1
|
Zhang Y, Zhao W, Du H, Dhakal P, Chen X, Wu L, Li X, Wang R, Zhang L, Zhang S, Li J. Licochalcone a: A promising antiparasitic drug against giardiasis. Int J Parasitol Drugs Drug Resist 2025; 27:100573. [PMID: 39693890 PMCID: PMC11720111 DOI: 10.1016/j.ijpddr.2024.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Giardiasis, caused by Giardia duodenalis, is a prevalent and significant zoonotic disease. While nitroimidazole drugs are primarily used to treat giardiasis, the urgent need for the development and formulation of new drugs has arisen due to increasing drug resistance. Several plant derived medicine have been employed as antiparasitic drugs. This study has evaluated the anti-Giardia effect of Licochalcone A (Lic A) through both in vitro and in vivo experiments. We determined the 50% inhibitory concentration (IC50) of Lic A, analyzed the adhesive ability of G. duodenalis, and assessed intestinal morphology and various indicators in the gerbil model. The in vitro assays demonstrated that the IC50 value of Lic A against G. duodenalis was 27.42 μM. Additionally, Lic A significantly inhibited the adhesiveability of G. duodenalis trophozoites, impairing their cell structure and cytoskeleton. In vivo experiments showed that Lic A significantly mitigated weight loss due to G. duodenalis infection, and lowered the intestinal parasite load. Histopathological examinations in gerbils indicated that Lic A could reduce intestinal damage, increase the height of intestinal villi, decrease crypt depth, and maintain the integrity of intestinal structure. Furthermore, Lic A altered cytokine levels and enhanced the body's antioxidant capacity. In conclusion, Lic A exbibits significant anti-Giardia effects both in vitro and in vivo, suggesting its potential as a promising antiparasitic drug candidate against giardiasis.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Wenchao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Haili Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Pitambar Dhakal
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xinyi Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Longfei Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
2
|
García-Bustos JJ, Luna Pizarro G, Patolsky RG, Joray MB, Villalba-Vizcaino V, Galeano P, Espitia-Almeida F, Correa Múnera M, Ozturk M, Rópolo AS, Feliziani C, Touz MC, Laiolo J. Antiparasitic activity of Colombian Amazon palm extracts against Giardia lamblia trophozoites: insights into cellular death mechanisms. Front Microbiol 2025; 16:1523880. [PMID: 40177476 PMCID: PMC11961968 DOI: 10.3389/fmicb.2025.1523880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Colombian plants have a long history of use in traditional medicine and ethnopharmacology, particularly for treating stomach pain, digestive issues, diarrhea, and other gastrointestinal disorders. Recent studies have renewed interest in their potential therapeutic properties. Methods This study evaluated the giardicidal activity of 15 crude plant extracts native to the Colombian Amazon against Giardia lamblia (genotype A, strain WB/1267). The MTT colorimetric assay was used to determine the effectiveness of these extracts at a concentration of 500 μg/mL. Extracts showing significant activity were further analyzed to determine their half-maximal inhibitory concentration (IC50). The cell death mechanisms of Attalea butyracea were studied using flow cytometry, confocal microscopy, and transmission electron microscopy (TEM). Results Among the tested extracts, the Attalea butyracea fruit extract (P-2) exhibited the highest activity against WB/1267 (IC50 = 62.10 ± 6.57 μg/mL) and demonstrated giardicidal activity against GS/M (IC50 = 100.90 ± 3.40 μg/mL, genotype B) human infecting strains. These results prompted a detailed investigation into its mechanism of action using the WB/1267 strain as a model. At its IC50 concentration, P-2 primarily exerted its antiproliferative effect by induction of early apoptosis. A notable increase in late apoptosis and necrosis was observed at 2xIC50. Immunofluorescence assay (IFA) and confocal microscopy revealed chromatin condensation in treated trophozoites, while flow cytometry indicated G1/S cell cycle arrest. Furthermore, exposure to P-2 led to oxidative stress, evidenced by a significant increase in reactive oxygen species (ROS). The extract's ability to disrupt various structural components of the parasite was confirmed through IFA and transmission electron microscopy. Interestingly, the P-2 extract effectively synergized with the first-line drug metronidazole against Giardia WB/1267 trophozoites. Discussion These findings underscore the therapeutic potential of Colombian plant extracts in treating giardiasis, particularly highlighting the novel giardicidal activity of Attalea butyracea fruit extract and its promise for further therapeutic development.
