1
|
Zhang K, Xing T, Ding L, Pannecouque C, De Clercq E, Corona A, Dettori L, Tramontano E, Wang S, Chen FE. Deuteration Strategy-Inspired Design of Novel Diarylpyrimidine Derivatives as Potent Non-Nucleoside Reverse Transcriptase Inhibitors Featuring Improved Efficacy, Selectivity, and Druggability. J Med Chem 2025; 68:8564-8577. [PMID: 40186564 DOI: 10.1021/acs.jmedchem.5c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Deuteration strategy holds significant importance in the field of drug development. In this study, the deuteration strategy was applied to incorporate deuterated methyl groups at the metabolic sites where methyl groups were originally present, with the expectation of improving the anti-HIV activity, safety, and druggability. Among the deuterated compounds, the exemplary compound 5a (ZK-316) exhibited potent and broad-spectrum activity against wild-type and clinically observed mutant strains, with EC50 values ranging from 0.99 to 75.1 nM, surpassing that of the hit compound 3 (EC50 = 1.86-795.76 nM). Moreover, low cytotoxicity was exhibited by ZK-316 (CC50 > 225 nM), which was over 36.8 times lower than that of compound 3, and high selectivity was also shown. Not only was there no apparent inhibition of cytochrome P450 (CYP) enzymes, but also low human ether-à-go-go-related gene (hERG) toxicity was found. And favorable pharmacokinetic profiles were shown as well, with a bioavailability of 29%, all of which indicated its promising druggability. Additionally, the identification of the metabolites of ZK-316 was carried out to verify the stability of the deuterated methyl groups within human liver microsomes. These results offer valuable insights into the development of deuterated non-nucleoside reverse transcriptase inhibitors (NNRTIs) for human immunodeficiency virus (HIV) therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianhao Xing
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li Ding
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Angela Corona
- Department of Life and Environmetal Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Laura Dettori
- Department of Life and Environmetal Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmetal Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Chen J, Zhu YY, Huang L, Zhang SS, Gu SX. Application of deuterium in research and development of drugs. Eur J Med Chem 2025; 287:117371. [PMID: 39952095 DOI: 10.1016/j.ejmech.2025.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Deuterium is gaining increased attention and utilization due to its unique physical and chemical properties. Deuteration has the unique benefit of positively impacting metabolic fate of pharmacologically active compounds without altering their chemical structures, physical properties, or biological activity and selectivity. In these favorable cases, deuterium substitution can in principle improve the pharmacokinetic properties and safety of therapeutic agents. The use of deuterium to create a new chemical entity not only starts with an existing drug, but can be achieved from iterative optimization in the de novo design of new compounds. Furthermore, deuterium has become a powerful tool in pharmaceutical analysis, including deuterium-labeled compounds as internal standards for extensive analysis, metabolomics, ADME, clinical pharmacology studies. This review highlights the application of deuterium in enhancing the pharmacological effects of active molecules during drug discovery and development. Additionally, deuterium-enabled pharmaceutical analysis is also covered. This review is aimed to provide references for the discovery of new deuterium-containing chemical entities with improved pharmacological properties and for the research of fate of drugs.
Collapse
Affiliation(s)
- Jiong Chen
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Lu Huang
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China.
| |
Collapse
|
3
|
Zhang T, Deng X, Jin H, Peng Z, Hsueh YC, Zhang C, Niu G, Yang J. The effect of deuterated PLK1 inhibitor on its safety and efficacy in vivo. Front Oncol 2025; 15:1510052. [PMID: 40190550 PMCID: PMC11968394 DOI: 10.3389/fonc.2025.1510052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/11/2025] [Indexed: 04/09/2025] Open
Abstract
Background The FDA's approval of deutetrabenazine, the first deuterium-labeled drug, demonstrated an improved safety profile compared to its non-deuterated counterpart, tetrabenazine. While Polo-like kinase 1 (PLK1) inhibitors have shown promise in cancer treatment, current inhibitors face challenges with toxicity and narrow therapeutic windows, highlighting the need for more effective and safer PLK inhibitors. Methods The molecule of PR00012 was generated by replacing all the hydrogen atoms with deuterium on piperazine of the molecule NMS-P937. Several critical in vitro assays comparing PR00012 and NMS-937 were conducted, including kinase and cellular inhibition, in vitro metabolic stability, and permeability. In vivo, both compounds were compared for their pharmacokinetics and pharmacodynamics, toxicity and efficacy. Results Both compounds exhibited similar characteristics in vitro, including the inhibition of six pancreatic cancer cell lines and 416 kinases. PR00012 demonstrated a slightly longer half-life than NMS-P937 in vivo. In tumor-bearing mice, PR00012 more significantly reduced phosphorylated TCTP levels in tumors compared to NMS-P937. Importantly, animals treated with PR00012 showed lower toxicity than those treated with NMS-P937. In mice, fewer animals died from PR00012 treatment compared to NMS-P937 treatment across M-NSG, BALB/c nude, and NOD SCID strains. In a 14-day repeated administration toxicity study in Sprague-Dawley rats, one-third of rats died when treated with NMS-P937, while no rats died from PR00012 treatment. In several cell-derived xenograft (CDX) models, PR00012-treated groups consistently showed slightly better tumor growth inhibition in M-NSG, BALB/c nude, and NOD SCID mice. Conclusion The deuterated PR00012 demonstrated an improved safety profile and slightly enhanced efficacy compared to its non-deuterated counterpart, NMS-P937. This study provides a foundation for further clinical trials investigating the treatment of various cancers.
Collapse
Affiliation(s)
- Tingyan Zhang
- Phil Rivers Technology, Beijing, China
- Phil Rivers Biotechnology, Shenzhen Virtual University, Shenzhen, China
| | - Xiaobing Deng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haoping Jin
- Phil Rivers Biotechnology, Shenzhen Virtual University, Shenzhen, China
| | - Zhengshu Peng
- Phil Rivers Technology, Beijing, China
- Phil Rivers Biotechnology, Shenzhen Virtual University, Shenzhen, China
| | | | | | - Gang Niu
- Phil Rivers Technology, Beijing, China
- Phil Rivers Biotechnology, Shenzhen Virtual University, Shenzhen, China
| | - Jianfei Yang
- Phil Rivers Technology, Beijing, China
- Phil Rivers Biotechnology, Shenzhen Virtual University, Shenzhen, China
| |
Collapse
|
4
|
Youse MS, Abutaleb NS, Nocentini A, S Abdelsattar A, Ali F, Supuran CT, Seleem MN, Flaherty DP. Optimization of Ethoxzolamide Analogs with Improved Pharmacokinetic Properties for In Vivo Efficacy against Neisseria gonorrhoeae. J Med Chem 2024; 67:15537-15556. [PMID: 39141375 DOI: 10.1021/acs.jmedchem.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Drug-resistant gonorrhea is caused by the bacterial pathogen Neisseria gonorrhoeae, for which there is no recommended oral treatment. We have demonstrated that the FDA-approved human carbonic anhydrase inhibitor ethoxzolamide potently inhibits N. gonorrhoeae; however, is not effective at reducing N. gonorrhoeae bioburden in a mouse model. Thus, we sought to optimize the pharmacokinetic properties of the ethoxzolamide scaffold. These efforts resulted in analogs with improved activity against N. gonorrhoeae, increased metabolic stability in mouse liver microsomes, and improved Caco-2 permeability compared to ethoxzolamide. Improvement in these properties resulted in increased plasma exposure in vivo after oral dosing. Top compounds were investigated for in vivo efficacy in a vaginal mouse model of gonococcal genital tract infection, and they significantly decreased the gonococcal burden compared to vehicle and ethoxzolamide controls. Altogether, results from this study provide evidence that ethoxzolamide-based compounds have the potential to be effective oral therapeutics against gonococcal infection.
