1
|
Higuchi Y, Teo JL, Yi D, Kahn M. Safely Targeting Cancer, the Wound That Never Heals, Utilizing CBP/Beta-Catenin Antagonists. Cancers (Basel) 2025; 17:1503. [PMID: 40361430 PMCID: PMC12071182 DOI: 10.3390/cancers17091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cells, both normal somatic (SSC) and cancer stem cells (CSC) exist in minimally two states, i.e., quiescent and activated. Regulation of these two states, including their reliance on different metabolic processes, i.e., FAO and glycolysis in quiescent versus activated stem cells respectively, involves the analysis of a complex array of factors (nutrient and oxygen levels, adhesion molecules, cytokines, etc.) to initiate the epigenetic changes to either depart or enter quiescence. Quiescence is a critical feature of SSC that is required to maintain the genomic integrity of the stem cell pool, particularly in long lived complex organisms. Quiescence in CSC, whether they are derived from mutations arising in SSC, aberrant microenvironmental regulation, or via dedifferentiation of more committed progenitors, is a critical component of therapy resistance and disease latency and relapse. At the beginning of vertebrate evolution, approximately 450 million years ago, a gene duplication generated the two members of the Kat3 family, CREBBP (CBP) and EP300 (p300). Despite their very high degree of homology, these two Kat3 coactivators play critical and non-redundant roles at enhancers and super-enhancers via acetylation of H3K27, thereby controlling stem cell quiescence versus activation and the cells metabolic requirements. In this review/perspective, we discuss the unique regulatory roles of CBP and p300 and how specifically targeting the CBP/β-catenin interaction utilizing small molecule antagonists, can correct lineage infidelity and safely eliminate quiescent CSC.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Jia-Ling Teo
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Daniel Yi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| |
Collapse
|
2
|
Liang Z, Li S, Wang Z, Zhou J, Huang Z, Li J, Bao H, Yam JWP, Xu Y. Unraveling the Role of the Wnt Pathway in Hepatocellular Carcinoma: From Molecular Mechanisms to Therapeutic Implications. J Clin Transl Hepatol 2025; 13:315-326. [PMID: 40206274 PMCID: PMC11976435 DOI: 10.14218/jcth.2024.00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 04/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors in the world, and its incidence and mortality have increased year by year. HCC research has increasingly focused on understanding its pathogenesis and developing treatments.The Wnt signaling pathway, a complex and evolutionarily conserved signal transduction system, has been extensively studied in the genesis and treatment of several malignant tumors. Recent investigations suggest that the pathogenesis of HCC may be significantly influenced by dysregulated Wnt/β-catenin signaling. This article aimed to examine the pathway that controls Wnt signaling in HCC and its mechanisms. In addition, we highlighted the role of this pathway in HCC etiology and targeted treatment.
Collapse
Affiliation(s)
- Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shanshan Li
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyu Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junting Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiehan Li
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Sharma A, Zalejski J, Bendre SV, Kavrokova S, Hasdemir HS, Ozgulbas DG, Sun J, Pathmasiri KC, Shi R, Aloulou A, Berkley K, Delisle CF, Wang Y, Weisser E, Buweneka P, Pierre-Jacques D, Mukherjee S, Abbasi DA, Lee D, Wang B, Gevorgyan V, Cologna SM, Tajkhorshid E, Nelson ER, Cho W. Cholesterol-targeting Wnt-β-catenin signaling inhibitors for colorectal cancer. Nat Chem Biol 2025:10.1038/s41589-025-01870-y. [PMID: 40240631 DOI: 10.1038/s41589-025-01870-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/28/2025] [Indexed: 04/18/2025]
Abstract
Most persons with colorectal cancer (CRC) carry adenomatous polyposis coli (APC) truncation leading to aberrant Wnt-β-catenin signaling; however, effective targeted therapy for them is lacking as the mechanism by which APC truncation drives CRC remains elusive. Here, we report that the cholesterol level in the inner leaflet of the plasma membrane (IPM) is elevated in all tested APC-truncated CRC cells, driving Wnt-independent formation of Wnt signalosomes through Dishevelled (Dvl)-cholesterol interaction. Cholesterol-Dvl interaction inhibitors potently blocked β-catenin signaling in APC-truncated CRC cells and suppressed their viability. Because of low IPM cholesterol level and low Dvl expression and dependence, normal cells including primary colon epithelial cells were not sensitive to these inhibitors. In vivo testing with a xenograft mouse model showed that our inhibitors effectively suppressed truncated APC-driven tumors without causing intestinal toxicity. Collectively, these results suggest that the most common type of CRC could be effectively and safely treated by blocking the cholesterol-Dvl-β-catenin signaling axis.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Julian Zalejski
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Shruti Vijay Bendre
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Simona Kavrokova
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Hale Siir Hasdemir
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Defne Gorgun Ozgulbas
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | - Ruicheng Shi
- Department of Comparative Biosciences, Division of Nutritional Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ahmed Aloulou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Kyli Berkley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Charles F Delisle
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Young Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Erin Weisser
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pawanthi Buweneka
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | - Sayandeb Mukherjee
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Diana A Abbasi
- Department of Neurogenetics and Translational Neuroscience, Rush University, Chicago, IL, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Bo Wang
- Department of Comparative Biosciences, Division of Nutritional Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Filippi A, Deculescu-Ioniță T, Hudiță A, Baldasici O, Gălățeanu B, Mocanu MM. Molecular Mechanisms of Dietary Compounds in Cancer Stem Cells from Solid Tumors: Insights into Colorectal, Breast, and Prostate Cancer. Int J Mol Sci 2025; 26:631. [PMID: 39859345 PMCID: PMC11766403 DOI: 10.3390/ijms26020631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC. In this review, after a brief introduction to SC and CSC, we analyze the effects of phenolic and non-phenolic dietary compounds and we highlight the molecular mechanisms that are shown to link diets to CSC activation in colon, breast, and prostate cancer. We focus the analysis on specific markers such as sphere formation, CD surface markers, epithelial-mesenchymal transition (EMT), Oct4, Nanog, Sox2, and aldehyde dehydrogenase 1 (ALDH1) and on the major signaling pathways such as PI3K/Akt/mTOR, NF-κB, Notch, Hedgehog, and Wnt/β-catenin in CSC. In conclusion, a better understanding of how bioactive compounds in our diets influence the dynamics of CSC can raise valuable awareness towards reducing cancer risk.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Teodora Deculescu-Ioniță
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Oana Baldasici
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| |
Collapse
|
5
|
Zhang X, Gao X, Xu J, Zhang Z, Lin T, Zhang X, Kang X. The role of lncRNA and miRNA on the effects of occurrence and development of osteosarcoma. Int Immunopharmacol 2025; 144:113726. [PMID: 39615111 DOI: 10.1016/j.intimp.2024.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Osteosarcoma is a common primary malignant bone tumor with a high incidence in children and adolescents, with high invasiveness and lung metastases. Even after traditional surgical excision, chemoradiotherapy, and comprehensive treatment, the survival rate of patients is still low, and the prognosis is not ideal. As an important part of non-coding RNA family, lncRNA and miRNA have significant regulatory effects on the growth, proliferation, metastasis and apoptosis of osteosarcoma cells. Therefore, exploring the roles of lncRNAs and miRNAs in the occurrence and development of osteosarcoma is of great help for the subsequent diagnosis, treatment, and prognosis of osteosarcoma. This paper mainly reviews the current research progress on the effects and mechanisms of lncRNAs and miRNAs on osteosarcoma cells, in order to provide new ideas for future research on the development process, treatment methods, and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Zhuoya Zhang
- The First Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Tingtong Lin
- The Second Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xueyan Zhang
- Institute of Biochemistry and Molecular Biology and School of Basic Medical Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China.
