study methods for novel unknown pathogens. In this respect, the molecular tools have significantly contributed to investigating thoroughly the structural constituents of fish viruses and providing efficient detection methods. For instance, next-generation sequencing has been crucial in reassignment to the correct taxonomic family, the sturgeon nucleo-cytoplasmic large DNA viruses, a group of viruses historically known, but mistakenly considered as iridoviruses. Further methods such as in situ hybridisation allowed objectifying the role played by the pathogen in the determinism of disease, as the cyprinid herpesvirus 2, ostreid herpesvirus 1 and betanodaviruses. Often, a combination of molecular techniques is crucial to understanding the viral role, especially when the virus is detected in a new aquatic animal species. With this paper, the authors would critically revise the scientific literature, dealing with the molecular techniques employed hitherto to study the most relevant finfish and shellfish viral pathogens.
Collapse
Affiliation(s)
- Enrico Volpe
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Francesca Errani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| |
Collapse
|
5
|
Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses 2023; 15:v15030768. [PMID: 36992477 PMCID: PMC10051318 DOI: 10.3390/v15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
The zebrafish (Danio rerio) represents an increasingly important model organism in virology. We evaluated its utility in the study of economically important viruses from the genus Cyprinivirus (anguillid herpesvirus 1, cyprinid herpesvirus 2 and cyprinid herpesvirus 3 (CyHV-3)). This revealed that zebrafish larvae were not susceptible to these viruses after immersion in contaminated water, but that infections could be established using artificial infection models in vitro (zebrafish cell lines) and in vivo (microinjection of larvae). However, infections were transient, with rapid viral clearance associated with apoptosis-like death of infected cells. Transcriptomic analysis of CyHV-3-infected larvae revealed upregulation of interferon-stimulated genes, in particular those encoding nucleic acid sensors, mediators of programmed cell death and related genes. It was notable that uncharacterized non-coding RNA genes and retrotransposons were also among those most upregulated. CRISPR/Cas9 knockout of the zebrafish gene encoding protein kinase R (PKR) and a related gene encoding a protein kinase containing Z-DNA binding domains (PKZ) had no impact on CyHV-3 clearance in larvae. Our study strongly supports the importance of innate immunity-virus interactions in the adaptation of cypriniviruses to their natural hosts. It also highlights the potential of the CyHV-3-zebrafish model, versus the CyHV-3-carp model, for study of these interactions.
Collapse
|
6
|
Sosa-Higareda M, Yazdi Z, Littman EM, Quijano Cardé EM, Yun S, Soto E. Efficacy of a multidose acyclovir protocol against cyprinid herpesvirus 3 infection in koi (Cyprinus carpio). Am J Vet Res 2022; 83:ajvr.22.02.0030. [DOI: 10.2460/ajvr.22.02.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
OBJECTIVE
To evaluate the effect of a multidose acyclovir protocol on koi herpesvirus (KHV) viral load and mortality in a cohabitation challenge.
ANIMALS
180 koi fish.
PROCEDURES
Forty fish (shedders) were immersed in a 0.5 KHV plaque-forming units/mL static bath for 8 hours. Mock shedders were treated similarly but exposed to cell culture media. KHV shedders were then transferred into 8 tanks (5 shedders per tank) containing 10 naïve fish (cohabitants) each. Fish in the acyclovir group (AT) received a 10 mg/kg acyclovir intracoelomic injection 1, 3, and 6 days after the first confirmed KHV mortality. Positive controls (PC) were treated similarly but received sterile saline injections. Negative controls (NC) were exposed to mock shedders. Morbidity and mortality were evaluated daily for 50 days post-challenge. Quantitative PCR was used to determine viral load in the gill biopsies of shedders and cohabitants collected at days 19 (T1), 22 (T2), 25 (T3), 34 (T4), and 50 (T5) post-challenge.
RESULTS
Survival curves analyzed by the Gehan-Breslow-Wilcoxon method revealed a delayed onset of mortalities and a significantly lower KHV load at T2 and T3 detected in AT cohabitant fish (P = .042) compared to PC group. However, there were no significant differences in overall mortality or viral loads at T5.
CLINICAL RELEVANCE
The acyclovir protocol used in this study did not control viral infection or mortality at the end of the 50-day trial. Shorter intervals between injections could improve outcomes, but the additional stress inflicted by handling should be considered. Exploring other therapeutic alternatives and doses is warranted.
Collapse
Affiliation(s)
- Mariana Sosa-Higareda
- William T. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA
| | - Zeinab Yazdi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - Eric M. Littman
- William T. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - Eva Marie Quijano Cardé
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - Susan Yun
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
7
|
Development of an attenuated vaccine against Koi Herpesvirus Disease (KHVD) suitable for oral administration and immersion. NPJ Vaccines 2022; 7:106. [PMID: 36068296 PMCID: PMC9448810 DOI: 10.1038/s41541-022-00525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Since the end of the1990ies, Cyprinid herpesvirus 3 (also known as koi herpesvirus, KHV) has caused mass mortality events of koi and common carp all over the globe. This induced a high economic impact, since the KHV disease cannot be cured up to now, but only prevented by vaccination. Unfortunately, there is only one commercial vaccine available which is not approved in most countries. Therefore, there is an urgent need for new, safe and available vaccines. In this study, a live attenuated vaccine virus was generated by cell culture passages of virulent KHV, and shown to protect carp or koi after immersion or oral application against wild type challenge. An advantage of boost immunization was demonstrated, especially after oral application. Vaccination induced no or mild clinical signs and protecting antibodies have been measured. Additionally, the vaccine virus allowed differentiation of infected from vaccinated animals (DIVA) by PCR. The attenuation of the newly generated vaccine was tracked down to a partial deletion of open reading frame 150. This was confirmed by the generation of engineered ORF150 deletion mutants of wild-type KHV which exhibited a similar attenuation in vivo.
Collapse
|
8
|
Liu Z, Ding X, Haider MS, Ali F, Yu H, Chen X, Tan S, Zu Y, Liu W, Ding B, Zheng A, Zheng J, Qian Z, Ashfaq H, Yu D, Li K. A metagenomic insight into the Yangtze finless porpoise virome. Front Vet Sci 2022; 9:922623. [PMID: 36118360 PMCID: PMC9478467 DOI: 10.3389/fvets.2022.922623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) inhabiting the Yantze River, China is critically endangered because of the influences of infectious disease, human activity, and water contamination. Viral diseases are one of the crucial factors that threatening the health of Yangtze finless porpoise. However, there are few studies which elaborate the viral diversity of Yangtze finless. Therefore, this study was performed to investigate the viral diversity of Yangtze finless by metagenomics. Results indicated that a total of 12,686,252 high-quality valid sequences were acquired and 2,172 virus reads were recognized. Additionally, we also obtained a total of 10,600 contigs. Phages was the most abundant virus in the samples and the ratio of DNA and RNA viruses were 69.75 and 30.25%, respectively. Arenaviridae, Ackermannviridae and Siphoviridae were the three most predominant families in all the samples. Moreover, the majority of viral genus were Mammarenavirus, Limestonevirus and Lambdavirus. The results of gene prediction indicated that these viruses play vital roles in biological process, cellular component, molecular function, and disease. To the best of our knowledge, this is the first report on the viral diversity of Yangtze finless porpoise, which filled the gaps in its viral information. Meanwhile, this study can also provide a theoretical basis for the establishment of the prevention and protection system for virus disease of Yangtze finless porpoise.
