1
|
Vitkauskaite A, McDermott E, Lalor R, De Marco Verissimo C, Dehkordi MH, Thompson K, Owens P, Fearnhead HO, Dalton JP, Calvani NED. In vitro co-culture of Fasciola hepatica newly excysted juveniles (NEJs) with 3D HepG2 spheroids permits novel investigation of host-parasite interactions. Virulence 2025; 16:2482159. [PMID: 40132201 PMCID: PMC11938319 DOI: 10.1080/21505594.2025.2482159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
Fasciola hepatica, or liver fluke, causes fasciolosis in humans and livestock. Following ingestion of vegetation contaminated with encysted parasites, metacercariae, newly excysted juveniles (NEJ) excyst in the small intestine and cross the intestinal wall. After penetrating the liver, the parasite begins an intra-parenchymal migratory and feeding phase that not only drives their rapid growth and development but also causes extensive haemorrhaging and immune pathology. Studies on infection are hindered by the difficulty in accessing these microscopic juvenile parasites in vivo. Thus, a simple and scalable in vitro culture system for parasite development is needed. Here, we find that two-dimensional (2D) culture systems using cell monolayers support NEJ growth to a limited extent. By contrast, co-culture of F. hepatica NEJ with HepG2-derived 3D spheroids, or "mini-livers," that more closely mimic the physiology and microenvironment of in vivo liver tissue, promoted NEJ survival, growth, and development. NEJ grazed on the peripheral cells of the spheroids, and they released temporally regulated digestive cysteine proteases, FhCL3, and FhCL1/2, similar to in vivo parasites. The 3D co-culture induced development of the NEJ gut and body musculature, and stimulated the tegument to elaborate spines and a variety of surface sensory/tango/chemoreceptor papillae (termed S1, S2, and S3); these were especially pronounced around the oral and ventral suckers that sense host chemical cues and secure the parasite in tissue. HepG2 3D spheroid/parasite co-culture methodologies should accelerate investigations into the understanding of F. hepatica NEJ developmental biology and studies on host-parasite interactions, and streamline the search for new anti-parasite interventions.
Collapse
Affiliation(s)
- Aiste Vitkauskaite
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| | - Emma McDermott
- Anatomy Imaging and Microscopy (AIM), Anatomy, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| | - Mahshid H. Dehkordi
- Pharmacology and Therapeutics, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - Kerry Thompson
- Anatomy Imaging and Microscopy (AIM), Anatomy, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - Peter Owens
- Anatomy Imaging and Microscopy (AIM), Anatomy, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - Howard Oliver Fearnhead
- Pharmacology and Therapeutics, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| |
Collapse
|
2
|
Serrat J, Torres-Valle M, De Marco Verissimo C, Siles-Lucas M, González-Miguel J. Binding and cleavage of pro-urokinase by a tegument extract of Fasciola hepatica newly excysted juveniles activate the host fibrinolytic system. Vet Res 2025; 56:20. [PMID: 39856784 PMCID: PMC11762853 DOI: 10.1186/s13567-025-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F. hepatica newly excysted juveniles (FhNEJ) to penetrate the host intestinal wall, a process that remains incompletely understood. We have previously shown that FhNEJ are capable of binding plasminogen (PLG), the zymogen of plasmin, on their tegument surface, which leads to plasmin generation in the presence of host-derived PLG activators and subsequent degradation of laminin, a major component of the intestinal ECM. Here, we describe the interaction between a tegument extract of FhNEJ and the precursor of the urokinase-type PLG activator (pro-u-PA). We found that F. hepatica cathepsins B3, L3, enolase and glutathione S-transferase mediate this interaction, suggesting a multifactorial or moonlighting role for these proteins. Additionally, our results revealed that the tegument of FhNEJ contains a protease that is capable of cleaving and activating pro-u-PA into its catalytically active form, which positively impacts the capacity of the parasites to generate plasmin from the host PLG. Collectively, our findings indicate that FhNEJ interact with the host fibrinolytic system at multiple levels, reinforcing the potential of targeting this interaction as a strategy to prevent FhNEJ trans-intestinal migration and infection success.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
3
|
Cheukamud W, Chansap S, Rattanasroi K, Changklungmoa N, Kueakhai P. Construction and mouse antibody response evaluation of juvenile stage-specific chimeric protein from Fasciola gigantica. Vet Parasitol 2024; 331:110254. [PMID: 39047536 DOI: 10.1016/j.vetpar.2024.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Fasciolosis, caused by the liver fluke Fasciola gigantica, is a major parasitic disease that affects livestock and therefore causes significant economic losses in tropical countries. Although anthelminthic drugs can kill the parasite, drug-resistant liver fluke populations are increasing. In this study, a recombinant F. gigantica chimeric protein (rFgCHI) consisting of cathepsin L1H (FgCL1H), cathepsin B3 (FgCB3), and Saposin-like protein 1 (FgSAP1) was designed and expressed in Escherichia coli (BL21). The molecular weight of rFgCHI was 61 kDa. To study the antibody response, male BALB/c mice were immunized via the subcutaneous injection of rFgCHI combined with Quil A. Immunization with rFgCHI showed the induction of IgG1 and IgG2a with a higher IgG1 isotype level, indicating the potential of mixed Th1/Th2 immune responses, with Th2 predominating. However, the results showed high levels of IgG against the single proteins, except for rFgSAP1. Through Western blotting, mouse anti-rFgCHI polyclonal antibodies could be detected to the native proteins obtained from the parasite at all stages. Immunolocalization also revealed that the anti-rFgCHI antibodies could detect targeted antigens in the cecal epithelium of the parasite. These results demonstrated that rFgCHI is immunogenic to the mouse immune system and may potentially be a protein candidate for the development of a fasciolosis vaccine.
Collapse
Affiliation(s)
- Werachon Cheukamud
- Faculty of Allied Health Sciences and Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-district, Mueang District, Chonburi 20131, Thailand
| | - Supanan Chansap
- Faculty of Allied Health Sciences and Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-district, Mueang District, Chonburi 20131, Thailand
| | - Komsil Rattanasroi
- Faculty of Allied Health Sciences and Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-district, Mueang District, Chonburi 20131, Thailand
| | - Narin Changklungmoa
- Faculty of Allied Health Sciences and Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-district, Mueang District, Chonburi 20131, Thailand
| | - Pornanan Kueakhai
- Faculty of Allied Health Sciences and Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-district, Mueang District, Chonburi 20131, Thailand.
| |
Collapse
|
4
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Villa-Mancera A, Maldonado-Hidalgo J, Robles-Robles M, Olivares-Pérez J, Olmedo-Juárez A, Rodríguez-Castillo J, Pérez-Mendoza N, Utrera-Quintana F, Pérez J, Ortega-Vargas S. Evaluation of Reproductive Histology Response of Adult Fasciola hepatica in Goats Vaccinated with Cathepsin L Phage-Exposed Mimotopes. Int J Mol Sci 2024; 25:7225. [PMID: 39000332 PMCID: PMC11241617 DOI: 10.3390/ijms25137225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Fasciolosis, a globally re-emerging zoonotic disease, is mostly caused by the parasitic infection with Fasciola hepatica, often known as the liver fluke. This disease has a considerable impact on livestock productivity. This study aimed to evaluate the fluke burdens and faecal egg counts in goats that were administered phage clones of cathepsin L mimotopes and then infected with F. hepatica metacercariae. Additionally, the impact of vaccination on the histology of the reproductive system, specifically related to egg generation in adult parasites, was examined. A total of twenty-four goats, which were raised in sheds, were divided into four groups consisting of six animals each. These groups were randomly assigned. The goats were then subjected to two rounds of vaccination. Each vaccination involved the administration of 1 × 1013 phage particles containing specific mimotopes for cathepsin L2 (group 1: PPIRNGK), cathepsin L1 (group 2: DPWWLKQ), and cathepsin L1 (group 3: SGTFLFS). The immunisations were carried out on weeks 0 and 4, and the Quil A adjuvant was used in combination with the mimotopes. The control group was administered phosphate-buffered saline (PBS) (group 4). At week 6, all groups were orally infected with 200 metacercariae of F. hepatica. At week 22 following the initial immunisation, the subjects were euthanised, and adult F. hepatica specimens were retrieved from the bile ducts and liver tissue, and subsequently quantified. The specimens underwent whole-mount histology for the examination of the reproductive system, including the testis, ovary, vitellaria, Mehlis' gland, and uterus. The mean fluke burdens following the challenge were seen to decrease by 50.4%, 62.2%, and 75.3% (p < 0.05) in goats that received vaccinations containing cathepsin L2 PPIRNGK, cathepsin L1 DPWWLKQ, and cathepsin L1 SGTFLFS, respectively. Animals that received vaccination exhibited a significant reduction in the production of parasite eggs. The levels of IgG1 and IgG2 isotypes in vaccinated goats were significantly higher than in the control group, indicating that protection is associated with the induction of a mixed Th1/Th2 immune response. The administration of cathepsin L to goats exhibits a modest level of efficacy in inducing histological impairment in the reproductive organs of liver flukes, resulting in a reduction in egg output.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Javier Maldonado-Hidalgo
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Manuel Robles-Robles
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Jaime Olivares-Pérez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano 39640, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534, Colonia Progreso, Jiutepec 62550, Mexico
| | - José Rodríguez-Castillo
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Noemi Pérez-Mendoza
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Fernando Utrera-Quintana
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Excelencia ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Samuel Ortega-Vargas
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| |
Collapse
|
6
|
Huang G, Cong Z, Liu Z, Chen F, Bravo A, Soberón M, Zheng J, Peng D, Sun M. Silencing Ditylenchus destructor cathepsin L-like cysteine protease has negative pleiotropic effect on nematode ontogenesis. Sci Rep 2024; 14:10030. [PMID: 38693283 PMCID: PMC11063044 DOI: 10.1038/s41598-024-60018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Ditylenchus destructor is a migratory plant-parasitic nematode that severely harms many agriculturally important crops. The control of this pest is difficult, thus efficient strategies for its management in agricultural production are urgently required. Cathepsin L-like cysteine protease (CPL) is one important protease that has been shown to participate in various physiological and pathological processes. Here we decided to characterize the CPL gene (Dd-cpl-1) from D. destructor. Analysis of Dd-cpl-1 gene showed that Dd-cpl-1 gene contains a signal peptide, an I29 inhibitor domain with ERFNIN and GNFD motifs, and a peptidase C1 domain with four conserved active residues, showing evolutionary conservation with other nematode CPLs. RT-qPCR revealed that Dd-cpl-1 gene displayed high expression in third-stage juveniles (J3s) and female adults. In situ hybridization analysis demonstrated that Dd-cpl-1 was expressed in the digestive system and reproductive organs. Silencing Dd-cpl-1 in 1-cell stage eggs of D. destructor by RNAi resulted in a severely delay in development or even in abortive morphogenesis during embryogenesis. The RNAi-mediated silencing of Dd-cpl-1 in J2s and J3s resulted in a developmental arrest phenotype in J3 stage. In addition, silencing Dd-cpl-1 gene expression in female adults led to a 57.43% decrease in egg production. Finally, Dd-cpl-1 RNAi-treated nematodes showed a significant reduction in host colonization and infection. Overall, our results indicate that Dd-CPL-1 plays multiple roles in D. destructor ontogenesis and could serve as a new potential target for controlling D. destructor.
Collapse
Affiliation(s)
- Guoqiang Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ziwen Cong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhonglin Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Feng Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
7
|
Ehsan M, Hu RS, Wang M, Hou JL, Rashid M, Malik MI. Immune modulation of goat monocytes by Fasciola gigantica Legumain-1 protein (Fg-LGMN-1). Exp Parasitol 2024; 256:108671. [PMID: 38081528 DOI: 10.1016/j.exppara.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Legumains belonging to C_13 peptidase family of proteins, and are ubiquitously disseminated among all vertebrate and invertebrate organisms, and have been implicated in innumerable biological and cellular functionality. Herein, we characterized and evaluated immunoregulatory characteristics of Legumain-1 from Fasciola gigantica (Fg-LGMN-1) during its interaction with host immune cells. The isopropyl-ß-d-thiogalactopyranoside (IPTG) stimulated RFg-LGMN-1 protein was positively detected by rat serum containing anti-RFg-LGMN-1 polyclonal antibodies. Furthermore, the uptake of RFg-LGMN-1 by goat monocytes was successfully confirmed using Immunofluorescence Assay (IFA). The immunohistochemical analysis revealed the native localization of LGMN-1 protein on the periphery and internal structures such as suckers, pharynx, and genital pore of the adult parasite, thereby validating its presence in excretory-secretory (ES) products of F. gigantica. The RFg-LGMN-1 co-incubated with concanavalin-A (Con-A) stimulated the increase of interleukin 2 (IL-2), IL-10, and IL-17 in monocytes derived from peripheral blood mononuclear cells (PBMCs) in the concentration-dependent manner. However, the IL-4 cytokine in response to the RFg-LGMN-1 protein declined. These results illuminated the role of LGMN-1 during the parasite-host interface. Our findings elaborated additional evidence that Legumain protein play a role in the manipulating host immune responses during parasite infections. However, further evaluation of RFg-LGMN-1 protein in context of its immunomodulatory roles should be conducted to enhance our understandings of the mechanisms employed by F. gigantica to evade host immune responses.