| |
Collapse
|
6
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
7
|
Gutova M, Hibbard JC, Ma E, Natri HM, Adhikarla V, Chimge NO, Qiu R, Nguyen C, Melendez E, Aguilar B, Starr R, Yin H, Rockne RC, Ono M, Banovich NE, Yuan YC, Brown CE, Kahn M. Targeting Wnt signaling for improved glioma immunotherapy. Front Immunol 2024; 15:1342625. [PMID: 38449858 PMCID: PMC10915090 DOI: 10.3389/fimmu.2024.1342625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Despite aggressive standard-of-care therapy, including surgery, radiation, and chemotherapy, glioblastoma recurrence is almost inevitable and uniformly lethal. Activation of glioma-intrinsic Wnt/β-catenin signaling is associated with a poor prognosis and the proliferation of glioma stem-like cells, leading to malignant transformation and tumor progression. Impressive results in a subset of cancers have been obtained using immunotherapies including anti-CTLA4, anti-PD-1, and anti-PD-L1 or chimeric antigen receptor (CAR) T cell therapies. However, the heterogeneity of tumors, low mutational burden, single antigen targeting, and associated antigen escape contribute to non-responsiveness and potential tumor recurrence despite these therapeutic efforts. In the current study, we determined the effects of the small molecule, highly specific Wnt/CBP (CREB Binding Protein)/β-catenin antagonist ICG-001, on glioma tumor cells and the tumor microenvironment (TME)-including its effect on immune cell infiltration, blood vessel decompression, and metabolic changes. Methods Using multiple glioma patient-derived xenografts cell lines and murine tumors (GL261, K-Luc), we demonstrated in vitro cytostatic effects and a switch from proliferation to differentiation after treatment with ICG-001. Results In these glioma cell lines, we further demonstrated that ICG-001 downregulated the CBP/β-catenin target gene Survivin/BIRC5-a hallmark of Wnt/CBP/β-catenin inhibition. We found that in a syngeneic mouse model of glioma (K-luc), ICG-001 treatment enhanced tumor infiltration by CD3+ and CD8+ cells with increased expression of the vascular endothelial marker CD31 (PECAM-1). We also observed differential gene expression and induced immune cell infiltration in tumors pretreated with ICG-001 and then treated with CAR T cells as compared with single treatment groups or when ICG-001 treatment was administered after CAR T cell therapy. Discussion We conclude that specific Wnt/CBP/β-catenin antagonism results in pleotropic changes in the glioma TME, including glioma stem cell differentiation, modulation of the stroma, and immune cell activation and recruitment, thereby suggesting a possible role for enhancing immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Jonathan C. Hibbard
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Eric Ma
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Heini M. Natri
- Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Vikram Adhikarla
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Nyam-Osor Chimge
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Runxiang Qiu
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Cu Nguyen
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Elizabeth Melendez
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Brenda Aguilar
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Holly Yin
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Russel C. Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | | | | | - Yate-Ching Yuan
- Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Michael Kahn
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| |
Collapse
|
8
|
Tang YL, Li DD, Duan JY, Sheng LM, Wang X. Resistance to targeted therapy in metastatic colorectal cancer: Current status and new developments. World J Gastroenterol 2023; 29:926-948. [PMID: 36844139 PMCID: PMC9950860 DOI: 10.3748/wjg.v29.i6.926] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal and common malignancies in the world. Chemotherapy has been the conventional treatment for metastatic CRC (mCRC) patients. However, the effects of chemotherapy have been unsatisfactory. With the advent of targeted therapy, the survival of patients with CRC have been prolonged. Over the past 20 years, targeted therapy for CRC has achieved substantial progress. However, targeted therapy has the same challenge of drug resistance as chemotherapy. Consequently, exploring the resistance mechanism and finding strategies to address the resistance to targeted therapy, along with searching for novel effective regimens, is a constant challenge in the mCRC treatment, and it is also a hot research topic. In this review, we focus on the current status on resistance to existing targeted therapies in mCRC and discuss future developments.
Collapse
Affiliation(s)
- Yuan-Ling Tang
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Dan-Dan Li
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yu Duan
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei-Ming Sheng
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
9
|
Zhou G, Lv X, Zhong X, Ying W, Li W, Feng Y, Xia Q, Li J, Jian S, Leng Z. Suspension culture strategies to enrich colon cancer stem cells. Oncol Lett 2023; 25:116. [PMID: 36844615 PMCID: PMC9950343 DOI: 10.3892/ol.2023.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 11/16/2021] [Indexed: 02/09/2023] Open
Abstract
How to efficiently obtain high-purity cancer stem cells (CSCs) has been the basis of CSC research, but the optimal conditions for serum-free suspension culture of CSCs are still unclear. The present study aimed to define the optimal culture medium composition and culture time for the enrichment of colon CSCs via suspension culture. Suspension cell cultures of colon cancer DLD-1 cells were prepared using serum-free medium (SFM) containing variable concentrations of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to produce spheroids. Culture times were set at 10, 20 and 30 days. A total of nine different concentrations of EGF and bFGF were added to SFM to generate nine experimental groups. The proportions of CD44+, CD133+, and CD44+CD133+ double-positive spheroid cells were detected via flow cytometry. mRNA expression of stemness-, epithelial-mesenchymal transition- and Wnt/β-catenin pathway-associated genes was determined via reverse transcription-quantitative PCR. Self-renewal ability was evaluated by a sphere-forming assay. Tumorigenesis was studied in vitro using a colony formation assay and in vivo via subcutaneous cell injection in nude mice. It was found that the highest expression proportions of CD133+ and CD44+ spheroid cells were observed in group (G)9 (20 ng/ml EGF + 20 ng/ml bFGF) at 30 days (F=123.554 and 99.528, respectively, P<0.001), CD133+CD44+ cells were also observed in G9 at 30 days (and at 10 days in G3 and 20 days in G6; F=57.897, P<0.001). G9 at 30 days also displayed the highest expression of Krüppel-like factor 4, leucine-rich repeat-containing G protein-coupled receptor 5, CD44, CD133, Vimentin and Wnt-3a (F=22.682, 25.401, 3.272, 7.852, 13.331 and 17.445, respectively, P<0.001) and the lowest expression of E-cadherin (F=10.851, P<0.001). G9 at 30 days produced the highest yield of cell spheroids, as determined by a sphere forming assay (F=19.147, P<0.001); colony formation assays also exhibited the greatest number of colonies derived from G9 spheroids at 30 days (F=60.767, P<0.01), which also generated the largest mean tumor volume in the subcutaneous tumorigenesis xenograft model (F=12.539, P<0.01). In conclusion, 20 ng/ml EGF + 20 ng/ml bFGF effectively enriched colon CSCs when added to suspension culture for 30 days, and conferred the highest efficiency compared with other combinations.
Collapse
Affiliation(s)
- Guojun Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaojiang Lv
- Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaorong Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wei Ying
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wenbo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yanchao Feng
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qinghua Xia
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jianshui Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shunhai Jian
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Professor Shunhai Jian, Department of Pathology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, Sichuan 637000, P.R. China, E-mail:
| | - Zhengwei Leng
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Correspondence to: Professor Zhengwei Leng, Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, 234, Fujiang Road, Nanchong, Sichuan 637000, P.R. China, E-mail:
| |
Collapse
|
10
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
11
|
Wang F, Yu C, Chen L, Xu S. Landscape of circular RNAs in different types of lung cancer and an emerging role in therapeutic resistance (Review). Int J Oncol 2022; 62:21. [PMID: 36562354 PMCID: PMC9812256 DOI: 10.3892/ijo.2022.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is one of the most common malignant tumor types and the leading cause of cancer‑associated death worldwide. Different types of lung cancer exhibit differences in terms of pathophysiology and pathogenesis, and also treatment and prognosis. Accumulating evidence has indicated that circular RNAs (circRNAs) are abnormally expressed among different types of lung cancer and confer important biological functions in progression and prognosis. However, studies comparing different circRNAs in lung cancer subtypes are scarce. Furthermore, circRNAs have an important role in drug resistance and are related to clinicopathological features in lung cancer. Summaries of the association of circRNAs with drug resistance are also scarce in the literature. The present study outlined the biological functions of circRNAs and focused on discriminating differential circRNA patterns and mechanisms in three different types of lung cancer. The emerging roles of circRNAs in the resistance to chemotherapy, targeted therapy, radiotherapy and immunotherapy were also highlighted. Understanding these aspects of circRNAs sheds light on novel physiological and pathophysiological processes of lung cancer and suggests the application of circRNAs as biomarkers for diagnosis and prognosis, as well as therapeutic resistance.