Collapse
Affiliation(s)
- Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Farman Ali
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Tang J, Liu C, Liu C, Hu Q, Fang Y, Chen Z. Evaluation of damage discrimination in dopaminergic neurons using dopamine transporter PET tracer [ 18F]FECNT-d 4. EJNMMI Res 2024; 14:78. [PMID: 39210186 PMCID: PMC11362440 DOI: 10.1186/s13550-024-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder worldwide, diagnosed based on classic symptoms like motor dysfunction and cognitive impairments. With the development of various radioactive ligands, positron emission tomography (PET) imaging combined with specific radiolabelling probes has proven to be effective in aiding clinical PD diagnosis. Among these probes, 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl) nortropane ([18F]FECNT) has been utilized as a PET tracer to image dopamine transporter (DAT) integrity in striatal presynaptic dopaminergic terminals. However, the presence of brain-penetrant radioactive metabolites produced by [18F]FECNT may impact the accuracy of PET imaging. In previous research, we developed 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl-1,1,2,2-d4) nortropane ([18F]FECNT-d4), a deuterated derivative with enhanced stability in plasma and the striatum, along with a slower washout rate. In this study, we further investigated the potential of [18F]FECNT-d4 to detect dopaminergic neuron degeneration in Parkinson's disease. This involved PET imaging in unilaterally-lesioned PD model rats and in vitro autoradiography conducted on postmortem brain sections. RESULTS PET images revealed reduced specific uptake in the ipsilateral striatum of rats stereotactically injected with 6-hydroxydopamine hydrochloride (6-OHDA). Compared to the sham group, the ratio of standardized uptake value (SUV) in the ipsilateral to contralateral striatum decreased by 13%, 23%, and 63% in the mild, moderate, and severe lesioned groups, respectively. Dopaminergic denervation observed in PET imaging was further supported by behavioral assessments, immunostaining, and monoamine concentration tests. Moreover, the microPET results exhibited positive correlations with these measurements, except for the apomorphine-induced rotational behavior test, which showed a negative correlation. Additionally, [18F]FECNT-d4 uptake was approximately 40% lower in the postmortem striatal sections of a PD patient compared to a healthy subject. Furthermore, estimated human dosimetry (effective dose equivalent: 5.06 E-03 mSv/MBq), extrapolated from rat biodistribution data, remained below the current Food and Drug Administration limit for radiation exposure. CONCLUSION Our findings demonstrate that [18F]FECNT-d4 accurately estimates levels of dopaminergic neuron degeneration in the 6-OHDA-induced PD rat model and effectively distinguishes between PD patients and healthy individuals. This highly sensitive and safe PET probe holds promising potential for clinical application in the diagnosis and monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Congjin Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Jing'an District, Shanghai, 200040, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Qianyue Hu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China.
| |
Collapse
|
6
|
Haschimi B, Willecke F, Mundinger S, Hüttel W, Jessen H, Müller M, Auwärter V. Enzymatic defluorination of a terminally monofluorinated pentyl moiety: oxidative or hydrolytic mechanism? Drug Metab Dispos 2024; 52:DMD-AR-2023-001501. [PMID: 38408868 DOI: 10.1124/dmd.123.001501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Fluorination of organic compounds plays an important role in the chemical and pharmaceutical industry and is often applied in order to improve physicochemical parameters or modify pharmacological properties. While oxidative and reductive defluorination have been shown to be responsible for the metabolic degradation of organofluorine compounds, the involvement of hydrolytic mechanisms catalyzed by human enzymes has not been reported so far. Here, we investigated the enzymatic defluorination of terminally monofluorinated aliphates with [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone (AM-2201) as a model substance. We performed in vitro biotransformation using pooled human liver microsomes (pHLM) and human recombinant cytochrome P450 (CYP) assays. In order to elucidate the underlying mechanisms, modified incubation conditions were applied including the use of deuterium labeled AM-2201 (d2 -AM-2201). Identification of the main metabolites and analysis of their isotopic composition was performed by liquid-chromatography coupled to time-of-flight-mass-spectrometry (LC-QToF-MS). Quantification of the metabolites was achieved with a validated method based on liquid-chromatography-tandem-mass-spectrometry (LC-MS/MS). CYP 1A2 mediated defluorination of d2 -AM-2201 revealed an isotopic pattern of the defluorinated 5-hydroxypentyl metabolite (5-HPM) indicating a redox mechanism with an aldehyde as a plausible intermediate. In contrast, formation of 5-HPM by pHLM was observed independently of the presence of atmospheric oxygen or co-factors regenerating the redox system. pHLM incubation of d2 -AM-2201 confirmed the hypothesis of a non-oxidative mechanism involved in the defluorination of the 5-fluoropentyl moiety. So far, enzymatically catalyzed, hydrolytic defluorination was only described in bacteria and other prokaryotes. The presented data prove the involvement of a hydrolytic mechanism catalyzed by human microsomal enzymes other than CYP. Significance Statement Elucidating the mechanisms involved in the enzymatic detoxification of organofluorine compounds is crucial for enhancing our understanding and facilitating the design and development of drugs with improved pharmacokinetic profiles. The carbon-fluorine bond possesses a high binding energy, which suggests that non-activated fluoroalkanes would not undergo hydrolytic cleavage. However, our study provides evidence for the involvement of a non-oxidative mechanism catalyzed by human liver enzymes. It is important to consider CYP-independent, hydrolytic defluorination, when investigating the pharmacokinetic properties of fluorinated xenobiotics.
Collapse
Affiliation(s)
- Belal Haschimi
- Forensic Toxicology, Institute of Forensic Medicine, Germany
| | - Florian Willecke
- Preclinical Pharmacokinetics and Metabolism, Idorsia Pharmaceuticals Ltd., Switzerland
| | - Stefan Mundinger
- Insitute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Germany
| | - Wolfgang Hüttel
- Insitute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Germany
| | | | - Michael Müller
- Insitute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Germany
| | | |
Collapse
|
7
|
Choi K. Structure-property Relationships Reported for the New Drugs Approved in 2022. Mini Rev Med Chem 2024; 24:330-340. [PMID: 37211842 DOI: 10.2174/1389557523666230519162803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The structure-property relationship illustrates how modifying the chemical structure of a pharmaceutical compound influences its absorption, distribution, metabolism, excretion, and other related properties. Understanding structure-property relationships of clinically approved drugs could provide useful information for drug design and optimization strategies. METHOD Among new drugs approved around the world in 2022, including 37 in the US, structure- property relationships of seven drugs were compiled from medicinal chemistry literature, in which detailed pharmacokinetic and/or physicochemical properties were disclosed not only for the final drug but also for its key analogues generated during drug development. RESULTS The discovery campaigns for these seven drugs demonstrate extensive design and optimization efforts to identify suitable candidates for clinical development. Several strategies have been successfully employed, such as attaching a solubilizing group, bioisosteric replacement, and deuterium incorporation, resulting in new compounds with enhanced physicochemical and pharmacokinetic properties. CONCLUSION The structure-property relationships hereby summarized illustrate how proper structural modifications could successfully improve the overall drug-like properties. The structure-property relationships of clinically approved drugs are expected to continue to provide valuable references and guides for the development of future drugs.