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| | - Rui-Si Hu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Jun-Ling Hou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| | - Muhammad Irfan Malik
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| |
Collapse
|
8
|
Artía Z, Ferraro F, Sánchez C, Cerecetto H, Gil J, Pareja L, Alonzo MN, Freire T, Cabrera M, Corvo I. In vitro and in vivo studies on a group of chalcones find promising results as potential drugs against fascioliasis. Exp Parasitol 2023; 255:108628. [PMID: 37776969 DOI: 10.1016/j.exppara.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
About a third of the world population is infected by helminth parasites implicated in foodborne trematodiasis. Fascioliasis is a worldwide disease caused by trematodes of the genus Fasciola spp. It generates huge economic losses to the agri-food industry and is currently considered an emerging zoonosis by the World Health Organization (WHO). The only available treatment relies on anthelmintic drugs, being triclabendazole (TCBZ) the drug of choice to control human infections. The emergence of TCBZ resistance in several countries and the lack of an effective vaccine to prevent infection highlights the need to develop new drugs to control this parasitosis. We have previously identified a group of benzochalcones as inhibitors of cathepsins, which have fasciolicidal activity in vitro and are potential new drugs for the control of fascioliasis. We selected the four most active compounds of this group to perform further preclinical studies. The compound's stability was determined against a liver microsomal enzyme fraction, obtaining half-lives of 34-169 min and low intrinsic clearance values (<13 μL/min/mg), as desirable for potential new drugs. None of the compounds were mutagenic or genotoxic and no in vitro cytotoxic effects were seen. Compounds C31 and C34 showed the highest selectivity index against liver fluke cathepsins when compared to human cathepsin L. They were selected for in vivo efficacy studies observing a protective effect, similar to TCBZ, in a mouse model of infection. Our findings strongly encourage us to continue the drug development pipeline for these molecules.
Collapse
Affiliation(s)
- Zoraima Artía
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay
| | - Florencia Ferraro
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay
| | - Carina Sánchez
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica & Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica & Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Paysandú, 60000, Uruguay
| | - Lucía Pareja
- Departamento de Química del Litoral, CENUR Litoral Norte, Sede Paysandú, Universidad de la República, Paysandú, 60000, Uruguay
| | - María Noel Alonzo
- Departamento de Química del Litoral, CENUR Litoral Norte, Sede Paysandú, Universidad de la República, Paysandú, 60000, Uruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Mauricio Cabrera
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay.
| | - Ileana Corvo
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay.
| |
Collapse
|
9
|
Serrat J, Torres-Valle M, López-García M, Becerro-Recio D, Siles-Lucas M, González-Miguel J. Molecular Characterization of the Interplay between Fasciola hepatica Juveniles and Laminin as a Mechanism to Adhere to and Break through the Host Intestinal Wall. Int J Mol Sci 2023; 24:8165. [PMID: 37175870 PMCID: PMC10179147 DOI: 10.3390/ijms24098165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Fasciola hepatica is the main causative agent of fasciolosis, a zoonotic parasitic disease of growing public health concern. F. hepatica metacercariae are ingested by the host and excyst in the intestine, thereby releasing the newly excysted juveniles (FhNEJ), which traverse the gut wall and migrate towards the biliary ducts. Since blocking F. hepatica development is challenging after crossing of the intestinal wall, targeting this first step of migration might result in increased therapeutic success. The intestinal extracellular matrix (ECM) is constituted by a network of structural proteins, including laminin (LM) and fibronectin (FN), that provide mechanical support while acting as physical barrier against intestinal pathogens. Here, we employed ELISA and immunofluorescent assays to test for the presence of LM- and FN-binding proteins on a tegument-enriched antigenic fraction of FhNEJ, and further determined their identity by two-dimensional electrophoresis coupled to mass spectrometry. Additionally, we performed enzymatic assays that revealed for the first time the capability of the juvenile-specific cathepsin L3 to degrade LM, and that LM degradation by FhNEJ proteins is further potentiated in the presence of host plasminogen. Finally, a proteomic analysis showed that the interaction with LM triggers protein changes in FhNEJ that may be relevant for parasite growth and adaptation inside the mammalian host. Altogether, our study provides valuable insights into the molecular interplay between FhNEJ and the intestinal ECM, which may lead to the identification of targetable candidates for the development of more effective control strategies against fasciolosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain; (J.S.); (M.T.-V.); (M.L.-G.); (D.B.-R.); (M.S.-L.)
| |
Collapse
|
10
|
Serrat J, Becerro-Recio D, Torres-Valle M, Simón F, Valero MA, Bargues MD, Mas-Coma S, Siles-Lucas M, González-Miguel J. Fasciola hepatica juveniles interact with the host fibrinolytic system as a potential early-stage invasion mechanism. PLoS Negl Trop Dis 2023; 17:e0010936. [PMID: 37083884 PMCID: PMC10155961 DOI: 10.1371/journal.pntd.0010936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/03/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The trematode Fasciola hepatica is the most widespread causative agent of fasciolosis, a parasitic disease that mainly affects humans and ruminants worldwide. During F. hepatica infection, newly excysted juveniles (FhNEJ) emerge in the duodenum of the mammalian host and migrate towards their definitive location, the intra-hepatic biliary ducts. Understanding how F. hepatica traverses the intestinal wall and migrates towards the liver is pivotal for the development of more successful strategies against fasciolosis. The central enzyme of the mammalian fibrinolytic system is plasmin, a serine protease whose functions are exploited by a number of parasite species owing to its broad spectrum of substrates, including components of tissue extracellular matrices. The aim of the present work is to understand whether FhNEJ co-opt the functions of their host fibrinolytic system as a mechanism to facilitate trans-intestinal migration. METHODOLOGY/PRINCIPAL FINDINGS A tegument-enriched antigenic extract of FhNEJ (FhNEJ-Teg) was obtained in vitro, and its capability to bind the zymogen plasminogen (PLG) and enhance its conversion to the active protease, plasmin, were analyzed by a combination of enzyme-linked immunosorbent, chromogenic and immunofluorescence assays. Additionally, PLG-binding proteins in FhNEJ-Teg were identified by bidimensional electrophoresis coupled to mass spectrometry analysis, and the interactions were validated using FhNEJ recombinant proteins. CONCLUSIONS/SIGNIFICANCE Our results show that FhNEJ-Teg contains proteins that bind PLG and stimulate its activation to plasmin, which could facilitate the traversal of the intestinal wall by FhNEJ and contribute to the successful establishment of the parasite within its mammalian host. Altogether, our findings contribute to a better understanding of host-parasite relationships during early fasciolosis and may be exploited from a pharmacological and/or immunological perspective for the development of treatment and control strategies against this global disease.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - David Becerro-Recio
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - María Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - María Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
11
|
Peterkova K, Vorel J, Ilgova J, Ostasov P, Fajtova P, Konecny L, Chanova M, Kasny M, Horn M, Dvorak J. Proteases and their inhibitors involved in Schistosoma mansoni egg-host interaction revealed by comparative transcriptomics with Fasciola hepatica eggs. Int J Parasitol 2023; 53:253-263. [PMID: 36754342 DOI: 10.1016/j.ijpara.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 02/08/2023]
Abstract
Schistosoma mansoni eggs are the main causative agents of the pathological manifestations of schistosomiasis. The eggs are laid in the host bloodstream, then they migrate through the intestinal wall into the lumen. However, a significant proportion of the eggs become lodged in the liver, where they cause inflammation and fibrosis. In this study, we focus on a specific group of proteins expressed by the egg, namely proteases and their inhibitors. These molecules are often involved in schistosome-host interactions, but are still unexplored in the egg stage. Using RNA-seq and comparative transcriptomics of immature and mature S. mansoni eggs, we mapped the portfolio of proteases and their inhibitors, and determined their gene expression levels. In addition, we compared these data with gene expression of proteases and their inhibitors in Fasciola hepatica eggs. Fasciola hepatica eggs served as a useful comparative model, as they do not migrate through tissues and inflict pathology. We detected transcription of 135 and 117 proteases in S. mansoni and F. hepatica eggs, respectively, with 87 identified as orthologous between the two species. In contrast, we observed only four orthologous inhibitors out of 21 and 16 identified in S. mansoni and F. hepatica eggs, respectively. Among others, we measured high and developmentally regulated levels of expression of metalloproteases in S. mansoni eggs, specifically aminopeptidase N1, endothelin-converting enzyme 1, and several leishmanolysin-like peptidases. We identified highly transcribed protease inhibitors serpin and alpha-2-macroglobulin that are unique to S. mansoni eggs, and antistasin-like inhibitor in F. hepatica eggs. This study provides new insights into the portfolio of proteases and inhibitors expressed by S. mansoni with potential roles in egg tissue migration, stimulation of angiogenesis, and interaction with host blood and immunity.
Collapse
Affiliation(s)
- Kristyna Peterkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia.
| | - Jiri Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Ilgova
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Ostasov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czechia
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Konecny
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia
| | - Marta Chanova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czechia
| | - Martin Kasny
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Jan Dvorak
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia; Faculty of Environmental Sciences, Center of Infectious Animal Diseases, Czech University of Life Sciences in Prague, Czechia
| |
Collapse
|
12
|
Ahmed SA, Kotepui M, Masangkay FR, Milanez GD, Karanis P. Gastrointestinal parasites in Africa: A review. ADVANCES IN PARASITOLOGY 2023; 119:1-64. [PMID: 36707173 DOI: 10.1016/bs.apar.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Data on human gastrointestinal parasites (GIP) infections in the african sub-regions and countries are mainly lacking in terms of prevalence and population stratification by afflicted age group, symptomatology, multi-parasitism, and diagnostic methods. This study aims to describe the GIP reported in african countries and discuss the extent of the burden in the african context. Only 68.42% (39/57) of african countries reported human cases of GIP with helminths (45%, CI: 40-50%, I2: 99.79%) as the predominant parasitic group infecting the african population. On a regional scale, Central Africa had the highest pooled prevalence for GIP (43%, CI: 32-54%, I2: 99.74%), while the Central African Republic led all countries with a pooled prevalence of 90% (CI: 89-92%, I2: 99.96%). The vulnerable population (patients who are minorities, children, old, poor, underfunded, or have particular medical conditions) was the most affected (50%, CI: 37-62%, I2: 99.33%), with the predominance of GIP in the 6 to <20 years age group (48%, CI: 43-54%, I2: 99.68%). Reports on multi-parasitism (44%, CI: 40-48%, I2: 99.73%) were almost double the reports of single infections (43%, CI: 27-59%, I2: 99.77%) with combined molecular and non-molecular techniques demonstrating the best performance for GIP identification. The current review spans more than 40 years of GIP reports from the african continent. Geographical characteristics, environmental factors, habits of its inhabitants, and their health status play a crucial role in GIP modulation and behaviour in its captive hosts. Strategies for regular and enhanced surveillance, policy formation, and high-level community awareness are necessary to identify the true incidence in Africa and the transmission of the pathogens via water and food.
Collapse
Affiliation(s)
- Shahira A Ahmed
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manas Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Frederick R Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Giovanni D Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne, Germany; University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
13
|
Buša M, Matoušková Z, Bartošová-Sojková P, Pachl P, Řezáčová P, Eichenberger RM, Deplazes P, Horn M, Štefanić S, Mareš M. An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily. J Biol Chem 2023; 299:102970. [PMID: 36736427 PMCID: PMC9986714 DOI: 10.1016/j.jbc.2023.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Fasciolosis is a worldwide parasitic disease of ruminants and an emerging human disease caused by the liver fluke Fasciola hepatica. The cystatin superfamily of cysteine protease inhibitors is composed of distinct families of intracellular stefins and secreted true cystatins. FhCyLS-2 from F. hepatica is an unusual member of the superfamily, where our sequence and 3D structure analyses in this study revealed that it combines characteristics of both families. The protein architecture demonstrates its relationship to stefins, but FhCyLS-2 also contains the secretion signal peptide and disulfide bridges typical of true cystatins. The secretion status was confirmed by detecting the presence of FhCyLS-2 in excretory/secretory products, supported by immunolocalization. Our high-resolution crystal structure of FhCyLS-2 showed a distinct disulfide bridging pattern and functional reactive center. We determined that FhCyLS-2 is a broad specificity inhibitor of cysteine cathepsins from both the host and F. hepatica, suggesting a dual role in the regulation of exogenous and endogenous proteolysis. Based on phylogenetic analysis that identified several FhCyLS-2 homologues in liver/intestinal foodborne flukes, we propose a new group within the cystatin superfamily called cystatin-like stefins.