Collapse
Affiliation(s)
- Fan Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Chuting Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Ling Chen
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China,Correspondence to: Dr Ling Chen, Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China,Professor Sheng Xu, National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| |
Collapse
|
12
|
Zhang S, Chan RWS, Ng EHY, Yeung WSB. The role of Notch signaling in endometrial mesenchymal stromal/stem-like cells maintenance. Commun Biol 2022; 5:1064. [PMID: 36207605 PMCID: PMC9547015 DOI: 10.1038/s42003-022-04044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Human endometrium undergoes cycles of regeneration in women of reproductive age. The endometrial mesenchymal stromal/stem cells (eMSC) contribute to this process. Notch signaling is essential for homeostasis of somatic stem cells. However, its role in eMSC remains unclear. We show with gain- and loss-of-function experiments that activation of Notch signaling promotes eMSC maintenance, while inhibition induces opposite effect. The activation of Notch signaling better maintains eMSC in a quiescent state. However, these quiescent eMSC can re-enter the cell cycle depending on the Notch and Wnt activities in the microenvironment, suggesting a crosstalk between the two signaling pathways. We further show that the Notch signaling is involved in endometrial remodeling event in a mouse menstrual-like model. Suppression of Notch signaling reduces the proliferation of Notch1+ label-retaining stromal cells and delays endometrial repair. Our data demonstrate the importance of Notch signaling in regulating the endometrial stem/progenitor cells in vitro and in vivo. Notch signaling promotes the quiescent state of endometrial mesenchymal stromal/stem cells (eMSC), whose re-rentry into the cell cycle is in turn influenced by Notch and Wnt signaling from the microenvironment.
Collapse
Affiliation(s)
- Sisi Zhang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China. .,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China.
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China. .,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
13
|
Xu H, Zhang F, Gao X, Zhou Q, Zhu L. Fate decisions of breast cancer stem cells in cancer progression. Front Oncol 2022; 12:968306. [PMID: 36046046 PMCID: PMC9420991 DOI: 10.3389/fonc.2022.968306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has a marked recurrence and metastatic trait and is one of the most prevalent malignancies affecting women’s health worldwide. Tumor initiation and progression begin after the cell goes from a quiescent to an activated state and requires different mechanisms to act in concert to regulate t a specific set of spectral genes for expression. Cancer stem cells (CSCs) have been proven to initiate and drive tumorigenesis due to their capability of self-renew and differentiate. In addition, CSCs are believed to be capable of causing resistance to anti-tumor drugs, recurrence and metastasis. Therefore, exploring the origin, regulatory mechanisms and ultimate fate decision of CSCs in breast cancer outcomes has far-reaching clinical implications for the development of breast cancer stem cell (BCSC)-targeted therapeutic strategies. In this review, we will highlight the contribution of BCSCs to breast cancer and explore the internal and external factors that regulate the fate of BCSCs.
Collapse
|
14
|
Zhou Y, Huang D, Cai Y, Wang M, Ma W, Jiang Z, Liu M. lncRNA DHFRL1‑4 knockdown attenuates cerebral ischemia/reperfusion injury by upregulating the levels of angiogenesis‑related genes. Int J Mol Med 2022; 50:108. [PMID: 35762310 PMCID: PMC9239036 DOI: 10.3892/ijmm.2022.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to investigate the effects of long non-coding (lncRNA) dihydrofolate reductase-like 1 (DHFRL1-4) on cerebral ischemia/reperfusion (I/R)-induced injury. For this purpose, mice injected with lentivirus with small interfering RNA targeting DHFRL1-4 or negative control siRNA were used to construct models of cerebral I/R injury. Following the establishment of the model, the infarct size, neurological deficit score, apoptosis and the expression levels of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), Wnt family member 3a (Wnt3a), glycogen synthase kinase-3β (GSK-3β) and phosphorylated GSK-3β were assessed. The expression of DHFRL1-4 was significantly upregulated in the I/R model. In the control and sham groups, the boundaries between the cortex and gray matter were clear, and no edema or necrosis were observed. The nerve cells were arranged orderly and evenly, and the cell membranes were intact with visible nucleus and nucleolus. In the model group however, the nerve fibers were slightly necrotic and swollen, and the number of nerve cells was reduced. In the mice injected with si-DHFRL1-4 lentivirus, the brain tissues exhibited less liquefaction and degeneration, as well as less edema. Compared with the control and sham groups, the model group had a significantly larger infarct area, a higher apoptotic rate, higher bFGF, VEGF, Wnt3a and GSK-3β expression levels and a greater neurological deficit score. However, the mice injected with si-DHFRL1-4 lentivirus exhibited a significantly reduced infarct area, a lower apoptotic rate, lower Wnt3a and GSK-3β expression levels, a lower neurological deficit score, and significantly upregulated bFGF and VEGF levels.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Dezhi Huang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yang Cai
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhongzhong Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Liu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
15
|
Zahra MH, Nawara HM, Hassan G, Afify SM, Seno A, Seno M. Cancer Stem Cells Contribute to Drug Resistance in Multiple Different Ways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:125-139. [PMID: 36587305 DOI: 10.1007/978-3-031-12974-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many tumors are resistant to conventional cancer therapies because a tumor is composed of heterogeneous cell population. Especially, subpopulation of cancer stem cells, which have self-renewal and differentiation properties and responsible for the tumor initiation, is generally considered resistant to chemo-, radio-, and immune therapy. Understanding the mechanism of drug resistance in cancer stem cells should lead to establish more effective therapeutic strategies. Actually, different molecular mechanisms are conceivable for cancer stem cells acquiring drug resistance. These mechanisms include not only cytoplasmic signaling pathways but also the intercellular communications in the tumor microenvironment. Recently, a great deal of successful reports challenged to elucidate the mechanisms of drug resistance and to develop novel treatments targeting cancer stem cells.
Collapse
Affiliation(s)
- Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Hend M Nawara
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Ghmkin Hassan
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Said M Afify
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, Shebeen El-Kom, 32511, Egypt
| | - Akimasa Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
16
|
Molina MD, Cebrià F. Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules 2021; 11:1532. [PMID: 34680165 PMCID: PMC8533874 DOI: 10.3390/biom11101532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023] Open
Abstract
Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
17
|
Abstract
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.
