1
|
Ignat LA, Tipa RO, Cehan AC, Bacârea VC. BK channels and alcohol tolerance: Insights from studies on Drosophila, nematodes, rodents and cell lines: A systematic review. MEDICINE INTERNATIONAL 2025; 5:33. [PMID: 40236633 PMCID: PMC11995379 DOI: 10.3892/mi.2025.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Addictive disorders markedly affect the emotional, physical and financial wellbeing of individuals, placing a substantial burden on the healthcare system. With their widespread presence in the brain, large-conductance calcium and voltage-activated potassium (BK) channels play a crucial role in various aspects of neuronal function. They contribute to behavioral tolerance and are closely linked to neuronal activity and modulation through intracellular calcium levels. As such, BK channels serve as key models for investigating the mechanisms of the effects of alcohol. Investigating their role in alcohol tolerance provides a broader understanding of their physiological and pharmacological importance. The present systematic review examined the literature on the role of BK channels in alcohol tolerance and comprehensively explored the topic. For this purpose, two databases, Web of Science and PubMed, were searched, and studies published from 2000 until June, 2024 were included. After applying specific inclusion and exclusion criteria, 35 studies underwent analysis to present a chronological overview of BK channels and their relevance in alcohol tolerance development. The studies were categorized into four main groups, according to research conducted on: i) Fruit flies; ii) nematodes; iii) rodents; and iv) cell lines. Understanding the mechanisms through which alcohol interacts with these channels may help to elucidate the cellular and molecular mechanisms underlying alcohol tolerance. There is a growing interest in developing drugs that can precisely modulate BK channel activity to treat alcohol dependence and tolerance. However, additional studies are required to fully explain the complex mechanisms through which BK channels influence alcohol-related behaviors and to interpret these findings into clinical applications.
Collapse
Affiliation(s)
- Luciana Angela Ignat
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- ‘Prof. Dr. Alexandru Obregia’ Clinical Psychiatric Hospital, 041914 Bucharest, Romania
| | - Raluca Oana Tipa
- ‘Prof. Dr. Alexandru Obregia’ Clinical Psychiatric Hospital, 041914 Bucharest, Romania
- Department of Psychiatry, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alina Cehan Cehan
- Plastic and Reconstructive Surgery, Emergency Clinical County Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Vladimir Constantin Bacârea
- Department of Scientific Research Methodology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
2
|
Geier B, Roy B, Reiter LT. Small molecule ion channel agonist/antagonist screen reveals seizure suppression via glial Irk2 activation in a Drosophila model of Dup15q syndrome. Neurobiol Dis 2025; 208:106882. [PMID: 40122181 DOI: 10.1016/j.nbd.2025.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025] Open
Abstract
The neurogenetic disorder duplication 15q syndrome (Dup15q) is characterized by a high incidence of autism spectrum disorder (ASD) and pharmacoresistant epilepsy. Standard-of-care broad-spectrum anti-seizure medications (ASM) often fail to control seizures in Dup15q, emphasizing the need for the identification of new therapeutic compounds. Previously, we generated a model of Dup15q in Drosophila melanogaster by overexpressing Dube3a in glial cells, instead of neurons. This model recapitulates the spontaneous seizures present in Dup15q patients. Here, we screened a set of FDA-approved compounds for their ability to suppress seizures in repo > Dube3a flies. We used 72 compounds from the Enzo SCREEN-WELL Ion Channel Library for primary screening of seizure suppression. Six compounds were identified that significantly reduced seizure duration. Furthermore, the compounds that passed the primary and secondary screenings were associated with K+ channels. Glial-specific knockdown of the inward rectifying potassium (Irk) 2 channel exacerbated the seizure phenotype in these animals indicating a mechanism of action for drugs that bind irk2, like minoxidil, and can suppress seizures through the rebalancing of K+ extracellularly. This pharmacological and molecular investigation further supports the role of extracellular K+ content in Dup15q seizure activation and provides a putative target for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin Geier
- Department of Physiology, Tulane University, New Orleans, LA, USA; Graduate Program in Neuroscience, Tulane University, New Orleans, LA, USA
| | - Bidisha Roy
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
3
|
Shi W, Zhao Q, Gao H, Yang C, Tan Z, Li N, Jiang F, Wang H, Ji Y, Zhou Y. Involvement of BK Channels and Ryanodine Receptors in Salicylate-induced Tinnitus. Mol Neurobiol 2025; 62:4115-4138. [PMID: 39397241 PMCID: PMC11880135 DOI: 10.1007/s12035-024-04533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Neural hyperexcitability of the central auditory system is a key pathological characteristic of tinnitus, but its underlying molecular mechanisms remain elusive. The large-conductance Ca2+-activated K+ channel (BK) plays a crucial role in down- or upregulating neuronal activity. This study aims to investigate the role of BK channels in mediating tinnitus-associated neural hyperexcitability and elucidate the mechanisms behind it. Immunofluorescent staining revealed extensive expression of the BK channels on neurons within the central auditory system of rats. After long-term systemic administration of salicylate, a stable tinnitus inducer, we observed a significant change in the expression levels of BKα and β4 subunits in the rat central auditory system. In addition, salicylate was found to enhance the outward potassium currents mediated by the BK channel when exogenously expressed in HEK293 cells. Interestingly, this effect could be blocked by ryanodine, a potent inhibitor of ryanodine receptors (RyRs). Molecular docking identified Gln4020 within the central domain of RyR as a key residue in RyR-salicylate interactions. The results indicated that salicylate might directly activate RyRs leading to Ca2+ release from endoplasmic reticulum, and increased BK currents subsequently. Systemic treatment with paxilline, a potent blocker of BK channel, selectively reversed the increased P4/P1 amplitude ratios in the frequency region of tinnitus perception induced by single-dose salicylate administration. These results suggest that BK channels and ryanodine receptors may play a selective role in salicylate-induced tinnitus.
Collapse
Affiliation(s)
- Wenying Shi
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Qi Zhao
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Hongwei Gao
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Chao Yang
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - Zhiyong Tan
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Na Li
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Feng Jiang
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Yonghua Ji
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - You Zhou
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China.
| |
Collapse
|
4
|
Tang YB, Tang L, Chen B, Fan MJ, Chen GJ, Ou YN, Yang F, Wu XZ. Intranasal oxytocin alleviates postsurgical pain and comorbid anxiety in mice: Participation of BK(Ca) channels in the hippocampus. Neuropharmacology 2025; 265:110243. [PMID: 39631680 DOI: 10.1016/j.neuropharm.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/10/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The affective dimension in postsurgical pain is still poorly understood. Since neuropeptide oxytocin (OXT) has been implicated in a broad spectrum of pain and negative emotion, we investigated the potential therapeutic effect of intranasal OXT on postsurgical pain and associated anxiety in a mice model of plantar incision. The role of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels was explored by using behavioral pharmacology experiments. We reported that plantar incision in mice induced anxiety-like behaviors and mechanical pain hypersensitivity, with a concurrent decrease of the oxytocin receptor (OTR) in the hippocampus. The immunofluorescence staining showed that the OTR were enriched in pyramidal neurons in CA3 subregion of hippocampus and which were highly co-expressed with the BK(Ca) channels in CA3 subregion. Intranasal OXT significantly ameliorated this postsurgical pain and associated anxiety in a dose-dependent manner, while Intra-CA3 microinjection of OTR antagonist atosiban or the BK(Ca) channel blocker paxilline reduced the effect of OXT in incisional mice. Moreover, intra-CA3 microinjection of BK(Ca) channel opener NS1619 produced a similar effect on postsurgical pain and associated anxiety-like behaviors as those observed following intranasal OXT administration. Conversely, intra-CA3 microinjection of BK(Ca) channel blocker paxilline in normal mice was sufficient to evoke mechanical pain hypersensitivity. Taken together, our data suggested that intranasal OXT administration exerted analgesic and anxiolytic effects in incisional mice by opening BK(Ca) channels in the CA3 subregion of hippocampus.
Collapse
Affiliation(s)
- Yan-Bin Tang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China; Department of Anesthesiology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, PR China
| | - Li Tang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, School of Stomatology, Qingdao University, Qingdao, Shandong, PR China
| | - Bin Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Miao-Jie Fan
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Gao-Jie Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yu-Ning Ou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
5
|
Martínez-Lazaro R, Reyes-Carrión A, Bartolomé-Martín D, Giraldez T. The NMDAR-BK channelosomes as regulators of synaptic plasticity. Biochem Soc Trans 2025; 53:BST20240425. [PMID: 39874044 DOI: 10.1042/bst20240425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons. Since then, additional evidence has confirmed this functional coupling in other brain regions and highlighted its significance in neuronal function and pathophysiology. In this review, we explore the current understanding of these macrocomplexes in the brain, the molecular mechanisms behind their interactions and their potential roles in neurodevelopmental disorders, paving the way for new treatment strategies.
Collapse
Affiliation(s)
- Rebeca Martínez-Lazaro
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| | - Andrea Reyes-Carrión
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| | - David Bartolomé-Martín
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, Tenerife, ES-38071, Spain
| | - Teresa Giraldez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| |
Collapse
|
6
|
Jia Z, Zhang G, Shi J, Cui J, Chen J. Intrinsic Opening of BK Channels Derives from Inherent Leakage in Hydrophobic Gating. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632877. [PMID: 39868145 PMCID: PMC11760684 DOI: 10.1101/2025.01.13.632877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The big potassium (BK) channels remain open with a small limiting probability of P o ~ 10-7 at minimal Ca2+ and negative voltages < -100 mV. The molecular origin and functional significance of such "intrinsic opening" are not understood. Here we combine atomistic simulations and electrophysiological experiments to show that the intrinsic opening of BK channels is an inherent property of the vapor barrier, generated by hydrophobic dewetting of the BK inner pore in the deactivated state. The vapor barrier only gives rise to a finite free energy barrier, of ~ 8 kcal/mol, and cannot completely shut down K+ flow even when the voltage sensor domains are fully deactivated. This results in the leaking currents that can be measured at negative voltages as the indication of intrinsic opening. The shallow limiting slope of P o at negative voltages results primarily from the electric field effects on the permeating ion through the vapor barrier. We further demonstrate that the vapor barrier can be perturbed by inner pore mutations and truncation of the cytosolic domains, leading to predicable changes in limiting slope measurements. Therefore, the intrinsic opening in BK channels, and possibly in other ion channels, opens up an opportunity to experimentally study hydrophobic gating. Our results further suggest that intrinsic opening in BK channels is the fundamental basis for the allosteric mechanism of activation by both voltage and Ca2+.