Collapse
Affiliation(s)
- Michal Buša
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Matoušková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czechia
| | | | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | | | - Peter Deplazes
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Saša Štefanić
- Institute of Parasitology, University of Zurich, Zurich, Switzerland.
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
14
|
Caña-Bozada V, Robinson MW, Hernández-Mena DI, Morales-Serna FN. Exploring Evolutionary Relationships within Neodermata Using Putative Orthologous Groups of Proteins, with Emphasis on Peptidases. Trop Med Infect Dis 2023; 8:tropicalmed8010059. [PMID: 36668966 PMCID: PMC9860727 DOI: 10.3390/tropicalmed8010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
The phylogenetic relationships within Neodermata were examined based on putative orthologous groups of proteins (OGPs) from 11 species of Monogenea, Trematoda, and Cestoda. The dataset included OGPs from BUSCO and OMA. Additionally, peptidases were identified and evaluated as phylogenetic markers. Phylogenies were inferred using the maximum likelihood method. A network analysis and a hierarchical grouping analysis of the principal components (HCPC) of orthologous groups of peptidases were performed. The phylogenetic analyses showed the monopisthocotylean monogeneans as the sister-group of cestodes, and the polyopisthocotylean monogeneans as the sister-group of trematodes. However, the sister-group relationship between Monopisthocotylea and Cestoda was not statistically well supported. The network analysis and HCPC also showed a cluster formed by polyopisthocotyleans and trematodes. The present study supports the non-monophyly of Monogenea. An analysis of mutation rates indicated that secreted peptidases and inhibitors, and those with multiple copies, are under positive selection pressure, which could explain the expansion of some families such as C01, C19, I02, and S01. Whilst not definitive, our study presents another point of view in the discussion of the evolution of Neodermata, and we hope that our data drive further discussion and debate on this intriguing topic.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Mexico
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - David I. Hernández-Mena
- Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Mérida, Mérida 97310, Mexico
| | - Francisco N. Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Mexico
- Correspondence:
| |
Collapse
|
15
|
Cwiklinski K, Dalton JP. Omics tools enabling vaccine discovery against fasciolosis. Trends Parasitol 2022; 38:1068-1079. [PMID: 36270885 DOI: 10.1016/j.pt.2022.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
In the past decade significant advances in our understanding of liver fluke biology have been made through in-depth interrogation and analysis of evolving Fasciola hepatica and Fasciola gigantica omics datasets. This information is crucial for developing novel control strategies, particularly vaccines necessitated by the global spread of anthelmintic resistance. Distilling them down to a manageable number of testable vaccines requires combined rational, empirical, and collaborative approaches. Despite a lack of clear outstanding vaccine candidate(s), we must continue to identify salient parasite-host interacting molecules, likely in the secretory products, tegument, or extracellular vesicles, and perform robust trials especially in livestock, using present and emerging vaccinology technologies to discover that elusive liver fluke vaccine. Omics tools are bringing this prospect ever closer.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health (MPL), Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Robb E, McCammick EM, Wells D, McVeigh P, Gardiner E, Armstrong R, McCusker P, Mousley A, Clarke N, Marks NJ, Maule AG. Transcriptomic analysis supports a role for the nervous system in regulating growth and development of Fasciola hepatica juveniles. PLoS Negl Trop Dis 2022; 16:e0010854. [PMCID: PMC9639813 DOI: 10.1371/journal.pntd.0010854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Fasciola spp. liver flukes have significant impacts in veterinary and human medicine. The absence of a vaccine and increasing anthelmintic resistance threaten sustainable control and underscore the need for novel flukicides. Functional genomic approaches underpinned by in vitro culture of juvenile Fasciola hepatica facilitate control target validation in the most pathogenic life stage. Comparative transcriptomics of in vitro and in vivo maintained 21 day old F. hepatica finds that 86% of genes are expressed at similar levels across maintenance treatments suggesting commonality in core biological functioning within these juveniles. Phenotypic comparisons revealed higher cell proliferation and growth rates in the in vivo juveniles compared to their in vitro counterparts. These phenotypic differences were consistent with the upregulation of neoblast-like stem cell and cell-cycle associated genes in in vivo maintained worms. The more rapid growth/development of in vivo juveniles was further evidenced by a switch in cathepsin protease expression profiles, dominated by cathepsin B in in vitro juveniles and by cathepsin L in in vivo juveniles. Coincident with more rapid growth/development was the marked downregulation of both classical and peptidergic neuronal signalling components in in vivo maintained juveniles, supporting a role for the nervous system in regulating liver fluke growth and development. Differences in the miRNA complements of in vivo and in vitro juveniles identified 31 differentially expressed miRNAs, including fhe-let-7a-5p, fhe-mir-124-3p and miRNAs predicted to target Wnt-signalling, which supports a key role for miRNAs in driving the growth/developmental differences in the in vitro and in vivo maintained juvenile liver fluke. Widespread differences in the expression of neuronal genes in juvenile fluke grown in vitro and in vivo expose significant interplay between neuronal signalling and the rate of growth/development, encouraging consideration of neuronal targets in efforts to dysregulate growth/development for parasite control.
Collapse
Affiliation(s)
- Emily Robb
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (ER); (EMM); (AGM)
| | - Erin M. McCammick
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (ER); (EMM); (AGM)
| | - Duncan Wells
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul McVeigh
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Erica Gardiner
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Rebecca Armstrong
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul McCusker
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nathan Clarke
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nikki J. Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Aaron G. Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (ER); (EMM); (AGM)
| |
Collapse
|
17
|
Exploiting Comparative Omics to Understand the Pathogenic and Virulence-Associated Protease: Anti-Protease Relationships in the Zoonotic Parasites Fasciola hepatica and Fasciola gigantica. Genes (Basel) 2022; 13:genes13101854. [PMID: 36292739 PMCID: PMC9601652 DOI: 10.3390/genes13101854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The helminth parasites, Fasciola hepatica and Fasciola gigantica, are the causative agents of fasciolosis, a global and economically important disease of people and their livestock. Proteases are pivotal to an array of biological processes related to parasitism (development, feeding, immune evasion, virulence) and therefore their action requires strict regulation by parasite anti-proteases (protease inhibitors). By interrogating the current publicly available Fasciola spp. large sequencing datasets, including several genome assemblies and life cycle stage-specific transcriptome and proteome datasets, we reveal the complex profile and structure of proteases and anti-proteases families operating at various stages of the parasite's life cycle. Moreover, we have discovered distinct profiles of peptidases and their cognate inhibitors expressed by the parasite stages in the intermediate snail host, reflecting the different environmental niches in which they move, develop and extract nutrients. Comparative genomics revealed a similar cohort of peptidase inhibitors in F. hepatica and F. gigantica but a surprisingly reduced number of cathepsin peptidases genes in the F. gigantica genome assemblies. Chromosomal location of the F. gigantica genes provides new insights into the evolution of these gene families, and critical data for the future analysis and interrogation of Fasciola spp. hybrids spreading throughout the Asian and African continents.
Collapse
|
18
|
Becerro-Recio D, Serrat J, López-García M, Sotillo J, Simón F, González-Miguel J, Siles-Lucas M. Proteomics coupled with in vitro model to study the early crosstalk occurring between newly excysted juveniles of Fasciola hepatica and host intestinal cells. PLoS Negl Trop Dis 2022; 16:e0010811. [PMID: 36223411 PMCID: PMC9555655 DOI: 10.1371/journal.pntd.0010811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Fasciolosis caused by the trematode Fasciola hepatica is a zoonotic neglected disease affecting animals and humans worldwide. Infection occurs upon ingestion of aquatic plants or water contaminated with metacercariae. These release the newly excysted juveniles (FhNEJ) in the host duodenum, where they establish contact with the epithelium and cross the intestinal barrier to reach the peritoneum within 2-3 h after infection. Juveniles crawl up the peritoneum towards the liver, and migrate through the hepatic tissue before reaching their definitive location inside the major biliary ducts, where they mature into adult worms. Fasciolosis is treated with triclabendazole, although resistant isolates of the parasite are increasingly being reported. This, together with the limited efficacy of the assayed vaccines against this infection, poses fasciolosis as a veterinary and human health problem of growing concern. In this context, the study of early host-parasite interactions is of paramount importance for the definition of new targets for the treatment and prevention of fasciolosis. Here, we develop a new in vitro model that replicates the first interaction between FhNEJ and mouse primary small intestinal epithelial cells (MPSIEC). FhNEJ and MPSIEC were co-incubated for 3 h and protein extracts (tegument and soma of FhNEJ and membrane and cytosol of MPSIEC) were subjected to quantitative SWATH-MS proteomics and compared to respective controls (MPSIEC and FhNEJ left alone for 3h in culture medium) to evaluate protein expression changes in both the parasite and the host. Results show that the interaction between FhNEJ and MPSIEC triggers a rapid protein expression change of FhNEJ in response to the host epithelial barrier, including cathepsins L3 and L4 and several immunoregulatory proteins. Regarding MPSIEC, stimulation with FhNEJ results in alterations in the protein profile related to immunomodulation and cell-cell interactions, together with a drastic reduction in the expression of proteins linked with ribosome function. The molecules identified in this model of early host-parasite interactions could help define new tools against fasciolosis.
Collapse
Affiliation(s)
- David Becerro-Recio
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Judit Serrat
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Marta López-García
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier González-Miguel
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
- * E-mail: (JG-M); (MS-L)
| | - Mar Siles-Lucas
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- * E-mail: (JG-M); (MS-L)
| |
Collapse
|
19
|
Becerro-Recio D, Serrat J, López-García M, Molina-Hernández V, Pérez-Arévalo J, Martínez-Moreno Á, Sotillo J, Simón F, González-Miguel J, Siles-Lucas M. Study of the migration of Fasciola hepatica juveniles across the intestinal barrier of the host by quantitative proteomics in an ex vivo model. PLoS Negl Trop Dis 2022; 16:e0010766. [PMID: 36112664 PMCID: PMC9518905 DOI: 10.1371/journal.pntd.0010766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/28/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Fasciola hepatica is a trematode parasite that infects animals and humans causing fasciolosis, a worldwide-distributed disease responsible for important economic losses and health problems. This disease is of growing public health concern since parasite isolates resistant to the current treatment (triclabendazole) have increasingly been described. F. hepatica infects its vertebrate host after ingestion of the encysted parasite (metacercariae), which are found in the water or attached to plants. Upon ingestion, newly excysted juveniles of F. hepatica (FhNEJ) emerge in the intestinal lumen and cross the intestinal barrier, reach the peritoneum and migrate to the biliary ducts, where adult worms fully develop. Despite the efforts made to develop new therapeutic and preventive tools, to date, protection against F. hepatica obtained in different animal models is far from optimal. Early events of host-FhNEJ interactions are of paramount importance for the infection progress in fasciolosis, especially those occurring at the host-parasite interface. Nevertheless, studies of FhNEJ responses to the changing host environment encountered during migration across host tissues are still scarce. Here, we set-up an ex vivo model coupled with quantitative SWATH-MS proteomics to study early host-parasite interaction events in fasciolosis. After comparing tegument and somatic fractions from control parasites and FhNEJ that managed to cross a mouse intestinal section ex vivo, a set of parasite proteins whose expression was statistically different were found. These included upregulation of cathepsins L3 and L4, proteolytic inhibitor Fh serpin 2, and a number of molecules linked with nutrient uptake and metabolism, including histone H4, H2A and H2B, low density lipoprotein receptor, tetraspanin, fatty acid binding protein a and glutathione-S-transferase. Downregulated proteins in FhNEJ after gut passage were more numerous than the upregulated ones, and included the heath shock proteins HSP90 and alpha crystallin, amongst others. This study brings new insights into early host-parasite interactions in fasciolosis and sheds light on the proteomic changes in FhNEJ triggered upon excystment and intestinal wall crossing, which could serve to define new targets for the prevention and treatment of this widespread parasitic disease. Fasciolosis caused by the helminth parasite Fasciola hepatica is a serious health and economic problem worldwide. Treatment and prevention of this disease pose several drawbacks that have so far not been solved. The definition of suitable parasite molecular targets to overcome such drawbacks should be based on thoroughly deciphering host-parasite interactions, and in this regard most studies have focused on the adult stages of F. hepatica. Nevertheless, in this context, the study of the transient juvenile stages of this parasite could be of higher utility due to the importance of early interactions with the host for parasite migration and the successful establishment of infection. In this work, we set-up an ex vivo model and performed a quantitative proteomics approach to study the changes in F. hepatica juveniles upon gut passage. We found that the parasite tegument and somatic compartments experienced deep changes in their composition and showed that the host triggers the expression of specific molecules that are important for parasite migration and survival at this stage. The molecules described here could serve to better understand host-parasite interactions and to define new targets against fasciolosis.