Collapse
Affiliation(s)
- Kihang Choi
- Department of Chemistry, Korea University, Seoul, 02841, Korea (ROK)
| |
Collapse
|
8
|
Lagardère P, Mustière R, Amanzougaghene N, Hutter S, Casanova M, Franetich JF, Tajeri S, Malzert-Fréon A, Corvaisier S, Since M, Azas N, Vanelle P, Verhaeghe P, Primas N, Mazier D, Masurier N, Lisowski V. Novel thienopyrimidones targeting hepatic and erythrocytic stages of Plasmodium parasites with increased microsomal stability. Eur J Med Chem 2023; 261:115873. [PMID: 37857143 DOI: 10.1016/j.ejmech.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Based on the structure of a previously identified hit, Gamhepathiopine 1, which showed promising antiplasmodial activity, but poor microsomal stability, several strategies were investigated to improve the metabolic stability of the compounds. This included the introduction of fluorine or deuterium atoms, as well as carbocyclic groups. Among the new compounds, the 2-aminocyclobutyl derivative 5g demonstrated enhanced microsomal stability compared to compound 1, while retaining antiplasmodial activity against erythrocytic and hepatic stages of Plasmodium, without significant cytotoxicity against primary hepatocytes.
Collapse
Affiliation(s)
- Prisca Lagardère
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Romain Mustière
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille cedex 05, France
| | - Nadia Amanzougaghene
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Sébastien Hutter
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Marion Casanova
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jean-François Franetich
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Shahin Tajeri
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France
| | | | | | - Marc Since
- CERMN, Université de Caen Normandie, UNICAEN, France
| | - Nadine Azas
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille cedex 05, France; AP-HM, Hôpital Conception, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France
| | - Pierre Verhaeghe
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, F-38041, Grenoble, France; LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France; CHU de Nîmes, Service de Pharmacie, Nîmes, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille cedex 05, France; AP-HM, Hôpital Conception, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France
| | - Dominique Mazier
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France.
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France.
| |
Collapse
|
9
|
Li T, Peiris CR, Aragonès AC, Hurtado C, Kicic A, Ciampi S, MacGregor M, Darwish T, Darwish N. Terminal Deuterium Atoms Protect Silicon from Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47833-47844. [PMID: 37768872 DOI: 10.1021/acsami.3c11598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In recent years, the hybrid silicon-molecular electronics technology has been gaining significant attention for applications in sensors, photovoltaics, power generation, and molecular electronics devices. However, Si-H surfaces, which are the platforms on which these devices are formed, are prone to oxidation, compromising the mechanical and electronic stability of the devices. Here, we show that when hydrogen is replaced by deuterium, the Si-D surface becomes significantly more resistant to oxidation when either positive or negative voltages are applied to the Si surface. Si-D surfaces are more resistant to oxidation, and their current-voltage characteristics are more stable than those measured on Si-H surfaces. At positive voltages, the Si-D stability appears to be related to the flat band potential of Si-D being more positive compared to Si-H surfaces, making Si-D surfaces less attractive to oxidizing OH- ions. The limited oxidation of Si-D surfaces at negative potentials is interpreted by the frequencies of the Si-D bending modes being coupled to that of the bulk Si surface phonon modes, which would make the duration of the Si-D excited vibrational state significantly less than that of Si-H. The strong surface isotope effect has implications in the design of silicon-based sensing, molecular electronics, and power-generation devices and the interpretation of charge transfer across them.
Collapse
Affiliation(s)
- Tiexin Li
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Albert C Aragonès
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Marti i Franquès 1, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Bentley, Western Australia 6102, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science & Technology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
10
|
Friedrich L, Park SK, Ballard P, Ho Baeurle TH, Maillard D, Bödding M, Keiser J, Marchant JS, Spangenberg T. Metabolism of (R)-Praziquantel versus the Activation of a Parasite Transient Receptor Potential Melastatin Ion Channel. ChemMedChem 2023; 18:e202300140. [PMID: 37272317 PMCID: PMC10530395 DOI: 10.1002/cmdc.202300140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Praziquantel (PZQ) is an essential anthelmintic drug recently established to be an activator of a Transient Receptor Potential Melastatin (TRPMPZQ ) ion channel in trematode worms. Bioinformatic, mutagenesis and drug metabolism work indicate that the cyclohexyl ring of PZQ is a key pharmacophore for activation of trematode TRPMPZQ , as well as serving as the primary site of oxidative metabolism which results in PZQ being a short-lived drug. Based on our recent findings, the hydrophobic cleft in schistosome TRPMPZQ defined by three hydrophobic residues surrounding the cyclohexyl ring has little tolerance for polarity. Here we evaluate the in vitro and in vivo activities of PZQ analogues with improved metabolic stability relative to the challenge of maintaining activity on the channel. Finally, an estimation of the respective contribution to the overall activity of both the parent and the main metabolite of PZQ in humans is reported.
Collapse
Affiliation(s)
- Lukas Friedrich
- Global Research & Development, Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Sang-Kyu Park
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI, 53226, USA
| | | | | | - David Maillard
- Central Process Development-Downstream Processing Services, Merck Electronics KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Matthias Bödding
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstr. 2, 4123, Allschwil, Switzerland
- Helminth Drug Development Unit, University of Basel, Basel, Switzerland
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI, 53226, USA
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt Germany, 1262, Eysins, Switzerland
| |
Collapse
|
11
|
Van Oers TJ, Piercey A, Belovodskiy A, Reiz B, Donnelly BL, Vuong W, Lemieux MJ, Nieman JA, Auclair K, Vederas JC. Deuteration for Metabolic Stabilization of SARS-CoV-2 Inhibitors GC373 and Nirmatrelvir. Org Lett 2023; 25:5885-5889. [PMID: 37523471 DOI: 10.1021/acs.orglett.3c02140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Nirmatrelvir and GC373 inhibit the SARS-CoV-2 3CL protease and hinder viral replication in COVID-19. As nirmatrelvir in Paxlovid is oxidized by cytochrome P450 3A4, ritonavir is coadministered to block this. However, ritonavir undesirably alters the metabolism of other drugs. Hydrogens can be replaced with deuterium in nirmatrelvir and GC373 to slow oxidation. Results show that deuterium slows oxidation of nirmatrelvir adjacent to nitrogen by ∼40% and that the type of warhead can switch the site of oxidative metabolism.
Collapse
Affiliation(s)
- Tayla J Van Oers
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Alexia Piercey
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexandr Belovodskiy
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Béla Reiz
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Bethan L Donnelly
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James A Nieman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
12
|
Sun Y, Ramos-Torres KM, Brugarolas P. Metabolic Stability of the Demyelination Positron Emission Tomography Tracer [ 18F]3-Fluoro-4-Aminopyridine and Identification of Its Metabolites. J Pharmacol Exp Ther 2023; 386:93-101. [PMID: 37024145 PMCID: PMC10289238 DOI: 10.1124/jpet.122.001462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
[18F]3-fluoro-4-aminopyridine ([18F]3F4AP) is a positron emission tomography (PET) tracer for imaging demyelination based on the multiple sclerosis drug 4-aminopyridine (4AP, dalfampridine). This radiotracer was found to be stable in rodents and nonhuman primates imaged under isoflurane anesthesia. However, recent findings indicate that its stability is greatly decreased in awake humans and mice. Since both 4AP and isoflurane are metabolized primarily by cytochrome P450 enzymes, particularly cytochrome P450 family 2 subfamily E member 1 (CYP2E1), we postulated that this enzyme may be responsible for the metabolism of 3F4AP. Here, we investigated the metabolism of [18F]3F4AP by CYP2E1 and identified its metabolites. We also investigated whether deuteration, a common approach to increase the stability of drugs, could improve its stability. Our results demonstrate that CYP2E1 readily metabolizes 3F4AP and its deuterated analogs and that the primary metabolites are 5-hydroxy-3F4AP and 3F4AP N-oxide. Although deuteration did not decrease the rate of the CYP2E1-mediated oxidation, our findings explain the diminished in vivo stability of 3F4AP compared with 4AP and further our understanding of when deuteration may improve the metabolic stability of drugs and PET ligands. SIGNIFICANCE STATEMENT: The demyelination tracer [18F]3F4AP was found to undergo rapid metabolism in humans, which could compromise its utility. Understanding the enzymes and metabolic products involved may offer strategies to reduce metabolism. Using a combination of in vitro assays and chemical syntheses, this report shows that cytochrome P450 enzyme CYP2E1 is likely responsible for [18F]3F4AP metabolism, that 4-amino-5-fluoroprydin-3-ol (5-hydroxy-3F4AP, 5OH3F4AP) and 4-amino-3-fluoropyridine 1-oxide (3F4AP N-oxide) are the main metabolites, and that deuteration is unlikely to improve the stability of the tracer in vivo.