Collapse
Affiliation(s)
- Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, MO 63130, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, MO 63130, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, MO 63130, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Ancatén-González C, Meza RC, Gonzalez-Sanabria N, Segura I, Alcaino A, Peña-Pichicoi A, Latorre R, Chiu CQ, Chávez AE. BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus. Proc Natl Acad Sci U S A 2025; 122:e2411506122. [PMID: 39773031 PMCID: PMC11745352 DOI: 10.1073/pnas.2411506122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD. Also, 12(S)HPETE does not change the electrophysiological properties of the BK channel when the BKα subunit is expressed alone but increases the channel open probability when the BKα is coexpressed with the β4-subunit. Our findings reveal an interaction between 12(S)HPETE and BK channels to regulate synaptic strength at central synapses and increase our understanding of the mechanisms underlying mGluR-LTD in the neonatal hippocampus that likely contribute to circuit maturation necessary for learning.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Programa de Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Rodrigo C. Meza
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Naileth Gonzalez-Sanabria
- Programa de Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Ignacio Segura
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Alejandro Alcaino
- Programa de Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Antonio Peña-Pichicoi
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Ramón Latorre
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Chiayu Q. Chiu
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| | - Andrés E. Chávez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2340000, Chile
| |
Collapse
|
8
|
Chen Z, Tang S, Xiao X, Hong Y, Fu B, Li X, Shao Y, Chen L, Yuan D, Long Y, Wang H, Hong H. Adiponectin receptor 1-mediated basolateral amygdala-prelimbic cortex circuit regulates methamphetamine-associated memory. Cell Rep 2024; 43:115074. [PMID: 39661515 DOI: 10.1016/j.celrep.2024.115074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
The association between drug-induced rewards and environmental cues represents a promising strategy to address addiction. However, the neural networks and molecular mechanisms orchestrating methamphetamine (MA)-associated memories remain incompletely characterized. In this study, we demonstrated that AdipoRon (AR), a specific adiponectin receptor (AdipoR) agonist, inhibits the formation of MA-induced conditioned place preference (CPP) in MA-conditioned mice, accompanied by suppression of basolateral amygdala (BLA) CaMKIIα neuron activity. Furthermore, we identified an association between the excitatory circuit from the BLA to the prelimbic cortex (PrL) and the integration of MA-induced rewards with environmental cues. We also determined that the phosphorylated AMPK (p-AMPK)/Cav1.3 signaling pathway mediates the modulatory effects of AdipoR1 in PrL-projecting BLA CaMKIIα neurons on the formation of MA reward memories, a process influenced by physical exercise. These findings highlight the critical function of AdipoR1 in the BLACaMKIIα→PrLCaMKIIα circuit in regulating MA-related memory formation, suggesting a potential target for managing MA use disorders.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Susu Tang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyi Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yizhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Boli Fu
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuyi Li
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuwei Shao
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danhua Yuan
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine/Nanhu Brain-computer Interface Institute, Hangzhou 310013, China.
| | - Hao Hong
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Zheng R, Li Z, Wang Q, Liu S, Liu N, Li Y, Zhu G, Liu Z, Huang Z, Zhang L. Discovery of Potent and Selective Blockers Targeting the Epilepsy-Associated K Na1.1 Channel. J Med Chem 2024; 67:19519-19545. [PMID: 39445572 DOI: 10.1021/acs.jmedchem.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Gain-of-function (GOF) mutations of the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2, or KCa4.1) induce severe, drug-resistant forms of epilepsy in infants and children. Although quinidine has shown promise in treating KCNT1-related epilepsies compared to other drugs, its limited efficacy and substantial side effects necessitate the development of new KNa1.1 channel inhibitors. In this study, we developed a novel class of KNa1.1 inhibitors using combined silico approaches and structural optimization. Among these inhibitors, compound Z05 was identified as a selective potential KNa1.1 inhibitor, especially against the hERG channel. Moreover, its binding site and potential counteraction to a GOF mutant Y796H were identified by the mutation studies. Our data also showed that Z05 had significant pharmacological profiles, including high brain penetration and moderate oral bioavailability, offering a valuable in vitro tool compound for further drug development in treating KCNT1-related epilepsies.
Collapse
Affiliation(s)
- Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Qiufeng Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ningfeng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
10
|
Nordquist EB, Jia Z, Chen J. Small Molecule NS11021 Promotes BK Channel Activation by Increasing Inner Pore Hydration. J Chem Inf Model 2024; 64:7616-7625. [PMID: 39264311 DOI: 10.1021/acs.jcim.4c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The Ca2+ and voltage-gated big potassium (BK) channels are implicated in various diseases, including heart disease, asthma, epilepsy, and cancer, but remain an elusive drug target. A class of negatively charged activators (NCAs) have been demonstrated to promote the activation of several potassium channels including BK channels by binding to the hydrophobic inner pore, yet the underlying molecular mechanism of action remains poorly understood. In this work, we analyze the binding mode and potential activation mechanism of a specific NCA named NS11021 using atomistic simulations. The results show that NS11021 binding to the pore in deactivated BK channels is nonspecific and dynamic. The binding free energy of -8.3 ± 0.7 kcal/mol (KD = 0.3-3.1 μM) calculated using umbrella sampling agrees quantitatively with the experimental EC50 range of 0.4-2.1 μM. The bound NS11021 remains dynamic and is distal from the filter to significantly impact its conformation. Instead, NS11021 binding significantly enhances the pore hydration due to the charged tetrazol-phenyl group, thereby promoting the opening of the hydrophobic gate. We further show that the free energy barrier to K+ permeation is reduced by ∼3 kcal/mol regardless of the binding pose, which could explain the ∼62-fold increase in the intrinsic opening of BK channels measured experimentally. Taken together, these results support the idea that the molecular mechanism of NS11021 derives from increasing the hydration level of the conformationally closed pore, which does not depend on specific binding and likely explains the ability of NCAs to activate multiple K+ channels.
Collapse
Affiliation(s)
- Erik B Nordquist
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Li XT. The involvement of K + channels in depression and pharmacological effects of antidepressants on these channels. Transl Psychiatry 2024; 14:411. [PMID: 39358318 PMCID: PMC11447029 DOI: 10.1038/s41398-024-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Depression is a common and complex psychiatric illness with multiple clinical symptoms, even leading to the disability and suicide. Owing to the partial understanding of the pathogenesis of depressive-like disorders, available pharmacotherapeutic strategies are developed mainly based on the "monoamine hypothesis", resulting in a limited effectiveness and a number of adverse effects in the clinical practice. The concept of multiple pathogenic factors be helpful for clarifying the etiology of depression and developing the antidepressants. It is well documented that K+ channels serve crucial roles in modulating the neuronal excitability and neurotransmitter release in the brain, and abnormality of these channels participated in the pathogenic process of diverse central nervous system (CNS) pathologies, such as seizure and Alzheimer's disease (AD). The clinical and preclinical evidence also delineates that the involvement of several types of K+ channels in depressive-like behaviors appear to be evident, suggesting these channels being one of the multiple factors in the etiology of this debilitating disorder. Emerging data manifest that diverse antidepressants impact distinct K+ channels, such as Kv, Kir and K2P, meaning the functioning of these drug via a "multi-target" manner. On the other hand, the scenario of antidepressants impinging K+ channels could render an alternative interpretation for the pharmacological effectiveness and numerous side effects in clinical trials. Furthermore, these channels serve to be considered as a "druggable target" to develop novel therapeutic compound to antagonize this psychiatry.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Jingchu University of Technology, Jingmen, China.