Collapse
Affiliation(s)
- David Becerro-Recio
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Judit Serrat
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Marta López-García
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José Pérez-Arévalo
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Departamento de Sanidad Animal (Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier González-Miguel
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Mar Siles-Lucas
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
20
|
Liu RD, Meng XY, Li CL, Long SR, Cui J, Wang ZQ. Molecular characterization and determination of the biochemical properties of cathepsin L of Trichinella spiralis. Vet Res 2022; 53:48. [PMID: 35739604 PMCID: PMC9229914 DOI: 10.1186/s13567-022-01065-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cathepsin L is an important cysteine protease, but its function in T. spiralis remains unclear. The aim of this research was to explore the biological characteristics of T. spiralis cathepsin L (TsCatL) and its role in T. spiralis-host interactions. Bioinformatic analysis revealed the presence of the cysteine protease active site residues Gln, Cys, His and Asn in mature TsCatL, as well as specific motifs of cathepsin L similar to ERFNIN and GYLND in the prepeptide of TsCatL. Molecular docking of mature TsCatL and E64 revealed hydrophobic effects and hydrogen bonding interactions. Two domains of TsCatL (TsCatL2) were cloned and expressed, and recombinant TsCatL2 (rTsCatL2) was autocatalytically cleaved under acidic conditions to form mature TsCatL. TsCatL was transcribed and expressed in larvae and adults and located in the stichosome, gut and embryo. Enzyme kinetic tests showed that rTsCatL2 degraded the substrate Z-Phe-Arg-AMC under acidic conditions, which was inhibited by E64 and PMSF and enhanced by EDTA, L-cysteine and DTT. The kinetic parameters of rTsCatL2 were a Km value of 48.82 μM and Vmax of 374.4 nM/min at pH 4.5, 37 °C and 5 mM DTT. In addition, it was shown that rTsCatL2 degraded haemoglobin, serum albumin, immunoglobulins (mouse IgG, human IgG and IgM) and extracellular matrix components (fibronectin, collagen I and laminin). The proteolytic activity of rTsCatL2 was host specific and significantly inhibited by E64. rTsCatL2 possesses the natural activity of a sulfhydryl-containing cysteine protease, and TsCatL is an important digestive enzyme that seems to be important for the nutrient acquisition, immune evasion and invasion of Trichinella in the host.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
21
|
Transcriptomic and proteomic profiling of peptidase expression in Fasciola hepatica eggs developing at host's body temperature. Sci Rep 2022; 12:10308. [PMID: 35725898 PMCID: PMC9209485 DOI: 10.1038/s41598-022-14419-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 05/03/2022] [Indexed: 12/28/2022] Open
Abstract
Fasciola hepatica is a global parasite of livestock which also causes a neglected zoonosis in humans. The parasite’s communication with the host during its complicated lifecycle is based on an ingenious enzymatic apparatus which includes a variety of peptidases. These enzymes are implicated in parasite migration, pathogenesis of the disease, and modification of host immune response. Although the dynamics of proteolytic machinery produced by intra-mammalian F. hepatica life stages has been previously investigated in great detail, peptidases of the eggs so far received little scientific attention. In this study, we performed a comparative RNA-seq analysis aimed at identification of peptidases expressed in F. hepatica eggs, cultured at 37 °C to represent gall bladder retained eggs, for different time periods and employed mass spectrometry in order to identify and quantify peptidases translated in F. hepatica egg lysates. We demonstrated that F. hepatica eggs undergo significant molecular changes when cultured at the physiological temperature of the definitive host. Egg transcriptome is subject to numerous subtle changes while their proteome is even more variable. The peptidase profile is considerably modified on both transcriptome and proteome level. Finally, we measured and classified proteolytic activities in extracts from F. hepatica eggs using a library of fluorogenic substrates and peptidase class-selective inhibitors. Activities of threonine peptidases were detected constantly, while the cysteine peptidases prevailing in freshly laid eggs are substituted by aspartic peptidase and metallopeptidase activities in the later stages of egg development.
Collapse
|
22
|
Ricafrente A, Cwiklinski K, Nguyen H, Dalton JP, Tran N, Donnelly S. Stage-specific miRNAs regulate gene expression associated with growth, development and parasite-host interaction during the intra-mammalian migration of the zoonotic helminth parasite Fasciola hepatica. BMC Genomics 2022; 23:419. [PMID: 35659245 PMCID: PMC9167548 DOI: 10.1186/s12864-022-08644-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
Background MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in organisms ranging from viruses to mammals. There is great relevance in understanding how miRNAs regulate genes involved in the growth, development, and maturation of the many parasitic worms (helminths) that together afflict more than 2 billion people. Results Here, we describe the miRNAs expressed by each of the predominant intra-mammalian development stages of Fasciola hepatica, a foodborne flatworm that infects a wide range of mammals worldwide, most importantly humans and their livestock. A total of 124 miRNAs were profiled, 72 of which had been previously reported and three of which were conserved miRNA sequences described here for the first time. The remaining 49 miRNAs were novel sequences of which, 31 were conserved with F. gigantica and the remaining 18 were specific to F. hepatica. The newly excysted juveniles express 22 unique miRNAs while the immature liver and mature bile duct stages each express 16 unique miRNAs. We discovered several sequence variant miRNAs (IsomiRs) as well as miRNA clusters that exhibit strict temporal expression paralleling parasite development. Target analysis revealed the close association between miRNA expression and stage-specific changes in the transcriptome; for example, we identified specific miRNAs that target parasite proteases known to be essential for intestinal wall penetration (cathepsin L3). Moreover, we demonstrate that miRNAs fine-tune the expression of genes involved in the metabolic pathways that allow the parasites to move from an aerobic external environment to the anerobic environment of the host. Conclusions These results provide novel insight into the regulation of helminth parasite development and identifies new genes and miRNAs for therapeutic development to limit the virulence and pathogenesis caused by F. hepatica. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08644-z.
Collapse
|
23
|
Bennett APS, de la Torre-Escudero E, Dermott SSE, Threadgold LT, Hanna REB, Robinson MW. Fasciola hepatica Gastrodermal Cells Selectively Release Extracellular Vesicles via a Novel Atypical Secretory Mechanism. Int J Mol Sci 2022; 23:ijms23105525. [PMID: 35628335 PMCID: PMC9143473 DOI: 10.3390/ijms23105525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The liver fluke, Fasciola hepatica, is an obligate blood-feeder, and the gastrodermal cells of the parasite form the interface with the host’s blood. Despite their importance in the host–parasite interaction, in-depth proteomic analysis of the gastrodermal cells is lacking. Here, we used laser microdissection of F. hepatica tissue sections to generate unique and biologically exclusive tissue fractions of the gastrodermal cells and tegument for analysis by mass spectrometry. A total of 226 gastrodermal cell proteins were identified, with proteases that degrade haemoglobin being the most abundant. Other detected proteins included those such as proton pumps and anticoagulants which maintain a microenvironment that facilitates digestion. By comparing the gastrodermal cell proteome and the 102 proteins identified in the laser microdissected tegument with previously published tegument proteomic datasets, we showed that one-quarter of proteins (removed by freeze–thaw extraction) or one-third of proteins (removed by detergent extraction) previously identified as tegumental were instead derived from the gastrodermal cells. Comparative analysis of the laser microdissected gastrodermal cells, tegument, and F. hepatica secretome revealed that the gastrodermal cells are the principal source of secreted proteins, as well as showed that both the gastrodermal cells and the tegument are likely to release subpopulations of extracellular vesicles (EVs). Microscopical examination of the gut caeca from flukes fixed immediately after their removal from the host bile ducts showed that selected gastrodermal cells underwent a progressive thinning of the apical plasma membrane which ruptured to release secretory vesicles en masse into the gut lumen. Our findings suggest that gut-derived EVs are released via a novel atypical secretory route and highlight the importance of the gastrodermal cells in nutrient acquisition and possible immunomodulation by the parasite.
Collapse
Affiliation(s)
- Adam P. S. Bennett
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Eduardo de la Torre-Escudero
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Susan S. E. Dermott
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Lawrence T. Threadgold
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Robert E. B. Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, UK;
| | - Mark W. Robinson
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
- Correspondence: ; Tel.: +44-(0)28-9097-2120
| |
Collapse
|
24
|
Cwiklinski K, Drysdale O, López Corrales J, Corripio-Miyar Y, De Marco Verissimo C, Jewhurst H, Smith D, Lalor R, McNeilly TN, Dalton JP. Targeting Secreted Protease/Anti-Protease Balance as a Vaccine Strategy against the Helminth Fasciola hepatica. Vaccines (Basel) 2022; 10:155. [PMID: 35214614 PMCID: PMC8878381 DOI: 10.3390/vaccines10020155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
The liver fluke Fasciola hepatica is an economically important global pathogen of humans and their livestock. To facilitate host invasion and migration, F. hepatica secretes an abundance of cathepsin peptidases but prevents excessive damage to both parasite and host tissues by co-secreting regulatory peptidase inhibitors, cystatins/stefins and Kunitz-type inhibitors. Here, we report a vaccine strategy aimed at disrupting the parasite's protease/anti-protease balance by targeting these key inhibitors. Our vaccine cocktail containing three recombinant stefins (rFhStf-1, rFhStf-2, rFhStf-3) and a Kunitz-type inhibitor (rFhKT1) formulated in adjuvant Montanide 61VG was assessed in two independent sheep trials. While fluke burden was not reduced in either trial, in Trial 1 the vaccinated animals showed significantly greater weight gain (p < 0.05) relative to the non-vaccinated control group. In both trials we observed a significant reduction in egg viability (36-42%). Multivariate regression analyses showed vaccination and increased levels of IgG2 antibodies specific for the F. hepatica peptidase inhibitors were positive indicators for increased weight gain and levels of haemoglobin within the normal range at 16 weeks post-infection (wpi; p < 0.05). These studies point to the potential of targeting peptidase inhibitors as vaccine cocktails for fasciolosis control in sheep.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Orla Drysdale
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
| | - Yolanda Corripio-Miyar
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
| | - Tom N. McNeilly
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - John P. Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| |
Collapse
|
25
|
Barbour T, Cwiklinski K, Lalor R, Dalton JP, De Marco Verissimo C. The Zoonotic Helminth Parasite Fasciola hepatica: Virulence-Associated Cathepsin B and Cathepsin L Cysteine Peptidases Secreted by Infective Newly Excysted Juveniles (NEJ). Animals (Basel) 2021; 11:ani11123495. [PMID: 34944270 PMCID: PMC8698070 DOI: 10.3390/ani11123495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Fasciolosis, caused by the worm parasite Fasciola hepatica (liver fluke), is a global disease of farm animals and a neglected disease of humans. Infection arises from the ingestion of resistant metacercariae that contaminate vegetation. Within the intestine, the parasite excysts as an active larvae, the newly excysted juvenile (NEJ), that borrows through the intestinal wall to infect the host and migrates to the liver. NEJ release, tissue penetration and migration are facilitated by enzymes secreted by the parasite, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these enzymes is growing, we have yet to understand why the parasites require all four of them to invade the host. In this study, we produced functional recombinant forms of these enzymes and demonstrated that they vary greatly in terms of activity, optimal pH and substrate specificity, suggesting that, combined, these enzymes provide the parasite with an efficient digestion system for different host tissues and molecules. We also identified several compounds that inhibited the activity of these enzymes, but did not affect the ability of the larvae to excyst or survive. However, this does not exclude these enzymes as targets for development of drugs or vaccines. Abstract Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ) that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases is growing, we have yet to understand why multiple enzymes are required for parasite invasion. Here, we produced functional recombinant forms of these four peptidases and compared their physio-biochemical characteristics. Our studies show great variation of their pH optima for activity, substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail capable of digesting the various host tissues, cells and macromolecules. Although we found several inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or vaccine development.