Collapse
|
18
|
Jimenez-García MP, Lucena-Cacace A, Otero-Albiol D, Carnero A. Empty spiracles homeobox genes EMX1 and EMX2 regulate WNT pathway activation in sarcomagenesis. J Exp Clin Cancer Res 2021; 40:247. [PMID: 34364391 PMCID: PMC8348834 DOI: 10.1186/s13046-021-02048-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Sarcomas are a very heterogeneous group of tumors with intrinsic developmental programs derived from the cell of origin. This implies a functional hierarchy inside tumors governed by sarcoma stem cells. Therefore, genetic and/or epigenetic changes profoundly affect the biology of sarcoma tumor stem cells. EMX genes are proposed to be transcription factors that are involved in the sarcomagenesis process, regardless of the neural or mesodermal embryological sarcoma origin. It has been shown that EMX1 or EMX2 overexpression reduces tumorigenic properties, while reducing the levels of these genes enhances these properties. Furthermore, it has been shown that EMX genes decrease the expression of stem cell regulatory genes and the stem cell phenotype. Taken together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-remodeling populations or sarcoma stem cells, acting as tumor suppressors in sarcoma. Methods Bioinformatic analysis, quantitative mRNA and protein expression analysis, cell models of sarcoma by ectopic expression of EMX genes. By cell biology methods we measured tumorigenesis and populations enriched on stem cell phenotypes, either in vitro or in vivo. Results In this work, we showed that the canonical Wnt pathway is one of the mechanisms that explains the relationships of EMX1/EMX2 and stem cell genes in sarcoma. The Wnt-EMX1/EMX2 relationship was validated in silico with sarcoma patient datasets, in vitro in primary derived sarcoma cell lines, and in vivo. EMX expression was found to negatively regulate the Wnt pathway. In addition, the constitutive activation of the Wnt pathway revers to a more aggressive phenotype with stem cell properties, and stemness gene transcription increased even in the presence of EMX1 and/or EMX2 overexpression, establishing the relationship among the Wnt pathway, stem cell genes and the EMX transcription factors. Conclusions Our data showed that Empty Spiracles Homeobox Genes EMX1 and EMX2 represses WNT signalling and activation of WNT pathway bypass EMX-dependent stemness repression and induces sarcomagenesis. These results also suggest the relevance of the Wnt/b-catenin/stemness axis as a therapeutic target in sarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02048-9.
Collapse
Affiliation(s)
- Manuel Pedro Jimenez-García
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, IS Carlos III, Madrid, Spain
| | - Antonio Lucena-Cacace
- Present address: Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, IS Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, IS Carlos III, Madrid, Spain. .,Instituto de Biomedicina de Sevilla/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013, Sevilla, Spain.
| |
Collapse
|
19
|
Integrated lipidomics and proteomics reveal cardiolipin alterations, upregulation of HADHA and long chain fatty acids in pancreatic cancer stem cells. Sci Rep 2021; 11:13297. [PMID: 34168259 PMCID: PMC8225828 DOI: 10.1038/s41598-021-92752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC.
Collapse
|
20
|
He J, Ling L, Liu Z, Ren X, Wan L, Tu C, Li Z. Functional interplay between long non-coding RNAs and the Wnt signaling cascade in osteosarcoma. Cancer Cell Int 2021; 21:313. [PMID: 34130697 PMCID: PMC8207720 DOI: 10.1186/s12935-021-02013-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a common and highly malignant bone tumor among children, adolescents and young adults. However, the underlying molecular mechanisms remain largely unexplored. LncRNAs are transcripts with no or limited protein-coding capacity in human genomes, and have been demonstrated to play crucial functions in initiation, progression, therapeutic resistance, recurrence and metastasis of tumor. Considerable studies revealed a dysregulated lncRNA expression pattern in osteosarcoma, which may act as oncogenes or suppressors to regulate osteosarcoma progression. Wnt signaling pathway is an important cascade in tumorigenesis by modulation of pleiotropic biological functions including cell proliferation, apoptosis, differentiation, stemness, genetic stability and chemoresistance. Hyperactivation or deficiency of key effectors in Wnt cascade is a common event in many osteosarcoma patients. Recently, increasing evidences have suggested that lncRNAs could interplay with component of Wnt pathway, and thereby contribute to osteosarcoma onset, progression and dissemination. In this review, we briefly summarize Wnt signaling-related lncRNAs in osteosarcoma progression, aiming to gain insights into their underlying crosstalk as well as clinical application in osteosarcoma therapeutic modalities.
Collapse
Affiliation(s)
- Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lin Ling
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
21
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
22
|
Wang YH, Chan YT, Hung TH, Hung JT, Kuo MW, Wang SH, Huang Y, Lin YJ, Chen SC, Yu JC, Wu JC, Yu J, Yu AL. Transmembrane and coiled-coil domain family 3 (TMCC3) regulates breast cancer stem cell and AKT activation. Oncogene 2021; 40:2858-2871. [PMID: 33742122 PMCID: PMC8062265 DOI: 10.1038/s41388-021-01729-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Cancer stem cells (CSC) play a pivotal role in cancer metastasis and resistance to therapy. Previously, we compared the phosphoproteomes of breast cancer stem cells (BCSCs) enriched subpopulation and non-BCSCs sorted from breast cancer patient-derived xenograft (PDX), and identified a function unknown protein, transmembrane and coiled-coil domain family 3 (TMCC3) to be a potential enrichment marker for BCSCs. We demonstrated greater expression of TMCC3 in BCSCs than non-BCSCs and higher expression of TMCC3 in metastatic lymph nodes and lungs than in primary tumor of breast cancer PDXs. TMCC3 silencing suppressed mammosphere formation, ALDH activity and cell migration in vitro, along with reduced tumorigenicity and metastasis in vivo. Mechanistically, we found that AKT activation was reduced by TMCC3 silencing, but enhanced by TMCC3 overexpression. We further demonstrated that TMCC3 interacted directly with AKT through its 1-153 a.a. domain by cell-free biochemical assay in vitro and co-immunoprecipitation and interaction domain mapping assays in vivo. Based on domain truncation studies, we showed that the AKT-interacting domain of TMCC3 was essential for TMCC3-induced AKT activation, self-renewal, and metastasis. Clinically, TMCC3 mRNA expression in 202 breast cancer specimens as determined by qRT-PCR assay showed that higher TMCC3 expression correlated with poorer clinical outcome of breast cancer, including early-stage breast cancer. Multivariable analysis identified TMCC3 expression as an independent risk factor for survival. These findings suggest that TMCC3 is crucial for maintenance of BCSCs features through AKT regulation, and TMCC3 expression has independent prognostic significance in breast cancer. Thus, TMCC3 may serve as a new target for therapy directed against CSCs.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Tzu Chan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Wei Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenlin Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ju Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shin-Cheh Chen
- General Surgery Department, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jyh-Cherng Yu
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chine Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Chang Gung University, Taoyuan, Taiwan.