- Research group of Neurological and Metabolic Disease, School of Medicine, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
12
|
Ahmadi S, Majidi M, Koraei M, Vasef S. The Inflammation/NF-κB and BDNF/TrkB/CREB Pathways in the Cerebellum Are Implicated in the Changes in Spatial Working Memory After Both Morphine Dependence and Withdrawal in Rat. Mol Neurobiol 2024; 61:6721-6733. [PMID: 38347284 DOI: 10.1007/s12035-024-03993-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/27/2024] [Indexed: 08/22/2024]
Abstract
We aimed to explore the impact of the cerebellum on the decline in spatial working memory following morphine dependence and withdrawal. Two groups of male Wistar rats received intraperitoneal injections of either saline (1 ml/kg) or morphine (10 mg/kg) twice daily for 10 days, serving as the control and dependent groups. Additionally, a withdrawal group underwent a 30-day withdrawal period after the dependence phase. Spatial working memory was assessed using a Y maze test. ELISA and western blot were used to assess protein levels in the cerebellum. On day 1, morphine impaired spatial working memory, deteriorated further after 10 days of morphine use, and nearly returned to its initial level following a 30-day withdrawal period. On day 10, significant increases in TNF-α, IL-1β, and CXCL12 and a notable decrease in IL-10 levels were detected in the morphine-dependent group, which did not completely restore in the withdrawal group. The protein levels of CXCR4, TLR4, P2X7R, and NF-κB sharply increased in the morphine-dependent group. However, these levels almost returned to normal after withdrawal. In the morphine-dependent group, BDNF decreased, while TrkB and CREB1 increased noticeably. Nevertheless, after withdrawal, TrkB and CREB1 but not BDNF levels returned to normal. In the morphine-dependent group, both CACNA1 and KCNMA1 decreased significantly and after withdrawal, only KCNMA1 showed partial restoration, while CACNA1 did not. It can be concluded that inflammation/NF-κB and BDNF/TrkB/CREB pathways play key roles in neural adaptation within the cerebellum, contributing to the decline in spatial working memory after both morphine dependence and withdrawal.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Mohammad Majidi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Maryam Koraei
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Samira Vasef
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
13
|
Lowe SA, Wilson AD, Aughey GN, Banerjee A, Goble T, Simon-Batsford N, Sanderson A, Kratschmer P, Balogun M, Gao H, Aw SS, Jepson JEC. Modulation of a critical period for motor development in Drosophila by BK potassium channels. Curr Biol 2024; 34:3488-3505.e3. [PMID: 39053467 DOI: 10.1016/j.cub.2024.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Critical periods are windows of heightened plasticity occurring during neurodevelopment. Alterations in neural activity during these periods can cause long-lasting changes in the structure, connectivity, and intrinsic excitability of neurons, which may contribute to the pathology of neurodevelopmental disorders. However, endogenous regulators of critical periods remain poorly defined. Here, we study this issue using a fruit fly (Drosophila) model of an early-onset movement disorder caused by BK potassium channel gain of function (BK GOF). Deploying a genetic method to place robust expression of GOF BK channels under spatiotemporal control, we show that adult-stage neuronal expression of GOF BK channels minimally disrupts fly movement. In contrast, limiting neuronal expression of GOF BK channels to a short window during late neurodevelopment profoundly impairs locomotion and limb kinematics in resulting adult flies. During this critical period, BK GOF perturbs synaptic localization of the active zone protein Bruchpilot and reduces excitatory neurotransmission. Conversely, enhancing neural activity specifically during development rescues motor defects in BK GOF flies. Collectively, our results reveal a critical developmental period for limb control in Drosophila that is influenced by BK channels and suggest that BK GOF causes movement disorders by disrupting activity-dependent aspects of synaptic development.
Collapse
Affiliation(s)
- Simon A Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Abigail D Wilson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Animesh Banerjee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Talya Goble
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Department of Cell and Developmental Biology, University College London, London, UK
| | - Nell Simon-Batsford
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Angelina Sanderson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Patrick Kratschmer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maryam Balogun
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hao Gao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sherry S Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
14
|
Aziz HC, Mangieri RA. Sex differences in membrane properties and cellular excitability of dopamine D1 receptor-expressing neurons within the shell of the nucleus accumbens of pre- and mid-adolescent mice. Biol Sex Differ 2024; 15:54. [PMID: 39003495 PMCID: PMC11245857 DOI: 10.1186/s13293-024-00631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND The transition from childhood to adulthood, or adolescence, a developmental stage, is characterized by psychosocial and biological changes. The nucleus accumbens (NAc), a striatal brain region composed of the core (NAcC) and shell (NAcSh), has been linked to risk-taking behavior and implicated in reward seeking and evaluation. Most neurons in the NAc are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1R +) and/or dopamine D2 receptors (D2R +). Changes in dopaminergic and glutamatergic systems occur during adolescence and converge in the NAc. While there are previous investigations into sex differences in membrane excitability and synaptic glutamate transmission in both subdivisions of the NAc, to our knowledge, none have specified NAcSh D1R + MSNs from mice during pre- and mid-adolescence. METHODS Sagittal brain slices containing the NAc were prepared from B6.Cg-Tg(Drd1a-tdTomato)6Calak/J mice of both sexes from postnatal days 21-25 and 35-47, representing pre- and mid-adolescence, respectively. Whole-cell electrophysiology recordings were collected from NAcSh D1R + MSNs in the form of membrane-voltage responses to current injections, to assess membrane properties and action potential waveform characteristics, and spontaneous excitatory postsynaptic currents (sEPSCs) to assess glutamatergic synaptic activity. RESULTS Relative to pre-adolescent males, pre-adolescent female NAcSh D1R + MSNs exhibited a less hyperpolarized resting membrane potential, increased input resistance, and smaller action potential afterhyperpolarization amplitudes. During mid-adolescence, decreased input resistance and a shorter action potential duration in females were the only sex differences observed. CONCLUSIONS Taken together, our results indicate that NAcSh D1R + MSNs in mice exhibit sex differences in membrane properties and AP waveform during pre-adolescence that are overall indicative of increased cellular excitability in females and are suggestive of possible sex differences in glycine receptors, inwardly-rectifying potassium channels, and large conductance voltage-gated potassium channels. These differences do not appear to persist into mid-adolescence, when sex was observed to affect input resistance oppositely to that of pre-adolescence and AP waveform in a manner suggestive of differences in voltage-gated potassium channels.
Collapse
Affiliation(s)
- Heather C Aziz
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, 78712, USA.
| | - Regina A Mangieri
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Kolski-Andreaco A, Taiclet S, Myerburg MM, Sembrat J, Bridges RJ, Straub AC, Wills ZP, Butterworth MB, Devor DC. Potentiation of BKCa channels by cystic fibrosis transmembrane conductance regulator correctors VX-445 and VX-121. J Clin Invest 2024; 134:e176328. [PMID: 38954478 PMCID: PMC11324306 DOI: 10.1172/jci176328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, ultimately leading to diminished transepithelial anion secretion and mucociliary clearance. CFTR correctors are therapeutics that restore the folding/trafficking of mutated CFTR to the plasma membrane. The large-conductance calcium-activated potassium channel (BKCa, KCa1.1) is also critical for maintaining lung airway surface liquid (ASL) volume. Here, we show that the class 2 (C2) CFTR corrector VX-445 (elexacaftor) induces K+ secretion across WT and F508del CFTR primary human bronchial epithelial cells (HBEs), which was entirely inhibited by the BKCa antagonist paxilline. Similar results were observed with VX-121, a corrector under clinical evaluation. Whole-cell patch-clamp recordings verified that CFTR correctors potentiated BKCa activity from both primary HBEs and HEK cells stably expressing the α subunit (HEK-BK cells). Furthermore, excised patch-clamp recordings from HEK-BK cells verified direct action on the channel and demonstrated a significant increase in open probability. In mouse mesenteric artery, VX-445 induced a paxilline-sensitive vasorelaxation of preconstricted arteries. VX-445 also reduced firing frequency in primary rat hippocampal and cortical neurons. We raise the possibilities that C2 CFTR correctors gain additional clinical benefit by activation of BKCa in the lung yet may lead to adverse events through BKCa activation elsewhere.
Collapse
Affiliation(s)
| | | | - Michael M. Myerburg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert J. Bridges
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| | | | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
16
|
Carretero VJ, Liccardi N, Tejedor MA, de Pascual R, Campano JH, Hernández-Guijo JM. Lead exerts a depression of neurotransmitter release through a blockade of voltage dependent calcium channels in chromaffin cells. Toxicology 2024; 505:153809. [PMID: 38648961 DOI: 10.1016/j.tox.2024.153809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The present work, using chromaffin cells of bovine adrenal medullae (BCCs), aims to describe what type of ionic current alterations induced by lead (Pb2+) underlies its effects reported on synaptic transmission. We observed that the acute application of Pb2+ lead to a drastic depression of neurotransmitters release in a concentration-dependent manner when the cells were stimulated with both K+ or acetylcholine, with an IC50 of 119,57 μM and of 5,19 μM, respectively. This effect was fully recovered after washout. Pb2+ also blocked calcium channels of BCCs in a time- and concentration-dependent manner with an IC50 of 6,87 μM. This blockade was partially reversed upon washout. This compound inhibited the calcium current at all test potentials and shows a shift of the I-V curve to more negative values of about 8 mV. The sodium current was not blocked by acute application of high Pb2+ concentrations. Voltage-dependent potassium current was also shortly affected by high Pb2+. Nevertheless, the calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 24,49 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to Ca2+-activated K+-channels (BK) instead a direct linking to these channels. Under current-clamp conditions, BCCs exhibit a resting potential of -52.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of K+ channels. In spite of the effect on ionic channels exerted by Pb2+, we found that Pb2+ didn't alter cellular excitability, no modification of the membrane potential, and no effect on action potential firing. Taken together, these results point to a neurotoxic action evoked by Pb2+ that is associated with changes in neurotransmitter release by blocking the ionic currents responsible for the calcium influx.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ninfa Liccardi
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Maria Arribas Tejedor
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ricardo de Pascual
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Jorge Hernández Campano
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain; Ramón y Cajal Institute for Health Research, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, Madrid 28029, Spain.
| |
Collapse
|
17
|
Flori L, Spezzini J, Calderone V, Testai L. Role of mitochondrial potassium channels in ageing. Mitochondrion 2024; 76:101857. [PMID: 38403095 DOI: 10.1016/j.mito.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Ageing is described as an inevitable decline in body functions over time and an increase in susceptibility to age-related diseases. Therefore, the increase of life expectancy is also viewed as a condition in which many elderly will develop age-related diseases and disabilities, such as cardiovascular, metabolic, neurological and oncological ones. Currently, several recognized cellular hallmarks of senescence are taken in consideration to evaluate the level of biological ageing and are the topic to plan preventive/curative anti-ageing interventions, including genomic instability, epigenetic alterations, and mitochondrial dysfunction. In this scenario, alterations in the function/expression of mitochondrial ion channels have been found in ageing and associated to an impairment of calcium cycling and a reduced mitochondrial membrane potential. Although several ion channels have been described at mitochondrial level, undoubtedly the mitochondrial potassium (mitoK) channels are the most investigated. Therefore, this review summarized the evidence that sheds to light a correlation between age-related diseases and alteration of mitoK channels, focusing the attention of the main age-related diseases, i.e. cardiovascular, neurological and oncological ones.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy.