Collapse
Affiliation(s)
- Zhigang Liu
- College of Life Science, Anqing Normal University, Anqing, China
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing, China
- Zhigang Liu
| | - Xin Ding
- College of Life Science, Anqing Normal University, Anqing, China
| | | | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Han Yu
- College of Life Science, Anqing Normal University, Anqing, China
| | - Xin Chen
- College of Life Science, Anqing Normal University, Anqing, China
| | - Shuaishuai Tan
- College of Life Science, Anqing Normal University, Anqing, China
| | - Yuan Zu
- College of Life Science, Anqing Normal University, Anqing, China
| | - Wenlong Liu
- College of Life Science, Anqing Normal University, Anqing, China
| | - Bangzhi Ding
- College of Life Science, Anqing Normal University, Anqing, China
| | - Aifang Zheng
- College of Life Science, Anqing Normal University, Anqing, China
| | - Jinsong Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Beijing, China
| | - Zhengyi Qian
- Hubei Yangtze River Ecological Protection Foundation, Wuhan, China
| | - Hassan Ashfaq
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Daoping Yu
- College of Life Science, Anqing Normal University, Anqing, China
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Kun Li
| |
Collapse
|
9
|
Zhang C, Wang Q, Liu AQ, Zhang C, Liu LH, Lu LF, Tu J, Zhang YA. MicroRNA miR-155 inhibits cyprinid herpesvirus 3 replication via regulating AMPK-MAVS-IFN axis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104335. [PMID: 34929233 DOI: 10.1016/j.dci.2021.104335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Since emerged in the late 1990s, cyprinid herpesvirus 3 (CyHV-3) has caused huge economic losses in common and koi carp culture worldwide. Accumulating evidences suggest that teleost fish microRNA (miRNA), a class of non-coding RNA of ∼22 nucleotides, can participate in many cellular processes, especially in host antiviral defenses. However, the roles of miRNAs in CyHV-3 infection are still unclear. Here, using high-throughput miRNA sequencing and quantitative real-time PCR (qRT-PCR) verification, we found that miR-155 was significantly upregulated in common carp brain (CCB) cells upon CyHV-3 infection. Overexpression of miR-155 effectively inhibited CyHV-3 replication in CCB cells and promoted type I interferon (IFN-I) expression. Further study revealed that miR-155 targeted the 3' untranslated region (UTR) of the mRNA of 5'AMP-activated protein kinase (AMPK), and that AMPK could interact with and degrade the mitochondrial antiviral signaling protein (MAVS), resulting in the reduction of interferon (IFN) expression. Collectively, our results show that miR-155, induced by CyHV-3 infection, exhibits anti-CyHV-3 activity via regulating AMPK-MAVS-IFN axis, which will help design anti-CyHV-3 drugs.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qing Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - An-Qi Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chu Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lan-Hao Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
10
|
Nzau Matondo B, Delrez N, Bardonnet A, Vanderplasschen A, Joaquim-Justo C, Rives J, Benitez JP, Dierckx A, Séleck E, Rollin X, Ovidio M. A complete check-up of European eel after eight years of restocking in an upland river: Trends in growth, lipid content, sex ratio and health status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151020. [PMID: 34662625 DOI: 10.1016/j.scitotenv.2021.151020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
By combining field research and careful laboratory analysis of samples over the course of an eight-year study, we met the challenge of assessing the life history traits and health status of eels restocked in freshwater ecosystems. We found that restocked eels exhibited good growth performance; moreover, the stocks were female-dominated, showed a good Fulton's condition factor (K) and lipid stores and had high survival probability estimated using the best model of Jolly-Seber stock assessment method for open populations. A necropsy revealed the absence of internal lesions. A swim bladder examination revealed the absence of the parasite Anguillicola crassus. Polymerase chain reaction (PCR) analyses revealed an increase of Anguillid herpesvirus-1 (AngHV-1) prevalence throughout the study. Most positive subjects expressed viral loads compatible with a latent infection and correlated positively with K. All restocked eels were contaminated by at least one of the organic pollutant congeners studied, but the pollution loads corresponded to the lowest range of pollutant concentrations reported in the available literature for European eels and did not exceed the maximum residue and contaminant limits in food and feed of several national and international regulations. Pollutant loads were negatively correlated with K, lipid content and eel density for polychlorinated biphenyls PCB 138, 153 and 180 and K for pesticides p.p'-DDE, p.p'-DDD, p.p'-DDT and PBDE47. This study highlights the potential role played by upland aquatic ecosystems in enhancing riverine silver eel production from the perspective of species conservation. To be successful, restocking must be accompanied by improved ecosystem quality and migration routes for eels in inland freshwaters. We also provide some recommendations for future research to improve the management of restocking programmes.
Collapse
Affiliation(s)
- Billy Nzau Matondo
- Laboratory of Fish Demography and Hydroecology, Management of Aquatic Resources and Aquaculture Unit, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, 22 Quai E. Van Beneden, B-4020 Liège, Belgium.
| | - Natacha Delrez
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Agnès Bardonnet
- Behavioural Ecology and Fish Population Biology-ECOBIOP (French National Institute for Agriculture, Food and Environment-INRAE, Saint-Pée-sur-Nivelle, France).
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, Belgium.
| | - Jacques Rives
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Jean-Philippe Benitez
- Laboratory of Fish Demography and Hydroecology, Management of Aquatic Resources and Aquaculture Unit, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, 22 Quai E. Van Beneden, B-4020 Liège, Belgium.
| | - Arnaud Dierckx
- Laboratory of Fish Demography and Hydroecology, Management of Aquatic Resources and Aquaculture Unit, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, 22 Quai E. Van Beneden, B-4020 Liège, Belgium.
| | - Emilie Séleck
- Laboratory of Animal Ecology and Ecotoxicology, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, Belgium
| | - Xavier Rollin
- SPWARNE-DNF-Public Service of Wallonia - Agriculture, Natural Ressources & Environnement, Wildlife & Forestry Department, 15 Avenue Prince de Liège, B-5100 Jambes, Belgium.
| | - Michaël Ovidio
- Laboratory of Fish Demography and Hydroecology, Management of Aquatic Resources and Aquaculture Unit, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, 22 Quai E. Van Beneden, B-4020 Liège, Belgium.
| |
Collapse
|
11
|
Tolo IE, Bajer PG, Wolf TM, Mor SK, Phelps NBD. Investigation of Cyprinid Herpesvirus 3 (CyHV-3) Disease Periods and Factors Influencing CyHV-3 Transmission in A Low Stocking Density Infection Trial. Animals (Basel) 2021; 12:ani12010002. [PMID: 35011108 PMCID: PMC8749781 DOI: 10.3390/ani12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Pathogens are the primary limitation to aquaculture production of fish and a major issue in consideration of the interface between cultured and wild populations of fishes worldwide. While rapid spread of fish pathogens between populations (wild or farmed) is generally anthropogenic and the result of trade, the mechanisms of transmission once a pathogen has been introduced to a fish population are not well understood. The most widespread pathogen impacting both aquaculture and wild populations of common carp (Cyprinus carpio, carp) is Cyprinid herpesvirus 3 (CyHV-3). To understand how CyHV-3 is transmitted in a population we conducted a series of infection trials, designed to determine the kinetics CyHV-3 infections, identify the contributions of direct and indirect forms of CyHV-3 transmission, and to determine the contributions of contact rate, viral load, pathogenicity, and contact type. We found that direct contact between fish was the primary mechanism of CyHV-3 transmission rather than transmission through contaminated water. Additionally, CyHV-3 transmission occurred primarily during the incubation period of CyHV-3, prior to the appearance of disease signs and disease-associated reduction in contact rate. Abstract Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpesvirus disease (KHVD) and important pathogen of aquaculture and wild populations of common carp worldwide. Understanding the relative contributions of direct and indirect transmission of CyHV-3 as well as the factors that drive CyHV-3 transmission can clarify the importance of environmental disease vectors and is valuable for informing disease modeling efforts. To study the mechanisms and factors driving CyHV-3 transmission we conducted infection trials that determined the kinetics of KHVD and the contributions of direct and indirect forms of CyHV-3 transmission, as well as the contributions of contact rate, viral load, pathogenicity and contact type. The incubation period of KHVD was 5.88 + 1.75 days and the symptomatic period was 5.31 + 0.87 days. Direct transmission was determined to be the primary mechanism of CyHV-3 transmission (OR = 25.08, 95%CI = 10.73–99.99, p = 4.29 × 10−18) and transmission primarily occurred during the incubation period of KHVD. Direct transmission decreased in the symptomatic period of disease. Transmissibility of CyHV-3 and indirect transmission increased during the symptomatic period of disease, correlating with increased viral loads. Additionally, potential virulence-transmission tradeoffs and disease avoidance behaviors relevant to CyHV-3 transmission were identified.