Collapse
Affiliation(s)
- Yang Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karla M Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Di Martino RMC, Maxwell BD, Pirali T. Deuterium in drug discovery: progress, opportunities and challenges. Nat Rev Drug Discov 2023; 22:562-584. [PMID: 37277503 PMCID: PMC10241557 DOI: 10.1038/s41573-023-00703-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/07/2023]
Abstract
Substitution of a hydrogen atom with its heavy isotope deuterium entails the addition of one neutron to a molecule. Despite being a subtle change, this structural modification, known as deuteration, may improve the pharmacokinetic and/or toxicity profile of drugs, potentially translating into improvements in efficacy and safety compared with the non-deuterated counterparts. Initially, efforts to exploit this potential primarily led to the development of deuterated analogues of marketed drugs through a 'deuterium switch' approach, such as deutetrabenazine, which became the first deuterated drug to receive FDA approval in 2017. In the past few years, the focus has shifted to applying deuteration in novel drug discovery, and the FDA approved the pioneering de novo deuterated drug deucravacitinib in 2022. In this Review, we highlight key milestones in the field of deuteration in drug discovery and development, emphasizing recent and instructive medicinal chemistry programmes and discussing the opportunities and hurdles for drug developers, as well as the questions that remain to be addressed.
Collapse
Affiliation(s)
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
14
|
Hok L, Vianello R. Selective Deuteration Improves the Affinity of Adenosine A 2A Receptor Ligands: A Computational Case Study with Istradefylline and Caffeine. J Chem Inf Model 2023; 63:3138-3149. [PMID: 37155356 DOI: 10.1021/acs.jcim.3c00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We used a range of computational techniques to assess the effect of selective C-H deuteration on the antagonist istradefylline affinity for the adenosine A2A receptor, which was discussed relative to its structural analogue caffeine, a well-known and likely the most widely used stimulant. The obtained results revealed that smaller caffeine shows high receptor flexibility and exchanges between two distinct poses, which agrees with crystallographic data. In contrast, the additional C8-trans-styryl fragment in istradefylline locks the ligand within a uniform binding pose, while contributing to the affinity through the C-H···π and π···π contacts with surface residues, which, together with its much lower hydration prior to binding, enhances the affinity over caffeine. In addition, the aromatic C8-unit shows a higher deuteration sensitivity over the xanthine part, so when both of its methoxy groups are d6-deuterated, the affinity improvement is -0.4 kcal mol-1, which surpasses the overall affinity gain of -0.3 kcal mol-1 in the perdeuterated d9-caffeine. Yet, the latter predicts around 1.7-fold potency increase, being relevant for its pharmaceutical implementations, and also those within the coffee and energy drink production industries. Still, the full potential of our strategy is achieved in polydeuterated d19-istradefylline, whose A2A affinity improves by -0.6 kcal mol-1, signifying a 2.8-fold potency increase that strongly promotes it as a potential synthetic target. This knowledge supports deuterium application in drug design, and while the literature already reports about over 20 deuterated drugs currently in the clinical development, it is easily foreseen that more examples will hit the market in the years to come. With this in mind, we propose that the devised computational methodology, involving the ONIOM division of the QM region for the ligand and the MM region for its environment, with an implicit quantization of nuclear motions relevant for the H/D exchange, allows fast and efficient estimates of the binding isotope effects in any biological system.
Collapse
Affiliation(s)
- Lucija Hok
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Dohle W, Asiki H, Gruchot W, Foster PA, Sahota HK, Bai R, Christensen KE, Hamel E, Potter BVL. 2-Difluoromethoxy-Substituted Estratriene Sulfamates: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Steroid Sulfatase Inhibition. ChemMedChem 2022; 17:e202200408. [PMID: 36109340 PMCID: PMC9742152 DOI: 10.1002/cmdc.202200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/14/2022] [Indexed: 01/14/2023]
Abstract
2-Difluoromethoxyestratriene derivatives were designed to improve potency and in vivo stability of the drug candidate 2-methoxyestradiol (2ME2). Compound evaluation in vitro against the proliferation of MCF-7 and MDA MB-231 breast cancer cells, as inhibitors of tubulin polymerisation and also steroid sulfatase (STS) both in cell lysates and in whole cells, showed promising activities. In antiproliferative assays 2-difluoromethoxyestradiol was less potent than 2ME2, but its sulfamates were often more potent than their corresponding non-fluorinated analogues. The fluorinated bis-sulfamate is a promising antiproliferative agent in MCF-7 cells (GI50 0.28 μM) vs the known 2-methoxyestradiol-3,17-O,O-bissulfamate (STX140, GI50 0.52 μM), confirming the utility of our approach. Compounds were also evaluated in the NCI 60-cell line panel and the fluorinated bis-sulfamate derivative displayed very good overall activities with a sub-micromolar average GI50 . It was a very potent STS inhibitor in whole JEG-3 cells (IC50 3.7 nM) similar to STX140 (4.2 nM) and additionally interferes with tubulin assembly in vitro and colchicine binding to tubulin. An X-ray study of 2-difluoromethoxy-3-benzyloxyestra-1,3,5(10)-trien-17-one examined conformational aspects of the fluorinated substituent. The known related derivative 2-difluoromethyl-3-sulfamoyloxyestrone was evaluated for STS inhibition in whole JEG-3 cells and showed an excellent IC50 of 55 pM.
Collapse
Affiliation(s)
- Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Hannah Asiki
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Wojciech Gruchot
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Paul A Foster
- Institute of Metabolism & Systems Research, University of Birmingham, 2nd Floor IBR Tower Edgbaston, Birmingham, B15 2TT, UK
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - Havreen K Sahota
- Institute of Metabolism & Systems Research, University of Birmingham, 2nd Floor IBR Tower Edgbaston, Birmingham, B15 2TT, UK
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, 21702, USA
| | - Kirsten E Christensen
- Chemical Crystallography, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, 21702, USA
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| |
Collapse
|
16
|
Kimura Y, Kanematsu Y, Sakagami H, Rivera Rocabado DS, Shimazaki T, Tachikawa M, Ishimoto T. Hydrogen/Deuterium Transfer from Anisole to Methoxy Radicals: A Theoretical Study of a Deuterium-Labeled Drug Model. J Phys Chem A 2022; 126:155-163. [PMID: 34981930 DOI: 10.1021/acs.jpca.1c08514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, deuterium-labeled drugs, such as deutetrabenazine, have attracted considerable attention. Consequently, understanding the reaction mechanisms of deuterium-labeled drugs is crucial, both fundamentally and for real applications. To understand the mechanisms of H- and D-transfer reactions, in this study, we used deuterated anisole as a deutetrabenazine model and computationally considered the nuclear quantum effects of protons, deuterons, and electrons. We demonstrated that geometrical differences exist in the partially and fully deuterated methoxy groups and hydrogen-bonded structures of intermediates and transition states due to the H/D isotope effect. The observed geometrical features and electronic structures are ascribable to the different nuclear quantum effects of protons and deuterons. Primary and secondary kinetic isotope effects (KIEs) were calculated for H- and D-transfer reactions from deuterated and undeuterated anisole, with the calculated primary KIEs in good agreement with the corresponding experimental data. These results reveal that the nuclear quantum effects of protons and deuterons need to be considered when analyzing the reaction mechanisms of H- and D-transfer reactions and that a theoretical approach that directly includes nuclear quantum effects is a powerful tool for the analysis of H/D isotope effects in H- and D-transfer reactions.