Collapse
Affiliation(s)
- Tara Barbour
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
| | - Krystyna Cwiklinski
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - John Pius Dalton
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Carolina De Marco Verissimo
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- Correspondence:
| |
Collapse
|
26
|
Akıl M, Aykur M, Karakavuk M, Can H, Döşkaya M. Construction of a multiepitope vaccine candidate against Fasciola hepatica: an in silico design using various immunogenic excretory/secretory antigens. Expert Rev Vaccines 2021; 21:993-1006. [PMID: 34666598 DOI: 10.1080/14760584.2022.1996233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fasciola hepatica is an important pathogen that causes liver fluke disease in definitive hosts such as livestock animals and humans. Various excretory/secretory products have been used in serological diagnosis and vaccination studies targeting fasciolosis. There are no commercial vaccines against fasciolosis yet. Bioinformatic analysis based on computational methods have lower cost and provide faster output compared to conventional vaccine antigen discovery techniques. The aim of this study was to predict B- and T-cell specific epitopes of four excretory/secretory antigens (Kunitz-type serine protease inhibitor, cathepsin L1, helminth defense molecule, and glutathione S-transferase) of Fasciola hepatica and to construct a multiepitope vaccine candidate against fasciolosis. METHODS AND RESULTS Initially, nonallergic and the highest antigenic B- and T- cell epitopes were selected and then, physico-chemical parameters, secondary and tertiary structures of designed multiepitope vaccine candidate were predicted. Tertiary structure was refined and validated using online bioinformatic tools. Linear and discontinuous B-cell epitopes and disulfide bonds were determined. Finally, molecular docking analysis for MHC-I and MHC-II receptors was performed. CONCLUSION This multi-epitope vaccine candidate antigen, with high immunological properties, can be considered as a promising vaccine candidate for animal experiments and wet lab studies.
Collapse
Affiliation(s)
- Mesut Akıl
- Faculty of Medicine, Department of Parasitology, Istanbul Medeniyet University, Istanbul, TURKEY
| | - Mehmet Aykur
- Faculty of Medicine, Department of Parasitology, Tokat Gaziosmanpasa University, Tokat, TURKEY
| | - Muhammet Karakavuk
- Odemis Vocational School, Ege University, Izmir, TURKEY.,Faculty of Medicine, Department of Parasitology, Ege University, Izmir, TURKEY
| | - Hüseyin Can
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, TURKEY
| | - Mert Döşkaya
- Faculty of Medicine, Department of Parasitology, Ege University, Izmir, TURKEY
| |
Collapse
|
27
|
Lalor R, Cwiklinski K, Calvani NED, Dorey A, Hamon S, Corrales JL, Dalton JP, De Marco Verissimo C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021; 12:2839-2867. [PMID: 34696693 PMCID: PMC8632118 DOI: 10.1080/21505594.2021.1996520] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite’s excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke’s survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.
Collapse
Affiliation(s)
- Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
28
|
pH-Dependent Structural Dynamics of Cathepsin D-Family Aspartic Peptidase of Clonorchis sinensis. Pathogens 2021; 10:pathogens10091128. [PMID: 34578162 PMCID: PMC8466142 DOI: 10.3390/pathogens10091128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/03/2022] Open
Abstract
Cathepsin D (CatD; EC 3.4.23.5) family peptidases of parasitic organisms are regarded as potential drug targets as they play critical roles in the physiology and pathobiology of parasites. Previously, we characterized the biochemical features of cathepsin D isozyme 2 (CatD2) in the carcinogenic liver fluke Clonorchis sinensis (CsCatD2). In this study, we performed all-atomic molecular dynamics simulations by applying different systems for the ligand-free/bound forms under neutral and acidic conditions to investigate the pH-dependent structural alterations and associated functional changes in CsCatD2. CsCatD2 showed several distinctive characteristics as follows: (1) acidic pH caused major conformational transitions from open to closed state in this enzyme; (2) during 30–36-ns simulations, acidic pH contributed significantly to the formation of rigid β-sheets around the catalytic residue Asp219, higher occupancy (0% to 99%) of hydrogen bond than that of Asp33, and enhanced stabilization of the CsCatD2-inhibtor complex; (3) neutral pH-induced displacement of the N-terminal part to hinder the accessibility of the active site and open allosteric site of this enzyme; and (4) the flap dynamics metrics, including distance (d1), TriCα angles (θ1 and θ2), and dihedral angle (ϕ), account for the asymmetrical twisting motion of the active site of this enzyme. These findings provide an in-depth understanding of the pH-dependent structural dynamics of free and bound forms of CsCatD2 and basic information for the rational design of an inhibitor as a drug targeting parasitic CatD.
Collapse
|
29
|
López Corrales J, Cwiklinski K, De Marco Verissimo C, Dorey A, Lalor R, Jewhurst H, McEvoy A, Diskin M, Duffy C, Cosby SL, Keane OM, Dalton JP. Diagnosis of sheep fasciolosis caused by Fasciola hepatica using cathepsin L enzyme-linked immunosorbent assays (ELISA). Vet Parasitol 2021; 298:109517. [PMID: 34271318 DOI: 10.1016/j.vetpar.2021.109517] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 02/01/2023]
Abstract
Fasciolosis, a global parasitic disease of agricultural livestock, is caused by the liver fluke Fasciola hepatica. Management and strategic control of fasciolosis on farms depends on early assessment of the extent of disease so that control measures can be implemented quickly. Traditionally, this has relied on the detection of eggs in the faeces of animals, a laborious method that lacks sensitivity, especially for sub-clinical infections, and identifies chronic infections only. Enzyme linked immunosorbent assays (ELISA) offer a quicker and more sensitive serological means of diagnosis that could detect early acute infection before significant liver damage occurs. The performance of three functionally-active recombinant forms of the major F. hepatica secreted cathepsins L, rFhCL1, rFhCL2, rFhCL3, and a cathepsin B, rFhCB3, were evaluated as antigens in an indirect ELISA to serologically diagnose liver fluke infection in experimentally and naturally infected sheep. rFhCL1 and rFhCL3 were the most effective of the four antigens detecting fasciolosis in sheep as early as three weeks after experimental infection, at least five weeks earlier than both coproantigen and faecal egg tests. In addition, the rFhCL1 and rFhCL3 ELISAs had a very low detection limit for liver fluke in lambs exposed to natural infection on pastures and thus could play a major role in the surveillance of farms and a 'test and treat' approach to disease management. Finally, antibodies to all three cathepsin L proteases remain high throughout chronic infection but decline rapidly after drug treatment with the flukicide, triclabendazole, implying that the test may be adapted to trace the effectiveness of drug treatment.
Collapse
Affiliation(s)
- Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amanda McEvoy
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Michael Diskin
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Catherine Duffy
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, UK
| | - S Louise Cosby
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, UK
| | - Orla M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
30
|
Pérez-Caballero R, Martínez-Moreno FJ, Corripio-Miyar Y, McNeilly TN, Cwiklinski K, Dalton JP, Zafra R, Pérez J, Martínez-Moreno Á, Buffoni L. Antigen-specific response of CD4 + T cells and hepatic lymph node cells to Fasciola hepatica-derived molecules at the early and late stage of the infection in sheep. Vet Res 2021; 52:99. [PMID: 34215335 PMCID: PMC8254349 DOI: 10.1186/s13567-021-00963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
The immunomodulatory capacity of F. hepatica antigens is probably one of the main reasons for the development of a driven non-protective Th2 immune response. In this study, we analysed the cellular response of hepatic lymph node cells and CD4+ T cells in terms of proliferative response, efficiency of antigen presentation and cytokine production, to F. hepatica-derived molecules, at early and late stages of the infection. Thirty-one sheep were allocated into five groups and were slaughtered at 16 dpi and 23 wpi. In order to analyse antigen-specific response, the following F. hepatica recombinant molecules were used: rFhCL1, rFhCL2, rFhCL3, rFhCB1, rFhCB2, rFhCB3, rFhStf-1, rFhStf-2, rFhStf-3 and rFhKT1. A cell proliferation assay using hepatic lymph node cells and an antigen presentation cell assay using CD4+ T cells were performed. At 16 dpi, all molecules but rFhStf-2 and rFhKT1 elicited a significant cell proliferative response on hepatic lymph node cells of infected animals. At both early and late stage of the infection, antigen presentation of rFhCB3 and rFhCL2 resulted in higher stimulation index of CD4+ T cells which was IL-2 mediated, although no statistically significant when compared to uninfected animals. Significant cytokine production (IL-4, IL-10 and IFN-γ) was conditioned by the antigen-specific cell stimulation. No CD4+ T cell exhaustion was detected in infected sheep at the chronic stage of the infection. This study addressed antigen-specific response to F. hepatica-derived molecules that are involved in key aspects of the parasite survival within the host.
Collapse
Affiliation(s)
- Raúl Pérez-Caballero
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - F Javier Martínez-Moreno
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain.
| | - Yolanda Corripio-Miyar
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Midlothian, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Midlothian, UK
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Rafael Zafra
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - José Pérez
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Leandro Buffoni
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| |
Collapse
|
31
|
Recognition Pattern of the Fasciola hepatica Excretome/Secretome during the Course of an Experimental Infection in Sheep by 2D Immunoproteomics. Pathogens 2021; 10:pathogens10060725. [PMID: 34207550 PMCID: PMC8228785 DOI: 10.3390/pathogens10060725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/01/2023] Open
Abstract
Excretory/secretory products released by helminth parasites have been widely studied for their diagnostic utility, immunomodulatory properties, as well as for their use as vaccines. Due to their location at the host/parasite interface, the characterization of parasite secretions is important to unravel the molecular interactions governing the relationships between helminth parasites and their hosts. In this study, the excretory/secretory products from adult worms of the trematode Fasciola hepatica (FhES) were employed in a combination of two-dimensional electrophoresis, immunoblot and mass spectrometry, to analyze the immune response elicited in sheep during the course of an experimental infection. Ten different immunogenic proteins from FhES recognized by serum samples from infected sheep at 4, 8, and/or 12 weeks post-infection were identified. Among these, different isoforms of cathepsin L and B, peroxiredoxin, calmodulin, or glutathione S-transferase were recognized from the beginning to the end of the experimental infection, suggesting their potential role as immunomodulatory antigens. Furthermore, four FhES proteins (C2H2-type domain-containing protein, ferritin, superoxide dismutase, and globin-3) were identified for the first time as non-immunogenic proteins. These results may help to further understand host/parasite relationships in fasciolosis, and to identify potential diagnostic molecules and drug target candidates of F. hepatica.
Collapse
|
32
|
Dorey A, Cwiklinski K, Rooney J, De Marco Verissimo C, López Corrales J, Jewhurst H, Fazekas B, Calvani NED, Hamon S, Gaughan S, Dalton JP, Lalor R. Autonomous Non Antioxidant Roles for Fasciola hepatica Secreted Thioredoxin-1 and Peroxiredoxin-1. Front Cell Infect Microbiol 2021; 11:667272. [PMID: 34026663 PMCID: PMC8131638 DOI: 10.3389/fcimb.2021.667272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/22/2021] [Indexed: 01/07/2023] Open
Abstract
Trematode parasites of the genus Fasciola are the cause of liver fluke disease (fasciolosis) in humans and their livestock. Infection of the host involves invasion through the intestinal wall followed by migration in the liver that results in extensive damage, before the parasite settles as a mature egg-laying adult in the bile ducts. Genomic and transcriptomic studies revealed that increased metabolic stress during the rapid growth and development of F. hepatica is balanced with the up-regulation of the thiol-independent antioxidant system. In this cascade system thioredoxin/glutathione reductase (TGR) reduces thioredoxin (Trx), which then reduces and activates peroxiredoxin (Prx), whose major function is to protect cells against the damaging hydrogen peroxide free radicals. F. hepatica expresses a single TGR, three Trx and three Prx genes; however, the transcriptional expression of Trx1 and Prx1 far out-weighs (>50-fold) other members of their family, and both are major components of the parasite secretome. While Prx1 possesses a leader signal peptide that directs its secretion through the classical pathway and explains why this enzyme is found freely soluble in the secretome, Trx1 lacks a leader peptide and is secreted via an alternative pathway that packages the majority of this enzyme into extracellular vesicles (EVs). Here we propose that F. hepatica Prx1 and Trx1 do not function as part of the parasite’s stress-inducible thiol-dependant cascade, but play autonomous roles in defence against the general anti-pathogen oxidative burst by innate immune cells, in the modulation of host immune responses and regulation of inflammation.
