1
|
Jia Z, Jin Z, Li M, Zhang X, Peng M, Zhang S, Tan M, Yang Q, Wang W, Sun Y. E2F transcription factor 5, a new regulator in adipogenesis to mediate the role of Krüppel-like factor 7 in chicken preadipocyte differentiation and proliferation. Poult Sci 2024; 103:103728. [PMID: 38688194 PMCID: PMC11077033 DOI: 10.1016/j.psj.2024.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024] Open
Abstract
E2F transcription factor 5 (E2F5) gene is a transcription factor, plays an important role in the development of a variety of cells. E2F5 is expressed in human and mouse adipocytes, but its specific function in adipogenesis is unclear. Krüppel-like factor 7 (KLF7) facilitates proliferation and inhibits differentiation in chicken preadipocytes. Our previous KLF7 chromatin immunoprecipitation-sequencing analysis revealed a KLF7-binding peak in the 3' flanking region of the E2F5, indicating a regulatory role of KLF7 in this region. In the present study, we investigated E2F5 potential role, the overexpression and knockdown analyses revealed that E2F5 inhibited the differentiation and promoted the proliferation of chicken preadipocytes. Moreover, we identified enhancer activity in the 3' flanking region (nucleotides +22661/+22900) of E2F5 and found that KLF7 overexpression increased E2F5 expression and luciferase activity in this region. Deleting the putative KLF7-binding site eliminated the promoting effect of KLF7 overexpression on E2F5 expression. Further, E2F5 reversed the KLF7-induced decrease in preadipocyte differentiation and increase in preadipocyte proliferation. Taken together, our findings demonstrate that KLF7 inhibits differentiation and promotes proliferation in preadipocytes by enhancing E2F5 transcription.
Collapse
Affiliation(s)
- Ziqiu Jia
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Zhao Jin
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Meiqi Li
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Xin Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Min Peng
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Shanshan Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Ming Tan
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Qingzhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiyu Wang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Yingning Sun
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China.
| |
Collapse
|
2
|
Sun Y, Xu H, Li J, Peng M, Jia Z, Kong L, Zhang X, Shao S, Zhang W, Wang W. Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194899. [PMID: 36410687 DOI: 10.1016/j.bbagrm.2022.194899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Krüppel-like factor 7 (KLF7) negatively regulates adipocyte differentiation; however, the mechanism underlying its activity in mammals and birds remains poorly understood. To identify genome-wide KLF7-binding motifs in preadipocytes, we conducted a chromatin immunoprecipitation-sequencing analysis of immortalized chicken preadipocytes (ICP2), which revealed 11,063 specific binding sites. Intergenic binding site analysis showed that KLF7 regulates several novel factors whose functions in chicken and mammal adipogenesis are underexplored. We identified a novel regulator, troponin I2 (TNNI2), which is positively regulated by KLF7. TNNI2 is downregulated during preadipocyte differentiation and acts as an adipogenic repressor at least in part by repressing FABP4 promoter activity. In conclusion, we demonstrated that KLF7 functions through cis-regulation of TNNI2, which inhibits adipogenesis. Our findings not only provide the first genome-wide picture of KLF7 associations in preadipocytes but also identify a novel function of TNNI2.
Collapse
Affiliation(s)
- Yingning Sun
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China.
| | - Hu Xu
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Jinwei Li
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Min Peng
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Ziqiu Jia
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Lingzhe Kong
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Xin Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Shuli Shao
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiwei Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiyu Wang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| |
Collapse
|
3
|
Bio-Waste Products of Mangifera indica L. Reduce Adipogenesis and Exert Antioxidant Effects on 3T3-L1 Cells. Antioxidants (Basel) 2022; 11:antiox11020363. [PMID: 35204243 PMCID: PMC8869144 DOI: 10.3390/antiox11020363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Several studies highlighted the beneficial value of natural compounds in the prevention and treatment of obesity. Here, we investigated the anti-obesity effects of extracts of peel and seed of mango (Mangifera indica L.) cultivated in Sicily (Italy) in 3T3-L1 cells. Mango Peel (MPE) and Mango Seed (MSE) extracts at a 100 µg/mL concentration significantly reduced lipid accumulation and triacylglycerol contents during 3T3-L1 adipocyte differentiation without toxicity. HPLC-ESI-MS analysis showed that both the extracts contain some polyphenolic compounds that can account for the observed biological effects. The anti-adipogenic effect of MPE and MSE was the result of down-regulation of the key adipogenic transcription factor PPARγ and its downstream targets FABP4/aP2, GLUT4 and Adipsin, as well SREBP-1c, a transcription factor which promotes lipogenesis. In addition, both MPE and MSE significantly activated AMPK with the consequent inhibition of Acetyl-CoA-carboxylase (ACC) and up-regulated PPARα. The addition of compound C, a specific AMPK inhibitor, reduced the effects of MPE and MSE on AMPK and ACC phosphorylation, suggesting a role of AMPK in mediating MPE and MSE anti-lipogenic effects. Notably, MPE and MSE possess an elevated radical scavenging activity, as demonstrated by DPPH radical scavenging assay, and reduced ROS content produced during adipocyte differentiation. This last effect could be a consequence of the increase in the antioxidant factors Nrf2, MnSOD and HO-1. In conclusion, MPE and MSE possesses both anti-adipogenic and antioxidant potential, thus suggesting that the bio-waste products of mango are promising anti-obesity natural compounds.