Collapse
Affiliation(s)
- Yuka Kimura
- International College of Arts and Sciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| | - Yusuke Kanematsu
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.,Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hiroki Sakagami
- Graduate School of Data Science, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| | - David S Rivera Rocabado
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomomi Shimazaki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| | - Masanori Tachikawa
- Graduate School of Data Science, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| | - Takayoshi Ishimoto
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.,Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.,Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| |
Collapse
|
17
|
Chai L, Zhang H, Song R, Yang H, Yu H, Paneth P, Kepp KP, Akamatsu M, Ji L. Precision Biotransformation of Emerging Pollutants by Human Cytochrome P450 Using Computational-Experimental Synergy: A Case Study of Tris(1,3-dichloro-2-propyl) Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14037-14050. [PMID: 34663070 DOI: 10.1021/acs.est.1c03036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precision biotransformation is an envisioned strategy offering detailed insights into biotransformation pathways in real environmental settings using experimentally guided high-accuracy quantum chemistry. Emerging pollutants, whose metabolites are easily overlooked but may cause idiosyncratic toxicity, are important targets of such a strategy. We demonstrate here that complex metabolic reactions of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) catalyzed by human CYP450 enzymes can be mapped via a three-step synergy strategy: (i) screening the possible metabolites via high-throughout (moderate-accuracy) computations; (ii) analyzing the proposed metabolites in vitro by human liver microsomes and recombinant human CYP450 enzymes; and (iii) rationalizing the experimental data via precise mechanisms using high-level targeted computations. Through the bilateral dialogues from qualitative to semi-quantitative to quantitative levels, we show how TDCIPP metabolism especially by CYP3A4 generates bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) as an O-dealkylation metabolite and bis(1,3-dichloro-2-propyl) 3-chloro-1-hydroxy-2-propyl phosphate (alcoholβ-dehalogen) as a dehalogenation/reduction metabolite via the initial rate-determining H-abstraction from αC- and βC-positions. The relative yield ratio [dehalogenation/reduction]/[O-dealkylation] is derived from the relative barriers of H-abstraction at the βC- and αC-positions by CYP3A4, estimated as 0.002 to 0.23, viz., an in vitro measured ratio of 0.04. Importantly, alcoholβ-dehalogen formation points to a new mechanism involving successive oxidation and reduction functions of CYP450, with its precursor aldehydeβ-dehalogen being a key intermediate detected by trapping assays and rationalized by computations. We conclude that the proposed three-step synergy strategy may meet the increasing challenge of elucidating biotransformation mechanisms of substantial synthesized organic compounds in the future.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Haohan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, Kgs. Lyngby DK-2800, Denmark
| | - Miki Akamatsu
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|
19
|
Xiao H, Choi SR, Zhao R, Ploessl K, Alexoff D, Zhu L, Zha Z, Kung HF. A New Highly Deuterated [ 18F]AV-45, [ 18F]D15FSP, for Imaging β-Amyloid Plaques in the Brain. ACS Med Chem Lett 2021; 12:1086-1092. [PMID: 34267878 DOI: 10.1021/acsmedchemlett.1c00062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
[18F]AV-45 (florbetapir f18, Amyvid) is an FDA-approved PET imaging agent targeting Aβ plaques in the brain for diagnosis of Alzheimer's disease (AD). Its metabolites led to a high background in the brain and large bone uptake of [18F]F-, produced from dealkylation of the PEG chain. To slow down the in vivo metabolism, we report the design, synthesis, and evaluation of a highly deuterated derivative, [18F]D15FSP, and compared it with N-methyl-deuterated [18F]D3FSP and nondeuterated [18F]AV-45. D15FSP displayed excellent binding affinity (K i = 7.52 nM) to Aβ aggregates. In vitro autoradiography of [18F]D15FSP, [18F]D3FSP, and [18F]AV-45 showed excellent binding to Aβ plaques in human AD brain sections. Biodistribution studies displayed lower bone uptake at 120 min for [18F]D15FSP compared to that for [18F]D3FSP and [18F]AV-45 (1.44 vs 4.23 and 4.03%ID/g, respectively). As the highly deuterated [18F]D15FSP displayed excellent Aβ binding affinity, high initial brain penetration, and lower bone retention, it might be suitable for PET imaging in detecting Aβ plaques.
Collapse
Affiliation(s)
- Hao Xiao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Ruiyue Zhao
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Hank F. Kung
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Zha Z, Ploessl K, Choi SR, Alexoff D, Kung HF. Preclinical evaluation of [ 18F]D3FSP, deuterated AV-45, for imaging of β-amyloid in the brain. Nucl Med Biol 2021; 92:97-106. [PMID: 32245565 DOI: 10.1016/j.nucmedbio.2020.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Since the approval of three 18F labeled β-amyloid-targeting PET imaging agents, Amyvid (florbetapir f18, AV-45), Neuraceq (florbetaben f18, AV-1) and Vizamyl (flutemetamol f18, F-PIB), they have increasingly been employed to assist differential diagnosis of Alzheimer's disease in patients with dementia. Also, they are frequently used in selecting patients participating drug trials aiming to reduce β-amyloid (Aβ) plaques in the brain. The first approved tracer in this class was [18F]AV-45, which is metabolized rapidly in blood and some of its N-demethylated metabolites cross the blood brain barrier and resulted in lowering the image contrast. To improve metabolic stability of [18F]AV-45, we hypothesized that substituting N-CH3 with N-CD3 at the metabolically labile position, creating [18F]D3FSP, may reduce in vivo N-demethylation. We report the preclinical evaluation of [18F]D3FSP as an Aβ imaging agent. METHODS Preclinical pharmacology of [18F]D3FSP was evaluated using in vitro autoradiography and competitive binding assay. Biodistribution of [18F]D3FSP was evaluated in wild-type CD-1 mice. In vivo metabolism in mice and in vitro microsomal metabolism were analyzed by HPLC. Single dose acute toxicity of D3FSP was also performed in rats. RESULTS [18F]D3FSP showed high binding affinity to β-amyloid plaques (Ki = 3.44 ± 1.22 nM, a value similar as AV-45 (Ki = 4.02 ± 0.22 nM)), and displayed excellent β-amyloid binding in AD brain sections consistent with known Aβ regional distribution. After an iv injection it exhibited good initial brain uptake and fast washout in wild-type CD-1 mice. In vitro microsomal metabolism and in vivo metabolism in mice did not result in any significant differences between [18F]D3FSP and [18F]AV-45. No treatment-related mortality or any adverse effects were observed in single dose acute toxicity studies administered at hundred-folds of maximum human dose. CONCLUSION A new small molecule, [18F]D3FSP, was prepared and tested as an alternative to [18F]AV-45 to reduce N-demethylation in vivo. This strategy did not lead to better in vivo stability. However, [18F]D3FSP displayed very similar Aβ targeting property comparable to [18F]AV-45. Preclinical studies suggest that [18F]D3FSP is useful as a β-amyloid-targeting PET imaging agent.