Collapse
Affiliation(s)
- Amber Dorey
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - James Rooney
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Barbara Fazekas
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Siobhán Gaughan
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
33
|
Villa-Mancera A, Alcalá-Canto Y, Reynoso-Palomar A, Olmedo-Juárez A, Olivares-Pérez J. Vaccination with cathepsin L phage-exposed mimotopes, single or in combination, reduce size, fluke burden, egg production and viability in sheep experimentally infected with Fasciola hepatica. Parasitol Int 2021; 83:102355. [PMID: 33872793 DOI: 10.1016/j.parint.2021.102355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/25/2022]
Abstract
Fascioliasis is a worldwide emergent zoonotic disease that significantly constrains the productivity of livestock. In this study, fluke burdens, liver fluke size and biomass, faecal eggs counts, serum levels of hepatic enzymes and immune response were assessed in sheep vaccinated with peptide mimotopes of cathepsin L and infected with metacercariae. A total of 25 sheep were allocated randomly into five groups of five animals each, and experimental groups were immunised with 1 × 1013 filamentous phage particles of cathepsin L1 (CL1) (TPWKDKQ), CL2 (YGSCFLR) and mixtures of CL1 + CL2 mimotopes, in combination with Quil A adjuvant, and wild-type M13KE phage in a two-vaccination scheme on weeks 0 and 4. The control group received phosphate-buffered saline. All groups were challenged with 300 metacercariae two weeks after the last immunisation and euthanised 16 weeks later. The CL1 vaccine was estimated to provide 57.58% protection compared with the control group; no effect was observed in animals immunised with CL2 and CL1 + CL2 (33.14% and 11.63%, respectively). However, animals receiving CL2 had a significant reduction in parasite egg output. Vaccinated animals showed a significant reduction in fluke length and width and wet weights. In the CL1 group, there was a significant reduction in the total biomass of parasites recovered. Egg development was divided into seven stages: dead, empty, unembryonated, cell division, eyespot, hatched and hatching. The highest percentage of developmental stages was detected for vaccinated sheep administered CL1 + CL2 with cell division, and the lowest percentage was observed in the hatching stage. Furthermore, a significant difference in all developmental stages was observed between vaccinated animals and the control group (P < 0.01). The levels of anti-phage total IgG in immune sera increased significantly at four weeks after immunisation and were always significantly higher for cathepsin L vaccine group than in the challenged control group. Total IgG was inversely and significantly correlated with worm burden in the CL1 group.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla, Mexico.
| | - Yazmín Alcalá-Canto
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Alcaldía Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Alejandro Reynoso-Palomar
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso, A.P. 206-CIVAC, C.P. 62550 Jiutepec, Morelos, Mexico
| | - Jaime Olivares-Pérez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano, Guerrero, Mexico
| |
Collapse
|
34
|
Villa-Mancera A, Alcalá-Canto Y, Olivares-Pérez J, Molina-Mendoza P, Hernández-Guzmán K, Utrera-Quintana F, Carreón-Luna L, Olmedo-Juárez A, Reynoso-Palomar A. Vaccination with cathepsin L mimotopes of Fasciola hepatica in goats reduces worm burden, morphometric measurements, and reproductive structures. Microb Pathog 2021; 155:104859. [PMID: 33845124 DOI: 10.1016/j.micpath.2021.104859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Fasciolosis is a worldwide emergent zoonotic disease that significantly constrains the productivity of livestock. We conducted an experimental trial with four groups of five goats each, vaccinated with 1 × 1013 phage particles of cathepsin L1 (CLI: DPWWLKQ), CL1 (SGTFLFS), and CL2 (PPIRNGK) mimotopes combined with Quil A adjuvant. Animals received a booster four weeks later. The control group received phosphate-buffered saline. All animals were infected with 200 Fasciola hepatica metacercariae at week six and euthanised 16 weeks later. The percentage of significant worm reduction in CL1 (DPWWLKQ), CL1 (SGTFLFS), and CL2 (PPIRNGK) compared to the control group were 55.40%, 70.42% (P < 0.05), and 32.39%, respectively. Vaccinated animals showed a significant reduction in faecal egg production and egg viability. A significant reduction in the total biomass of parasites recovered was observed in the CL1 (DPWWLKQ) and CL1 (SGTFLFS) groups. In goats vaccinated with CL2 (PPIRNGK), fluke length and width were smaller than those in the control group. Furthermore, animals receiving CL mimotopes showed a significant reduction in the total area of reproductive structures. Goats immunised with phage-displayed mimotopes produced significantly high titres of specific IgG1 and IgG2 isotypes, indicating a mixed Th1/Th2 response. The liver fluke burdens in goats vaccinated with CL1 (DPWWLKQ) and CL1 (SGTFLFS) were significantly correlated with IgG and IgG1 levels.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico.
| | - Yazmín Alcalá-Canto
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Delegación Coyoacán, Ciudad de México, C.P. 04510, Mexico
| | - Jaime Olivares-Pérez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano, Guerrero, Mexico
| | - Pedro Molina-Mendoza
- Ingeniería en Agronomía y Zootecnia, División de Ciencias Naturales. Universidad Intercultural del Estado de Puebla. Calle Principal a Lipuntahuaca S/N, Lipuntahuaca, Huehuetla, Puebla, C.P. 73475, Mexico
| | - Karina Hernández-Guzmán
- Ingeniería en Agronomía y Zootecnia, División de Ciencias Naturales. Universidad Intercultural del Estado de Puebla. Calle Principal a Lipuntahuaca S/N, Lipuntahuaca, Huehuetla, Puebla, C.P. 73475, Mexico
| | - Fernando Utrera-Quintana
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico
| | - Lorenzo Carreón-Luna
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso, C.P. 62550, Jiutepec, Morelos, A.P. 206-CIVAC, Mexico
| | - Alejandro Reynoso-Palomar
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico
| |
Collapse
|
35
|
Alba A, Vazquez AA, Hurtrez-Boussès S. Towards the comprehension of fasciolosis (re-)emergence: an integrative overview. Parasitology 2021; 148:385-407. [PMID: 33261674 PMCID: PMC11010171 DOI: 10.1017/s0031182020002255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
The increasing distribution and prevalence of fasciolosis in both human and livestock are concerning. Here, we examine the various types of factors influencing fasciolosis transmission and burden and the interrelations that may exist between them. We present the arsenal of molecules, 'adjusting' capabilities and parasitic strategies of Fasciola to infect. Such features define the high adaptability of Fasciola species for parasitism that facilitate their transmission. We discuss current environmental perturbations (increase of livestock and land use, climate change, introduction of alien species and biodiversity loss) in relation to fasciolosis dynamics. As Fasciola infection is directly and ultimately linked to livestock management, living conditions and cultural habits, which are also changing under the pressure of globalization and climate change, the social component of transmission is also discussed. Lastly, we examine the implication of increasing scientific and political awareness in highlighting the current circulation of fasciolosis and boosting epidemiological surveys and novel diagnostic techniques. From a joint perspective, it becomes clear that factors weight differently at each place and moment, depending on the biological, environmental, social and political interrelating contexts. Therefore, the analyses of a disease as complex as fasciolosis should be as integrative as possible to dissect the realities featuring each epidemiological scenario. Such a comprehensive appraisal is presented in this review and constitutes its main asset to serve as a fresh integrative understanding of fasciolosis.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical ‘Pedro Kourí’, Havana, Cuba
| | - Antonio A. Vazquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical ‘Pedro Kourí’, Havana, Cuba
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
36
|
Bennett APS, Robinson MW. Trematode Proteomics: Recent Advances and Future Directions. Pathogens 2021; 10:348. [PMID: 33809501 PMCID: PMC7998542 DOI: 10.3390/pathogens10030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Trematodes cause disease in millions of people worldwide, but the absence of commercial vaccines has led to an over-reliance on a handful of monotherapies to control infections. Since drug-resistant fluke populations are emerging, a deeper understanding of parasite biology and host interactions is required to identify new drug targets and immunogenic vaccine candidates. Mass spectrometry-based proteomics represents a key tool to that end. Recent studies have capitalised on the wider availability of annotated helminth genomes to achieve greater coverage of trematode proteomes and discover new aspects of the host-parasite relationship. This review focusses on these latest advances. These include how the protein components of fluke extracellular vesicles have given insight into their biogenesis and cellular interactions. In addition, how the integration of transcriptome/proteome datasets has revealed that the expression and secretion of selected families of liver fluke virulence factors and immunomodulators are regulated in accordance with parasite development and migration within the mammalian host. Furthermore, we discuss the use of immunoproteomics as a tool to identify vaccine candidates associated with protective antibody responses. Finally, we highlight how established and emerging technologies, such as laser microdissection and single-cell proteomics, could be exploited to resolve the protein profiles of discrete trematode tissues or cell types which, in combination with functional tools, could pinpoint optimal targets for fluke control.
Collapse
Affiliation(s)
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK;
| |
Collapse
|
37
|
Huson KM, Atcheson E, Oliver NAM, Best P, Barley JP, Hanna REB, McNeilly TN, Fang Y, Haldenby S, Paterson S, Robinson MW. Transcriptome and Secretome Analysis of Intra-Mammalian Life-Stages of Calicophoron daubneyi Reveals Adaptation to a Unique Host Environment. Mol Cell Proteomics 2021; 20:100055. [PMID: 33581320 PMCID: PMC7973311 DOI: 10.1074/mcp.ra120.002175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock, which has seen a rapid rise in prevalence throughout Western Europe in recent years. After ingestion of metacercariae (parasite cysts) by the mammalian host, newly excysted juveniles (NEJs) emerge and invade the duodenal submucosa, which causes significant pathology in heavy infections. The immature flukes then migrate upward, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients, and avoid the host immune response. Here, transcriptome analysis of four intramammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic diseases, respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that while a family of cathepsins B with varying S2 subsite residues (indicating distinct substrate specificities) is differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is upregulated in adult worms, although they are under-represented in the secretome. The most abundant proteins in adult fluke secretions were helminth defense molecules that likely establish an immune environment permissive to fluke survival and/or neutralize pathogen-associated molecular patterns such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognize antigens from other helminths commonly found as coinfections with rumen fluke.
Collapse
Affiliation(s)
- Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Erwan Atcheson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Philip Best
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Jason P Barley
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Robert E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Edinburgh, Scotland
| | - Yongxiang Fang
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
38
|
Comparative analysis of the mitochondrial proteins reveals complex structural and functional relationships in Fasciola species. Microb Pathog 2021; 152:104754. [PMID: 33508415 DOI: 10.1016/j.micpath.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/17/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria is a cellular source of energy, appears to play an essential role in dealing with cellular stress induced by environmental stimuli. The genetic diversity of mitochondrial genes involved in oxidative phosphorylation affecting the production of cellular energy and regional adaptation to various ecological (climatic) pressures affecting amino acid sequences (variants of protein). However, little is known about the combined effect of protein changes on cell-level metabolic alterations in simultaneous exposure to various environmental conditions, including mitochondrial dysfunction and oxidative stress induction. The present study was designed to address this issue by analyzing the mitochondrial proteins in Fasciola species including Cytochrome oxidase (COX1, COX2, COX3, and CYTB) and NADH dehydrogenase (ND1, ND2, ND3, ND4, ND5, and ND6). Mitochondrial proteins were used for detailed computational investigation, using available standard bioinformatics tools to exploit structural and functional relationships. These proteins in Fasciola hepatica, Fasciola gigentica, and Fasciola jacksoni were functionally annotated using public databases. The results showed that the protein of COX1 of F. hepatica, F. gigantica, and F. jacksoni consist of 510, 513, and 517 amino acids, respectively. The alignment of proteins showed that these proteins are conserved in the same regions at ten positions in COX and CYTB proteins while at twelve locations in NADH. Three-dimensional structure of COX, CYTB, and NADH proteins were compared and showed differences in additional conserved and binding sites in COX and CYTB proteins as compared to NADH in three species of Fasciola. These results based on the amino acid diversity pattern were used to identify sites in the enzyme and the variations in mitochondrial proteins among Fasciola species. Our study provides valuable information for future experimental studies, including identification of therapeutic, diagnostic, and immunoprophylactic interests with novel mitochondrial proteins.