Collapse
Affiliation(s)
- Isaiah E. Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Przemyslaw G. Bajer
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Tiffany M. Wolf
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Sunil K. Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Nicholas B. D. Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
12
|
Graham K, Gilligan D, Brown P, van Klinken RD, McColl KA, Durr PA. Use of spatio-temporal habitat suitability modelling to prioritise areas for common carp biocontrol in Australia using the virus CyHV-3. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113061. [PMID: 34348430 DOI: 10.1016/j.jenvman.2021.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Common carp (Cyprinus carpio) are an invasive species of the rivers and waterways of south-eastern Australia, implicated in the serious decline of many native fish species. Over the past 50 years a variety of control options have been explored, all of which to date have proved either ineffective or cost prohibitive. Most recently the use of cyprinid herpesvirus 3 (CyHV-3) has been proposed as a biocontrol agent, but to assess the risks and benefits of this, as well as to develop a strategy for the release of the virus, a knowledge of the fundamental processes driving carp distribution and abundance is required. To this end, we developed a novel process-based modelling framework that integrates expert opinion with spatio-temporal datasets via the construction of a Bayesian Network. The resulting weekly networks thus enabled an estimate of the habitat suitability for carp across a range of hydrological habitats in south-eastern Australia, covering five diverse catchment areas encompassing in total a drainage area of 132,129 km2 over a period of 17-27 years. This showed that while suitability for adult and subadult carp was medium-high across most habitats throughout the period, nevertheless the majority of habitats were poorly suited for the recruitment of larvae and young-of-year (YOY). Instead, high population abundance was confirmed to depend on a small number of recruitment hotspots which occur in years of favourable inundation. Quantification of the underlying ecological drivers of carp abundance thus makes possible detailed planning by focusing on critical weaknesses in the population biology of carp. More specifically, it permits the rational planning for population reduction using the biocontrol agent, CyHV-3, targeting areas where the total population density is above a "damage threshold" of approximately 100 kg/ha.
Collapse
Affiliation(s)
- K Graham
- CSIRO Australian Centre for Disease Preparedness (ACDP), Geelong, VIC, Australia
| | - D Gilligan
- NSW Department of Primary Industries - Fisheries NSW, NSW, Australia
| | - P Brown
- Centre for Freshwater Ecosystems, School of Life Sciences, La Trobe University, Mildura, VIC, Australia; Fisheries and Wetlands Consulting, Portarlington, VIC, Australia
| | | | - K A McColl
- CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - P A Durr
- CSIRO Australian Centre for Disease Preparedness (ACDP), Geelong, VIC, Australia.
| |
Collapse
|
13
|
Li Y, Wang Q, Hu F, Wang Y, Bergmann SM, Zeng W, Yin J, Shi C. Development of a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for the detection of KHV. JOURNAL OF FISH DISEASES 2021; 44:913-921. [PMID: 33634875 DOI: 10.1111/jfd.13351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Koi herpesvirus disease (KHVD) caused by the koi herpesvirus (KHV) is difficult to diagnose in live fish, presenting a challenge to the koi industry. The enzyme-linked immunosorbent assay (ELISA) method cannot be widely used to detect KHV because few commercial anti-KHV antibody exists. Here, we developed an anti-ORF132 polyclonal antibody and confirmed its reactivity via indirect immunofluorescence assay and Western blotting. A double-antibody sandwich ELISA (DAS-ELISA) was established to detect KHV, monoclonal antibody 1B71B4 against ORF92 was used as the capture antibody, and the detection antibody was the polyclonal antibody against the truncated ORF132. The lowest limit was 1.56 ng/ml KHV. Furthermore, the DAS-ELISA reacted with KHV isolates, while no cross-reactions occurred with carp oedema virus, spring viraemia of carp virus, frog virus 3 and grass carp reovirus. Two hundred koi serum samples from Guangdong, China, were used in the DAS-ELISA test, and the positive rate of the koi sera was 13%. The clinical sensitivity and specificity of the DAS-ELISA relative to the traditional PCR method were 66.7% and 97.6%, respectively. Our findings may be useful for diagnosing and preventing KHVD in koi and common carp.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Feng Hu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Sven M Bergmann
- German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
14
|
Susceptibility of Pimephales promelas and Carassius auratus to a strain of koi herpesvirus isolated from wild Cyprinus carpio in North America. Sci Rep 2021; 11:1985. [PMID: 33479424 PMCID: PMC7820613 DOI: 10.1038/s41598-021-81477-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Cyprinid herpesvirus-3 (CyHV-3, syn. koi herpesvirus) is an important pathogen worldwide and a common cause of mass mortality events of wild common carp (Cyprinus carpio) in North America, however, reference strains and genomes obtained from wild carp are not available. Additionally, it is unclear if fishes in North America are susceptible to CyHV-3 infection due to incomplete susceptibility testing. Here we present the first North American type strain and whole-genome sequence of CyHV-3 isolated from wild carp collected from a lake with a history and recent incidence of carp mortality. Additionally, the strain was used in an in-vivo infection model to test the susceptibility of a common native minnow (Pimephales promelas) and goldfish (Carrasius auratus) which is invasive in North America. Detection of CyHV-3 DNA was confirmed in the tissues of a single fathead minnow but the same tissues were negative for CyHV-3 mRNA and samples from exposed fathead minnows were negative on cell culture. There was no detection of CyHV-3 DNA or mRNA in goldfish throughout the experiment. CyHV-3 DNA in carp tissues was reproducibly accompanied by the detection of CyHV-3 mRNA and isolation on cell culture. Additionally, environmental CyHV-3 DNA was detected on all tank filters during the study. These findings suggest that fathead minnows and goldfish are not susceptible to CyHV-3 infection and that detection of CyHV-3 DNA alone in host susceptibility trials should be interpreted with caution.
Collapse
|
15
|
The Role of Water Temperature Modelling in the Development of a Release Strategy for Cyprinid Herpesvirus 3 (CyHV-3) for Common Carp Control in Southeastern Australia. WATER 2020. [DOI: 10.3390/w12113217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The common carp (Cyprinus carpio) is an invasive species in the rivers and waterways of southeastern Australia, and it has been implicated in the serious decline of many native fish species. Over the past 50 years, various control options have been explored, and to date, these have been ineffective or cost-prohibitive. Most recently, cyprinid herpesvirus 3 (CyHV-3) has been proposed as a biocontrol agent because of its high specificity and mortality rate. However, the virus is known to be only effective in a permissive water temperature range of approximately 16–28 °C. To define when this occurs, we undertook a hydrological reconstruction of five diverse river catchments (>130,000 km2) of southeastern Australia over three decades. This confirmed, in the studied areas, that while water temperatures are permissive from spring through to autumn, the time of year that this starts and ends is highly variable, interannually, and with strong latitudinal and altitudinal gradients between and within catchments. The results show that the virus should be effective with respect to water temperature throughout the water temperature range that carp occur in most of southeastern Australia. However, detailed water temperature estimation would still be required to determine the exact week of the start of release in any given catchment. Referring to observations in wild carp populations, we point out the limitation of developing a “release strategy” based solely on water temperature modelling and the need to incorporate fish biology and ecology into this planning.