| |
Collapse
|
18
|
Gururaja Rao S, Lam A, Seeley S, Park J, Aruva S, Singh H. The BK Ca (slo) channel regulates the cardiac function of Drosophila. Physiol Rep 2024; 12:e15996. [PMID: 38561252 PMCID: PMC10984821 DOI: 10.14814/phy2.15996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The large conductance, calcium, and voltage-active potassium channels (BKCa) were originally discovered in Drosophila melanogaster as slowpoke (slo). They are extensively characterized in fly models as ion channels for their roles in neurological and muscular function, as well as aging. BKCa is known to modulate cardiac rhythm and is localized to the mitochondria. Activation of mitochondrial BKCa causes cardioprotection from ischemia-reperfusion injury, possibly via modulating mitochondrial function in adult animal models. However, the role of BKCa in cardiac function is not well-characterized, partially due to its localization to the plasma membrane as well as intracellular membranes and the wide array of cells present in mammalian hearts. Here we demonstrate for the first time a direct role for BKCa in cardiac function and cardioprotection from IR injury using the Drosophila model system. We have also discovered that the BKCa channel plays a role in the functioning of aging hearts. Our study establishes the presence of BKCa in the fly heart and ascertains its role in aging heart function.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical SciencesThe Raabe College of Pharmacy, Ohio Northern UniversityAdaOhioUSA
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Alexander Lam
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Sarah Seeley
- Department of Pharmaceutical and Biomedical SciencesThe Raabe College of Pharmacy, Ohio Northern UniversityAdaOhioUSA
| | - Jeniffer Park
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Shriya Aruva
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Harpreet Singh
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
19
|
Chakraborty P, Hasan G. ER-Ca 2+ stores and the regulation of store-operated Ca 2+ entry in neurons. J Physiol 2024; 602:1463-1474. [PMID: 36691983 DOI: 10.1113/jp283827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Key components of endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) are likely expressed in all metazoan cells. Due to the complexity of canonical Ca2+ entry mechanisms in neurons, the functional significance of ER-Ca2+ release and SOCE has been difficult to identify and establish. In this review we present evidence of how these two related mechanisms of Ca2+ signalling impact multiple aspects of neuronal physiology and discuss their interaction with the better understood classes of ion channels that are gated by either voltage changes or extracellular ligands in neurons. Given how a small imbalance in Ca2+ homeostasis can have strongly detrimental effects on neurons, leading to cell death, it is essential that neuronal SOCE is carefully regulated. We go on to discuss some mechanisms of SOCE regulation that have been identified in Drosophila and mammalian neurons. These include specific splice variants of stromal interaction molecules, different classes of membrane-interacting proteins and an ER-Ca2+ channel. So far these appear distinct from the mechanisms of SOCE regulation identified in non-excitable cells. Finally, we touch upon the significance of these studies in the context of certain human neurodegenerative diseases.
Collapse
Affiliation(s)
- Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- SASTRA University, Thanjavur, Tamil Nadu, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
20
|
Echeverría F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K + (BK) channel in health and disease. Front Pharmacol 2024; 15:1373507. [PMID: 38584598 PMCID: PMC10995336 DOI: 10.3389/fphar.2024.1373507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.
Collapse
Affiliation(s)
- Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Naileth Gonzalez-Sanabria
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
21
|
Cordero Padilla K, Monefeldt GA, Guevárez Galán A, Marrero HG, Lloret-Torres ME, Velázquez-Marrero C. BK ZERO isoform HEK293 stably transfected cell lines differing 3'UTRs to assess miR-9 regulation. PLoS One 2024; 19:e0298966. [PMID: 38502673 PMCID: PMC10950231 DOI: 10.1371/journal.pone.0298966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
Research has identified the large conductance voltage- and calcium-activated potassium channel (BK) as a key regulator of neuronal excitability genetically associated to behavioral alcohol tolerance. Sensitivity to ethanol at the molecular level is characterized by acute potentiation of channel activity. BK isoforms show variations in alcohol sensitivity and are differentially distributed on the plasma membrane surface in response to prolonged exposure. MicroRNA (MiRNA) targeting of alcohol-sensitive isoforms coupled with active internalization of BK channels in response to ethanol are believed to be key in establishing homeostatic adaptations that produce persistent changes within the plasma membrane of neurons. In fact, microRNA 9 (miR-9) upregulated expression is a key event in persistent alcohol tolerance mediating acute EtOH desensitization of BK channels. The exact nature of these interactions remains a current topic of discussion. To further study the effects of miR-9 on the expression and distribution of BK channel isoforms we designed an experimental model by transfecting human BK channel isoforms ZERO heterologous constructs in human embryonic kidney cells 293 (HEK293) cells respectively expressing 2.1 (miR-9 responsive), 2.2 (unresponsive) and control (no sequence) 3'untranslated region (3'UTR) miRNA recognition sites. We used imaging techniques to characterize the stably transfected monoclonal cell lines, and electrophysiology to validate channel activity. Finally, we used immunocytochemistry to validate isoform responsiveness to miR-9. Our findings suggest the cell lines were successfully transfected to express either the 2.1 or 2.2 version of ZERO. Patch clamp recordings confirm that these channels retain their functionality and immunohistochemistry shows differential responses to miR-9, making these cells viable for use in future alcohol dependence studies.
Collapse
Affiliation(s)
- Katherine Cordero Padilla
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Windsor University School of Medicine, St. Kitts, West Indies
| | - Gerardo Alvarado Monefeldt
- Department of Biology, University of Puerto Rico Cayey Campus, Cayey, Puerto Rico
- Samuel Merritt University, Oakland, California, United States of America
| | - Adriel Guevárez Galán
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico Bayamón Campus, Bayamón, Puerto Rico
| | - Hector G. Marrero
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Mario E. Lloret-Torres
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Cristina Velázquez-Marrero
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
22
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
23
|
Bauer N, Liu D, Nguyen T, Wang B. Unraveling the Interplay of Dopamine, Carbon Monoxide, and Heme Oxygenase in Neuromodulation and Cognition. ACS Chem Neurosci 2024; 15:400-407. [PMID: 38214656 PMCID: PMC10853931 DOI: 10.1021/acschemneuro.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
The dopaminergic system plays important roles in neuromodulation, including prominent roles in complex neurological functions such as cognition, reward, motivation, and memory. Understandably, the highly complex nature of such physiological functions means that their regulation is intertwined with other signaling pathways, as has been demonstrated by numerous studies. Contrary to its public perception of being poisonous at all concentrations, carbon monoxide (CO) is produced endogenously from heme degradation by heme oxygenase (HO) as part of the physiological process of red blood cell turnover. Physiological concentrations of CO can reach high micromolar ranges in the hemoglobin bound form. Low-dose CO has shown therapeutic effects in numerous animal models, including traumatic brain injury via engaging various hemoprotein targets. As such, the HO-CO axis has been shown to offer beneficial effects in organ protection, anti-inflammation, and neuroprotection, among many others. Further, a large number of publications have shown the interactions among CO, HO, and the dopaminergic system. In this review, we critically examine such experimental evidence in a holistic fashion and in the context of a possible dopamine-HO-CO signaling axis. We hope that this Perspective will stimulate additional investigations into the molecular connectivity related to this possible axis and open doors to the development of novel therapeutics that impact the dopaminergic system.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Dongning Liu
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - TanPhat Nguyen
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
24
|
Okhuarobo A, Kreifeldt M, Gandhi PJ, Lopez C, Martinez B, Fleck K, Bajo M, Bhattacharyya P, Dopico AM, Roberto M, Roberts AJ, Homanics GE, Contet C. Ethanol's interaction with BK channel α subunit residue K361 does not mediate behavioral responses to alcohol in mice. Mol Psychiatry 2024; 29:529-542. [PMID: 38135755 PMCID: PMC11116116 DOI: 10.1038/s41380-023-02346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Large conductance potassium (BK) channels are among the most sensitive molecular targets of ethanol and genetic variations in the channel-forming α subunit have been nominally associated with alcohol use disorders. However, whether the action of ethanol at BK α influences the motivation to drink alcohol remains to be determined. To address this question, we first tested the effect of systemically administered BK channel modulators on voluntary alcohol consumption in C57BL/6J males. Penitrem A (blocker) exerted dose-dependent effects on moderate alcohol intake, while paxilline (blocker) and BMS-204352 (opener) were ineffective. Because pharmacological manipulations are inherently limited by non-specific effects, we then sought to investigate the behavioral relevance of ethanol's direct interaction with BK α by introducing in the mouse genome a point mutation known to render BK channels insensitive to ethanol while preserving their physiological function. The BK α K361N substitution prevented ethanol from reducing spike threshold in medial habenula neurons. However, it did not alter acute responses to ethanol in vivo, including ataxia, sedation, hypothermia, analgesia, and conditioned place preference. Furthermore, the mutation did not have reproducible effects on alcohol consumption in limited, continuous, or intermittent access home cage two-bottle choice paradigms conducted in both males and females. Notably, in contrast to previous observations made in mice missing BK channel auxiliary β subunits, the BK α K361N substitution had no significant impact on ethanol intake escalation induced by chronic intermittent alcohol vapor inhalation. It also did not affect the metabolic and locomotor consequences of chronic alcohol exposure. Altogether, these data suggest that the direct interaction of ethanol with BK α does not mediate the alcohol-related phenotypes examined here in mice.