Collapse
|
39
|
Cwiklinski K, Robinson MW, Donnelly S, Dalton JP. Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genomics 2021; 22:46. [PMID: 33430759 PMCID: PMC7797711 DOI: 10.1186/s12864-020-07326-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background The major pathogenesis associated with Fasciola hepatica infection results from the extensive tissue damage caused by the tunnelling and feeding activity of immature flukes during their migration, growth and development in the liver. This is compounded by the pathology caused by host innate and adaptive immune responses that struggle to simultaneously counter infection and repair tissue damage. Results Complementary transcriptomic and proteomic approaches defined the F. hepatica factors associated with their migration in the liver, and the resulting immune-pathogenesis. Immature liver-stage flukes express ~ 8000 transcripts that are enriched for transcription and translation processes reflective of intensive protein production and signal transduction pathways. Key pathways that regulate neoblast/pluripotent cells, including the PI3K-Akt signalling pathway, are particularly dominant and emphasise the importance of neoblast-like cells for the parasite’s rapid development. The liver-stage parasites display different secretome profiles, reflecting their distinct niche within the host, and supports the view that cathepsin peptidases, cathepsin peptidase inhibitors, saposins and leucine aminopeptidases play a central role in the parasite’s destructive migration, and digestion of host tissue and blood. Immature flukes are also primed for countering immune attack by secreting immunomodulating fatty acid binding proteins (FABP) and helminth defence molecules (FhHDM). Combined with published host microarray data, our results suggest that considerable immune cell infiltration and subsequent fibrosis of the liver tissue exacerbates oxidative stress within parenchyma that compels the expression of a range of antioxidant molecules within both host and parasite. Conclusions The migration of immature F. hepatica parasites within the liver is associated with an increase in protein production, expression of signalling pathways and neoblast proliferation that drive their rapid growth and development. The secretion of a defined set of molecules, particularly cathepsin L peptidases, peptidase-inhibitors, saponins, immune-regulators and antioxidants allow the parasite to negotiate the liver micro-environment, immune attack and increasing levels of oxidative stress. This data contributes to the growing F. hepatica -omics information that can be exploited to understand parasite development more fully and for the design of novel control strategies to prevent host liver tissue destruction and pathology.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,The School of Life Sciences, University of Technology, Sydney, Australia
| | - John P Dalton
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
40
|
Villa-Mancera A, Olivares-Pérez J, Olmedo-Juárez A, Reynoso-Palomar A. Phage display-based vaccine with cathepsin L and excretory-secretory products mimotopes of Fasciola hepatica induces protective cellular and humoral immune responses in sheep. Vet Parasitol 2020; 289:109340. [PMID: 33373968 DOI: 10.1016/j.vetpar.2020.109340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/10/2023]
Abstract
Fasciolosis is a foodborne zoonotic disease that affects grazing animals and causes substantial economic losses worldwide. Excretory/secretory (E/S) products and cathepsin L mimotopes from Fasciola hepatica were used to immunise experimentally infected sheep against liver flukes. The level of protection was measured in terms of fluke burden, morphometric measurements and faecal egg counts, as well as the humoral and cellular immune responses elicited. Five groups of 5 sheep each were immunised with 1 × 1013 phage particles of cathepsin L1 (group 1: SGTFLFS), cathepsin L1 (group 2: WHVPRTWWVLPP) and immunodominant E/S product (group 3) mimotopes with Quil A adjuvant, and wild-type M13KE phage (group 4) at the beginning and as a booster two weeks later. The control group received phosphate-buff ;ered saline. All groups were challenged with 300 metacercariae at week four and slaughtered 18 weeks later. The mean fluke burdens after challenge were reduced by 52.39 % and 67.17 % in sheep vaccinated with E/S products (group 3) and cathepsin L1 (group 1: SGTFLFS), respectively; no eff ;ect was observed in animals inoculated with cathepsin L1 (group 2: WHVPRTWWVLPP). Animals vaccinated showed a significant reduction in fluke length and width, wet weights and egg output Sheep immunised with phage-displayed mimotopes induced the development of specific IgG1 and IgG2, indicating a mixed Th1/Th2 immune response. Measurement of cytokine levels revealed higher levels of IFN-γ as well as lower production of IL-4 in sheep vaccinated with the mimotope peptide of F. hepatica. Fluke-specific production of IFN-γ in immunised animals was significantly correlated with fluke burden (P < 0.01). As helminth infection progressed, increased levels of IL-4 were evident in the wild-type M13KE phage (group 4) and the control groups (group 5), accompanied by a downregulation of IFN-γ production. Vaccinated animals with cathepsin L1 (group 1: SGTFLFS) showed that amino acids located in the middle (64SG65) of the linear sequence and C-terminal end (314TFLFS318) were associated with significant protection.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico.
| | - Jaime Olivares-Pérez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano, Guerrero, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso, C.P. 62550, Jiutepec, Morelos, A.P. 206-CIVAC, Mexico
| | - Alejandro Reynoso-Palomar
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico
| |
Collapse
|
41
|
Pritsch IC, Tikhonova IG, Jewhurst HL, Drysdale O, Cwiklinski K, Molento MB, Dalton JP, Verissimo CDM. Regulation of the Fasciola hepatica newly excysted juvenile cathepsin L3 (FhCL3) by its propeptide: a proposed 'clamp-like' mechanism of binding and inhibition. BMC Mol Cell Biol 2020; 21:90. [PMID: 33287692 PMCID: PMC7720491 DOI: 10.1186/s12860-020-00335-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/26/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The zoonotic worm parasite Fasciola hepatica secretes an abundance of cathepsin L peptidases that are associated with virulence, invasiveness, feeding and migration. The peptidases are produced as inactive zymogens that activate at low pH by autocatalytic removal of their N-terminal pro-domain or propeptide. Propeptides bind to their cognate enzyme with high specificity. Little is known, however, about the mechanism by which the propeptide of FhCL3, a cathepsin L peptidase secreted by the infective newly excysted juveniles (NEJs), regulates the inhibition and activation of the mature enzyme before it is secreted into host tissues. RESULTS Immunolocalisation/immunoblotting studies show that the FhCL3 zymogen is produced and secreted by gastrodermal cells of the NEJs gut. A recombinant propeptide of FhCL3 (ppFhCL3) was shown to be a highly potent and selective inhibitor of native and recombinant F. hepatica FhCL3 peptidase, and other members of the cathepsin L family; inhibition constant (Ki) values obtained for FhCL1, FhCL2 and FhCL3 were 0.04 nM, 0.004 nM and < 0.002 nM, respectively. These values are at least 1000-fold lower than those Ki obtained for human cathepsin L (HsCL) and human cathepsin K (HsCK) demonstrating the selectivity of the ppFhCL3 for parasite cathepsins L. By exploiting 3-D structural data we identified key molecular interactions in the specific binding between the ppFhCL3 and FhCL3 mature domain. Using recombinant variants of ppFhCL3 we demonstrated the critical importance of a pair of propeptide residues (Tyr46Lys47) for the interaction with the propeptide binding loop (PBL) of the mature enzyme and other residues (Leu66 and Glu68) that allow the propeptide to block the active site. CONCLUSIONS The FhCL3 peptidase involved in host invasion by F. hepatica is produced as a zymogen in the NEJs gut. Regulation of its activation involves specific binding sites within the propeptide that are interdependent and act as a "clamp-like" mechanism of inhibition. These interactions are disrupted by the low pH of the NEJs gut to initiate autocatalytic activation. Our enzyme kinetics data demonstrates high potency and selectivity of the ppFhCL3 for its cognate FhCL3 enzyme, information that could be utilised to design inhibitors of parasite cathepsin L peptidases.
Collapse
Affiliation(s)
- Izanara C Pritsch
- Department of Basic Pathology, Federal University of Parana, Curitiba, 81531-970, Brazil.,School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Heather L Jewhurst
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Orla Drysdale
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Krystyna Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Marcelo B Molento
- Department of Basic Pathology, Federal University of Parana, Curitiba, 81531-970, Brazil.,Department of Veterinary Medicine, Federal University of Parana, Curitiba, Paraná, Brazil
| | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Carolina De M Verissimo
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
42
|
An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite Fasciola hepatica. Sci Rep 2020; 10:20657. [PMID: 33244035 PMCID: PMC7692546 DOI: 10.1038/s41598-020-77687-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/13/2020] [Indexed: 01/25/2023] Open
Abstract
Fasciola hepatica is a global parasite of humans and their livestock. Regulation of parasite-secreted cathepsin L-like cysteine proteases associated with virulence is important to fine-tune parasite-host interaction. We uncovered a family of seven Kunitz-type (FhKT) inhibitors dispersed into five phylogenetic groups. The most highly expressed FhKT genes (group FhKT1) are secreted by the newly excysted juveniles (NEJs), the stage responsible for host infection. The FhKT1 inhibitors do not inhibit serine proteases but are potent inhibitors of parasite cathepsins L and host lysosomal cathepsin L, S and K cysteine proteases (inhibition constants < 10 nM). Their unusual inhibitory properties are due to (a) Leu15 in the reactive site loop P1 position that sits at the water-exposed interface of the S1 and S1' subsites of the cathepsin protease, and (b) Arg19 which forms cation-π interactions with Trp291 of the S1' subsite and electrostatic interactions with Asp125 of the S2' subsite. FhKT1.3 is exceptional, however, as it also inhibits the serine protease trypsin due to replacement of the P1 Leu15 in the reactive loop with Arg15. The atypical Kunitz-type inhibitor family likely regulate parasite cathepsin L proteases and/or impairs host immune cell activation by blocking lysosomal cathepsin proteases involved in antigen processing and presentation.
Collapse
|
43
|
Silvane L, Celias DP, Romagnoli PA, Maletto BA, Sanchez Vallecillo MF, Chiapello LS, Palma SD, Allemandi DA, Sanabria REF, Pruzzo CI, Motrán CC, Cervi L. A Vaccine Based on Kunitz-Type Molecule Confers Protection Against Fasciola hepatica Challenge by Inducing IFN-γ and Antibody Immune Responses Through IL-17A Production. Front Immunol 2020; 11:2087. [PMID: 33193292 PMCID: PMC7641617 DOI: 10.3389/fimmu.2020.02087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023] Open
Abstract
Fasciola hepatica is helminth parasite found around the world that causes fasciolosis, a chronic disease affecting mainly cattle, sheep, and occasionally humans. Triclabendazole is the drug of choice to treat this parasite. However, the continuous use of this drug has led to the development of parasite resistance and, consequently, the limitation of its effectiveness. Hence, vaccination appears as an attractive option to develop. In this work, we evaluated the potential of F. hepatica Kunitz-type molecule (FhKTM) as an antigen formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate ester (Coa-ASC16) and the synthetic oligodeoxynucleotide containing unmethylated cytosine-guanine motifs (CpG-ODN) during an experimental model of fasciolosis in mice, and we further dissected the immune response associated with host protection. Our results showed that immunization of mice with FhKTM/CpG-ODN/Coa-ASC16 induces protection against F. hepatica challenge by preventing liver damage and improving survival after F. hepatica infection. FhKTM/CpG-ODN/Coa-ASC16-immunized mice elicited potent IFN-γ and IL-17A with high levels of antigen-specific IgG1, IgG2a, and IgA serum antibodies. Strikingly, IL-17A blockade during infection decreased IgG2a and IgA antibody levels as well as IFN-γ production, leading to an increase in mortality of vaccinated mice. The present study highlights the potential of a new vaccine formulation to improve control and help the eradication of F. hepatica infection, with potential applications for natural hosts such as cattle and sheep.
Collapse
Affiliation(s)
- Leonardo Silvane
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Daiana Pamela Celias
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Pablo Alberto Romagnoli
- Centro de Investigación en Medicina Traslacional Severo Amuchastegui (CIMETSA), Córdoba, Argentina.,Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Belkys Angélica Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Fernanda Sanchez Vallecillo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Silvina Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Santiago Daniel Palma
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Unidad de Investigación y desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Daniel Alberto Allemandi
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Unidad de Investigación y desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Rodrigo Eduardo Fabrizio Sanabria
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina.,Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET/UNSAM), Chascomús, Argentina
| | - César Iván Pruzzo
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
44
|
González-Miguel J, Becerro-Recio D, Siles-Lucas M. Insights into Fasciola hepatica Juveniles: Crossing the Fasciolosis Rubicon. Trends Parasitol 2020; 37:35-47. [PMID: 33067132 DOI: 10.1016/j.pt.2020.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Unraveling the molecular interactions governing the first contact between parasite and host tissues is of paramount importance to the development of effective control strategies against parasites. In fasciolosis, a foodborne trematodiasis caused mainly by Fasciola hepatica, these early interactions occur between the juvenile worm and the host intestinal wall a few hours after ingestion of metacercariae, the infectious stage of the parasite. However, research on these early events is still scarce and the majority of studies have focused on the adult worm. Here, we review current knowledge on the biology and biochemistry of F. hepatica juveniles and their molecular relationships with the host tissues and identify the research needs and gaps to be covered in the future.