Collapse
Affiliation(s)
- Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Hank F Kung
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Lipoprotein ability to exchange and remove lipids from model membranes as a function of fatty acid saturation and presence of cholesterol. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158769. [PMID: 32712249 DOI: 10.1016/j.bbalip.2020.158769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/11/2020] [Accepted: 07/19/2020] [Indexed: 11/23/2022]
Abstract
Lipoproteins play a central role in the development of atherosclerosis. High and low-density lipoproteins (HDL and LDL), known as 'good' and 'bad' cholesterol, respectively, remove and/or deposit lipids into the artery wall. Hence, insight into lipid exchange processes between lipoproteins and cell membranes is of particular importance in understanding the onset and development of cardiovascular disease. In order to elucidate the impact of phospholipid tail saturation and the presence of cholesterol in cell membranes on these processes, neutron reflection was employed in the present investigation to follow lipid exchange with both HDL and LDL against model membranes. Mirroring clinical risk factors for the development of atherosclerosis, lower exchange was observed in the presence of cholesterol, as well as for an unsaturated phospholipid, compared to faster exchange when using a fully saturated phospholipid. These results highlight the importance of membrane composition on the interaction with lipoproteins, chiefly the saturation level of the lipids and presence of cholesterol, and provide novel insight into factors of importance for build-up and reversibility of atherosclerotic plaque. In addition, the correlation between the results and well-established clinical risk factors suggests that the approach taken can be employed also for understanding a broader set of risk factors including, e.g., effects of triglycerides and oxidative stress, as well as local effects of drugs on atherosclerotic plaque formation.
Collapse
|
22
|
Heck CS, Seneviratne HK, Bumpus NN. Twelfth-Position Deuteration of Nevirapine Reduces 12-Hydroxy-Nevirapine Formation and Nevirapine-Induced Hepatocyte Death. J Med Chem 2020; 63:6561-6574. [PMID: 32065749 PMCID: PMC7959450 DOI: 10.1021/acs.jmedchem.9b01990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 01/08/2023]
Abstract
Cytochrome P450-dependent metabolism of the anti-HIV drug nevirapine (NVP) to 12-hydroxy-NVP (12-OHNVP) has been implicated in NVP toxicities. We investigated the impact of twelfth-position trideuteration (12-D3NVP) on the hepatic metabolism of and response to NVP. Formation of 12-OHNVP decreased in human (10.6-fold) and mouse (4.6-fold) hepatocytes incubated with 10 μM 12-D3NVP vs NVP. An observed kinetic isotope effect of 10.1 was measured in human liver microsomes. During mouse hepatocyte treatment (400 μM) with NVP or 12-D3NVP, cell death was reduced 30% with 12-D3NVP vs NVP, while glucuronidated and glutathione-conjugated metabolites increased with 12-D3NVP vs NVP. Using mass spectrometry proteomics, changes in hepatocyte protein expression, including an increase in stress marker insulin-like growth factor-binding protein 1 (IGFBP-1), were observed with 12-D3NVP vs NVP. These results demonstrate that while deuteration can reduce P450 metabolite formation, impacts on phase II metabolism and hepatocyte protein expression should be considered when employing deuteration to reduce P450 metabolite-related hepatotoxicity.
Collapse
Affiliation(s)
- Carley
J. S. Heck
- Department
of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Herana Kamal Seneviratne
- Department
of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Namandjé N. Bumpus
- Department
of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
23
|
Steck V, Kolev JN, Ren X, Fasan R. Mechanism-Guided Design and Discovery of Efficient Cytochrome P450-Derived C-H Amination Biocatalysts. J Am Chem Soc 2020; 142:10343-10357. [PMID: 32407077 DOI: 10.1021/jacs.9b12859] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochromes P450 have been recently identified as a promising class of biocatalysts for mediating C-H aminations via nitrene transfer, a valuable transformation for forging new C-N bonds. The catalytic efficiency of P450s in these non-native transformations is however significantly inferior to that exhibited by these enzymes in their native monooxygenase function. Using a mechanism-guided strategy, we report here the rational design of a series of P450BM3-based variants with dramatically enhanced C-H amination activity acquired through disruption of the native proton relay network and other highly conserved structural elements within this class of enzymes. This approach further guided the identification of XplA and BezE, two "atypical" natural P450s implicated in the degradation of a man-made explosive and in benzastatins biosynthesis, respectively, as very efficient C-H aminases. Both XplA and BezE could be engineered to further improve their C-H amination reactivity, which demonstrates their evolvability for abiological reactions. These engineered and natural P450 catalysts can promote the intramolecular C-H amination of arylsulfonyl azides with over 10 000-14 000 catalytic turnovers, ranking among the most efficient nitrene transfer biocatalysts reported to date. Mechanistic and structure-reactivity studies provide insights into the origin of the C-H amination reactivity enhancement and highlight the divergent structural requirements inherent to supporting C-H amination versus C-H monooxygenation reactivity within this class of enzymes. Overall, this work provides new promising scaffolds for the development of nitrene transferases and demonstrates the value of mechanism-driven rational design as a strategy for improving the catalytic efficiency of metalloenzymes in the context of abiological transformations.
Collapse
Affiliation(s)
- Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Joshua N Kolev
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Xinkun Ren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
24
|
Luirink RA, Verkade‐Vreeker MCA, Commandeur JNM, Geerke DP. A Modified Arrhenius Approach to Thermodynamically Study Regioselectivity in Cytochrome P450-Catalyzed Substrate Conversion. Chembiochem 2020; 21:1461-1472. [PMID: 31919943 PMCID: PMC7318578 DOI: 10.1002/cbic.201900751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 12/21/2022]
Abstract
The regio- (and stereo-)selectivity and specific activity of cytochrome P450s are determined by the accessibility of potential sites of metabolism (SOMs) of the bound substrate relative to the heme, and the activation barrier of the regioselective oxidation reaction(s). The accessibility of potential SOMs depends on the relative binding free energy (ΔΔGbind ) of the catalytically active substrate-binding poses, and the probability of the substrate to adopt a transition-state geometry. An established experimental method to measure activation energies of enzymatic reactions is the analysis of reaction rate constants at different temperatures and the construction of Arrhenius plots. This is a challenge for multistep P450-catalyzed processes that involve redox partners. We introduce a modified Arrhenius approach to overcome the limitations in studying P450 selectivity, which can be applied in multiproduct enzyme catalysis. Our approach gives combined information on relative activation energies, ΔΔGbind values, and collision entropies, yielding direct insight into the basis of selectivity in substrate conversion.
Collapse
Affiliation(s)
- Rosa A. Luirink
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | | | - Jan N. M. Commandeur
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Daan P. Geerke
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
25
|
Guengerich FP, Fekry MI. Methylene Oxidation of Alkyl Sulfates by Cytochrome P450 BM-3 and a Role for Conformational Selection in Substrate Recognition. ACS Catal 2020; 10:5008-5022. [PMID: 34327041 DOI: 10.1021/acscatal.0c00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome P450BM-3 (P450BM-3) is a flavoprotein reductase-heme fusion protein from the bacterium Bacillus megaterium that has been well-characterized in many biophysical aspects. Although the enzyme is known to catalyze the hydroxylation of medium and long-chain fatty acids at high rates, no definitive physiological function has been associated with this process in the organism other than a possible protective role. We found that P450BM-3 rapidly hydroxylates alkyl sulfates, particularly those with 12-16 carbons (i.e., including dodecyl sulfate) in a similar manner to the fatty acids. The products were characterized as primarily ω-1 hydroxylated alkyl sulfates (plus some ω-2 and ω-3 hydroxylation products), and some further oxidation to dihydroxy and keto derivatives also occurred. Binding of the alkyl sulfates to P450BM-3 converted the iron from the low-spin to high-spin form in a saturable manner, consistent with the catalytic results. Rates of binding decreased as a function of increasing concentration of dodecyl sulfate or the fatty acid myristate. This pattern is consistent with a binding model involving multiple events and with conformational selection (equilibrium of the unbound enzyme prior to binding) instead of an induced fit mechanism. Neither C-H bond-breaking nor product release was found to be rate-limiting in the oxidation of lauric acid. The conformational selection results rationalize some known crystal structures of P450BM-3 and can help explain the flexibility of P450BM-3 and engineered forms in accepting a great variety of substrates.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Mostafa I. Fekry
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
26
|
Guengerich FP. Cytochrome P450 2E1 and its roles in disease. Chem Biol Interact 2020; 322:109056. [PMID: 32198084 PMCID: PMC7217708 DOI: 10.1016/j.cbi.2020.109056] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
Cytochrome P450 (P450) 2E1 is the major P450 enzyme involved in ethanol metabolism. That role is shared with two other enzymes that oxidize ethanol, alcohol dehydrogenase and catalase. P450 2E1 is also involved in the bioactivation of a number of low molecular weight cancer suspects, as validated in vivo in mouse models where cancers could be attenuated by deletion of Cyp2e1. P450 2E1 does not have a role in global production of reactive oxygen species but localized roles are possible, e.g. in mitochondria. The structures, conformations, and catalytic mechanisms of P450 2E1 have some unusual features among P450s. The concentration of hepatic P450 varies ≥10-fold among humans, possibly in part due to single nucleotide variants. The level of P450 2E1 may have relevance in the rates of oxidation of drugs, particularly acetaminophen and anesthetics.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA.