Collapse
Affiliation(s)
- Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Catherine Lopez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Briana Martinez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Kiera Fleck
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Michal Bajo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | | | - Alex M Dopico
- University of Tennessee Health Science Center, Department of Pharmacology, Addiction Science, and Toxicology, Memphis, TN, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Amanda J Roberts
- The Scripps Research Institute, Animals Models Core Facility, La Jolla, CA, USA
| | - Gregg E Homanics
- University of Pittsburgh, Department of Anesthesiology and Perioperative Medicine, Pittsburgh, PA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
25
|
Tang X, Zhong H, Xu C, Sun Y, Lou Y, Zhao Y, Liang Y, Guo X, Pan C, Sun J, Sun J. Downregulation of KCNMA1 in mice accelerates auditory hair cells senescence via ferroptosis. Neurobiol Aging 2024; 134:115-125. [PMID: 38056217 DOI: 10.1016/j.neurobiolaging.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
KCNMA1 encodes the K+ potassium channel α-subunit that plays a significant role in the auditory system. Our previous studies indicated that KCNMA1 is associated with age-related hearing loss(AHL). However, the detailed mechanism of KCNMA1 involvement in auditory age-related degradation has not been fully clarified. Therefore, we explored the expression of KCNMA1 in the peripheral auditory of 2-month-old and 12-month-old mice by Western blotting and immunofluorescence. The results of animal experiments showed that KCNMA1 expression was decreased in 12-month-old mice compared with 2-month-old mice, whereas the ferroptosis level was increased. To verify the role of KCNMA1 in AHL, we downregulated KCNMA1 in HEI-OC1 cells by transfecting shRNA. After downregulation, the ferroptosis level was increased and the aging process was accelerated. Furthermore, the aging process was affected by the expression of ferroptosis. In conclusion, these results revealed that KCNMA1 is associated with the aging process in auditory hair cells by regulating ferroptosis, which deepens our understanding of age-related hearing loss.
Collapse
Affiliation(s)
- Xiaomin Tang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Haoyue Zhong
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Chenyu Xu
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yuxuan Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yuxiang Lou
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yi Zhao
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yue Liang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Xiaotao Guo
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Chunchen Pan
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Jiaqiang Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| | - Jingwu Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| |
Collapse
|
26
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
27
|
Pham T, Hussein T, Calis D, Bischof H, Skrabak D, Cruz Santos M, Maier S, Spähn D, Kalina D, Simonsig S, Ehinger R, Groschup B, Knipper M, Plesnila N, Ruth P, Lukowski R, Matt L. BK channels sustain neuronal Ca 2+ oscillations to support hippocampal long-term potentiation and memory formation. Cell Mol Life Sci 2023; 80:369. [PMID: 37989805 PMCID: PMC10663188 DOI: 10.1007/s00018-023-05016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Mutations of large conductance Ca2+- and voltage-activated K+ channels (BK) are associated with cognitive impairment. Here we report that CA1 pyramidal neuron-specific conditional BK knock-out (cKO) mice display normal locomotor and anxiety behavior. They do, however, exhibit impaired memory acquisition and retrieval in the Morris Water Maze (MWM) when compared to littermate controls (CTRL). In line with cognitive impairment in vivo, electrical and chemical long-term potentiation (LTP) in cKO brain slices were impaired in vitro. We further used a genetically encoded fluorescent K+ biosensor and a Ca2+-sensitive probe to observe cultured hippocampal neurons during chemical LTP (cLTP) induction. cLTP massively reduced intracellular K+ concentration ([K+]i) while elevating L-Type Ca2+ channel- and NMDA receptor-dependent Ca2+ oscillation frequencies. Both, [K+]i decrease and Ca2+ oscillation frequency increase were absent after pharmacological BK inhibition or in cells lacking BK. Our data suggest that L-Type- and NMDAR-dependent BK-mediated K+ outflow significantly contributes to hippocampal LTP, as well as learning and memory.
Collapse
Affiliation(s)
- Thomas Pham
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Tamara Hussein
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - David Spähn
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Daniel Kalina
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stefanie Simonsig
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Bernhard Groschup
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
28
|
Dinsdale RL, Roache CE, Meredith AL. Disease-associated KCNMA1 variants decrease circadian clock robustness in channelopathy mouse models. J Gen Physiol 2023; 155:e202313357. [PMID: 37728576 PMCID: PMC10510740 DOI: 10.1085/jgp.202313357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
KCNMA1 encodes the voltage- and calcium-activated K+ (BK) channel, which regulates suprachiasmatic nucleus (SCN) neuronal firing and circadian behavioral rhythms. Gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity disrupt circadian behavior, but the effect of human disease-associated KCNMA1 channelopathy variants has not been studied on clock function. Here, we assess circadian behavior in two GOF and one LOF mouse lines. Heterozygous Kcnma1N999S/WT and homozygous Kcnma1D434G/D434G mice are validated as GOF models of paroxysmal dyskinesia (PNKD3), but whether circadian rhythm is affected in this hypokinetic locomotor disorder is unknown. Conversely, homozygous LOF Kcnma1H444Q/H444Q mice do not demonstrate PNKD3. We assessed circadian behavior by locomotor wheel running activity. All three mouse models were rhythmic, but Kcnma1N999S/WT and Kcnma1D434G/D434G showed reduced circadian amplitude and decreased wheel activity, corroborating prior studies focused on acute motor coordination. In addition, Kcnma1D434G/D434G mice had a small decrease in period. However, the phase-shifting sensitivity for both GOF mouse lines was abnormal. Both Kcnma1N999S/WT and Kcnma1D434G/D434G mice displayed increased responses to light pulses and took fewer days to re-entrain to a new light:dark cycle. In contrast, the LOF Kcnma1H444Q/H444Q mice showed no difference in any of the circadian parameters tested. The enhanced sensitivity to phase-shifting stimuli in Kcnma1N999S/WT and Kcnma1D434G/D434G mice was similar to other Kcnma1 GOF mice. Together with previous studies, these results suggest that increasing BK channel activity decreases circadian clock robustness, without rhythm ablation.
Collapse
Affiliation(s)
- Ria L. Dinsdale
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cooper E. Roache
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Rafiei S, Khodagholi F, Gholami Pourbadie H, Dargahi L, Motamedi F. Hepatic Acyl CoA Oxidase1 Inhibition Modifies Brain Lipids and Electrical Properties of Dentate Gyrus. Basic Clin Neurosci 2023; 14:663-674. [PMID: 38628834 PMCID: PMC11016873 DOI: 10.32598/bcn.2021.3500.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/03/2021] [Accepted: 06/27/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction Peroxisomes are essential organelles in lipid metabolism. They contain enzymes for β-oxidation of very long-chain fatty acids (VLCFA) that cannot be broken down in mitochondria. Reduced expression in hepatic acyl-CoA oxidase 1 (ACOX1), a peroxisome β-oxidation enzyme, followed by modification of the brain fatty acid profile has been observed in aged rodents. These studies have suggested a potential role for peroxisome β-oxidation in brain aging. This study was designed to examine the effect of hepatic ACOX1 inhibition on brain fatty acid composition and neuronal cell activities of young rats (200-250 g). Methods A specific ACOX1 inhibitor, 10, 12- tricosadiynoic acid (TDYA), 100 μg/kg (in olive oil) was administered by daily gavage for 25 days in male Wistar rats. The brain fatty acid composition and electrophysiological properties of dentate gyrus granule cells were determined using gas chromatography and whole-cell patch-clamp, respectively. Results A significant increase in C20, C22, C18:1, C20:1, and a decrease of C18, C24, C20:3n6, and C22:6n3 were found in 10, 12- tricosadiynoic acid (TDYA) treated rats compared to the control group. The results showed that ACOX1 inhibition changes fatty acid composition similar to old rats. ACOX1 inhibition caused hyperpolarization of resting membrane potential, and also reduction of input resistance, action potential duration, and spike firing. Moreover, ACOX1 inhibition increased rheobase current and afterhyperpolarization amplitude in granule cells. Conclusion The results indicated that systemic inhibition of ACOX1 causes hypo-excitability of neuronal cells. These results provide new evidence on the involvement of peroxisome function and hepatic ACOX1 activity in brain fatty acid profile and the electrophysiological properties of dentate gyrus cells.
Collapse
Affiliation(s)
- Shahrbanoo Rafiei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Chen X, Feng Y, Quinn RJ, Pountney DL, Richardson DR, Mellick GD, Ma L. Potassium Channels in Parkinson's Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment. Pharmacol Rev 2023; 75:758-788. [PMID: 36918260 DOI: 10.1124/pharmrev.122.000743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the midbrain. The loss of neurons results in a subsequent reduction of dopamine in the striatum, which underlies the core motor symptoms of PD. To date, there are no effective treatments to stop, slow, or reverse the pathologic progression of dopaminergic neurodegeneration. This unfortunate predicament is because of the current early stages in understanding the biologic targets and pathways involved in PD pathogenesis. Ion channels have become emerging targets for new therapeutic development for PD due to their essential roles in neuronal function and neuroinflammation. Potassium channels are the most prominent ion channel family and have been shown to be critically important in PD pathology because of their roles in modulating neuronal excitability, neurotransmitter release, synaptic transmission, and neuroinflammation. In this review, members of the subfamilies of voltage-gated K+ channels, inward rectifying K+ channels, and Ca2+-activated K+ channels are described. Evidence of the role of these channels in PD etiology is discussed together with the latest views on related pathologic mechanisms and their potential as biologic targets for developing neuroprotective drugs for PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the second most common neurodegenerative disorder, featuring progressive degeneration of dopaminergic neurons in the midbrain. It is a multifactorial disease involving multiple risk factors and complex pathobiological mechanisms. Mounting evidence suggests that ion channels play vital roles in the pathogenesis and progression of PD by regulating neuronal excitability and immune cell function. Therefore, they have become "hot" biological targets for PD, as demonstrated by multiple clinical trials of drug candidates targeting ion channels for PD therapy.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Yunjiang Feng
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Ronald J Quinn
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Dean L Pountney
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Des R Richardson
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - George D Mellick
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Linlin Ma
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| |
Collapse
|
31
|
Nordquist E, Zhang G, Barethiya S, Ji N, White KM, Han L, Jia Z, Shi J, Cui J, Chen J. Incorporating physics to overcome data scarcity in predictive modeling of protein function: a case study of BK channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546384. [PMID: 37425916 PMCID: PMC10327070 DOI: 10.1101/2023.06.24.546384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ΔV 1/2 , with a RMSE ∼ 32 mV and correlation coefficient of R ∼ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V 1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ΔV 1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction. Author Summary Deep machine learning has brought many exciting breakthroughs in chemistry, physics and biology. These models require large amount of training data and struggle when the data is scarce. The latter is true for predictive modeling of the function of complex proteins such as ion channels, where only hundreds of mutational data may be available. Using the big potassium (BK) channel as a biologically important model system, we demonstrate that a reliable predictive model of its voltage gating property could be derived from only 473 mutational data by incorporating physics-derived features, which include dynamic properties from molecular dynamics simulations and energetic quantities from Rosetta mutation calculations. We show that the final random forest model captures key trends and hotspots in mutational effects of BK voltage gating, such as the important role of pore hydrophobicity. A particularly curious prediction is that mutations of two adjacent residues on the S5 helix would always have opposite effects on the gating voltage, which was confirmed by experimental characterization of four novel mutations. The current work demonstrates the importance and effectiveness of incorporating physics in predictive modeling of protein function with scarce data.