Collapse
|
16
|
Quijano Cardé EM, Yazdi Z, Yun S, Hu R, Knych H, Imai DM, Soto E. Pharmacokinetic and Efficacy Study of Acyclovir Against Cyprinid Herpesvirus 3 in Cyprinus carpio. Front Vet Sci 2020; 7:587952. [PMID: 33195621 PMCID: PMC7642461 DOI: 10.3389/fvets.2020.587952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022] Open
Abstract
Cyprinid Herpesvirus 3 (CyHV-3), more commonly known as Koi Herpesvirus (KHV), is a re-emergent virus causing acute systemic infection with high mortality rates in koi fish (Cyprinus carpio). Survivors from outbreaks can become latent carriers, with viral reactivation under stressful conditions and permissible temperatures. No vaccines or treatments are currently available in the United States. Acyclovir has been shown effective in vitro against KHV. This study aimed to evaluate the cytotoxicity of acyclovir and cidofovir to koi fin (KF1) cells, the efficacy of a single antiviral intracoelomic dose in a koi fingerling cohabitation challenge, and the pharmacokinetics of the effective antiviral. Initially, a lactate dehydrogenase release-based assay revealed no significant acyclovir or cidofovir cytotoxicity to KF1 cells for 24 h at up to 1,500 μM. In laboratory-controlled challenges, KHV associated mortalities occurred 2 weeks post-infection. At this point, fish were treated with an antiviral (10 mg/kg acyclovir or 5 mg/kg cidofovir) or sterile phosphate-buffered solution. Morbidity and mortality were monitored for 30 days. A significant cumulative mortality reduction (p ≤ 0.05), and a 3-day mortality delay were detected in the acyclovir-treated group. Similar viral loads were detected in gills recovered from mortalities throughout the challenge and surviving fish at the end of the challenge regardless of treatment. For pharmacokinetic analysis, blood was collected at various timepoints after acyclovir administration. Liquid chromatography tandem mass spectrometry plasma analysis indicated a 141 μM peak plasma concentration at 0.75 h, a 14 h half-life, and a 0.05/h elimination rate constant. Histopathology of target tissues detected no evidence of acyclovir toxicity. Results suggest that a single 10 mg/kg dose of acyclovir administered intracoelomically to koi fingerlings is safe and reduces cumulative mortality during a KHV mortality event. However, multiple doses are probably required for effective treatment of pet fish.
Collapse
Affiliation(s)
- Eva Marie Quijano Cardé
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Zeinab Yazdi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Susan Yun
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ruixue Hu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Heather Knych
- K. L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Denise M Imai
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA, United States
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Colorio S, Toffan A, Lewisch E, Dalla Pozza M, Stifter E, Pircher A, Meraner A, Bettini A, Tavella A. Koi herpesvirus disease outbreak: Input for the implementation of a surveillance program in South Tyrol - Italy. Prev Vet Med 2020; 181:105089. [PMID: 32652354 DOI: 10.1016/j.prevetmed.2020.105089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
A severe episode of high and abnormal mortality was observed in the population of Cyprinus carpio of Lake Caldaro (South Tyrol, Italy) in summer 2016. The diagnostic investigation carried out led to the identification of Koi Herpesvirus (KHV) as the etiologic agent. Following this disease outbreak and its socio-economic consequences, the local authorities, in agreement with the local Fishing Association, decided to implement a surveillance program for the achievement of KHV-free health status (Category I) in the Province, in accordance to the Implementing Decision (EU) 2015/1554. The selected area was a defined geographical compartment (the Monticolo lakes compartment, South Tyrol, Italy), which is located near Lake Caldaro, where the Koi Herpesvirus disease (KHVD) outbreak had occurred. This area is of particular interest because it supplies other water bodies with juvenile C. carpio individuals; with the achievement of a KHV-free health status, South Tyrol could possibly become independent in the breeding of this fish species. Suitable samples were collected and processed during a two-year period in order to detect the presence/absence of KHV. The same samples were tested for other viruses that can affect carp, namely spring viraemia of carp (SVCV) and carp edema virus (CEV). According to the results, the authors conclude that the Monticolo lakes area should be classified as KHV-free, as no sample has tested positively for the presence of this specific virus (KHV).
Collapse
Affiliation(s)
- Stefano Colorio
- Institute for Animal Health Control - Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Dell'Università 10, 35020 Legnaro, PD, Italy.
| | - Anna Toffan
- Institute for Animal Health Control - Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Dell'Università 10, 35020 Legnaro, PD, Italy.
| | - Eva Lewisch
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Manuela Dalla Pozza
- Institute for Animal Health Control - Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Dell'Università 10, 35020 Legnaro, PD, Italy.
| | - Ernst Stifter
- Provincial Veterinary Service, Via Laura Conti 4, 39100 Bolzano, Italy.
| | - Andreas Pircher
- Provincial Veterinary Service, Via Marlengo 41, 39012 Merano, Italy.
| | - Andreas Meraner
- Hunting and Fisheries Office, Via Brennero 6, 39100 Bolzano, Italy.
| | - Astrid Bettini
- Institute for Animal Health Control - Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Dell'Università 10, 35020 Legnaro, PD, Italy.
| | - Alexander Tavella
- Institute for Animal Health Control - Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Dell'Università 10, 35020 Legnaro, PD, Italy.
| |
Collapse
|
18
|
Ahmadivand S, Soltani M, Shokrpoor S, Rahmati-Holasoo H, El-Matbouli M, Taheri-Mirghaed A. Cyprinid herpesvirus 3 (CyHV-3) transmission and outbreaks in Iran: Detection and characterization in farmed common carp. Microb Pathog 2020; 149:104321. [PMID: 32534183 DOI: 10.1016/j.micpath.2020.104321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
This study shows the presence of Cyprinid Herpesvirus-3 (CyHV-3) in common carp (Cyprinus carpio) from Iranian carp farms with cumulative mortality up to 80% during 2015-2016. Pathological signs of disease such as gill necrosis, sunken eyes, and increased slime secretion on the skin and fins were observed in affected fish. The extensive fusion of secondary lamellae with necrotic cells, margination of chromatin, and formation of intranuclear inclusion bodies in gill tissues were also observed by histopathological examination. Most tubular epithelial cells and some hematopoietic cells showed intranuclear inclusion bodies in the kidney. The Iranian CyHV-3 isolates showed identity with Asian strains, and displayed the I++ II+ allele of the Asian lineage, as revealed by sequence analysis of the TK gene, Marker I, and Marker II. The detected isolates were also similar to those detected from koi in the same region of Iran, suggesting the probable transmission of CyHV-3 from ornamental to farmed cyprinids. This represents the first report of CyHV-3 from Iranian farmed common carp to the best of our knowledge.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran.
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia.
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, 1210, Austria
| | - Ali Taheri-Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| |
Collapse
|
19
|
Soto E, Tamez-Trevino E, Yazdi Z, Stevens BN, Yun S, Martínez-López B, Burges J. Non-lethal diagnostic methods for koi herpesvirus in koi Cyprinus carpio. DISEASES OF AQUATIC ORGANISMS 2020; 138:195-205. [PMID: 32213667 DOI: 10.3354/dao03456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyprinid herpesvirus 3, also known as koi herpesvirus (KHV), is a viral pathogen responsible for mass mortalities of carp worldwide. In this study, we compared the sensitivity and specificity of ELISA and quantitative PCR (qPCR) methods for the diagnosis of KHV in experimentally infected koi Cyprinus carpio over an 11 mo period. Koi were exposed to KHV at 18 ± 1°C (permissive temperatures for KHV disease) in laboratory-controlled conditions. At 21 d post challenge, the temperature in the system was decreased to <15°C (non-permissive temperature for KHV disease), and fish were monitored for the following 11 mo. At different time points throughout the study, samples of blood and gills were collected from exposed and control koi and subjected to qPCR and ELISA. Survival proportions of 53.3 and 98.8% in exposed and control treatments, respectively, were recorded at the end of the challenge. Traditional receiver-operating characteristic analysis was used to compare the sensitivity of the ELISA and blood and gill qPCR during permissive and non-permissive temperatures. ELISA was superior to qPCR of gills and whole-blood samples in detecting previous exposure to KHV. Similar results were obtained in a second experiment exposing koi to KHV and inducing persistent infection at >30°C (non-permissive temperature for KHV disease). Finally, KHV ELISA specificity was confirmed using cyprinid herpesvirus 1-exposed koi through a period of 3 mo. This study demonstrates that the combination of ELISA and gill qPCR should be recommended in the diagnosis of KHV exposure of suspected carrier-state fish.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ma Y, Liu Z, Hao L, Wu J, Qin B, Liang Z, Ma J, Ke H, Yang H, Li Y, Cao J. Oral vaccination using Artemia coated with recombinant Saccharomyces cerevisiae expressing cyprinid herpesvirus-3 envelope antigen induces protective immunity in common carp (Cyprinus carpio var. Jian) larvae. Res Vet Sci 2020; 130:184-192. [PMID: 32199177 DOI: 10.1016/j.rvsc.2020.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpersvirus disease (KHVD), which causes serious economic losses in global common carp and ornamental koi carp production of larvae as well as adult type fish. To control KHVD, vaccines against CyHV-3 utilizing different immunization routes have been developed, among them, oral vaccination is the most desirable method to prevent fish diseases occurring at the early larval stage. Here, we developed an oral subunit vaccine through the Saccharomyces cerevisiae cell surface display of CyHV-3 envelope protein pORF65, then, the recombinant yeast fed to Artemia which served as bio-encapsulation vector by subsequently feeding the common carp (Cyprinus carpio var. Jian) larvae. The fluorescent observation showed that the Artemia and S. cerevisiae could deliver intact antigen to the hindgut of carp larvae suggesting the possibility of the vector for oral immunization. On this basis, after three immunizations at a week interval, the oral vaccine induced high level of specific anti-pORF65 antibody. Meanwhile, a significant difference of immune-related genes expression occurred including cxca, IL-1β, IFN-a1, lysozyme, IgM and CD8α between vaccined group and blank control group. In addition, 30% of relative percent survival of carp larvae after immunization was obtained post the animal infection assay, offered an certain immune protection. Our results indicated that the oral pORF65 subunit vaccine bioencapsulated in Artemia induced the activation of immune response and high level of antibodies, which could be served as an oral vaccine candidate for the prevention of CyHV-3 infection.