| |
Collapse
|
27
|
Shchepinov MS. Polyunsaturated Fatty Acid Deuteration against Neurodegeneration. Trends Pharmacol Sci 2020; 41:236-248. [DOI: 10.1016/j.tips.2020.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
|
28
|
Ji L. Synergy between Experiments and Computations: A Green Channel for Revealing Metabolic Mechanism of Xenobiotics in Chemical Toxicology. Chem Res Toxicol 2020; 33:1539-1550. [DOI: 10.1021/acs.chemrestox.9b00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
29
|
Chai L, Ji S, Zhang S, Yu H, Zhao M, Ji L. Biotransformation Mechanism of Pesticides by Cytochrome P450: A DFT Study on Dieldrin. Chem Res Toxicol 2020; 33:1442-1448. [DOI: 10.1021/acs.chemrestox.0c00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lihong Chai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shubin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Ji
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Khan H, Ullah H, Tundis R, Belwal T, Devkota HP, Daglia M, Cetin Z, Saygili EI, Campos MDG, Capanoglu E, Du M, Dar P, Xiao J. Dietary Flavonoids in the Management of Huntington’s Disease: Mechanism and Clinical Perspective. EFOOD 2020; 1:38-52. [DOI: 10.2991/efood.k.200203.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive loss of neurons, which leads to behavioral systems and mental decline. HD is linked to repeat expansions of cytosine, adenine, and guanine in the Huntingtin (HTT) gene that give rise to mutation, leading to the formation of the HTT protein product. Oxidative stress also provokes the initiation and progression of HD as it leads to protein misfolding that results in the formation of inclusion which clumps together and alters neurotransmission. Despite the advancement in the field of pharmaceutical sciences, current therapeutic approaches suppress only the severity of symptoms and no therapy exists that can cure HD from its root cause. Flavonoids are the most abundant polyphenols widely present in daily dietary sources. Dietary flavonoids have a wide range of pharmacological bioactivities and many therapeutic applications. Dietary flavonoids including hesperidin, naringin, quercetin, rutin, fisetin, myricetin, luteolin, and epigallocatechin 3‐O‐gallate can prevent and manage HD through exerting antioxidant and anti‐inflammatory activities, altering intracellular pathways, genetic alterations, and metal ion chelation. This review highlights flavonoids as therapeutic options for HD and will open new dimensions for flavonoids as safe and effective therapeutic agents in diminishing HD.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy Abdul Wali Khan University Mardan 23200 Pakistan
| | - Hammad Ullah
- Department of Pharmacy Abdul Wali Khan University Mardan 23200 Pakistan
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Via P. Bucci 87036 Rende CS Italy
| | - Tarun Belwal
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development Kosi‐Katarmal Almora Uttarakhand India
| | - Hari Prasad Devkota
- School of Pharmacy Kumamoto University 5‐1 Oe‐honmachi, Chuo ku Kumamoto 862‐0973 Japan
| | - Maria Daglia
- Department of Drug Science University of Pavia Pavia Italy
| | - Zafer Cetin
- Department of Medical Biology and Genetic SANKO University School of Medicine Gaziantep Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry SANKO University School of Medicine Gaziantep Turkey
| | - Maria da Graça Campos
- Observatory of Herb‐Drug Interactions/Faculty of Pharmacy University of Coimbra Heath Sciences Campus, Azinhaga de Santa Comba Coimbra Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC) University of Coimbra Rua Larga Coimbra Portugal
| | - Esra Capanoglu
- Food Engineering Department Faculty of Chemical and Metallurgical Engineering Istanbul Technical University, Maslak 34469 Istanbul Turkey
| | - Ming Du
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian 116034 China
| | - Parsa Dar
- Institute of Chinese Medical Sciences State Key Laboratory of Quality Control in Chinese Medicine University of Macau Avenida da Universidade Taipa Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences State Key Laboratory of Quality Control in Chinese Medicine University of Macau Avenida da Universidade Taipa Macau
| |
Collapse
|
31
|
Lombardo MN, G-Dayanandan N, Keshipeddy S, Zhou W, Si D, Reeve SM, Alverson J, Barney P, Walker L, Hoody J, Priestley ND, Obach RS, Wright DL. Structure-Guided In Vitro to In Vivo Pharmacokinetic Optimization of Propargyl-Linked Antifolates. Drug Metab Dispos 2019; 47:995-1003. [PMID: 31201212 PMCID: PMC7184189 DOI: 10.1124/dmd.119.086504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Pharmacokinetic/pharmacodynamic properties are strongly correlated with the in vivo efficacy of antibiotics. Propargyl-linked antifolates, a novel class of antibiotics, demonstrate potent antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria, including multidrug-resistant Staphylococcus aureus Here, we report our efforts to optimize the pharmacokinetic profile of this class to best match the established pharmacodynamic properties. High-resolution crystal structures were used in combination with in vitro pharmacokinetic models to design compounds that not only are metabolically stable in vivo but also retain potent antibacterial activity. The initial lead compound was prone to both N-oxidation and demethylation, which resulted in an abbreviated in vivo half-life (∼20 minutes) in mice. Stability of leads toward mouse liver microsomes was primarily used to guide medicinal chemistry efforts so robust efficacy could be demonstrated in a mouse disease model. Structure-based drug design guided mitigation of N-oxide formation through substitutions of sterically demanding groups adjacent to the pyridyl nitrogen. Additionally, deuterium and fluorine substitutions were evaluated for their effect on the rate of oxidative demethylation. The resulting compound was characterized and demonstrated to have a low projected clearance in humans with limited potential for drug-drug interactions as predicted by cytochrome P450 inhibition as well as an in vivo exposure profile that optimizes the potential for bactericidal activity, highlighting how structural data, merged with substitutions to introduce metabolic stability, are a powerful approach to drug design.
Collapse
Affiliation(s)
- M N Lombardo
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - N G-Dayanandan
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - S Keshipeddy
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - W Zhou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - D Si
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - S M Reeve
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - J Alverson
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - P Barney
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - L Walker
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - J Hoody
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - N D Priestley
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - R S Obach
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - D L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| |
Collapse
|
32
|
Mukherjee M, Dey A. Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C-H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS CENTRAL SCIENCE 2019; 5:671-682. [PMID: 31041387 PMCID: PMC6487540 DOI: 10.1021/acscentsci.9b00046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 05/11/2023]
Abstract
Catalytic oxidation of organic substrates, using a green oxidant like O2, has been a long-term goal of the scientific community. In nature, these oxidations are performed by metalloenzymes that generate highly oxidizing species from O2, which, in turn, can oxidize very stable organic substrates, e.g., mono-/dioxygenases. The same oxidants are produced during O2 reduction/respiration in the mitochondria but are reduced by electron transfer, i.e., reductases. Iron porphyrin mimics of the active site of cytochrome P450 (Cyt P450) are created atop a self-assembled monolayer covered electrode. The rate of electron transfer from the electrode to the iron porphyrin site is attenuated to derive monooxygenase reactivity from these constructs that otherwise show O2 reductase activity. Catalytic hydroxylation of strong C-H bonds to alcohol and epoxidation of alkenes, using molecular O2 (with 18O2 incorporation), is demonstrated with turnover numbers >104. Uniquely, one of the two iron porphyrin catalysts used shows preferential oxidation of 2° C-H bonds of cycloalkanes to alcohols over 3° C-H bonds without overoxidation to ketones. Mechanistic investigations with labeled substrates indicate that a compound I (FeIV=O bound to a porphyrin cation radical) analogue, formed during O2 reduction, is the primary oxidant. The selectivity is determined by the shape of the distal pocket of the catalyst, which, in turn, is determined by the substituents on the periphery of the porphyrin macrocycle.