Collapse
Affiliation(s)
- Erik Nordquist
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shrishti Barethiya
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Nathan Ji
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Kelli M White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lu Han
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
32
|
Ranjbar H, Soti M, Kohlmeier KA, Janahmadi M, Shabani M. Pharmacologic antagonism of CB1 receptors improves electrophysiological alterations in Purkinje cells exposed to 3-AP. BMC Neurosci 2023; 24:18. [PMID: 36869289 PMCID: PMC9985293 DOI: 10.1186/s12868-023-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION Although ataxia is associated with cerebellar dysfunction, little is known about the effects of 3-AP exposure on Purkinje cell electrophysiological properties. Here, we evaluated these parameters in cerebellar vermis brain slices. METHODS Purkinje cells were exposed to artificial cerebrospinal fluid (aCSF) (control) or to 1 mM 3-acetylpyridine (3-AP) in the recording chamber. The effects of a cannabinoid agonist (WIN; 7.5 nmol) and a cannabinoid antagonist (AM; 20 nmol) were evaluated under both conditions. RESULTS Exposure to 3-AP induced dramatic changes in cellular excitability that likely would affect Purkinje cell output. In whole-cell current clamp recordings, 3-AP-exposed Purkinje cells demonstrated a significantly higher frequency of action potentials, a larger afterhyperpolarization (AHP), and a larger rebound of action potentials. In addition, 3-AP caused a significant decrease in the interspike interval (ISI), half-width, and first spike latency. Remarkably, the action potential frequency, AHP amplitude, rebound, ISI, action potential halfwidth, and first spike latency were no longer different from controls in 3-AP cells treated with AM. Sag percentage, on the other hand, showed no significant difference under any treatment condition, indicating that cannabinoids' actions on 3-AP-mediated Purkinje cell changes may not include effects on neuronal excitability through changes of Ih. CONCLUSIONS These data show that cannabinoid antagonists reduce the excitability of Purkinje cells following exposure to 3-AP and suggest their potential as therapeutics in cerebellar dysfunctions.
Collapse
Affiliation(s)
- Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran.
| |
Collapse
|
33
|
Xie S, Xu C, Wu C, Lou Y, Duan J, Sang R, Lou Z, Hou J, Ge W, Xi Y, Yang X. Co-dependent regulation of p-BRAF and potassium channel KCNMA1 levels drives glioma progression. Cell Mol Life Sci 2023; 80:61. [PMID: 36763212 PMCID: PMC9918570 DOI: 10.1007/s00018-023-04708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
BRAF mutations have been found in gliomas which exhibit abnormal electrophysiological activities, implying their potential links with the ion channel functions. In this study, we identified the Drosophila potassium channel, Slowpoke (Slo), the ortholog of human KCNMA1, as a critical factor involved in dRafGOF glioma progression. Slo was upregulated in dRafGOF glioma. Knockdown of slo led to decreases in dRafGOF levels, glioma cell proliferation, and tumor-related phenotypes. Overexpression of slo in glial cells elevated dRaf expression and promoted cell proliferation. Similar mutual regulations of p-BRAF and KCNMA1 levels were then recapitulated in human glioma cells with the BRAF mutation. Elevated p-BRAF and KCNMA1 were also observed in HEK293T cells upon the treatment of 20 mM KCl, which causes membrane depolarization. Knockdown KCNMA1 in these cells led to a further decrease in cell viability. Based on these results, we conclude that the levels of p-BRAF and KCNMA1 are co-dependent and mutually regulated. We propose that, in depolarized glioma cells with BRAF mutations, high KCNMA1 levels act to repolarize membrane potential and facilitate cell growth. Our study provides a new strategy to antagonize the progression of gliomas as induced by BRAF mutations.
Collapse
Affiliation(s)
- Shanshan Xie
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chengyan Xu
- Department of Neurosurgery, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Cheng Wu
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuhan Lou
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jingwei Duan
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Rong Sang
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ziwei Lou
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiaru Hou
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wanzhong Ge
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongmei Xi
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohang Yang
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Development Disorders, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Joint Institute of Genetics and Genomic Medicine Between Zhejiang University and the University of Toronto, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Yao S, Xu MD, Wang Y, Zhao ST, Wang J, Chen GF, Chen WB, Liu J, Huang GB, Sun WJ, Zhang YY, Hou HL, Li L, Sun XD. Astrocytic lactate dehydrogenase A regulates neuronal excitability and depressive-like behaviors through lactate homeostasis in mice. Nat Commun 2023; 14:729. [PMID: 36759610 PMCID: PMC9911790 DOI: 10.1038/s41467-023-36209-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Alterations in energy metabolism are associated with depression. However, the role of glycolysis in the pathogenesis of depression and the underlying molecular mechanisms remain unexplored. Through an unbiased proteomic screen coupled with biochemical verifications, we show that the levels of glycolysis and lactate dehydrogenase A (LDHA), a glycolytic enzyme that catalyzes L-lactate production, are reduced in the dorsomedial prefrontal cortex (dmPFC) of stress-susceptible mice in chronic social defeat stress (CSDS) model. Conditional knockout of LDHA from the brain promotes depressive-like behaviors in both male and female mice, accompanied with reduced L-lactate levels and decreased neuronal excitability in the dmPFC. Moreover, these phenotypes could be duplicated by knockdown of LDHA in the dmPFC or specifically in astrocytes. In contrast, overexpression of LDHA reverses these phenotypic changes in CSDS-susceptible mice. Mechanistic studies demonstrate that L-lactate promotes neuronal excitability through monocarboxylic acid transporter 2 (MCT2) and by inhibiting large-conductance Ca2+-activated potassium (BK) channel. Together, these results reveal a role of LDHA in maintaining neuronal excitability to prevent depressive-like behaviors.
Collapse
Affiliation(s)
- Shan Yao
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Min-Dong Xu
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ying Wang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shen-Ting Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jin Wang
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Gui-Fu Chen
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen-Bing Chen
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jian Liu
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Guo-Bin Huang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen-Juan Sun
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Yan Zhang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Huan-Li Hou
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiang-Dong Sun
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
35
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
36
|
Ca 2+-Sensitive Potassium Channels. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020885. [PMID: 36677942 PMCID: PMC9861210 DOI: 10.3390/molecules28020885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The Ca2+ ion is used ubiquitously as an intracellular signaling molecule due to its high external and low internal concentration. Many Ca2+-sensing ion channel proteins have evolved to receive and propagate Ca2+ signals. Among them are the Ca2+-activated potassium channels, a large family of potassium channels activated by rises in cytosolic calcium in response to Ca2+ influx via Ca2+-permeable channels that open during the action potential or Ca2+ release from the endoplasmic reticulum. The Ca2+ sensitivity of these channels allows internal Ca2+ to regulate the electrical activity of the cell membrane. Activating these potassium channels controls many physiological processes, from the firing properties of neurons to the control of transmitter release. This review will discuss what is understood about the Ca2+ sensitivity of the two best-studied groups of Ca2+-sensitive potassium channels: large-conductance Ca2+-activated K+ channels, KCa1.1, and small/intermediate-conductance Ca2+-activated K+ channels, KCa2.x/KCa3.1.
Collapse
|
37
|
Vaithianathan T, Schneider EH, Bukiya AN, Dopico AM. Cholesterol and PIP 2 Modulation of BK Ca Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:217-243. [PMID: 36988883 PMCID: PMC10683925 DOI: 10.1007/978-3-031-21547-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Ca2+/voltage-gated, large conductance K+ channels (BKCa) are formed by homotetrameric association of α (slo1) subunits. Their activity, however, is suited to tissue-specific physiology largely due to their association with regulatory subunits (β and γ types), chaperone proteins, localized signaling, and the channel's lipid microenvironment. PIP2 and cholesterol can modulate BKCa activity independently of downstream signaling, yet activating Ca2+i levels and regulatory subunits control ligand action. At physiological Ca2+i and voltages, cholesterol and PIP2 reduce and increase slo1 channel activity, respectively. Moreover, slo1 proteins provide sites that seem to recognize cholesterol and PIP2: seven CRAC motifs in the slo1 cytosolic tail and a string of positively charged residues (Arg329, Lys330, Lys331) immediately after S6, respectively. A model that could explain the modulation of BKCa activity by cholesterol and/or PIP2 is hypothesized. The roles of additional sites, whether in slo1 or BKCa regulatory subunits, for PIP2 and/or cholesterol to modulate BKCa function are also discussed.