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
23
|
Feng D, Lin J, Wang W, Yan K, Liang H, Liang J, Yu H, Ling B. Wnt3a/β-Catenin/CBP Activation in the Progression of Cervical Intraepithelial Neoplasia. Pathol Oncol Res 2021; 27:609620. [PMID: 34257574 PMCID: PMC8262210 DOI: 10.3389/pore.2021.609620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022]
Abstract
Piwil2 reprograms HPV-infected reserve cells in the cervix into tumor-initiated cells (TICs) and upregulates Wnt3a expression sequentially, which leads to cervical intraepithelial neoplasia (CIN) and ultimately squamous cell carcinoma (SCC). However, little is known regarding Wnt signaling in the maintenance of TIC stemness during the progression of cervical lesions. We herein investigated the expression of canonical Wnt3a signaling and related genes by microarray data set analysis and immunohistochemical (IHC) staining of samples obtained by biopsy of normal cervix, low- and high-grade CIN, and invasive SCC tissue. Array data analyzed by GEO2R showed higher expression levels of Wnt signaling and their target genes, significant upregulation of stemness-associated markers, and notably downregulated cell differentiation markers in CIN and SCC tissues compared with those in the normal cervix tissue. Further, Gene Set Enrichment Analysis (GSEA) revealed that Wnt pathway-related genes significantly enriched in SCC. IHC staining showed gradually increased immunoreactivity score of Wnt3a and CBP and notable translocation of β-catenin from the membrane to the cytoplasm and nucleus during the lesion progression. The intensity and proportion of P16, Ki67 and CK17 staining also increased with the progression of cervical lesions, whereas minimal to negative Involucrin expression was observed in CIN2/3 and SCC. Therefore, canonical Wnt signaling may contribute to the progression of CIN to SCC and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jie Lin
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keqin Yan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Huan Yu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Lai KKY, Hu X, Chosa K, Nguyen C, Lin DP, Lai KK, Kato N, Higuchi Y, Highlander SK, Melendez E, Eriguchi Y, Fueger PT, Ouellette AJ, Chimge NO, Ono M, Kahn M. p300 Serine 89: A Critical Signaling Integrator and Its Effects on Intestinal Homeostasis and Repair. Cancers (Basel) 2021; 13:cancers13061288. [PMID: 33799418 PMCID: PMC7999107 DOI: 10.3390/cancers13061288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Given their high degree of identity and even greater similarity at the amino acid level, Kat3 coactivators, CBP (Kat3A) and p300 (Kat3B), have long been considered redundant. We describe the generation of novel p300 S89A knock-in mice carrying a single site directed amino acid mutation in p300, changing the highly evolutionarily conserved serine 89 to alanine, thus enhancing Wnt/CBP/catenin signaling (at the expense of Wnt/p300/catenin signaling). p300 S89A knock-in mice exhibit multiple organ system, immunologic and metabolic differences, compared with their wild type counterparts. In particular, these p300 S89A knock-in mice are highly sensitive to intestinal injury resulting in colitis which is known to significantly predispose to colorectal cancer. Our results highlight the critical role of this region in p300 as a signaling nexus and provide further evidence that p300 and CBP are non-redundant, playing definite and distinctive roles in development and disease. Abstract Differential usage of Kat3 coactivators, CBP and p300, by β-catenin is a fundamental regulatory mechanism in stem cell maintenance and initiation of differentiation and repair. Based upon our earlier pharmacologic studies, p300 serine 89 (S89) is critical for controlling differential coactivator usage by β-catenin via post-translational phosphorylation in stem/progenitor populations, and appears to be a target for a number of kinase cascades. To further investigate mechanisms of signal integration effected by this domain, we generated p300 S89A knock-in mice. We show that S89A mice are extremely sensitive to intestinal insult resulting in colitis, which is known to significantly increase the risk of developing colorectal cancer. We demonstrate cell intrinsic differences, and microbiome compositional differences and differential immune responses, in intestine of S89A versus wild type mice. Genomic and proteomic analyses reveal pathway differences, including lipid metabolism, oxidative stress response, mitochondrial function and oxidative phosphorylation. The diverse effects on fundamental processes including epithelial differentiation, metabolism, immune response and microbiome colonization, all brought about by a single amino acid modification S89A, highlights the critical role of this region in p300 as a signaling nexus and the rationale for conservation of this residue and surrounding region for hundreds of million years of vertebrate evolution.
Collapse
Affiliation(s)
- Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Xiaohui Hu
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Keisuke Chosa
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - David P. Lin
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Keith K. Lai
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan;
| | - Yusuke Higuchi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Sarah K. Highlander
- Clinical Microbiome Service Center and Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ 86005, USA;
| | - Elizabeth Melendez
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Yoshihiro Eriguchi
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.E.); (A.J.O.)
| | - Patrick T. Fueger
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Andre J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.E.); (A.J.O.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nyam-Osor Chimge
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
25
|
Sharma A, Kaur H, De R, Srinivasan R, Pal A, Bhattacharyya S. Knockdown of E-cadherin induces cancer stem-cell-like phenotype and drug resistance in cervical cancer cells. Biochem Cell Biol 2021; 99:587-595. [PMID: 33677985 DOI: 10.1139/bcb-2020-0592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of mortality amongst women in developing countries, and resistance to therapy is the main reason for treatment failure. Recent advances suggest that cancer stem cells (CSCs) are critically involved in regulating the chemo-resistant behavior of cervical cancer cells. In our study, cells with the CSC phenotype were isolated, and we examined the expression levels of stem cell markers and genes associated with epithelial-mesenchymal transition (EMT) using different assays. However, the cells with the CSC phenotype could not be cultured for further cytotoxicity studies, so we established a model of CSC in cervical cancer cells. We performed siRNA-mediated knockdown of E-cadherin in these cells, and studied them for EMT-associated stem-cell-like properties. We also performed dose-dependent cell viability assays using clinically relevant drugs such as cisplatin, cyclopamine, and GANT58 to analyze the drug resistant behavior of these cancer cells. We found that knockdown of E-cadherin induces EMT in cervical cancer cells, imparting stem-cell like characteristics along with enhanced tumorsphere formation, cell migration, invasiveness, and drug resistance. This is the first study to establish a CSC model in cervical cancer cells by knockdown of E-cadherin, which can be used to develop anti-cancer therapies.
Collapse
Affiliation(s)
- Anuka Sharma
- Department of Biophysics, PGIMER, Chandigarh, India
| | | | - Renaissa De
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, PGIMER, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
26
|
Zhang XY, Li TT, Liu YR, Geng SS, Luo AL, Jiang MS, Liang XW, Shang JH, Lu KH, Yang XG. Transcriptome analysis revealed differences in the microenvironment of spermatogonial stem cells in seminiferous tubules between pre-pubertal and adult buffaloes. Reprod Domest Anim 2021; 56:629-641. [PMID: 33492695 DOI: 10.1111/rda.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
The microenvironment in the seminiferous tubules of buffalo changes with age, which affects the self-renewal and growth of spermatogonial stem cells (SSCs) and the process of spermatogenesis, but the mechanism remains to be elucidated. RNA-seq was performed to compare the transcript profiles of pre-pubertal buffalo (PUB) and adult buffalo (ADU) seminiferous tubules. In total, 17,299 genes from PUB and ADU seminiferous tubules identified through RNA-seq, among which 12,271 were expressed in PUB and ADU seminiferous tubules, 4,027 were expressed in only ADU seminiferous tubules, and 956 were expressed in only PUB seminiferous tubules. Of the 17,299 genes, we identified 13,714 genes that had significant differences in expression levels between PUB and ADU through GO enrichment analysis. Among these genes, 5,342 were significantly upregulated and possibly related to the formation or identity of the surface antigen on SSCs during self-renewal; 7,832 genes were significantly downregulated, indicating that genes in PUB seminiferous tubules do not participate in the biological processes of sperm differentiation or formation in this phase compared with those in ADU seminiferous tubules. Subsequently, through the combination with KEGG analysis, we detected enrichment in a number of genes related to the development of spermatogonial stem cells, providing a reference for study of the development mechanism of buffalo spermatogonial stem cells in the future. In conclusion, our data provide detailed information on the mRNA transcriptomes in PUB and ADU seminiferous tubules, revealing the crucial factors involved in maintaining the microenvironment and providing a reference for further in vitro cultivation of SSCs.
Collapse
Affiliation(s)
- Xiao-Yuan Zhang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ting-Ting Li
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China.,HeNan Provincial People's Hospital, China
| | - Ya-Ru Liu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Shuang-Shuang Geng
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ao-Lin Luo
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ming-Sheng Jiang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xing-Wei Liang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Jiang-Hua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| |
Collapse
|
27
|
Abstract
Therapy resistance is a major problem when treating cancer patients as cancer cells develop mechanisms that counteract the effect of therapeutic compounds, leading to fit and more aggressive clones that contribute to poor prognosis. Therapy resistance can be both intrinsic and/or acquired. These are multifactorial events, and some are related to factors including adaptations in cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), deregulation of key signaling pathways, drug efflux through ABC transporters, acquired mutations, evading apoptosis, and activation of DNA damage response among others. Among these factors, CSCs represent the major source of therapy resistance. CSCs are a subset of tumor cells that are capable of self-renewal and multilineage progenitor expansion that are known to be intrinsically resistant to anticancer treatments. Multiple clones of CSCs pre-exist, and some can adopt and expand easily to changes in the tumor microenvironment (TME) and/or in response to radio- and chemotherapy. A combination of both intrinsic and extrinsic factors contributes to CSC-mediated therapy resistance. In this review, we will focus on CSCs and therapy resistance as well as suggest strategies to eliminate CSCs and, therefore, overcome resistance. Video abstract.