Collapse
Affiliation(s)
- Juan Javier García-Bustos
- Programa de Medicina Veterinaria y Zootecnia, Universidad de La Amazonia, Caquetá, Florencia, Colombia
- Universidad del Magdalena, Facultad Ciencias de la Salud, Doctorado en Medicina Tropical SUE-Caribe, Grupo de Investigación en Inmunología y Patologia (GIPAT), Santa Marta, Colombia
| | - Gabriel Luna Pizarro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rocío G. Patolsky
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas (CIDIE-CONICET-UCC), Universidad Católica de Córdoba, Córdoba, Argentina
| | - Vivian Villalba-Vizcaino
- Universidad del Magdalena, Facultad Ciencias de la Salud, Doctorado en Medicina Tropical SUE-Caribe, Grupo de Investigación en Inmunología y Patologia (GIPAT), Santa Marta, Colombia
| | - Paula Galeano
- Facultad de Ciencias Básicas, Universidad de La Amazonia, Caquetá, Florencia, Colombia
| | - Fabián Espitia-Almeida
- Centro de Investigaciones en Ciencias de la Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
- Facultad de Ciencias Básicas, Programa de Biología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Marco Correa Múnera
- Facultad de Ciencias Básicas, Universidad de La Amazonia, Caquetá, Florencia, Colombia
| | - Mehmet Ozturk
- Department of Chemistry, Faculty of Science, Mugla Sitki Koçman University, Mugla, Türkiye
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Yeo HR, Shin MY, Kim J, Park SJ. Giardia intraflagellar transport protein 88 is involved in flagella formation. PARASITES, HOSTS AND DISEASES 2025; 63:12-24. [PMID: 40045677 PMCID: PMC11895090 DOI: 10.3347/phd.24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025]
Abstract
Intraflagellar transport (IFT) particles, a multi-protein apparatus composed of complex A and B, are known to be involved in homeostasis of flagella formation. IFT particles have recently become an interesting topic in Giardia lamblia, which has 4 pairs of flagella. In this experiment, we examined the function of giardial IFT components. When 7 components (IFT121, 140, 20, 46, 52, 81, and 88) of IFT were expressed in Giardia trophozoites as a tagged form with mNeonGreen, all of them were found in both flagella pores and cytoplasmic axonemes. In addition, motor proteins for IFT particles (kinesin-13 and kinesin-2b), were localized to a median body and cytoplasmic flagella, respectively. The CRISPRi-mediated knockdown of IFT88 significantly affected the lengths of all 4 flagella compared to the control cells, Giardia expressing dead Cas9 using control guide RNA. Decreased expression of kinesin-2b also resulted in shortening of flagella, excluding the ventral flagella. Live Giardia cells expressing IFT88-mNeonGreen clearly demonstrated fluorescence in flagella pores and cytoplasmic axonemes. These results on IFT88 and kinesin-2b indicate that IFT complex plays a role in maintenance of G. lamblia flagella.
Collapse
Affiliation(s)
- Hye Rim Yeo
- Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Mee Young Shin
- Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Juri Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Soon-Jung Park
- Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
4
|
Kennard AS, Velle KB, Ranjan R, Schulz D, Fritz-Laylin LK. Tubulin sequence divergence is associated with the use of distinct microtubule regulators. Curr Biol 2025; 35:233-248.e8. [PMID: 39694029 PMCID: PMC11753955 DOI: 10.1016/j.cub.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Diverse eukaryotic cells assemble microtubule networks that vary in structure and composition. While we understand how cells build microtubule networks with specialized functions, we do not know how microtubule networks diversify across deep evolutionary timescales. This problem has remained unresolved because most organisms use shared pools of tubulins for multiple networks, making it difficult to trace the evolution of any single network. In contrast, the amoeboflagellate Naegleria expresses distinct tubulin genes to build distinct microtubule networks: while Naegleria builds flagella from conserved tubulins during differentiation, it uses divergent tubulins to build its mitotic spindle. This genetic separation makes for an internally controlled system to study independent microtubule networks in a single organismal and genomic context. To explore the evolution of these microtubule networks, we identified conserved microtubule-binding proteins and used transcriptional profiling of mitosis and differentiation to determine which are upregulated during the assembly of each network. Surprisingly, most microtubule-binding proteins are upregulated during only one process, suggesting that Naegleria uses distinct component pools to specialize its microtubule networks. Furthermore, the divergent residues of mitotic tubulins tend to fall within the binding sites of differentiation-specific microtubule regulators, suggesting that interactions between microtubules and their binding proteins constrain tubulin sequence diversification. We therefore propose a model for cytoskeletal evolution in which pools of microtubule network components constrain and guide the diversification of the entire network, so that the evolution of tubulin is inextricably linked to that of its binding partners.