Collapse
Affiliation(s)
- Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou 510640, China.
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou 510640, China
| | - Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Baotian Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhiling Liang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou 510640, China
| | - Jiangyao Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou 510640, China
| | - Hao Ke
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou 510640, China
| | - Hongwei Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junming Cao
- Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
21
|
Liu Z, Wu J, Ma Y, Hao L, Liang Z, Ma J, Ke H, Li Y, Cao J. Protective immunity against CyHV-3 infection via different prime-boost vaccination regimens using CyHV-3 ORF131-based DNA/protein subunit vaccines in carp Cyprinus carpio var. Jian. FISH & SHELLFISH IMMUNOLOGY 2020; 98:342-353. [PMID: 31978531 DOI: 10.1016/j.fsi.2020.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Cyprinid Herpesvirus 3 (CyHV-3), also known as Koi Herpesvirus (KHV), causes Koi Herpesvirus Disease (KHVD) which leads to serious economic losses worldwide. To exploit DNA/subunit vaccine candidates, CyHV-3 ORF131 gene and cDNA was cloned and analyzed in the present study. Major B cell epitopes of deduced CyHV-3 pORF131 was also predicted. Then the complete CDS of CyHV-3 ORF131 was inserted into pEGFP-N1 vector and a modified pYD1/EBY100 system to construct the DNA and subunit vaccine, respectively. Subsequently, carp were immunized with homologous and heterologous prime-boost regimens relying on the constructed DNA and oral subunit vaccines. Then the protective immunity generated from different vaccines and regimens as well as the capacity of yeast (Saccharomyces cerevisiae) as an oral vaccine vehicle was evaluated. Our study confirmed that CyHV-3 ORF131 gene consisted of 2 introns and 3 exons encoding a 428 amino acids peptide. Further analysis indicated that four fragments of CyHV-3 pORF131 contained the major B cell epitopes (Cys20~Val140, Ser169~Tyr245, Thr258~Pro390, Phe414~Gln428), which could be linked and expressed in E. coli (BL21) as a truncated pORF131. The expression of full-length CyHV-3 pORF131 by pEGFP-N1 and yeast surface display was verified by In vitro assays before vaccination. Immunization of carp with CyHV-3 ORF131 DNA and subunit vaccines could evoke the activation of immune-related genes such as CXCa, CXCR1, IL-1β, TNF-α, INF-a1, Mx-1, IgM, IgT1 and production of specific serum IgM measured by ELISA. RPS (relative percent of survival) ranging from 53.33% to 66.67% was acquired post challenge test. Moreover, flow cytometry analysis illustrated the delivery of surface-displayed CyHV-3 pORF131 to midgut after oral gavage. Thus, our findings suggest that CyHV-3 ORF131 can serve as DNA/subunit vaccines candidate and the yeast as an ideal oral vaccine vehicle.
Collapse
Affiliation(s)
- Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China.
| | - Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Zhiling Liang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Jiangyao Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Hao Ke
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junming Cao
- Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
22
|
Boutier M, Gao Y, Donohoe O, Vanderplasschen A. Current knowledge and future prospects of vaccines against cyprinid herpesvirus 3 (CyHV-3). FISH & SHELLFISH IMMUNOLOGY 2019; 93:531-541. [PMID: 31369858 DOI: 10.1016/j.fsi.2019.07.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Aquaculture is one of the world's most important and fastest growing food production sectors, with an average annual growth of 5.8% during the period 2001-2016. Common carp (Cyprinus carpio) is one of the main aquatic species produced for human consumption and is the world's third most produced finfish. Koi carp, on the other hand, are grown as a popular ornamental fish. In the late 1990s, both of these sectors were threatened by the emergence of a deadly disease caused by cyprinid herpesvirus 3 (CyHV-3; initially called koi herpesvirus or KHV). Since then, several research groups have focused their work on developing methods to fight this disease. Despite increasing knowledge about the pathobiology of this virus, there are currently no efficient and cost-effective therapeutic methods available to fight this disease. Facing the lack of efficient treatments, safe and efficacious prophylactic methods such as the use of vaccines represent the most promising approach to the control of this virus. The common carp production sector is not a heavily industrialized production sector and the fish produced have low individual value. Therefore, development of vaccine methods adapted to mass vaccination are more suitable. Multiple vaccine candidates against CyHV-3 have been developed and studied, including DNA, bacterial vector, inactivated, conventional attenuated and recombinant attenuated vaccines. However, there is currently only one vaccine commercially available in limited regions. The present review aims to summarize and evaluate the knowledge acquired from the study of these vaccines against CyHV-3 and provide discussion on future prospects.
Collapse
Affiliation(s)
- Maxime Boutier
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Owen Donohoe
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; Bioscience Research Institute, Athlone Institute of Technology, Athlone, Co Westmeath, Ireland
| | - Alain Vanderplasschen
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
23
|
Rakus K, Adamek M, Mojżesz M, Podlasz P, Chmielewska-Krzesińska M, Naumowicz K, Kasica-Jarosz N, Kłak K, Rakers S, Way K, Steinhagen D, Chadzińska M. Evaluation of zebrafish (Danio rerio) as an animal model for the viral infections of fish. JOURNAL OF FISH DISEASES 2019; 42:923-934. [PMID: 30920010 DOI: 10.1111/jfd.12994] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Zebrafish (Danio rerio) is a laboratory model organism used in different areas of biological research including studies of immune response and host-pathogen interactions. Thanks to many biological tools available, zebrafish becomes also an important model in aquaculture research since several fish viral infection models have been developed for zebrafish. Here, we have evaluated the possible use of zebrafish to study infections with fish viruses that have not yet been tested on this model organism. In vitro studies demonstrated that chum salmon reovirus (CSV; aquareovirus A) and two alloherpesviruses cyprinid herpesvirus 1 (CyHV-1) and cyprinid herpesvirus 3 (CyHV-3) are able to replicate in zebrafish cell lines ZF4 and SJD.1. Moreover, CSV induced a clear cytopathic effect and up-regulated the expression of antiviral genes vig-1 and mxa in both cell lines. In vivo studies demonstrated that both CSV and CyHV-3 induce up-regulation of vig-1 and mxa expression in kidney and spleen of adult zebrafish after infection by i.p. injection but not in larvae after infection by immersion. CyHV-3 is eliminated quickly from fish; therefore, virus clearing process could be evaluated, and in CSV-infected fish, a prolonged confrontation of the host with the pathogen could be studied.