Collapse
Affiliation(s)
- Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001 People’s Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001 People’s Republic of China
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| |
Collapse
|
28
|
Chowdhury S, Ghosh S. Cancer Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Fodor K, Sipos É, Dobos N, Nagy J, Steiber Z, Méhes G, Dull K, Székvölgyi L, Schally AV, Halmos G. Correlation between the Expression of Angiogenic Factors and Stem Cell Markers in Human Uveal Melanoma. Life (Basel) 2020; 10:life10120310. [PMID: 33255843 PMCID: PMC7760175 DOI: 10.3390/life10120310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Uveal melanoma (UM) is the most common malignant tumor of the eye with extremely high metastatic potential. UM tumor cells can disseminate only hematogenously, thus, angiogenic signals have a particular role in the prognosis of the disease. Although the presence of cancer stem cells (CSCs) in densely vascularized UMs has been reported previously, their role in the process of hematogenous spread of UM has not been studied. In this study, we investigated the regulation of angiogenesis in UM in correlation with the presence of CSCs. Seventy UM samples were collected to analyze the expression of CSC markers and angiogenic factors. The expression of CSC markers was studied by RT-PCR, Western blotting techniques and IHC-TMA technique. RT-PCR showed high expression of CSC markers, particularly nestin, FZD6 and SOX10 and somewhat lower expression of NGFR. The protein expression of FZD6, HIF-1α and VEGFA was further evaluated in 52 UM samples by the IHC-TMA technique. We report here for the first time a significant correlation between FZD6 and VEGFA expression in UM samples. The observed correlation between FZD6 and VEGFA suggests the presence of CSCs in UM that are associated with the vascularization process.
Collapse
Affiliation(s)
- Klára Fodor
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.F.); (É.S.); (N.D.)
| | - Éva Sipos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.F.); (É.S.); (N.D.)
| | - Nikoletta Dobos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.F.); (É.S.); (N.D.)
| | - János Nagy
- Clinical Center, Department of Oncology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zita Steiber
- Clinical Center, Department of Ophthalmology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (K.D.)
| | - Kata Dull
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (K.D.)
| | - Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Andrew V. Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL 33101, USA;
- Sylvester Comprehensive Cancer Center, Department of Medicine, Department of Pathology, Divisions of Hematology Oncology and Endocrinology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.F.); (É.S.); (N.D.)
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL 33101, USA;
- Correspondence: ; Tel.: +36-52-255-292
| |
Collapse
|
30
|
Feng D, Yan K, Liang H, Liang J, Wang W, Yu H, Zhou Y, Zhao W, Dong Z, Ling B. CBP-mediated Wnt3a/β-catenin signaling promotes cervical oncogenesis initiated by Piwil2. Neoplasia 2020; 23:1-11. [PMID: 33190089 PMCID: PMC7674161 DOI: 10.1016/j.neo.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 01/05/2023] Open
Abstract
Our previous work demonstrated that Piwil2 reactivated by the human papillomavirus oncoproteins E6 and E7 may reprogram somatic cells into tumor-initiating cells (TICs), which contribute to cervical neoplasia lesions. Maintaining the stemness of TICs is critical for the progression of cervical lesions. Here, we determined that canonical Wnt signaling was aberrantly activated in HaCaT cells transfected with lentivirus expressing Piwil2 and in cervical lesion specimens of low-grade squamous intraepithelial lesion, high-grade squamous intraepithelial lesion, and invasive carcinoma. Blocking the β-catenin and CREB binding protein interaction with ICG-001 significantly downregulated the reprogramming factors c-Myc, Nanog, Oct4, Sox2, and Klf4, thus leading to cell differentiation and preventing tumorigenicity in Piwil2-overexpressing HaCaT cells. Similarly, Piwil2 also critically regulated the canonical Wnt signaling pathway in cervical cancer. We further demonstrated that ICG-001 increased cisplatin sensitivity and significantly suppressed tumor growth of cervical cancer alone or in combination with cisplatin both in vitro and in vivo. The β-catenin/ CREB binding protein-mediated transcription activated by Piwil2 is essential for the maintenance of TICs, therefore contributing to the progression of cervical oncogenesis.
Collapse
Affiliation(s)
- Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Keqin Yan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huan Yu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Weidong Zhao
- Department of Gynecology and Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Zhongjun Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Granados K, Poelchen J, Novak D, Utikal J. Cellular Reprogramming-A Model for Melanoma Cellular Plasticity. Int J Mol Sci 2020; 21:E8274. [PMID: 33167306 PMCID: PMC7663830 DOI: 10.3390/ijms21218274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular plasticity of cancer cells is often associated with phenotypic heterogeneity and drug resistance and thus remains a major challenge for the treatment of melanoma and other types of cancer. Melanoma cells have the capacity to switch their phenotype during tumor progression, from a proliferative and differentiated phenotype to a more invasive and dedifferentiated phenotype. However, the molecular mechanisms driving this phenotype switch are not yet fully understood. Considering that cellular heterogeneity within the tumor contributes to the high plasticity typically observed in melanoma, it is crucial to generate suitable models to investigate this phenomenon in detail. Here, we discuss the use of complete and partial reprogramming into induced pluripotent cancer (iPC) cells as a tool to obtain new insights into melanoma cellular plasticity. We consider this a relevant topic due to the high plasticity of melanoma cells and its association with a strong resistance to standard anticancer treatments.
Collapse
Affiliation(s)
- Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| |
Collapse
|
32
|
Raslan AA, Yoon JK. WNT Signaling in Lung Repair and Regeneration. Mol Cells 2020; 43:774-783. [PMID: 32807748 PMCID: PMC7528681 DOI: 10.14348/molcells.2020.0059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 01/05/2023] Open
Abstract
The lung has a vital function in gas exchange between the blood and the external atmosphere. It also has a critical role in the immune defense against external pathogens and environmental factors. While the lung is classified as a relatively quiescent organ with little homeostatic turnover, it shows robust regenerative capacity in response to injury, mediated by the resident stem/progenitor cells. During regeneration, regionally distinct epithelial cell populations with specific functions are generated from several different types of stem/progenitor cells localized within four histologically distinguished regions: trachea, bronchi, bronchioles, and alveoli. WNT signaling is one of the key signaling pathways involved in regulating many types of stem/progenitor cells in various organs. In addition to its developmental role in the embryonic and fetal lung, WNT signaling is critical for lung homeostasis and regeneration. In this minireview, we summarize and discuss recent advances in the understanding of the role of WNT signaling in lung regeneration with an emphasis on stem/progenitor cells.
Collapse
Affiliation(s)
- Ahmed A. Raslan
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 35, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 35, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
33
|
Cavallari C, Camussi G, Brizzi MF. Extracellular Vesicles in the Tumour Microenvironment: Eclectic Supervisors. Int J Mol Sci 2020; 21:E6768. [PMID: 32942702 PMCID: PMC7555174 DOI: 10.3390/ijms21186768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumour microenvironment (TME) plays a crucial role in the regulation of cell survival and growth by providing inhibitory or stimulatory signals. Extracellular vesicles (EV) represent one of the most relevant cell-to-cell communication mechanism among cells within the TME. Moreover, EV contribute to the crosstalk among cancerous, immune, endothelial, and stromal cells to establish TME diversity. EV contain proteins, mRNAs and miRNAs, which can be locally delivered in the TME and/or transferred to remote sites to dictate tumour behaviour. EV in the TME impact on cancer cell proliferation, invasion, metastasis, immune-escape, pre-metastatic niche formation and the stimulation of angiogenesis. Moreover, EV can boost or inhibit tumours depending on the TME conditions and their cell of origin. Therefore, to move towards the identification of new targets and the development of a novel generation of EV-based targeting approaches to gain insight into EV mechanism of action in the TME would be of particular relevance. The aim here is to provide an overview of the current knowledge of EV released from different TME cellular components and their role in driving TME diversity. Moreover, recent proposed engineering approaches to targeting cells in the TME via EV are discussed.