Collapse
Affiliation(s)
- Andrew S Kennard
- Department of Biology and the Howard Hughes Medical Institute, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA
| | - Katrina B Velle
- Department of Biology and the Howard Hughes Medical Institute, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts-Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute of Applied Life Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Danae Schulz
- Department of Biology, Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA
| | - Lillian K Fritz-Laylin
- Department of Biology and the Howard Hughes Medical Institute, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
5
|
Wloga D, Joachimiak E, Osinka A, Ahmadi S, Majhi S. Motile Cilia in Female and Male Reproductive Tracts and Fertility. Cells 2024; 13:1974. [PMID: 39682722 PMCID: PMC11639810 DOI: 10.3390/cells13231974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Motile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia. Uncoordinated or altered cilia motion or cilia immotility may result in subfertility or even infertility. Here, we summarize the current knowledge regarding the localization and function of MCCs in the human reproductive tracts, discuss how cilia and cilia beating-generated fluid flow directly and indirectly contribute to the processes in these organs, and how lack or improper functioning of cilia influence human fertility.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.J.); (A.O.); (S.A.); (S.M.)
| | | | | | | | | |
Collapse
|
6
|
Soukup J, Zelená M, Weisz F, Kostelanská M, Nohýnková E, Tůmová P. Imaging Giardia intestinalis cellular organisation using expansion microscopy reveals atypical centrin localisation. Exp Parasitol 2024; 266:108831. [PMID: 39243847 DOI: 10.1016/j.exppara.2024.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Advanced imaging of microorganisms, including protists, is challenging due to their small size. Specimen expansion prior to imaging is thus beneficial to increase resolution and cellular details. Here, we present a sample preparation workflow for improved observations of the single-celled eukaryotic pathogen Giardia intestinalis (Excavata, Metamonada). The binucleated trophozoites colonize the small intestine of humans and animals and cause a diarrhoeal disease. Their remarkable morphology includes two nuclei and a pronounced microtubular cytoskeleton enabling cell motility, attachment and proliferation. By use of expansion and confocal microscopy, we resolved in a great detail subcellular structures and organelles of the parasite cell. The acquired spatial resolution enabled novel observations of centrin localization at Giardia basal bodies. Interestingly, non-luminal centrin localization between the Giardia basal bodies was observed, which is an atypical eukaryotic arrangement. Our protocol includes antibody staining and can be used for the localization of epitope-tagged proteins, as well as for differential organelle labelling by amino reactive esters. This fast and simple technique is suitable for routine use without a superresolution microscopy equipment.
Collapse
Affiliation(s)
- J Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Zelená
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - F Weisz
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Kostelanská
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - E Nohýnková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Tůmová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
7
|
Barzola FN, Laiolo J, Cotelo C, Joray MB, Volpini X, Rivero MR, Rópolo AS, Touz MC, Feliziani C. Cytotoxic effects of ivermectin on Giardia lamblia: induction of apoptosis and cell cycle arrest. Front Microbiol 2024; 15:1484805. [PMID: 39545240 PMCID: PMC11560887 DOI: 10.3389/fmicb.2024.1484805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Giardia lamblia is a flagellated protozoan parasite causing giardiasis, a common intestinal infection characterized by diarrhea, abdominal cramps, and nausea. Treatments employed to combat this parasitic infection have remained unchanged for the past 40 years, leading to the emergence of resistant strains and prompting the search for new therapeutic agents. Methods This study investigated the cytotoxic effects of ivermectin (IVM) on G. lamblia trophozoites. We conducted dose-response experiments to assess IVM-induced cytotoxicity. We utilized various biochemical and ultrastructural analyses to explore the underlying mechanisms of cell death, including reactive oxygen species (ROS) production, DNA fragmentation, cell cycle arrest, and apoptosis markers. Results Our findings demonstrate that IVM induces dose-dependent cytotoxicity and triggers cell death pathways. We found that IVM treatment generates elevated levels of reactive oxygen species (ROS), DNA fragmentation, and arrests of trophozoites in the cell cycle's S phase. Additionally, ultrastructural analysis reveals morphological alterations consistent with apoptosis, such as cytoplasmic vacuolization, chromatin condensation, and tubulin distribution. Discussion The insights gained from this study may contribute to developing new therapeutic strategies against giardiasis, addressing the challenge posed by drug-resistant strains.
Collapse
Affiliation(s)
- Florencia Nicole Barzola
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica De Córdoba, Córdoba, Argentina
| | - Camilo Cotelo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Cientí-ficas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Ximena Volpini
- Centro de Investigaciones en Bioquímica Clínica e Inmunología – Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - María Romina Rivero
- Instituto De Desarrollo Agroindustrial y De La Salud (IDAS-CONCIET), Universidad Nacional De Rio Cuarto, Rio Cuarto, Argentina
| | - Andrea Silvana Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
8
|
Yang D, Liu Y, Ren Y, Hao L, Zhang X, Chen H, Liu J. Giardia intestinalis extracellular vesicles induce changes in gene expression in human intestinal epithelial cells in vitro. Exp Parasitol 2024; 262:108788. [PMID: 38759775 DOI: 10.1016/j.exppara.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Giardiasis is a common waterborne zoonotic disease caused by Giardia intestinalis. Upon infection, Giardia releases excretory and secretory products (ESPs) including secreted proteins (SPs) and extracellular vesicles (EVs). Although the interplay between ESPs and intestinal epithelial cells (IECs) has been previously described, the functions of EVs in these interactions and their differences from those of SPs require further exploration. In the present study, EVs and EV-depleted SPs were isolated from Giardia ESPs. Proteomic analyses of isolated SPs and EVs showed 146 and 91 proteins, respectively. Certain unique and enriched proteins have been identified in SPs and EVs. Transcriptome analysis of Caco-2 cells exposed to EVs showed 96 differentially expressed genes (DEGs), with 56 upregulated and 40 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) indicated that Caco-2 genes related to metabolic processes, the HIF-1 signaling pathway, and the cAMP signaling pathway were affected. This study provides new insights into host-parasite interactions, highlighting the potential significance of EVs on IECs during infections.