Collapse
Affiliation(s)
- Javier González-Miguel
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - David Becerro-Recio
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Mar Siles-Lucas
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
45
|
De Marco Verissimo C, Jewhurst HL, Tikhonova IG, Urbanus RT, Maule AG, Dalton JP, Cwiklinski K. Fasciola hepatica serine protease inhibitor family (serpins): Purposely crafted for regulating host proteases. PLoS Negl Trop Dis 2020; 14:e0008510. [PMID: 32760059 PMCID: PMC7437470 DOI: 10.1371/journal.pntd.0008510] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Serine protease inhibitors (serpins) regulate proteolytic events within diverse biological processes, including digestion, coagulation, inflammation and immune responses. The presence of serpins in Fasciola hepatica excretory-secretory products indicates that the parasite exploits these to regulate proteases encountered during its development within vertebrate hosts. Interrogation of the F. hepatica genome identified a multi-gene serpin family of seven members that has expanded by gene duplication and divergence to create an array of inhibitors with distinct specificities. We investigated the molecular properties and functions of two representatives, FhSrp1 and FhSrp2, highly expressed in the invasive newly excysted juvenile (NEJ). Consistent with marked differences in the reactive centre loop (RCL) that executes inhibitor-protease complexing, the two recombinant F. hepatica serpins displayed distinct inhibitory profiles against an array of mammalian serine proteases. In particular, rFhSrp1 efficiently inhibited kallikrein (Ki = 40 nM) whilst rFhSrp2 was a highly potent inhibitor of chymotrypsin (Ki = 0.07 nM). FhSrp1 and FhSrp2 are both expressed on the NEJ surface, predominantly around the oral and ventral suckers, suggesting that these inhibitors protect the parasites from the harmful proteolytic effects of host proteases, such as chymotrypsin, during invasion. Furthermore, the unusual inhibition of kallikrein suggests that rFhSrp1 modulates host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. A vaccine combination of rFhSrp1 and rFhSrp2 formulated in the adjuvant Montanide ISA 206VG elicited modest but non-significant protection against a challenge infection in a rat model, but did induce some protection against liver pathogenesis when compared to a control group and a group vaccinated with two well-studied vaccine candidates, F. hepatica cathepsin L2 and L3. This work highlights the importance of F. hepatica serpins to regulate host responses that enables parasite survival during infection and, coupled with the vaccine data, encourages future vaccine trials in ruminants. Serpins are protease inhibitors that regulate various biological processes, including digestion, blood coagulation, inflammation and immune responses. The liver fluke, Fasciola hepatica, produces an array of inhibitors to regulate proteolytic enzymes they encounter during development within the mammalian host. In this study, we identified seven different serpins that have evolved to inhibit a range of host proteases. In particular, we characterized two representatives, FhSrp1 and FhSrp2, that we found highly expressed on the surface of the invasive newly excysted juvenile (NEJ), suggesting that they protect the parasites from harmful proteolytic effects during invasion. Contrasting inhibitory profiles were observed; while recombinant FhSrp1 inhibited kallikrein, recombinant FhSrp2 was a highly potent inhibitor of chymotrypsin. The unusual inhibition of kallikrein suggests that rFhSrp1 influences host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. Conversely, chymotrypsin is typically inhibited by trematode-specific serpins, implying a conserved mechanism to regulate digestive enzymes. The ability of the liver fluke serpin family to inhibit such an array of proteases highlights the importance of these inhibitors in parasite-host interactions and encourages future investigations of serpins as candidate anti-parasite vaccine targets for the control of fasciolosis in ruminants.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| | - Heather L. Jewhurst
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Irina G. Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| | - Rolf T. Urbanus
- Thrombosis and Hemostasis Laboratory, Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Aaron G. Maule
- Microbe & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - John P. Dalton
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
46
|
Buffoni L, Garza-Cuartero L, Pérez-Caballero R, Zafra R, Javier Martínez-Moreno F, Molina-Hernández V, Pérez J, Martínez-Moreno Á, Mulcahy G. Identification of protective peptides of Fasciola hepatica-derived cathepsin L1 (FhCL1) in vaccinated sheep by a linear B-cell epitope mapping approach. Parasit Vectors 2020; 13:390. [PMID: 32736582 PMCID: PMC7393625 DOI: 10.1186/s13071-020-04260-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fasciolosis is one of the most important parasitic diseases of livestock. The need for better control strategies gave rise to the identification of various vaccine candidates. The recombinant form of a member of the cysteine
protease family, cathepsin L1 of Fasciola hepatica (FhCL1) has been a vaccine target for the past few decades since it has been shown to behave as an immunodominant antigen. However, when FhCL1 was used as vaccine, it has been observed to elicit significant protection in some trials, whereas no protection was provided in others. Methods In order to improve vaccine development strategy, we conducted a linear B-cell epitope mapping of FhCL1 in sheep vaccinated with FhCL1, FhHDM, FhLAP and FhPrx plus Montanide and with significant reduction of the fluke burden, sheep vaccinated with FhCL1, FhHDM, FhLAP and FhPrx plus aluminium hydroxide and with non-significant reduction of the fluke burden, and in unvaccinated-infected sheep. Results Our study showed that the pattern and dynamic of peptide recognition varied noticeably between both vaccinated groups, and that the regions 55–63 and 77–84, which are within the propeptide, and regions 102–114 and 265–273 of FhCL1 were specifically recognised only by vaccinated sheep with significant reduction of the fluke burden. In addition, these animals also showed significant production of specific IgG2, whereas none was observed in vaccinated-Aluminium hydroxide and in infected control animals. Conclusions We have identified 42 residues of FhCL1 that contributed to protective immunity against infection with F. hepatica in sheep. Our results provide indications in relation to key aspects of the immune response. Given the variable outcomes of vaccination trials conducted in ruminants to date, this study adds new insights to improve strategies of vaccine development.![]()
Collapse
Affiliation(s)
- Leandro Buffoni
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain.
| | - Laura Garza-Cuartero
- School of Veterinary Medicine, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Raúl Pérez-Caballero
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafael Zafra
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - F Javier Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Anatomy and Comparative Pathology Department, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - José Pérez
- Anatomy and Comparative Pathology Department, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Belfield, D4, Dublin, Ireland.,Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
González-Miguel J, Becerro-Recio D, Sotillo J, Simón F, Siles-Lucas M. Set up of an in vitro model to study early host-parasite interactions between newly excysted juveniles of Fasciola hepatica and host intestinal cells using a quantitative proteomics approach. Vet Parasitol 2020; 278:109028. [PMID: 31986420 DOI: 10.1016/j.vetpar.2020.109028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Fasciola hepatica is the causative agent of fasciolosis, a parasitic zoonosis of global distribution causing significant economic losses in animal production and a human public health problem in low-income countries. Hosts are infected by ingestion of aquatic plants carrying metacercariae. Once ingested, the juvenile parasites excyst in the small intestine and, after crossing it, they follow a complex migratory route that lead the parasites to their definitive location in the bile ducts. Despite being a critical event in the progression of the infection, the available data on the cross-talk relationships between the parasite and the host at an early stage of the infection are scarce. The objective of the present work is to characterize the proteomic changes occurring in both the parasite and the host, through the development of a novel in vitro model, to shed light on the molecular pathways of communication between the newly excysted juveniles (NEJ) from F. hepatica and the host's intestinal epithelium. For this, in vitro excystation of F. hepatica metacercariae was carried out and NEJ were obtained. Additionally, optimal conditions of growth and expansion of mouse primary small intestinal epithelial cells (MPSIEC) in culture were fine-tuned. Tegumentary and somatic parasite antigens (NEJ-Teg and NEJ-Som), as well as host cell protein lysate (MPSIEC-Lys) were obtained before and after 24 h co-culture of NEJ with MPSIEC. We used an isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy to detect 191 and 62 up-regulated, and 112 and 57 down-regulated proteins in the NEJ-Teg and NEJ-Som extracts, respectively. Similarly, 87 up-regulated and 73 down-regulated proteins in the MPSIEC-Lys extract were identified. Taking into account the biological processes in which these proteins were involved, interesting mechanisms related to parasite development, invasion and evasion, as well as manipulation of the host intestinal epithelial cell adhesion, immunity and apoptosis pathways, among others, could be inferred, taking place at the host-parasite interface. The further understanding of these processes could constitute promising therapeutic targets in the future against fasciolosis.
Collapse
Affiliation(s)
- Javier González-Miguel
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| | - David Becerro-Recio
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Mar Siles-Lucas
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain
| |
Collapse
|
48
|
Zhang XX, Cwiklinski K, Hu RS, Zheng WB, Sheng ZA, Zhang FK, Elsheikha HM, Dalton JP, Zhu XQ. Complex and dynamic transcriptional changes allow the helminth Fasciola gigantica to adjust to its intermediate snail and definitive mammalian hosts. BMC Genomics 2019; 20:729. [PMID: 31606027 PMCID: PMC6790025 DOI: 10.1186/s12864-019-6103-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/13/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The tropical liver fluke, Fasciola gigantica causes fasciolosis, an important disease of humans and livestock. We characterized dynamic transcriptional changes associated with the development of the parasite in its two hosts, the snail intermediate host and the mammalian definitive host. RESULTS Differential gene transcription analysis revealed 7445 unigenes transcribed by all F. gigantica lifecycle stages, while the majority (n = 50,977) exhibited stage-specific expression. Miracidia that hatch from eggs are highly transcriptionally active, expressing a myriad of genes involved in pheromone activity and metallopeptidase activity, consistent with snail host finding and invasion. Clonal expansion of rediae within the snail correlates with increased expression of genes associated with transcription, translation and repair. All intra-snail stages (miracidia, rediae and cercariae) require abundant cathepsin L peptidases for migration and feeding and, as indicated by their annotation, express genes putatively involved in the manipulation of snail innate immune responses. Cercariae emerge from the snail, settle on vegetation and become encysted metacercariae that are infectious to mammals; these remain metabolically active, transcribing genes involved in regulation of metabolism, synthesis of nucleotides, pH and endopeptidase activity to assure their longevity and survival on pasture. Dramatic growth and development following infection of the mammalian host are associated with high gene transcription of cell motility pathways, and transport and catabolism pathways. The intra-mammalian stages temporally regulate key families of genes including the cathepsin L and B proteases and their trans-activating peptidases, the legumains, during intense feeding and migration through the intestine, liver and bile ducts. While 70% of the F. gigantica transcripts share homology with genes expressed by the temperate liver fluke Fasciola hepatica, gene expression profiles of the most abundantly expressed transcripts within the comparable lifecycle stages implies significant species-specific gene regulation. CONCLUSIONS Transcriptional profiling of the F. gigantica lifecycle identified key metabolic, growth and developmental processes the parasite undergoes as it encounters vastly different environments within two very different hosts. Comparative analysis with F. hepatica provides insight into the similarities and differences of these parasites that diverged > 20 million years ago, crucial for the future development of novel control strategies against both species.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, People's Republic of China
| | - Krystyna Cwiklinski
- National Centre for Biomedical and Engineering Science (NCBES), School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530005, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - John P Dalton
- National Centre for Biomedical and Engineering Science (NCBES), School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
49
|
Hanna REB, Moffett D, Robinson MW, Jura WGZO, Brennan GP, Fairweather I, Threadgold LT. Fasciola gigantica: Ultrastructural cytochemistry of the tegumental surface in newly- excysted metacercariae and in vitro-penetrated juvenile flukes informs a concept of parasite defence at the interface with the host. Vet Parasitol 2019; 274:108923. [PMID: 31542719 DOI: 10.1016/j.vetpar.2019.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/09/2019] [Accepted: 09/12/2019] [Indexed: 11/20/2022]
Abstract
Cytochemical staining techniques were carried out en bloc with in vitro excysted and gut-penetrated Fasciola gigantica larvae in order to visualise the glycocalyx of the tegument, a structure which comprises the parasite component of the host-parasite interface, yet is incompletely preserved by conventional fixation and preparation techniques for electron microscopy. Positive reactivity with ruthenium red and periodic acid-thiocarbohydrazine-osmium (PATCO) techniques revealed that the glycocalyx is polyanionic and carbohydrate-rich throughout its depth. It comprises a trilaminate arrangement, with a thin dense zone and fibrillar layer closely apposed to the outer aspect of the apical plasma membrane, invested by an irregular thick mucopolysaccharide capsule. The latter, not recorded in adult flukes, may represent a specific adaptation to facilitate invasion in the face of host immunity, and may also protect the parasite surface from the action of host- and parasite-derived proteases. Early in the invasion of a naïve host, the glycocalyx may be partly responsible for triggering the responses of innate immunity, while later in infection, or when an anamnestic response is initiated in an immunocompetent host, the antibodies and activated lymphocytes of specific acquired immunity are invoked to interact with the parasite surface. The cytochemical properties of the glycocalyx, together with its potential for dynamic turnover due to exocytosis of the T0 tegumental secretory bodies, are likely to aid neutralisation of potentially damaging immune effectors and ensure their removal from the vicinity of the parasite by sloughing in complex with glycocalyx components.
Collapse
Affiliation(s)
- R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, United Kingdom.
| | - D Moffett
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, United Kingdom
| | - M W Robinson
- School of Biological Sciences, The Queen's University of Belfast, Belfast BT9 5DL, United Kingdom
| | - W G Z O Jura
- Department of Zoology, Maseno University, Maseno, Kenya
| | - G P Brennan
- School of Biological Sciences, The Queen's University of Belfast, Belfast BT9 5DL, United Kingdom
| | - I Fairweather
- School of Biological Sciences, The Queen's University of Belfast, Belfast BT9 5DL, United Kingdom
| | - L T Threadgold
- School of Biological Sciences, The Queen's University of Belfast, Belfast BT9 5DL, United Kingdom
| |
Collapse
|