Collapse
Affiliation(s)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | | |
Collapse
|
34
|
Venkatesh J, Rishi AK, Reddy KB. Novel strategies to target chemoresistant triple-negative breast cancer. Genes Cancer 2020; 11:95-105. [PMID: 33488948 PMCID: PMC7805540 DOI: 10.18632/genesandcancer.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
Previous studies from our group and others have shown that current drug treatment(s) strategies eliminate bulk of tumor cells (non-CSCs) but it had a minimal effect on cancer stem cells (CSCs) leading to resistance and tumor recurrence. We studied the effects of CFM-4.16 (CARP-1 functional mimetic) and/or cisplatin on four Triple-negative breast cancer (TNBC) MDA-MB-468, MDA-MB-231, CRL-2335 and BR-1126, two cisplatin resistant CisR/MDA-231 and CisR/MDA-468 and cancer stem cells (CSCs) from resistant cell lines. TNBC cells treated with CFM-4.16 plus cisplatin inhibited the expression of FZD8, LRP6 and c-Myc and significantly enhanced cell death in all the cell lines by ~70%-80% compared with the control(s). When Cisplatin resistant CisR/MDA-231 and CisR/MDA-468 were treated with CFM-4.16 plus cisplatin, they also showed a reduction in FZD8 and LRP6 and increased apoptosis compared to control group. Similarly, CFM-4.16 plus cisplatin treatment reduced mammospheres formation abilities of CSCs by 80-90% compared to control group, increased PARP cleavage and apoptosis. Data shows CFM-4.16 plus cisplatin treatment significantly increased apoptosis/cell death in parental, cisplatin resistant and CSCs. Taken together the data suggests that FZD8-mediated Wnt-signaling plays a major role in mediating CSCs growth and resistance to chemotherapy and its inhibition enhances the chemotherapeutic response in TNBC.
Collapse
Affiliation(s)
- Jaganathan Venkatesh
- John D. Dingell VA Medical Center, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Kaladhar B Reddy
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA.,Department of Pathology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
35
|
Shevchenko V, Arnotskaya N, Zaitsev S, Sharma A, Sharma HS, Bryukhovetskiy A, Pak O, Khotimchenko Y, Bryukhovetskiy I. Proteins of Wnt signaling pathway in cancer stem cells of human glioblastoma. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:185-200. [PMID: 32448607 DOI: 10.1016/bs.irn.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Glioblastoma multiforme (GBM) is the most aggressive primary glial brain tumor. The prognosis for GBM patients is not favorable, with the median survival time being 15 months. Its treatment resistance is associated with GBM cell population having cancer stem cells (CSCs). Wnt/β-catenin signaling pathway is a strategically important molecular mechanism, providing proliferation of stem cells of all types. This study compares the expression levels of signaling pathway proteins in CD133(+) CSCs and CD133(-) differentiated glioblastoma cells (DGCs). MATERIALS AND METHODS the present study used U-87MG cells of human glioblastoma, the material was tested for mycoplasma contamination. High-performance liquid chromatography (HPLC) mass spectrometry was used for proteome analysis. Biological and molecular functions, signaling pathways and protein-protein interactions were analyzed using free-access databases: PubMed, PANTHER, Gene Ontology, Swiss-Prot and KEGG. Protein-protein interactions (PPIs) were analyzed using the STRING database (version 10). RESULTS There were identified 589 proteins with significantly changed expression in CD133+ CSCs, as compared with CD133-DGCs (P<0.05). Bioinformatics analysis allowed to attribute 134 differentially expressed proteins to 16 signaling pathways. A significant increase in expression of eight Wnt signaling pathway proteins (APC, CSNK1E, CSNK1A, CSNK2A2, CSNK2B, CTNNB1, DVL1, RUVBL) was detected, as well as four proteins of the non-canonical Wnt pathway-RHOA, ROCK2, RAC2, DAAM1. Special attention should be paid to β-catenin (CTNNB1) with more than 13.98-fold increase of expression in CSCs and Disheveled-associated activator of morphogenesis 1 (DAAM1) with 6.15-fold higher upregulation level. CONCLUSION proteins of Wnt/β-catenin signaling cascade are a prospective target for regulating CSCs activity.
Collapse
Affiliation(s)
- Valeriy Shevchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Oncoproteomics, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Natalia Arnotskaya
- Laboratory of Oncoproteomics, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Sergei Zaitsev
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Oleg Pak
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Yuri Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
36
|
Zhang ZZ, Yu WX, Zheng M, Liao XH, Wang JC, Yang DY, Lu WX, Wang L, Zhang S, Liu HK, Zhou XZ, Lu KP. PIN1 Inhibition Sensitizes Chemotherapy in Gastric Cancer Cells by Targeting Stem Cell-like Traits and Multiple Biomarkers. Mol Cancer Ther 2020; 19:906-919. [PMID: 31879364 DOI: 10.1158/1535-7163.mct-19-0656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
Gastric cancer is the third leading cause of cancer-related death worldwide. Diffuse type gastric cancer has the worst prognosis due to notorious resistance to chemotherapy and enrichment of cancer stem-like cells (CSC) associated with the epithelial-to-mesenchymal transition (EMT). The unique proline isomerase PIN1 is a common regulator of oncogenic signaling networks and is important for gastric cancer development. However, little is known about its roles in CSCs and drug resistance in gastric cancer. In this article, we demonstrate that PIN1 overexpression is closely correlated with advanced tumor stages, poor chemo-response and shorter recurrence-free survival in diffuse type gastric cancer in human patients. Furthermore, shRNA-mediated genetic or all-trans retinoic acid-mediated pharmaceutical inhibition of PIN1 in multiple human gastric cancer cells potently suppresses the EMT, cell migration and invasion, and lung metastasis. Moreover, PIN1 genetic or pharmaceutical inhibition potently eliminates gastric CSCs and suppresses their self-renewal and tumorigenicity in vitro and in vivo Consistent with these phenotypes, are that PIN1 biochemically targets multiple signaling molecules and biomarkers in EMT and CSCs and that genetic and pharmaceutical PIN1 inhibition functionally and drastically enhances the sensitivity of gastric cancer to multiple chemotherapy drugs in vitro and in vivo These results demonstrate that PIN1 inhibition sensitizes chemotherapy in gastric cancer cells by targeting CSCs, and suggest that PIN1 inhibitors may be used to overcome drug resistance in gastric cancer.