Collapse
Affiliation(s)
- Dongming Yang
- Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Yingnan Liu
- Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yupeng Ren
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Lili Hao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xichen Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
9
|
Gunaratnam G, Leisering R, Wieland B, Dudek J, Miosge N, Becker SL, Bischoff M, Dawson SC, Hannig M, Jacobs K, Klotz C, Aebischer T, Jung P. Characterization of a unique attachment organelle: Single-cell force spectroscopy of Giardia duodenalis trophozoites. NANOSCALE 2024; 16:7145-7153. [PMID: 38502112 DOI: 10.1039/d4nr00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The unicellular parasite Giardia duodenalis is the causative agent of giardiasis, a gastrointestinal disease with global spread. In its trophozoite form, G. duodenalis can adhere to the human intestinal epithelium and a variety of other, artificial surfaces. Its attachment is facilitated by a unique microtubule-based attachment organelle, the so-called ventral disc. The mechanical function of the ventral disc, however, is still debated. Earlier studies postulated that a dynamic negative pressure under the ventral disc, generated by persistently beating flagella, mediates the attachment. Later studies suggested a suction model based on structural changes of the ventral discs, substrate clutching or grasping, or unspecific contact forces. In this study, we aim to contribute to the understanding of G. duodenalis attachment by investigating detachment characteristics and determining adhesion forces of single trophozoites on a smooth glass surface (RMS = 1.1 ± 0.2 nm) by fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS). Briefly, viable adherent trophozoites were approached with a FluidFM micropipette, immobilized to the micropipette aperture by negative pressure, and detached from the surface by micropipette retraction while retract force curves were recorded. These force curves displayed novel and so far undescribed characteristics for a microorganism, namely, gradual force increase on the pulled trophozoite, with localization of adhesion force shortly before cell detachment length. Respective adhesion forces reached 7.7 ± 4.2 nN at 1 μm s-1 pulling speed. Importantly, this unique force pattern was different from that of other eukaryotic cells such as Candida albicans or oral keratinocytes, considered for comparison in this study. The latter both displayed a force pattern with force peaks of different values or force plateaus (for keratinocytes) indicative of breakage of molecular bonds of cell-anchored classes of adhesion molecules or membrane components. Furthermore, the attachment mode of G. duodenalis trophozoites was mechanically resilient to tensile forces, when the pulling speeds were raised up to 10 μm s-1 and adhesion forces increased to 28.7 ± 10.5 nN. Taken together, comparative SCSF revealed novel and unique retract force curve characteristics for attached G. duodenalis, suggesting a ligand-independent suction mechanism, that differ from those of other well described eukaryotes.
Collapse
Affiliation(s)
- Gubesh Gunaratnam
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| | - Ricarda Leisering
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Ben Wieland
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| | - Johanna Dudek
- Clinic of Operative Dentistry and Periodontology, Saarland University, Homburg, Germany
| | - Nicolai Miosge
- Clinic of Operative Dentistry and Periodontology, Saarland University, Homburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, USA
| | - Matthias Hannig
- Clinic of Operative Dentistry and Periodontology, Saarland University, Homburg, Germany
| | - Karin Jacobs
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Max Planck School, Matter to Life, Heidelberg, Germany
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| |
Collapse
|
10
|
Shiff CE, Kondev J, Mohapatra L. Ultrasensitivity of microtubule severing due to damage repair. iScience 2024; 27:108874. [PMID: 38327774 PMCID: PMC10847648 DOI: 10.1016/j.isci.2024.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Microtubule-based cytoskeletal structures aid in cell motility, cell polarization, and intracellular transport. These functions require a coordinated effort of regulatory proteins which interact with microtubule cytoskeleton distinctively. In-vitro experiments have shown that free tubulin can repair nanoscale damages of microtubules created by severing proteins. Based on this observation, we theoretically analyze microtubule severing as a competition between the processes of damage spreading and tubulin-induced repair. We demonstrate that this model is in quantitative agreement with in-vitro experiments and predict the existence of a critical tubulin concentration above which severing becomes rare, fast, and sensitive to concentration of free tubulin. We show that this sensitivity leads to a dramatic increase in the dynamic range of steady-state microtubule lengths when the free tubulin concentration is varied, and microtubule lengths are controlled by severing. Our work demonstrates how synergy between tubulin and microtubule-associated proteins can bring about specific dynamical properties of microtubules.