Collapse
Affiliation(s)
- Thirumalini Vaithianathan
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth H Schneider
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anna N Bukiya
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex M Dopico
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
38
|
Zahra A, Liu R, Han W, Meng H, Wang Q, Wang Y, Campbell SL, Wu J. K Ca-Related Neurological Disorders: Phenotypic Spectrum and Therapeutic Indications. Curr Neuropharmacol 2023; 21:1504-1518. [PMID: 36503451 PMCID: PMC10472807 DOI: 10.2174/1570159x21666221208091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although potassium channelopathies have been linked to a wide range of neurological conditions, the underlying pathogenic mechanism is not always clear, and a systematic summary of clinical manifestation is absent. Several neurological disorders have been associated with alterations of calcium-activated potassium channels (KCa channels), such as loss- or gain-of-function mutations, post-transcriptional modification, etc. Here, we outlined the current understanding of the molecular and cellular properties of three subtypes of KCa channels, including big conductance KCa channels (BK), small conductance KCa channels (SK), and the intermediate conductance KCa channels (IK). Next, we comprehensively reviewed the loss- or gain-of-function mutations of each KCa channel and described the corresponding mutation sites in specific diseases to broaden the phenotypic-genotypic spectrum of KCa-related neurological disorders. Moreover, we reviewed the current pharmaceutical strategies targeting KCa channels in KCa-related neurological disorders to provide new directions for drug discovery in anti-seizure medication.
Collapse
Affiliation(s)
- Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenzhe Han
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hui Meng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - YunFu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Susan L. Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
39
|
Lai MC, Wu SN, Huang CW. Rufinamide, a Triazole-Derived Antiepileptic Drug, Stimulates Ca 2+-Activated K + Currents While Inhibiting Voltage-Gated Na + Currents. Int J Mol Sci 2022; 23:13677. [PMID: 36430153 PMCID: PMC9697614 DOI: 10.3390/ijms232213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Rufinamide (RFM) is a clinically utilized antiepileptic drug that, as a triazole derivative, has a unique structure. The extent to which this drug affects membrane ionic currents remains incompletely understood. With the aid of patch clamp technology, we investigated the effects of RFM on the amplitude, gating, and hysteresis of ionic currents from pituitary GH3 lactotrophs. RFM increased the amplitude of Ca2+-activated K+ currents (IK(Ca)) in pituitary GH3 lactotrophs, and the increase was attenuated by the further addition of iberiotoxin or paxilline. The addition of RFM to the cytosolic surface of the detached patch of membrane resulted in the enhanced activity of large-conductance Ca2+-activated K+ channels (BKCa channels), and paxilline reversed this activity. RFM increased the strength of the hysteresis exhibited by the BKCa channels and induced by an inverted isosceles-triangular ramp pulse. The peak and late voltage-gated Na+ current (INa) evoked by rapid step depolarizations were differentially suppressed by RFM. The molecular docking approach suggested that RFM bound to the intracellular domain of KCa1.1 channels with amino acid residues, thereby functionally affecting BKCa channels' activity. This study is the first to present evidence that, in addition to inhibiting the INa, RFM effectively modifies the IK(Ca), which suggests that it has an impact on neuronal function and excitability.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
40
|
Kassa M, Bradley J, Jalil A, Llano I. KCa1.1 channels contribute to optogenetically driven post-stimulation silencing in cerebellar molecular layer interneurons. J Gen Physiol 2022; 155:213661. [PMID: 36326690 PMCID: PMC9640226 DOI: 10.1085/jgp.202113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Using cell-attached recordings from molecular layer interneurons (MLI) of the cerebellar cortex of adult mice expressing channel rhodopsin 2, we show that wide-field optical activation induces an increase in firing rate during illumination and a firing pause when the illumination ends (post-stimulation silencing; PSS). Significant spike rate changes with respect to basal firing rate were observed for optical activations lasting 200 ms and 1 s as well as for 1 s long trains of 10 ms pulses at 50 Hz. For all conditions, the net effect of optical activation on the integrated spike rate is significantly reduced because of PSS. Three lines of evidence indicate that this PSS is due to intrinsic factors. Firstly, PSS is induced when the optical stimulation is restricted to a single MLI using a 405-nm laser delivering a diffraction-limited spot at the focal plane. Secondly, PSS is not affected by block of GABA-A or GABA-B receptors, ruling out synaptic interactions amongst MLIs. Thirdly, PSS is mimicked in whole-cell recording experiments by step depolarizations under current clamp. Activation of Ca-dependent K channels during the spike trains appears as a likely candidate to underlie PSS. Using immunocytochemistry, we find that one such channel type, KCa1.1, is present in the somato-dendritic and axonal compartments of MLIs. In cell-attached recordings, charybdotoxin and iberiotoxin significantly reduce the optically induced PSS, while TRAM-34 does not affect it, suggesting that KCa1.1 channels, but not KCa3.1 channels, contribute to PSS.
Collapse
Affiliation(s)
- Merouann Kassa
- Université Paris Cité, Centre National de la Recherche Scientifique, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Jonathan Bradley
- Institut de Biologie de l’Ecole Normale Superieure (IBENS), Ecole Normale Superieure, Centre National de la Recherche Scientifique, INSERM, Paris Sciences et Lettres Research University, Paris, France
| | - Abdelali Jalil
- Université Paris Cité, Centre National de la Recherche Scientifique, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Isabel Llano
- Université Paris Cité, Centre National de la Recherche Scientifique, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| |
Collapse
|
41
|
External Hemin as an Inhibitor of Mitochondrial Large-Conductance Calcium-Activated Potassium Channel Activity. Int J Mol Sci 2022; 23:ijms232113391. [DOI: 10.3390/ijms232113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial large-conductance calcium-activated potassium channel (mitoBKCa) is located in the inner mitochondrial membrane and seems to play a crucial role in cytoprotection. The mitoBKCa channel is regulated by many modulators, including activators, such as calcium ions and inhibitors, such as heme and its oxidized form hemin. Heme/hemin binds to the heme-binding motif (CXXCH) located between two RCK domains present in the mitochondrial matrix. In the present study, we used the patch-clamp technique in the outside-out configuration to record the activity of mitoBKCa channels. This allowed for the application of channel modulators to the intermembrane-space side of the mitoBKCa. We found that hemin applied in this configuration inhibits the activity of mitoBKCa. In addition, we proved that the observed hemin effect is specific and it is not due to its interaction with the inner mitochondrial membrane. Our data suggest the existence of a new potential heme/hemin binding site in the structure of the mitoBKCa channel located on the mitochondrial intermembrane space side, which could constitute a new way for the regulation of mitoBKCa channel activity.
Collapse
|
42
|
Ying Y, Gong L, Tao X, Ding J, Chen N, Yao Y, Liu J, Chen C, Zhu T, Jiang P. Genetic Knockout of TRPM2 Increases Neuronal Excitability of Hippocampal Neurons by Inhibiting Kv7 Channel in Epilepsy. Mol Neurobiol 2022; 59:6918-6933. [PMID: 36053438 DOI: 10.1007/s12035-022-02993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a chronic brain disease that makes serious cognitive and motor retardation. Ion channels affect the occurrence of epilepsy in various ways, but the mechanisms have not yet been fully elucidated. Transient receptor potential melastain2 (TRPM2) ion channel is a non-selective cationic channel that can permeate Ca2+ and critical for epilepsy. Here, TRPM2 gene knockout mice were used to generate a chronic kindling epilepsy model by PTZ administration in mice. We found that TRPM2 knockout mice were more susceptible to epilepsy than WT mice. Furthermore, the neuronal excitability in the hippocampal CA1 region of TRPM2 knockout mice was significantly increased. Compared with WT group, there were no significant differences in the input resistance and after hyperpolarization of CA1 neurons in TRPM2 knockout mice. Firing adaptation rate of hippocampal CA1 pyramidal neurons of TRPM2 knockout mice was lower than that of WT mice. We also found that activation of Kv7 channel by retigabine reduced the firing frequency of action potential in the hippocampal pyramidal neurons of TRPM2 knockout mice. However, inhibiting Kv7 channel increased the firing frequency of action potential in hippocampal pyramidal neurons of WT mice. The data suggest that activation of Kv7 channel can effectively reduce epileptic seizures in TRPM2 knockout mice. We conclude that genetic knockout of TRPM2 in hippocampal CA1 pyramidal neurons may increase neuronal excitability by inhibiting Kv7 channel, affecting the susceptibility to epilepsy. These findings may provide a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Yingchao Ying
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lifen Gong
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaohan Tao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junchao Ding
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pediatrics, Yiwu Maternal and Child Health Care Hospital, Yiwu, China
| | - Nannan Chen
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yinping Yao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, China
| | - Jiajing Liu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chen Chen
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Peifang Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
43
|
Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand 2022; 146:699-707. [PMID: 36225112 DOI: 10.1111/ane.13695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
With the development and application of next-generation sequencing technology, the aetiological diagnosis of genetic epilepsy is rapidly becoming easier and less expensive. Additionally, there is a growing body of research into precision therapy based on genetic diagnosis. The numerous genes in the potassium ion channel family constitute the largest family of ion channels: this family is divided into different subtypes. Potassium ion channels play a crucial role in the electrical activity of neurons and are directly involved in the mechanism of epileptic seizures. In China, scientific research on genetic diagnosis and studies of precision therapy for genetic epilepsy are progressing rapidly. Many cases of epilepsy caused by mutation of potassium channel genes have been identified, and several potassium channel gene targets and drug candidates have been discovered. The purpose of this review is to briefly summarize the progress of research on the precise diagnosis and treatment of potassium ion channel-related genetic epilepsy, especially the research conducted in China. Here in, we review several large cohort studies on the genetic diagnosis of epilepsy in China in recent years, summarized the proportion of potassium channel genes. We focus on the progress of precison therapy on some hot epilepsy related potassium channel genes: KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNMA1, and KCNT1.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zehong Lin
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Sijia Wen
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
44
|
Boyle Y, Johns TG, Fletcher EV. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers (Basel) 2022; 14:cancers14194767. [PMID: 36230692 PMCID: PMC9563970 DOI: 10.3390/cancers14194767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance. Potassium ion channels have long been implicated in the progression of many cancers due to their integral role in several hallmarks of the disease. Here, we will explore this relationship further, with a focus on malignant CNS cancers, including high-grade glioma (HGG). HGG is the most lethal form of primary brain tumour in adults, with the majority of patient mortality attributed to drug-resistant secondary tumours. Hence, targeting proteins that are integral to cellular plasticity could reduce tumour recurrence, improving survival. This review summarises the role of potassium ion channels in malignant CNS cancers, specifically how they contribute to proliferation, invasion, metastasis, angiogenesis, and plasticity. We will also explore how specific modulation of these proteins may provide a novel way to overcome drug resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yasmin Boyle
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- Correspondence:
| | - Terrance G. Johns
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
45
|
Scott LL, Lowe AS, Brecht EJ, Franco-Waite L, Walton JP. Small molecule modulation of the large-conductance calcium-activated potassium channel suppresses salicylate-induced tinnitus in mice. Front Neurosci 2022; 16:763855. [PMID: 36090293 PMCID: PMC9453485 DOI: 10.3389/fnins.2022.763855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Tinnitus is the phantom perception of sound that has no external source. A neurological signature of tinnitus, and the frequently associated hyperacusis, is an imbalance between excitatory and inhibitory activity in the central auditory system (CAS), leading to dysregulated network excitability. The large conductance, calcium-activated potassium (BK) channel is a key player in pre- and post-synaptic excitability through its mediation of K+ currents. Changes in BK channel activity are associated with aberrant network activity in sensory regions of the CNS, raising the possibility that BK channel modulation could regulate activity associated with tinnitus and hyperacusis. To test whether BK channel openers are able to suppress biomarkers of drug-induced tinnitus and hyperacusis, the 1,3,4 oxadiazole BMS-191011 was given to young adult CBA mice that had been administered 250 mg/kg sodium salicylate (SS). Systemic treatment with BMS-191011 reduced behavioral manifestations of SS-induced tinnitus, but not hyperacusis, probed via the gap-in-noise startle response method. Systemic BMS-191011 treatment did not influence SS-induced increases in auditory brainstem response functions, but local application at the inferior colliculus did reverse SS-suppressed spontaneous activity, particularly in the frequency region of the tinnitus percept. Thus, action of BMS-191011 in the inferior colliculus may contribute to the reduction in behaviorally measured tinnitus. Together, these findings support the utility of BK channel openers in reducing central auditory processing changes associated with the formation of the tinnitus percept.