Collapse
Affiliation(s)
- Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mikołaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Miriam Mojżesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Małgorzata Chmielewska-Krzesińska
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Karolina Naumowicz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Natalia Kasica-Jarosz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Katarzyna Kłak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Sebastian Rakers
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
24
|
Boutier M, Donohoe O, Kopf RK, Humphries P, Becker JA, Marshall J, Vanderplasschen A. Biocontrol of Carp: The Australian Plan Does Not Stand Up to a Rational Analysis of Safety and Efficacy. Front Microbiol 2019; 10:882. [PMID: 31114554 PMCID: PMC6503052 DOI: 10.3389/fmicb.2019.00882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maxime Boutier
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium
| | - Owen Donohoe
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium.,Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - R Keller Kopf
- School of Environmental Sciences, Institute for Land Water & Society, Charles Sturt University, Albury, NSW, Australia
| | - Paul Humphries
- School of Environmental Sciences, Institute for Land Water & Society, Charles Sturt University, Albury, NSW, Australia
| | - Joy A Becker
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
| | - Jonathan Marshall
- Queensland Department of Environment and Science, Water Planning Ecology, Brisbane, QLD, Australia.,Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Alain Vanderplasschen
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium
| |
Collapse
|
25
|
Kopf RK, Boutier M, Finlayson CM, Hodges K, Humphries P, King A, Kingsford RT, Marshall J, McGinness HM, Thresher R, Vanderplasschen A. Biocontrol in Australia: Can a carp herpesvirus (CyHV-3) deliver safe and effective ecological restoration? Biol Invasions 2019. [DOI: 10.1007/s10530-019-01967-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Ke F, Zhang QY. Aquatic animal viruses mediated immune evasion in their host. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1096-1105. [PMID: 30557608 DOI: 10.1016/j.fsi.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
27
|
Zhang Q, Shavalier M, Standish I, Glenney GW, Loch TP, Faisal M. Development of a loop-mediated isothermal amplification assay for the detection and quantification of epizootic epitheliotropic disease virus (salmonid herpesvirus-3). J Virol Methods 2018; 264:44-50. [PMID: 30444983 PMCID: PMC7119762 DOI: 10.1016/j.jviromet.2018.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022]
Abstract
A quantitative LAMP method for identification of EEDV has been developed. Analytical sensitivity of the qLAMP is as low as 78 pg extracted DNA from tissue. The method is highly specific for EEDV. The EEDV qLAMP method was evaluated against the qPCR method.
Epizootic Epitheliotropic Disease Virus (EEDV; Salmonid Herpesvirus-3) causes a serious disease hatchery-reared lake trout (Salvelinus namaycush), threatening restoration efforts of this species in North America. The current inability to replicate EEDV in vitro necessitates the search for a reproducible, sensitive, and specific assay that allows for its detection and quantitation in a time- and cost-effective manner. Herein, we describe a loop-mediated isothermal amplification (LAMP) assay that was developed for the quantitative detection of EEDV in infected fish tissues. The newly developed LAMP reaction was optimized in the presence of calcein, and the best results were produced using 2 mM MgCl2, 1.8 mM dNTPs and at an incubation temperature of 67.1 °C. This method was highly specific to EEDV, as it showed no cross-reactivity with several fish viruses, including Salmonid Herpesvirus-1, -2, -4, and -5, Infectious Pancreatic Necrosis Virus, Spring Viremia of Carp Virus, Infectious Hematopoietic Necrosis Virus, Golden Shiner Reovirus, Fathead Minnow Nidovirus, and Viral Hemorrhagic Septicemia Virus. The analytical sensitivity of the EEDV-LAMP method was estimated to be as low as 16 copies of plasmid per reaction. When infected fish tissue was used, a positive reaction could be obtained when an infected gill tissue sample that contained 430 viral copies/μg was diluted up to five orders of magnitude. The sensitivity and specificity of the newly developed LAMP assay compared to the SYBR Green qPCR assay were 84.3% and 93.3%, respectively. The quantitative LAMP for EEDV had a correlation coefficient (R2 = 0.980), and did not differ significantly from the SYBR Green quantitative PCR assay (p > 0.05). Given its cost- and time-effectiveness, this quantitative LAMP assay is suitable for screening lake trout populations and for the initial diagnosis of clinical cases.
Collapse
Affiliation(s)
- Qingli Zhang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Megan Shavalier
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Isaac Standish
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Gavin W Glenney
- U.S. Fish and Wildlife Service, Lamar Fish Health Center, Lamar, PA 16848, USA
| | - Thomas P Loch
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Fisheries and Wildlife, College of Agriculture and Natural Resources,Michigan State University, East Lansing, MI 48824, USA
| | - Mohamed Faisal
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA; Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; Department of Fisheries and Wildlife, College of Agriculture and Natural Resources,Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
McColl KA, Sunarto A, Neave MJ. Biocontrol of Carp: More Than Just a Herpesvirus. Front Microbiol 2018; 9:2288. [PMID: 30319586 PMCID: PMC6168658 DOI: 10.3389/fmicb.2018.02288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kenneth A McColl
- CSIRO-Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Agus Sunarto
- CSIRO-Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Matthew J Neave
- CSIRO-Australian Animal Health Laboratory, Geelong, VIC, Australia
| |
Collapse
|
29
|
Gao Y, Suárez NM, Wilkie GS, Dong C, Bergmann S, Lee PYA, Davison AJ, Vanderplasschen AFC, Boutier M. Genomic and biologic comparisons of cyprinid herpesvirus 3 strains. Vet Res 2018; 49:40. [PMID: 29716648 PMCID: PMC5930815 DOI: 10.1186/s13567-018-0532-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the archetypal fish alloherpesvirus and the etiologic agent of a lethal disease in common and koi carp. To date, the genome sequences of only four CyHV-3 isolates have been published, but no comparisons of the biologic properties of these strains have been reported. We have sequenced the genomes of a further seven strains from various geographical sources, and have compared their growth in vitro and virulence in vivo. The major findings were: (i) the existence of the two genetic lineages previously described as European and Asian was confirmed, but inconsistencies between the geographic origin and genotype of some strains were revealed; (ii) potential inter-lineage recombination was detected in one strain, which also suggested the existence of a third, as yet unidentified lineage; (iii) analysis of genetic disruptions led to the identification of non-essential genes and their potential role in virulence; (iv) comparison of the in vitro and in vivo properties of strains belonging to the two lineages revealed that inter-lineage polymorphisms do not contribute to the differences in viral fitness observed; and (v) a negative correlation was observed among strains between viral growth in vitro and virulence in vivo. This study illustrates the importance of coupling genomic and biologic comparisons of viral strains in order to enhance understanding of viral evolution and pathogenesis.
Collapse
Affiliation(s)
- Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases (B43b), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Chuanfu Dong
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sven Bergmann
- Friedrich-Loeffler Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald-Insel Riems, Germany
| | - Pei-Yu Alison Lee
- Department of Research and Development, GeneReach, Biotechnology Corporation, Taichung, China
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alain F C Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases (B43b), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases (B43b), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Marshall J, Davison AJ, Kopf RK, Boutier M, Stevenson P, Vanderplasschen A. Biocontrol of invasive carp: Risks abound. Science 2018; 359:877. [PMID: 29472472 DOI: 10.1126/science.aar7827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jonathan Marshall
- Queensland Department of Environment and Science, Water Planning Ecology, Brisbane, QLD 4001, Australia.,Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - R Keller Kopf
- Institute for Land, Water, and Society, Charles Sturt University, Albury, NSW 2640, Australia
| | - Maxime Boutier
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, B-4000, Belgium
| | - Philip Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Alain Vanderplasschen
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, B-4000, Belgium.
| |
Collapse
|
31
|
Vancsok C, Peñaranda MMD, Raj VS, Leroy B, Jazowiecka-Rakus J, Boutier M, Gao Y, Wilkie GS, Suárez NM, Wattiez R, Gillet L, Davison AJ, Vanderplasschen AFC. Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3. J Virol 2017; 91:e01209-17. [PMID: 28794046 PMCID: PMC5640863 DOI: 10.1128/jvi.01209-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023] Open
Abstract
Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (open reading frame 32 [ORF32], ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are nonessential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the nonessential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro, and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25-deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs.IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro; (iii) seven of the nonessential proteins affect viral growth in vitro, and two affect virulence in vivo; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins.