Collapse
Affiliation(s)
- Chloe E. Shiff
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Lishibanya Mohapatra
- School of Physics and Astronomy, College of Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
11
|
Reber S, Singer M, Frischknecht F. Cytoskeletal dynamics in parasites. Curr Opin Cell Biol 2024; 86:102277. [PMID: 38048658 DOI: 10.1016/j.ceb.2023.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Cytoskeletal dynamics are essential for cellular homeostasis and development for both metazoans and protozoans. The function of cytoskeletal elements in protozoans can diverge from that of metazoan cells, with microtubules being more stable and actin filaments being more dynamic. This is particularly striking in protozoan parasites that evolved to enter metazoan cells. Here, we review recent progress towards understanding cytoskeletal dynamics in protozoan parasites, with a focus on divergent properties compared to classic model organisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Vargas-Villanueva JR, Gutiérrez-Gutiérrez F, Garza-Ontiveros M, Nery-Flores SD, Campos-Múzquiz LG, Vazquez-Obregón D, Rodriguez-Herrera R, Palomo-Ligas L. Tubulin as a potential molecular target for resveratrol in Giardia lamblia trophozoites, in vitro and in silico approaches. Acta Trop 2023; 248:107026. [PMID: 37722447 DOI: 10.1016/j.actatropica.2023.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Giardia lamblia is a globally distributed protozoan parasite that causes intestinal disease. Recently, there is an increase in refractory cases of giardiasis to chemotherapeutic agents, and drugs available cause side effects that may limit its use or cause therapeutic non-compliance. Therefore, search for alternative and less harmful drugs to treat giardiasis is an important task. In this sense, resveratrol (RSV) is a polyphenol with a wide range of pharmacological effects such as antimicrobial, anticarcinogenic and antioxidant. The aim of this study was to evaluate the effects of RSV on Giardia lamblia trophozoites in vitro and in silico, focusing on tubulin affectation, a major protein of the Giardia cytoskeleton which participates in relevant processes for cell survival. In vitro determinations showed that RSV inhibits parasite growth and adherence, causes morphological changes, and induces apoptosis-like cell death through tubulin alterations demonstrated by immunolocalization and Western blot assays. Bioinformatic analysis by molecular docking suggested that RSV binds to Giardia tubulin interface heterodimer, sharing binding residues to those reported with depolymerization inhibitors. These findings suggest that RSV affects microtubular dynamics and make it an interesting compound to study for its safety and antigiardiasic potential.
Collapse
Affiliation(s)
| | - Filiberto Gutiérrez-Gutiérrez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, 44430, Mexico; División de Salud, Centro Universitario de Tlajomulco, Universidad de Guadalajara, Tlajomulco de Zúñiga, Jalisco, 45641, Mexico
| | - Mariana Garza-Ontiveros
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila. Unidad Saltillo. Saltillo, Coahuila, 25280, Mexico
| | - Sendar Daniel Nery-Flores
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila. Unidad Saltillo. Saltillo, Coahuila, 25280, Mexico
| | | | - Dagoberto Vazquez-Obregón
- Tecnológico Nacional de México/ Instituto tecnológico de Saltillo. Departamento de Metal Mecánica. Saltillo, Coahuila 25280, Mexico
| | - Raul Rodriguez-Herrera
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila. Unidad Saltillo. Saltillo, Coahuila, 25280, Mexico
| | - Lissethe Palomo-Ligas
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila. Unidad Saltillo. Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
13
|
Su Q, Baker L, Emery S, Balan B, Ansell B, Tichkule S, Mueller I, Svärd SG, Jex A. Transcriptomic analysis of albendazole resistance in human diarrheal parasite Giardia duodenalis. INTERNATIONAL JOURNAL FOR PARASITOLOGY: DRUGS AND DRUG RESISTANCE 2023; 22:9-19. [PMID: 37004489 PMCID: PMC10111952 DOI: 10.1016/j.ijpddr.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Benzimidazole-2-carbamates (BZ, e.g., albendazole; ALB), which bind β-tubulin to disrupt microtubule polymerization, are one of two primary compound classes used to treat giardiasis. In most parasitic nematodes and fungi, BZ-resistance is caused by β-tubulin mutations and its molecular mode of action (MOA) is well studied. In contrast, in Giardia duodenalis BZ MOA or resistance is less well understood, may involve target-specific and broader impacts including cellular damage and oxidative stress, and its underlying cause is not clearly determined. Previously, we identified acquisition of a single nucleotide polymorphism, E198K, in β-tubulin in ALB-resistant (ALB-R) G. duodenalis WB-1B relative to ALB-sensitive (ALB-S) parental controls. E198K is linked to BZ-resistance in fungi and its allelic frequency correlated with the magnitude of BZ-resistance in G. duodenalis WB-1B. Here, we undertook detailed transcriptomic comparisons of these ALB-S and ALB-R G. duodenalis WB-1B cultures. The primary transcriptional changes with ALB-R in G. duodenalis WB-1B indicated increased protein degradation and turnover, and up-regulation of tubulin, and related genes, associated with the adhesive disc and basal bodies. These findings are consistent with previous observations noting focused disintegration of the disc and associated structures in Giardia duodenalis upon ALB exposure. We also saw transcriptional changes with ALB-R in G. duodenalis WB-1B consistent with prior observations of a shift from glycolysis to arginine metabolism for ATP production and possible changes to aspects of the vesicular trafficking system that require further investigation. Finally, we saw mixed transcriptional changes associated with DNA repair and oxidative stress responses in the G. duodenalis WB-1B line. These changes may be indicative of a role for H2O2 degradation in ALB-R, as has been observed in other G. duodenalis cell cultures. However, they were below the transcriptional fold-change threshold (log2FC > 1) typically employed in transcriptomic analyses and appear to be contradicted in ALB-R G. duodenalis WB-1B by down-regulation of the NAD scavenging and conversion pathways required to support these stress pathways and up-regulation of many highly oxidation sensitive iron-sulphur (FeS) cluster based metabolic enzymes.