Collapse
Affiliation(s)
| | - Andrea S. Lowe
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Elliott J. Brecht
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Luis Franco-Waite
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Joseph P. Walton
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
- *Correspondence: Joseph P. Walton,
| |
Collapse
|
46
|
Slayden AV, Dyer CL, Ma D, Li W, Bukiya AN, Parrill AL, Dopico AM. Discovery of agonist-antagonist pairs for the modulation of Ca [2]+ and voltage-gated K + channels of large conductance that contain beta1 subunits. Bioorg Med Chem 2022; 68:116876. [PMID: 35716586 PMCID: PMC10464842 DOI: 10.1016/j.bmc.2022.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Large conductance, calcium/voltage-gated potassium channels (BK) regulate critical body processes, including neuronal, secretory and smooth muscle (SM) function. While BK-forming alpha subunits are ubiquitous, accessory beta1 subunits are highly expressed in SM. This makes beta1 an attractive target for pharmaceutical development to treat SM disorders, such as hypertension or cerebrovascular spasm. Compounds activating BK via beta1 have been identified, yet they exhibit low potency and off-target effects while antagonists that limit agonist activity via beta 1 remain unexplored. Beta1-dependent BK ligand-based pharmacophore modeling and ZINC database searches identified 15 commercially available hits. Concentration-response curves on BK alpha + beta1 subunit-mediated currents were obtained in CHO cells. One potent (EC50 = 20 nM) and highly efficacious activator (maximal activation = ×10.3 of control) was identified along with a potent antagonist (KB = 3.02 nM), both of which were dependent on beta1. Our study provides the first proof-of-principle that an agonist/antagonist pair can be used to control beta1-containing BK activity.
Collapse
Affiliation(s)
- Alexandria V Slayden
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA
| | - Christy L Dyer
- Department of Chemistry, The University of Memphis, Memphis TN, 38152, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA
| | - Abby L Parrill
- Department of Chemistry, The University of Memphis, Memphis TN, 38152, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA.
| |
Collapse
|
47
|
Sartoretti MM, Campetella CA, Lanuza GM. Dbx1 controls the development of astrocytes of the intermediate spinal cord by modulating Notch signaling. Development 2022; 149:275961. [DOI: 10.1242/dev.200750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
ABSTRACT
Significant progress has been made in elucidating the basic principles that govern neuronal specification in the developing central nervous system. In contrast, much less is known about the origin of astrocytic diversity. Here, we demonstrate that a restricted pool of progenitors in the mouse spinal cord, expressing the transcription factor Dbx1, produces a subset of astrocytes, in addition to interneurons. Ventral p0-derived astrocytes (vA0 cells) exclusively populate intermediate regions of spinal cord with extraordinary precision. The postnatal vA0 population comprises gray matter protoplasmic and white matter fibrous astrocytes and a group of cells with strict radial morphology contacting the pia. We identified that vA0 cells in the lateral funiculus are distinguished by the expression of reelin and Kcnmb4. We show that Dbx1 mutants have an increased number of vA0 cells at the expense of p0-derived interneurons. Manipulation of the Notch pathway, together with the alteration in their ligands seen in Dbx1 knockouts, suggest that Dbx1 controls neuron-glial balance by modulating Notch-dependent cell interactions. In summary, this study highlights that restricted progenitors in the dorsal-ventral neural tube produce region-specific astrocytic subgroups and that progenitor transcriptional programs highly influence glial fate and are instrumental in creating astrocyte diversity.
Collapse
Affiliation(s)
- Maria Micaela Sartoretti
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| | - Carla A. Campetella
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| | - Guillermo M. Lanuza
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| |
Collapse
|
48
|
Park SM, Roache CE, Iffland PH, Moldenhauer HJ, Matychak KK, Plante AE, Lieberman AG, Crino PB, Meredith A. BK channel properties correlate with neurobehavioral severity in three KCNMA1-linked channelopathy mouse models. eLife 2022; 11:e77953. [PMID: 35819138 PMCID: PMC9275823 DOI: 10.7554/elife.77953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.
Collapse
Affiliation(s)
- Su Mi Park
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Cooper E Roache
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Hans J Moldenhauer
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Katia K Matychak
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Amber E Plante
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Abby G Lieberman
- Department of Pharmacology, University of Maryland School of MedicineBaltimoreUnited States
| | - Peter B Crino
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Andrea Meredith
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
49
|
Dong P, Zhang Y, Hunanyan AS, Mikati MA, Cui J, Yang H. Neuronal mechanism of a BK channelopathy in absence epilepsy and dyskinesia. Proc Natl Acad Sci U S A 2022; 119:e2200140119. [PMID: 35286197 PMCID: PMC8944272 DOI: 10.1073/pnas.2200140119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
A growing number of gain-of-function (GOF) BK channelopathies have been identified in patients with epilepsy and movement disorders. Nevertheless, the underlying pathophysiology and corresponding therapeutics remain obscure. Here, we utilized a knock-in mouse model carrying human BK-D434G channelopathy to investigate the neuronal mechanism of BK GOF in the pathogenesis of epilepsy and dyskinesia. The BK-D434G mice manifest the clinical features of absence epilepsy and exhibit severe motor deficits and dyskinesia-like behaviors. The cortical pyramidal neurons and cerebellar Purkinje cells from the BK-D434G mice show hyperexcitability, which likely contributes to the pathogenesis of absence seizures and paroxysmal dyskinesia. A BK channel blocker, paxilline, potently suppresses BK-D434G–induced hyperexcitability and effectively mitigates absence seizures and locomotor deficits in mice. Our study thus uncovered a neuronal mechanism of BK GOF in absence epilepsy and dyskinesia. Our findings also suggest that BK inhibition is a promising therapeutic strategy for mitigating BK GOF-induced neurological disorders.
Collapse
Affiliation(s)
- Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Arsen S. Hunanyan
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Mohamad A. Mikati
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
50
|
Gonzalez-Perez V, Zhou Y, Ciorba MA, Lingle CJ. The LRRC family of BK channel regulatory subunits: potential roles in health and disease. J Physiol 2022; 600:1357-1371. [PMID: 35014034 PMCID: PMC8930516 DOI: 10.1113/jp281952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Large conductance K+ channels, termed BK channels, regulate a variety of cellular and physiological functions. Although universally activated by changes in voltage or [Ca2+ ]i , the threshold for BK channel activation varies among loci of expression, often arising from cell-specific regulatory subunits including a family of leucine rich repeat-containing (LRRC) γ subunits (LRRC26, LRRC52, LRRC55 and LRRC38). The 'founding' member of this family, LRRC26, was originally identified as a tumour suppressor in various cancers. An LRRC26 knockout (KO) mouse model recently revealed that LRRC26 is also highly expressed in secretory epithelial cells and partners with BK channels in the salivary gland and colonic goblet cells to promote sustained K+ fluxes likely essential for normal secretory function. To accomplish this, LRRC26 negatively shifts the range of BK channel activation such that channels contribute to K+ flux near typical epithelial cell resting conditions. In colon, the absence of LRRC26 increases vulnerability to colitis. LRRC26-containing BK channels are also likely important regulators of epithelial function in other loci, including airways, female reproductive tract and mammary gland. Based on an LRRC52 KO mouse model, LRRC52 regulation of large conductance K+ channels plays a role both in sperm function and in cochlear inner hair cells. Although our understanding of LRRC-containing BK channels remains rudimentary, KO mouse models may help define other organs in which LRRC-containing channels support normal function. A key topic for future work concerns identification of endogenous mechanisms, whether post-translational or via gene regulation, that may impact LRRC-dependent pathologies.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew A Ciorba
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|