Collapse
Affiliation(s)
| | - Abhishek Dey
- Address:
Department of Inorganic
Chemistry, Indian Association for the Cultivation of Science, 2A&2B
Raja SC Mullick Road, Jadavpur, Kolkata, West Bengal, India 700032.
E-mail:
| |
Collapse
|
33
|
Pirali T, Serafini M, Cargnin S, Genazzani AA. Applications of Deuterium in Medicinal Chemistry. J Med Chem 2019; 62:5276-5297. [DOI: 10.1021/acs.jmedchem.8b01808] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marta Serafini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
34
|
Gupta M, Zha J, Zhang X, Jung GY, Linhardt RJ, Koffas MAG. Production of Deuterated Cyanidin 3- O-Glucoside from Recombinant Escherichia coli. ACS OMEGA 2018; 3:11643-11648. [PMID: 30320269 PMCID: PMC6173498 DOI: 10.1021/acsomega.8b01134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Anthocyanins are plant secondary metabolites that, despite their chemical instability, have found many applications as natural food colorants. They are also known for their beneficial health effects because of their antioxidant and anticancer properties. More stable versions of these molecules, particularly at neutral pH conditions, are required to study the anthocyanin pharmacokinetic properties and obtain effective therapeutic results. In the present report, a cost-effective technique was developed to prepare the deuterated anthocyanin using recombinant Escherichia coli as a production host and deuterated glycerol and D2O in the culture media. This approach resulted in the formation of endogenous deuterated uridine 5'-diphosphate-glucose that was further incorporated by the recombinant anthocyanin pathway, resulting in the formation of deuterated cyanidin 3-O-glucoside (C3G). The deuterium exchange of O-D and C-D were studied by liquid chromatography (LC)-mass spectrometry and NMR analysis. The labeled C3G, purified by high-performance LC showed a stable nature at pH 7.0 as compared to nondeuterated C3G.
Collapse
Affiliation(s)
- Mamta Gupta
- Department
of Chemical and Biological Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Department
of Botany and Environment Studies, DAV University, Jalandhar 144 001, Punjab, India
| | - Jian Zha
- Department
of Chemical and Biological Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Xing Zhang
- Department
of Chemical and Biological Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Gyoo Yeol Jung
- Department of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of
Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Robert J. Linhardt
- Department
of Chemical and Biological Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Mattheos A. G. Koffas
- Department
of Chemical and Biological Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| |
Collapse
|
35
|
Beyoğlu D, Zhou Y, Chen C, Idle JR. Mass isotopomer-guided decluttering of metabolomic data to visualize endogenous biomarkers of drug toxicity. Biochem Pharmacol 2018; 156:491-500. [PMID: 30243960 DOI: 10.1016/j.bcp.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Metabolomics offers the opportunity to uncover endogenous biomarkers that can lead to metabolic pathways and networks and that underpin drug toxicity mechanisms. A novel protocol is presented and discussed that is applicable to drugs which generate urinary metabolites when administered to mice sensitive to its toxicity. The protocol would not apply to drugs that are not metabolized or eliminated by a different route. Separate stable isotope-labeled and unlabeled drug administration to mice is made together with collection of urines from control animals. Untargeted mass spectrometry-based metabolomic analysis of these three urine groups is conducted in addition to principal components analysis (PCA). In the case of unlabeled acetaminophen and [acetyl-2H3]acetaminophen, each given at a hepatotoxic dose (400 mg/kg i.p.) to the sensitive mouse strain (wild-type 129), the PCA loadings plot showed a distribution of ions in the shape of a "fallen-Y" with the deuterated metabolites in one arm and the paired nondeuterated metabolites in the other arm of the fallen-Y. Ions corresponding to the endogenous toxicity biomarkers sat in the mouth of the fallen-Y. This protocol represents an innovative means to separate endogenous biomarkers from drug metabolites, thereby aiding the identification of biomarkers of drug toxicity. For acetaminophen, increased hepatic oxidative stress, mitochondrial damage, Ca2+ signaling, heme catabolism, and saturation of glucuronidation, together with decreased fatty acid β-oxidation and cellular energy dysregulation were all implied from the discovered biomarkers. The protocol can be applied to other drugs and may now be translated to clinical studies.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Arthur G. Zupko's Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, United States
| | - Yuyin Zhou
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, United States
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, United States
| | - Jeffrey R Idle
- Arthur G. Zupko's Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, United States.
| |
Collapse
|
36
|
Weinsanto I, Laux-Biehlmann A, Mouheiche J, Maduna T, Delalande F, Chavant V, Gabel F, Darbon P, Charlet A, Poisbeau P, Lamshöft M, Van Dorsselaer A, Cianferani S, Parat MO, Goumon Y. Stable isotope-labelled morphine to study in vivo central and peripheral morphine glucuronidation and brain transport in tolerant mice. Br J Pharmacol 2018; 175:3844-3856. [PMID: 30051501 DOI: 10.1111/bph.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic administration of medication can significantly affect metabolic enzymes leading to physiological adaptations. Morphine metabolism in the liver has been extensively studied following acute morphine treatment, but such metabolic processes in the CNS are poorly characterized. Long-term morphine treatment is limited by the development of tolerance, resulting in a decrease of its analgesic effect. Whether or not morphine analgesic tolerance affects in vivo brain morphine metabolism and blood-brain barrier (BBB) permeability remains a major question. Here, we have attempted to characterize the in vivo metabolism and BBB permeability of morphine after long-term treatment, at both central and peripheral levels. EXPERIMENTAL APPROACH Male C57BL/6 mice were injected with morphine or saline solution for eight consecutive days in order to induce morphine analgesic tolerance. On the ninth day, both groups received a final injection of morphine (85%) and d3-morphine (morphine bearing three 2 H; 15%, w/w). Mice were then killed and blood, urine, brain and liver samples were collected. LC-MS/MS was used to quantify morphine, its metabolite morphine-3-glucuronide (M3G) and their respective d3-labelled forms. KEY RESULTS We found no significant differences in morphine CNS uptake and metabolism between control and tolerant mice. Interestingly, d3-morphine metabolism was decreased compared to morphine without any interference with our study. CONCLUSIONS AND IMPLICATIONS Our data suggests that tolerance to the analgesic effects of morphine is not linked to increased glucuronidation to M3G or to altered global BBB permeability of morphine.
Collapse
Affiliation(s)
- Ivan Weinsanto
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Alexis Laux-Biehlmann
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Jinane Mouheiche
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Tando Maduna
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - François Delalande
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Virginie Chavant
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,Mass Spectrometry Platform, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Florian Gabel
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Pascal Darbon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Alexandre Charlet
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Marc Lamshöft
- Institute of Environmental Research, University of Technology Dortmund, Dortmund, Germany
| | - Alain Van Dorsselaer
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Sarah Cianferani
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Marie-Odile Parat
- School of Pharmacy, University of Queensland, Woolloongabba, Australia.,Outcomes Research Consortium, Cleveland, OH, USA
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,Mass Spectrometry Platform, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
37
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|