Collapse
|
14
|
Wang X, Chen J, Zheng J. The roles of COX-2 in protozoan infection. Front Immunol 2023; 14:955616. [PMID: 36875123 PMCID: PMC9978824 DOI: 10.3389/fimmu.2023.955616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Protozoan diseases cause great harm in animal husbandry and require human-provided medical treatment. Protozoan infection can induce changes in cyclooxygenase-2 (COX-2) expression. The role played by COX-2 in the response to protozoan infection is complex. COX-2 induces and regulates inflammation by promoting the synthesis of different prostaglandins (PGs), which exhibit a variety of biological activities and participate in pathophysiological processes in the body in a variety of ways. This review explains the roles played by COX-2 in protozoan infection and analyzes the effects of COX-2-related drugs in protozoan diseases.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Steele-Ogus MC, Obenaus AM, Sniadecki NJ, Paredez AR. Disc and Actin Associated Protein 1 influences attachment in the intestinal parasite Giardia lamblia. PLoS Pathog 2022; 18:e1010433. [PMID: 35333908 PMCID: PMC8986099 DOI: 10.1371/journal.ppat.1010433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The deep-branching eukaryote Giardia lamblia is an extracellular parasite that attaches to the host intestine via a microtubule-based structure called the ventral disc. Control of attachment is mediated in part by the movement of two regions of the ventral disc that either permit or exclude the passage of fluid under the disc. Several known disc-associated proteins (DAPs) contribute to disc structure and function, but no force-generating protein has been identified among them. We recently identified several Giardia actin (GlActin) interacting proteins at the ventral disc, which could potentially employ actin polymerization for force generation and disc conformational changes. One of these proteins, Disc and Actin Associated Protein 1 (DAAP1), is highly enriched at the two regions of the disc previously shown to be important for fluid flow during attachment. In this study, we investigate the role of both GlActin and DAAP1 in ventral disc morphology and function. We confirmed interaction between GlActin and DAAP1 through coimmunoprecipitation, and used immunofluorescence to localize both proteins throughout the cell cycle and during trophozoite attachment. Similar to other DAPs, the association of DAAP1 with the disc is stable, except during cell division when the disc disassembles. Depletion of GlActin by translation-blocking antisense morpholinos resulted in both impaired attachment and defects in the ventral disc, indicating that GlActin contributes to disc-mediated attachment. Depletion of DAAP1 through CRISPR interference resulted in intact discs but impaired attachment, gating, and flow under the disc. As attachment is essential for infection, elucidation of these and other molecular mediators is a promising area for development of new therapeutics against a ubiquitous parasite.
Collapse
Affiliation(s)
- Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ava M. Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Nanoarchitecture of the ventral disc of Giardia intestinalis as revealed by high-resolution scanning electron microscopy and helium ion microscopy. Histochem Cell Biol 2022; 157:251-265. [DOI: 10.1007/s00418-021-02060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
|
17
|
Joachimiak E, Wloga D. Tubulin post-translational modifications in protists - Tiny models for solving big questions. Semin Cell Dev Biol 2021; 137:3-15. [PMID: 34922809 DOI: 10.1016/j.semcdb.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
Protists are an exceptionally diverse group of mostly single-celled eukaryotes. The organization of the microtubular cytoskeleton in protists from various evolutionary lineages has different levels of sophistication, from a network of microtubules (MTs) supporting intracellular trafficking as in Dictyostelium, to complex structures such as basal bodies and cilia/flagella enabling cell motility, and lineage-specific adaptations such as the ventral disc in Giardia. MTs building these diverse structures have specific properties partly due to the presence of tubulin post-translational modifications (PTMs). Among them there are highly evolutionarily conserved PTMs: acetylation, detyrosination, (poly)glutamylation and (poly)glycylation. In some protists also less common tubulin PTMs were identified, including phosphorylation, methylation, Δ2-, Δ5- of α-tubulin, polyubiquitination, sumoylation, or S-palmitoylation. Not surprisingly, several single-celled organisms become models to study tubulin PTMs, including their effect on MT properties and discovery of the modifying enzymes. Here, we briefly summarize the current knowledge on tubulin PTMs in unicellular eukaryotes and highlight key findings in protists as model organisms.