Collapse
Affiliation(s)
- Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - M Michelle D Peñaranda
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - V Stalin Raj
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, India
| | - Baptiste Leroy
- Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ruddy Wattiez
- Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain F C Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
32
|
Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-α Receptor Delays Behavioral Fever in Fish. Cell Host Microbe 2017; 21:244-253. [PMID: 28182952 PMCID: PMC5301049 DOI: 10.1016/j.chom.2017.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/19/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
Both endotherms and ectotherms (e.g., fish) increase their body temperature to limit pathogen infection. Ectotherms do so by moving to warmer places, hence the term “behavioral fever.” We studied the manifestation of behavioral fever in the common carp infected by cyprinid herpesvirus 3, a native carp pathogen. Carp maintained at 24°C died from the infection, whereas those housed in multi-chamber tanks encompassing a 24°C–32°C gradient migrated transiently to the warmest compartment and survived as a consequence. Behavioral fever manifested only at advanced stages of infection. Consistent with this, expression of CyHV-3 ORF12, encoding a soluble decoy receptor for TNF-α, delayed the manifestation of behavioral fever and promoted CyHV-3 replication in the context of a temperature gradient. Injection of anti-TNF-α neutralizing antibodies suppressed behavioral fever, and decreased fish survival in response to infection. This study provides a unique example of how viruses have evolved to alter host behavior to increase fitness. Behavioral fever exhibited by carp in response to CyHV-3 infection is host beneficial CyHV-3 ORF12 delays behavioral fever expression, thereby promoting its own replication CyHV-3 ORF12 encodes a soluble decoy receptor for TNF-α TNF-α is a mediator of behavioral fever expressed by CyHV-3 infected carp
Collapse
|
33
|
McColl KA, Sunarto A, Slater J, Bell K, Asmus M, Fulton W, Hall K, Brown P, Gilligan D, Hoad J, Williams LM, Crane MSJ. Cyprinid herpesvirus 3 as a potential biological control agent for carp (Cyprinus carpio) in Australia: susceptibility of non-target species. JOURNAL OF FISH DISEASES 2017; 40:1141-1153. [PMID: 28026008 DOI: 10.1111/jfd.12591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Carp (Cyprinus carpio L.) is a pest species in Australian waterways, and cyprinid herpesvirus 3 (CyHV-3) is being considered as a potential biological control (biocontrol) agent. An important consideration for any such agent is its target specificity. In this study, the susceptibility to CyHV-3 of a range of non-target species (NTS) was tested. The NTS were as follows: 13 native Australian, and one introduced, fish species; a lamprey species; a crustacean; two native amphibian species (tadpole and mature stages); two native reptilian species; chickens; and laboratory mice. Animals were exposed to 100-1000 times the approximate minimum amount of CyHV-3 required to cause disease in carp by intraperitoneal and/or bath challenge, and then examined clinically each day over the course of 28 days post-challenge. There were no clinical signs, mortalities or histological evidence consistent with a viral infection in a wide taxonomic range of NTS. Furthermore, there was no molecular evidence of infection with CyHV-3, and, in particular, all RT-PCRs for viral mRNA were negative. As a consequence, the results encourage further investigation of CyHV-3 as a potential biocontrol agent that is specific for carp.
Collapse
Affiliation(s)
- K A McColl
- CSIRO-Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - A Sunarto
- CSIRO-Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - J Slater
- CSIRO-Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - K Bell
- K&C Global Fisheries, Sale, Vic., Australia
| | - M Asmus
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, Australia
| | - W Fulton
- Department of Primary Industries, Fisheries Research Branch, Queenscliff, Vic., Australia
| | - K Hall
- Department of Primary Industries, Fisheries Research Branch, Queenscliff, Vic., Australia
| | - P Brown
- The Murray-Darling Freshwater Research Centre and La Trobe University, Mildura, Vic., Australia
| | - D Gilligan
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, Australia
| | - J Hoad
- CSIRO-Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - L M Williams
- CSIRO-Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - M St J Crane
- CSIRO-Australian Animal Health Laboratory, Geelong, Vic., Australia
| |
Collapse
|
34
|
Zheng S, Wang Q, Bergmann SM, Li Y, Zeng W, Wang Y, Liu C, Shi C. Investigation of latent infections caused by cyprinid herpesvirus 3 in koi ( Cyprinus carpio) in southern China. J Vet Diagn Invest 2017; 29:366-369. [PMID: 28430085 DOI: 10.1177/1040638716689117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although herpesviruses such as cyprinid herpesvirus 3 (CyHV-3) can establish lifelong latent infections, little is known about latency conditions in farmed koi populations in China. We used nested polymerase chain reaction targeting the TK gene and an indirect antibody ELISA to screen asymptomatic fish obtained from southern China for evidence of CyHV-3 infection. CyHV-3 DNA could be detected either in peripheral blood leukocytes or from gills of asymptomatic koi. Most koi sera did not contain anti-CyHV-3 antibodies; however, 5 samples were ELISA positive, providing evidence of prior CyHV-3 infections. These findings suggest that koi may survive CyHV-3 infections and become virus carriers.
Collapse
Affiliation(s)
- Shucheng Zheng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, the People's Republic of China (Zheng, Q Wang, Li, Zeng, Y Wang, Liu, Shi).,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, the People's Republic of China (Zheng).,German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany (Bergmann)
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, the People's Republic of China (Zheng, Q Wang, Li, Zeng, Y Wang, Liu, Shi).,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, the People's Republic of China (Zheng).,German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany (Bergmann)
| | - Sven M Bergmann
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, the People's Republic of China (Zheng, Q Wang, Li, Zeng, Y Wang, Liu, Shi).,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, the People's Republic of China (Zheng).,German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany (Bergmann)
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, the People's Republic of China (Zheng, Q Wang, Li, Zeng, Y Wang, Liu, Shi).,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, the People's Republic of China (Zheng).,German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany (Bergmann)
| | - Weiwei Zeng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, the People's Republic of China (Zheng, Q Wang, Li, Zeng, Y Wang, Liu, Shi).,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, the People's Republic of China (Zheng).,German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany (Bergmann)
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, the People's Republic of China (Zheng, Q Wang, Li, Zeng, Y Wang, Liu, Shi).,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, the People's Republic of China (Zheng).,German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany (Bergmann)
| | - Chun Liu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, the People's Republic of China (Zheng, Q Wang, Li, Zeng, Y Wang, Liu, Shi).,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, the People's Republic of China (Zheng).,German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany (Bergmann)
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, the People's Republic of China (Zheng, Q Wang, Li, Zeng, Y Wang, Liu, Shi).,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, the People's Republic of China (Zheng).,German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany (Bergmann)
| |
Collapse
|
35
|
Boutier M, Gao Y, Vancsok C, Suárez NM, Davison AJ, Vanderplasschen A. Identification of an essential virulence gene of cyprinid herpesvirus 3. Antiviral Res 2017; 145:60-69. [PMID: 28690142 PMCID: PMC5588920 DOI: 10.1016/j.antiviral.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022]
Abstract
The genus Cyprinivirus consists of a growing list of phylogenetically related viruses, some of which cause severe economic losses to the aquaculture industry. The archetypal member, cyprinid herpesvirus 3 (CyHV-3) causes mass mortalities worldwide in koi and common carp. A CyHV-3 mutant was described previously that is attenuated in vivo by a deletion affecting two genes (ORF56 and ORF57). The relative contributions of ORF56 and ORF57 to the safety and efficacy profile of this vaccine candidate have now been assessed by analysing viruses individually deleted for ORF56 or ORF57. Inoculation of these viruses into carp demonstrated that the absence of ORF56 did not affect virulence, whereas the absence of ORF57 led to an attenuation comparable to, though slightly less than, that of the doubly deleted virus. To demonstrate further the role of ORF57 as a key virulence factor, a mutant retaining the ORF57 region but unable to express the ORF57 protein was produced by inserting multiple in-frame stop codons into the coding region. Analysis of this virus in vivo revealed a safety and efficacy profile comparable to that of the doubly deleted virus. These findings show that ORF57 encodes an essential CyHV-3 virulence factor. They also indicate that ORF57 orthologues in other cypriniviruses may offer promising targets for the rational design of attenuated recombinant vaccines. Cyprinid herpesvirus 3 (CyHV-3) causes a lethal disease in common and koi carp and is the archetypal fish alloherpesvirus. CyHV-3 ORF57 encodes an essential virulence factor and ORF57 deleted viruses represent attenuated vaccine candidates. ORF57 orthologues in other alloherpesviruses may offer promising targets for the design of attenuated recombinant vaccines.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
36
|
Li Y, Zheng S, Wang Q, Bergmann SM, Zeng W, Wang Y, Liu C, Shi C. Detection of koi herpesvirus (KHV) using a monoclonal antibody against Cyprinus carpio IgM. Arch Virol 2017; 162:2381-2385. [PMID: 28424886 DOI: 10.1007/s00705-017-3357-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Koi herpesvirus disease (KHVD) is associated with high mortality in both common carp and koi carp (Cyprinus carpio L.) worldwide. The indirect detection of fish viruses based on the identification of antibodies has emerged as a practical and reliable means of diagnosis. Thus, it is important to create monoclonal antibodies (MAbs) against carp IgM. By using hybridoma-monoclonal antibody technology, one hybridoma cell line secreting MAbs against IgM from carp was established. In western blot analysis, the secreted MAb from cell line A5-E10 recognized the heavy chain of IgM from common carp or koi but did not react with immunoglobulins from three different fish species: grass carp (Ctenopharyngodon idella), tilapia (Oreochromis mossambicus) and Mandarin fish (Siniperca chuatsi). These results demonstrated that this MAb is highly specific for the IgM of carp and suggested that it can be used for monitoring the immunity level of carp, for example for indirect KHV diagnosis by antibody ELISA. We therefore established an indirect ELISA, which was tested using 200 serum samples from koi from three farms. The final results showed that 147 (73.5%) samples were confirmed to be KHV antibody negative and 53 (26.5%) were definitely positive, containing antibodies against KHV.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Liwan District, Guangzhou, 510380, Guangdong, The People's Republic of China
| | - Shucheng Zheng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Liwan District, Guangzhou, 510380, Guangdong, The People's Republic of China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, The People's Republic of China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Liwan District, Guangzhou, 510380, Guangdong, The People's Republic of China.