Collapse
Affiliation(s)
- Zhen-Zhen Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Pathology of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Wei-Xing Yu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Min Zheng
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Xin-Hua Liao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Ji-Chuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Wen-Xian Lu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Sheng Zhang
- Department of Pathology of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - He-Kun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Zhou Q, Song Y, Zheng Q, Han R, Cheng H. Expression profile analysis of dermal papilla cells mRNA in response to WNT10B treatment. Exp Ther Med 2019; 19:1017-1023. [PMID: 32010264 PMCID: PMC6966109 DOI: 10.3892/etm.2019.8287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dermal papilla cells (DPCs) are associated with the development of hair follicles (HFs) and the regulation of the hair growth cycle. Previous studies have shown that Wnt family member 10B (WNT10B) plays an important role in the proliferation and survival of DPCs in vitro, and promotes the growth of HFs. However, the underlying mechanisms have not been fully elucidated. The present study evaluated the role of WNT10B in regulating HF morphogenesis by characterizing the differential gene expression profiles between WNT10B-treated DPCs and control DPCs using RNA-sequencing (RNA-seq). A total of 1,073 and 451 genes were upregulated and downregulated, respectively. The RNA-seq data was subsequently validated by reverse-transcription quantitative PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 442 GO terms and 21 KEGG pathways were significantly enriched. Further functional analysis revealed that WNT10B decreased translation initiation, elongation and termination, and RNA metabolic processes in cultured DPCs compared with controls in vitro. Human signaling networks were compared using pathway analysis, and treatment of DPCs with WNT10B was revealed to downregulate the ribosome biogenesis pathway and decrease protein synthesis in vitro. KEGG pathway analysis showed that WNT10B upregulated the phosphoinositide 3-kinase/protein kinase B signaling pathway. The present study analyzed the expression of mRNA in WNT10B-treated DPCs using next-generation sequencing and uncovered mechanisms regulating the induction of HFs.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Rui Han
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
38
|
Lukaszewicz AI, Nguyen C, Melendez E, Lin DP, Teo JL, Lai KKY, Huttner WB, Shi SH, Kahn M. The Mode of Stem Cell Division Is Dependent on the Differential Interaction of β-Catenin with the Kat3 Coactivators CBP or p300. Cancers (Basel) 2019; 11:cancers11070962. [PMID: 31324005 PMCID: PMC6678591 DOI: 10.3390/cancers11070962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Normal long-term repopulating somatic stem cells (SSCs) preferentially divide asymmetrically, with one daughter cell remaining in the niche and the other going on to be a transient amplifying cell required for generating new tissue in homeostatic maintenance and repair processes, whereas cancer stem cells (CSCs) favor symmetric divisions. We have previously proposed that differential β-catenin modulation of transcriptional activity via selective interaction with either the Kat3 coactivator CBP or its closely related paralog p300, regulates symmetric versus asymmetric division in SSCs and CSCs. We have previously demonstrated that SSCs that divide asymmetrically per force retain one of the dividing daughter cells in the stem cell niche, even when treated with specific CBP/β-catenin antagonists, whereas CSCs can be removed from their niche via forced stochastic symmetric differentiative divisions. We now demonstrate that loss of p73 in early corticogenesis biases β-catenin Kat3 coactivator usage and enhances β-catenin/CBP transcription at the expense of β-catenin/p300 transcription. Biased β-catenin coactivator usage has dramatic consequences on the mode of division of neural stem cells (NSCs), but not neurogenic progenitors. The observed increase in symmetric divisions due to enhanced β-catenin/CBP interaction and transcription leads to an immediate increase in NSC symmetric differentiative divisions. Moreover, we demonstrate for the first time that the complex phenotype caused by the loss of p73 can be rescued in utero by treatment with the small-molecule-specific CBP/β-catenin antagonist ICG-001. Taken together, our results demonstrate the causal relationship between the choice of β-catenin Kat3 coactivator and the mode of stem cell division.
Collapse
Affiliation(s)
- Agnes I Lukaszewicz
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cu Nguyen
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Melendez
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - David P Lin
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jia-Ling Teo
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keane K Y Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Kahn
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA.
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA 90033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
39
|
Zhang R, Liu Q, Li T, Liao Q, Zhao Y. Role of the complement system in the tumor microenvironment. Cancer Cell Int 2019; 19:300. [PMID: 31787848 PMCID: PMC6858723 DOI: 10.1186/s12935-019-1027-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
The complement system has traditionally been considered a component of innate immunity against invading pathogens and "nonself" cells. Recent studies have demonstrated the immunoregulatory functions of complement activation in the tumor microenvironment (TME). The TME plays crucial roles in tumorigenesis, progression, metastasis and recurrence. Imbalanced complement activation and the deposition of complement proteins have been demonstrated in many types of tumors. Plasma proteins, receptors, and regulators of complement activation regulate several biological functions of stromal cells in the TME and promote the malignant biological properties of tumors. Interactions between the complement system and cancer cells contribute to the proliferation, epithelial-mesenchymal transition, migration and invasion of tumor cells. In this review, we summarize recent advances related to the function of the complement system in the TME and discuss the therapeutic potential of targeting complement-mediated immunoregulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Ronghua Zhang
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Qiaofei Liu
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Tong Li
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Quan Liao
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Yupei Zhao
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| |
Collapse
|
40
|
Emerging Role of Histone Acetyltransferase in Stem Cells and Cancer. Stem Cells Int 2018; 2018:8908751. [PMID: 30651738 PMCID: PMC6311713 DOI: 10.1155/2018/8908751] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023] Open
Abstract
Protein acetylation is one of the most important posttranslational modifications catalyzed by acetyltransferases and deacetylases, through the addition and removal of acetyl groups to lysine residues. Lysine acetylation can affect protein-nucleic acid or protein-protein interactions and protein localization, transport, stability, and activity. It regulates the function of a large variety of proteins, including histones, oncoproteins, tumor suppressors, and transcription factors, thus representing a crucial regulator of several biological processes with particular prominent roles in transcription and metabolism. Thus, it is unsurprising that alteration of protein acetylation is involved in human disease, including metabolic disorders and cancers. In this context, different hematological and solid tumors are characterized by deregulation of the protein acetylation pattern as a result of genetic or epigenetic changes. The imbalance between acetylation and deacetylation of histone or nonhistone proteins is also involved in the modulation of the self-renewal and differentiation ability of stem cells, including cancer stem cells. Here, we summarize a combination of in vitro and in vivo studies, undertaken on a set of acetyltransferases, and discuss the physiological and pathological roles of this class of enzymes. We also review the available data on the involvement of acetyltransferases in the regulation of stem cell renewal and differentiation in both normal and cancer cell population.
Collapse
|
41
|
Skonieczna-Żydecka K, Marlicz W, Misera A, Koulaouzidis A, Łoniewski I. Microbiome-The Missing Link in the Gut-Brain Axis: Focus on Its Role in Gastrointestinal and Mental Health. J Clin Med 2018; 7:E521. [PMID: 30544486 PMCID: PMC6306769 DOI: 10.3390/jcm7120521] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
The central nervous system (CNS) and the human gastrointestinal (GI) tract communicate through the gut-brain axis (GBA). Such communication is bi-directional and involves neuronal, endocrine, and immunological mechanisms. There is mounting data that gut microbiota is the source of a number of neuroactive and immunocompetent substances, which shape the structure and function of brain regions involved in the control of emotions, cognition, and physical activity. Most GI diseases are associated with altered transmission within the GBA that are influenced by both genetic and environmental factors. Current treatment protocols for GI and non-GI disorders may positively or adversely affect the composition of intestinal microbiota with a diverse impact on therapeutic outcome(s). Alterations of gut microbiota have been associated with mood and depressive disorders. Moreover, mental health is frequently affected in GI and non-GI diseases. Deregulation of the GBA may constitute a grip point for the development of diagnostic tools and personalized microbiota-based therapy. For example, next generation sequencing (NGS) offers detailed analysis of microbiome footprints in patients with mental and GI disorders. Elucidating the role of stem cell⁻host microbiome cross talks in tissues in GBA disorders might lead to the development of next generation diagnostics and therapeutics. Psychobiotics are a new class of beneficial bacteria with documented efficacy for the treatment of GBA disorders. Novel therapies interfering with small molecules involved in adult stem cell trafficking are on the horizon.
Collapse
Affiliation(s)
- Karolina Skonieczna-Żydecka
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland.
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland.
| | - Agata Misera
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, 13353 Berlin, Germany.
| | | | - Igor Łoniewski
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland.
| |
Collapse
|
42
|
Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165339. [PMID: 30481586 DOI: 10.1016/j.bbadis.2018.11.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Unlike other normal cells, a subpopulation of cells often termed as "stem cells" are long-lived and generate cellular progeny throughout life. Cancer stem cells (CSCs) are rare immortal cells within a tumor that can both self-renew by dividing and giving rise to many cell types that constitute the tumor. CSCs also have been shown to be involved in fundamental processes of cell proliferation and metastatic dissemination. CSCs are generally resistant to chemotherapy and radiotherapy, a subset of remaining CSCs after therapy can survive and promote cancer relapse and resistance to therapies. Understanding the biological characteristics of CSCs, the pathways leading to their sustainability and proliferation, and the CSCs role in drug resistance is crucial for establishing novel tumor diagnostic and therapeutic strategies. In this review, we address the pathways that regulate CSCs, the role of CSCs in the resistance to therapy, and strategies to overcome therapeutic resistance.
Collapse
|