Collapse
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
18
|
Steele-Ogus MC, Johnson RS, MacCoss MJ, Paredez AR. Identification of Actin Filament-Associated Proteins in Giardia lamblia. Microbiol Spectr 2021; 9:e0055821. [PMID: 34287056 PMCID: PMC8552679 DOI: 10.1128/spectrum.00558-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Consistent with its proposed evolutionary position, many pathways are minimalistic or divergent, including its actin cytoskeleton. Giardia is the only eukaryote known to lack all canonical actin-binding proteins. Previously, our lab identified a number of noncanonical Giardia lamblia actin (GlActin) interactors; however, these proteins appeared to interact only with monomeric or globular actin (G-actin) rather than with filamentous actin (F-actin). To identify F-actin interactors, we used a chemical cross-linker to preserve native interactions followed by an anti-GlActin antibody, protein A affinity chromatography, and liquid chromatography coupled to mass spectrometry. We found 46 putative actin interactors enriched under the conditions favoring F-actin. Data are available via ProteomeXchange with identifier PXD026067. None of the proteins identified contain known actin-interacting motifs, and many lacked conserved domains. Each potential interactor was then tagged with the fluorescent protein mNeonGreen and visualized in live cells. We categorized the proteins based on their primary localization; localizations included ventral disc, marginal plate, nuclei, flagella, plasma membrane, and internal membranes. One protein from each of the six categories was colocalized with GlActin using immunofluorescence microscopy. We also co-immunoprecipitated one protein from each category and confirmed three of the six potential interactions. Most of the localization patterns are consistent with previously demonstrated GlActin functions, but the ventral disc represents a new category of actin interactor localization. These results suggest a role for GlActin in ventral disc function, which has previously been controversial. IMPORTANCE Giardia lamblia is an intestinal parasite that colonizes the small intestine and causes diarrhea, which can lead to dehydration and malnutrition. Giardia actin (GlActin) has a conserved role in Giardia cells, despite being a highly divergent protein with none of the conserved regulators found in model organisms. Here, we identify and localize 46 interactors of polymerized actin. These putative interactors localize to a number of places in the cell, underlining GlActin's importance in multiple cellular processes. Surprisingly, eight of these proteins localize to the ventral disc, Giardia's host attachment organelle. Since host attachment is required for infection, proteins involved in this process are an appealing target for new drugs. While treatments for Giardia exist, drug resistance is becoming more common, resulting in a need for new treatments. Giardia and human systems are highly dissimilar, thus drugs specifically tailored to Giardia proteins would be less likely to have side effects.
Collapse
Affiliation(s)
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
19
|
Emery-Corbin SJ, Su Q, Tichkule S, Baker L, Lacey E, Jex AR. In vitro selection of Giardia duodenalis for Albendazole resistance identifies a β-tubulin mutation at amino acid E198K. Int J Parasitol Drugs Drug Resist 2021; 16:162-173. [PMID: 34237690 PMCID: PMC8267433 DOI: 10.1016/j.ijpddr.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Benzimidazole-2-carbamate (BZ) compounds, including Albendazole (Alb), are one of just two drug classes approved to treat the gastrointestinal protist Giardia duodenalis. Benzimidazoles bind to the tubulin dimer interface overlapping the colchicine binding site (CBS) of β-tubulin, thereby inhibiting microtubule polymerisation and disrupting microtubule networks. These BZ compounds are widely used as anthelmintic, anti-fungal and anti-giardial drugs. However, in helminths and fungi, BZ-resistance is widespread and caused by specific point mutations primarily occurring at F167, E198 and F200 in β-tubulin isoform 1. BZ-resistance in Giardia is reported clinically and readily generated in vitro, with significant implications for Giardia control. In Giardia, BZ mode of action (MOA) and resistance mechanisms are presumed but not proven, and no mutations in β-tubulin have been reported in association with Alb resistance (AlbR). Herein, we undertook detailed in vitro drug-susceptibility screens of 13 BZ compounds and 7 Alb structural analogues in isogenic G. duodenalis isolates selected for AlbR and podophyllotoxin, another β-tubulin inhibitor, as well as explored cross-resistance to structurally unrelated, metronidazole (Mtz). AlbR lines exhibited co-resistance to many structural variants in the BZ-pharmacophore, and cross-resistance to podophyllotoxin. AlbR lines were not cross-resistant to Mtz, but MtzR lines had enhanced survival in Alb. Lastly, Alb analogues with longer thioether substituents had decreased potency against our AlbR lines. In silico modelling indicated the Alb-β-tubulin interaction in Giardia partially overlaps the CBS and corresponds to residues associated with BZ-resistance in helminths and fungi (F167, E198, F200). Sequencing of Giardia β-tubulin identified a single nucleotide polymorphism resulting in a mutation from glutamic acid to lysine at amino acid 198 (E198K). To our knowledge, this is the first β-tubulin mutation reported for protistan BZ-resistance. This study provides insight into BZ mode of action and resistance in Giardia, and presents a potential avenue for a genetic test for clinically resistance isolates.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Qiao Su