| | - Sven M Bergmann
- German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Weiwei Zeng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Liwan District, Guangzhou, 510380, Guangdong, The People's Republic of China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Liwan District, Guangzhou, 510380, Guangdong, The People's Republic of China
| | - Chun Liu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Liwan District, Guangzhou, 510380, Guangdong, The People's Republic of China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Liwan District, Guangzhou, 510380, Guangdong, The People's Republic of China
| |
Collapse
|
37
|
Clouthier SC, McClure C, Schroeder T, Desai M, Hawley L, Khatkar S, Lindsay M, Lowe G, Richard J, Anderson ED. Diagnostic validation of three test methods for detection of cyprinid herpesvirus 3 (CyHV-3). DISEASES OF AQUATIC ORGANISMS 2017; 123:101-122. [PMID: 28262633 DOI: 10.3354/dao03093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of koi herpesvirus disease in koi and common carp. The disease is notifiable to the World Organisation for Animal Health. Three tests-quantitative polymerase chain reaction (qPCR), conventional PCR (cPCR) and virus isolation by cell culture (VI)-were validated to assess their fitness as diagnostic tools for detection of CyHV-3. Test performance metrics of diagnostic accuracy were sensitivity (DSe) and specificity (DSp). Repeatability and reproducibility were measured to assess diagnostic precision. Estimates of test accuracy, in the absence of a gold standard reference test, were generated using latent class models. Test samples originated from wild common carp naturally exposed to CyHV-3 or domesticated koi either virus free or experimentally infected with the virus. Three laboratories in Canada participated in the precision study. Moderate to high repeatability (81 to 99%) and reproducibility (72 to 97%) were observed for the qPCR and cPCR tests. The lack of agreement observed between some of the PCR test pair results was attributed to cross-contamination of samples with CyHV-3 nucleic acid. Accuracy estimates for the PCR tests were 99% for DSe and 93% for DSp. Poor precision was observed for the VI test (4 to 95%). Accuracy estimates for VI/qPCR were 90% for DSe and 88% for DSp. Collectively, the results show that the CyHV-3 qPCR test is a suitable tool for surveillance, presumptive diagnosis and certification of individuals or populations as CyHV-3 free.
Collapse
Affiliation(s)
- Sharon C Clouthier
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vesicular Nucleo-Cytoplasmic Transport-Herpesviruses as Pioneers in Cell Biology. Viruses 2016; 8:v8100266. [PMID: 27690080 PMCID: PMC5086602 DOI: 10.3390/v8100266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses use a vesicle-mediated transfer of intranuclearly assembled nucleocapsids through the nuclear envelope (NE) for final maturation in the cytoplasm. The molecular basis for this novel vesicular nucleo-cytoplasmic transport is beginning to be elucidated in detail. The heterodimeric viral nuclear egress complex (NEC), conserved within the classical herpesviruses, mediates vesicle formation from the inner nuclear membrane (INM) by polymerization into a hexagonal lattice followed by fusion of the vesicle membrane with the outer nuclear membrane (ONM). Mechanisms of capsid inclusion as well as vesicle-membrane fusion, however, are largely unclear. Interestingly, a similar transport mechanism through the NE has been demonstrated in nuclear export of large ribonucleoprotein complexes during Drosophila neuromuscular junction formation, indicating a widespread presence of a novel concept of cellular nucleo-cytoplasmic transport.
Collapse
|
39
|
Zeng XT, Chen ZY, Deng YS, Gui JF, Zhang QY. Complete genome sequence and architecture of crucian carp Carassius auratus herpesvirus (CaHV). Arch Virol 2016; 161:3577-3581. [PMID: 27591780 DOI: 10.1007/s00705-016-3037-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/27/2016] [Indexed: 01/08/2023]
Abstract
Crucian carp Carassius auratus herpesvirus (CaHV) was isolated from diseased crucian carp with acute gill hemorrhages and high mortality. The CaHV genome was sequenced and analyzed. The data showed that it consists of 275,348 bp and contains 150 predicted ORFs. The architecture of the CaHV genome differs from those of four cyprinid herpesviruses (CyHV1, CyHV2, SY-C1, CyHV3), with insertions, deletions and the absence of a terminal direct repeat. Phylogenetic analysis of the DNA polymerase sequences of 17 strains of Herpesvirales members, and the concatenated 12 core ORFs from 10 strains of alloherpesviruses showed that CaHV clustered together with members of the genus Cyprinivirus, family Alloherpesviridae.
Collapse
Affiliation(s)
- Xiao-Tao Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuan-Sheng Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
40
|
Lee X, Yi Y, Weng S, Zeng J, Zhang H, He J, Dong C. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing. FISH & SHELLFISH IMMUNOLOGY 2016; 49:213-24. [PMID: 26690666 DOI: 10.1016/j.fsi.2015.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Cyprinid Herpesvirus 3 (CyHV-3) can infect and specifically cause a huge economic loss in both common carp (Cyprinus carpio) and its ornamental koi variety. The molecular mechanisms underlying CyHV-3 infection are not well understood. In this study, koi spleen tissues of both mock and CyHV-3 infection groups were collected, and high-throughput sequencing technology was used to analyze the differentially expressed genes (DEGs) at the transcriptome level. A total of 105,356,188 clean reads from two libraries were obtained. After the de novo assembly of the transcripts, 129,314 unigenes were generated. Of these unigenes, 70,655 unigenes were matched to the known proteins in the database, while 2190 unigenes were predicted by ESTScan software. Comparing the infection group to the mock group, a total of 23,029 significantly differentially expressed unigenes were identified, including 10,493 up-regulated DEGs and 12,536 down-regulated DEGs. GO (Gene Ontology) annotation and functional enrichment analysis indicated that all of the DEGs were annotated into GO terms in three main GO categories: biological process, cellular component and molecular function. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the DEGs showed that a total of 12,002 DEG unigenes were annotated into 256 pathways classified into 6 main categories. Additionally, 20 differentially expressed genes were validated by quantitative real-time PCR. As the first report of a transcriptome analysis of koi carp with CyHV-3 infection, the data presented here provide knowledge of the innate immune response against CyHV-3 in koi carp and useful data for further research of the molecular mechanism of CyHV-3 infection.
Collapse
Affiliation(s)
- Xuezhu Lee
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yang Yi
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaoping Weng
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie Zeng
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hetong Zhang
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Chuanfu Dong
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|