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Swapnil Tichkule
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Louise Baker
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, Australia; Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Unveiling the role of EVs in anaerobic parasitic protozoa. Mol Immunol 2021; 133:34-43. [PMID: 33621941 DOI: 10.1016/j.molimm.2021.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022]
Abstract
The anaerobic or microaerophilic protozoan parasites such as the enteric human pathogens Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, Blastocystis hominis and urogenital tract parasites Trichomonas vaginalis are able to survival in an environment with oxygen deprivation. Despite living in hostile environments these pathogens adopted different strategies to survive within the hosts. Among them, the release of extracellular vesicles (EVs) has become an active endeavor in the study of pathogenesis for these parasites. EVs are heterogenous, membrane-limited structures that have played important roles in cellular communication, transferring information through cargo and modulating the immune system of the host. In this review, we described several aspects of the recently characterized EVs of the anaerobic protozoa, including their role in adhesion, modulation of the immune response and omics analysis to understand the potential of these EVs in the pathogenesis of these diseases caused by anaerobic parasites.
Collapse
|
21
|
Baluška F, Lyons S. Archaeal Origins of Eukaryotic Cell and Nucleus. Biosystems 2021; 203:104375. [PMID: 33549602 DOI: 10.1016/j.biosystems.2021.104375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/12/2023]
Abstract
Symbiosis is a major evolutionary force, especially at the cellular level. Here we discuss several older and new discoveries suggesting that besides mitochondria and plastids, eukaryotic nuclei also have symbiotic origins. We propose an archaea-archaea scenario for the evolutionary origin of the eukaryotic cells. We suggest that two ancient archaea-like cells, one based on the actin cytoskeleton and another one based on the tubulin-centrin cytoskeleton, merged together to form the first nucleated eukaryotic cell. This archaeal endosymbiotic origin of eukaryotic cells and their nuclei explains several features of eukaryotic cells which are incompatible with the currently preferred autogenous scenarios of eukaryogenesis.
Collapse
Affiliation(s)
| | - Sherrie Lyons
- Union College, 130 N. College, St. - Schenectady, NY, 12305, USA.
| |
Collapse
|
22
|
Gavinho B, Sabatke B, Feijoli V, Rossi IV, da Silva JM, Evans-Osses I, Palmisano G, Lange S, Ramirez MI. Peptidylarginine Deiminase Inhibition Abolishes the Production of Large Extracellular Vesicles From Giardia intestinalis, Affecting Host-Pathogen Interactions by Hindering Adhesion to Host Cells. Front Cell Infect Microbiol 2020; 10:417. [PMID: 33072615 PMCID: PMC7539837 DOI: 10.3389/fcimb.2020.00417] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Giardia intestinalis is a microaerophilic protozoan that is an important etiologic agent of diarrhea worldwide. There is evidence that under diverse conditions, the parasite is capable of shedding extracellular vesicles (EVs) which modulate the physiopathology of giardiasis. Here we describe new features of G. intestinalis EV production, revealing its capacity to shed two different enriched EV populations: large (LEV) and small extracellular vesicles (SEV) and identified relevant adhesion functions associated with the larger population. Proteomic analysis revealed differences in proteins relevant for virulence and host-pathogen interactions between the two EV subsets, such as cytoskeletal and anti-oxidative stress response proteins in LEVS. We assessed the effect of two recently identified inhibitors of EV release in mammalian cells, namely peptidylarginine deiminase (PAD) inhibitor and cannabidiol (CBD), on EV release from Giardia. The compounds were both able to effectively reduce EV shedding, the PAD-inhibitor specifically affecting the release of LEVs and reducing parasite attachment to host cells in vitro. Our results suggest that LEVs and SEVs have a different role in host-pathogen interaction, and that treatment with EV-inhibitors may be a novel treatment strategy for recurrent giardiasis.
Collapse
Affiliation(s)
- Bruno Gavinho
- Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Bruna Sabatke
- Programa de Pós-Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Veronica Feijoli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Izadora Volpato Rossi
- Programa de Pós-Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Janaina Macedo da Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Ingrid Evans-Osses
- Departamento de Enfermagem, Centro Universitario Santa Cruz, Curitiba, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Marcel Ivan Ramirez
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.,Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|