Collapse
|
4
|
Sprenger S, Woldemariam T, Kotchoni S, Elshabrawy HA, Chaturvedi LS. Lemongrass essential oil and its major constituent citral isomers modulate adipogenic gene expression in 3T3-L1 cells. J Food Biochem 2022; 46:e14037. [PMID: 34981531 DOI: 10.1111/jfbc.14037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Obesity is a predisposing factor to diseases such as diabetes mellitus, hypertension, and coronary artery disease. Lemongrass essential oil (LEO), from Cymbopogon flexuosus, possesses numerous therapeutic properties including modulation of obesity in vivo. This experiment investigated the effect of LEO and its major components citral (3,7-dimethyl-2,6-octadienal), citral dimethyl acetal (1,1-dimethoxy-3,7-dimethylocta-2,6-diene), and citral diethyl acetal (1,1-diethoxy-3,7-dimethylocta-2,6-diene) in modulation of adipogenesis and genetic expression in adipocytes. Adipogenesis was induced from murine 3T3-L1 preadipocytes procured from ATCC and maintained in Dulbecco's modified Eagle's medium (DMEM) enriched with calf serum. Differentiation was conducted using DMEM enriched with 10% fetal bovine serum, Dexamethasone 0.25 µM, 3-isobutyl-methylxanthine 0.5 mM, and insulin 10 mg/ml for 2 days, followed by 5 days of insulin 10 mg/ml alone. Samples were subjected to experimental treatments at a concentration of 2.5 × 10-3 . Intracellular triglycerides were quantified and photomicrographs were obtained following Oil red O (ORO) staining procedure. Total ribonucleic acid was extracted and expression of genes effecting in lipid metabolism were quantitated using real-time polymerase chain reaction. ORO staining procedure and spectrophotometric analysis demonstrated decreased lipid accumulation following treatments. LEO and its major constituents significantly inhibited expression of sterol response binding protein 2, cluster of differentiation 36, fatty acid binding protein 4, and peripilin. These results indicate modulation of lipid accumulation through decreased lipid uptake, increased lipolysis, decreased differentiation, and downregulated lipid biosynthesis. This investigation suggests that LEO and its constituents exert effects on adipocyte metabolism and are important for understanding metabolic disease. Further investigation is required to elucidate the degree that each mechanism implicated contributes to the observed effect.
Collapse
Affiliation(s)
- Steven Sprenger
- Department of Basic Science, California Northstate University College of Medicine, Elk Grove, California, USA
| | - Tibebe Woldemariam
- Department of Pharmaceutical & Biomedical Science, California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Simeon Kotchoni
- Department of Pharmaceutical & Biomedical Science, California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, Texas, USA
| | - Lakshmi Shankar Chaturvedi
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, Basic Science and Surgery, California Northstate University College of Medicine, Elk Grove, California, USA
| |
Collapse
|
5
|
Josan C, Kakar S, Raha S. Matrigel® enhances 3T3-L1 cell differentiation. Adipocyte 2021; 10:361-377. [PMID: 34288778 PMCID: PMC8296963 DOI: 10.1080/21623945.2021.1951985] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Culturing cells on bio-gels are believed to provide a more in vivo-like extracellular matrix. 3T3-L1 cells cultured on Matrigel® significantly alteregd their proliferation and differentiation as compared to growth on tissue culture-coated polystyrene surfaces. Growth on a 250-μm thick layer of Matrigel® facilitated the formation of cellular aggregates of 3T3-L1 cells. Differentiation of 3T3-L1 cells cultured on Matrigel® demonstrated increased levels of mRNA levels for key adipogenic transcription factors (PPARγ, C/EBPα, SREBP1), lipogenic markers (FAS, FABP4, LPL, PLIN1) and markers of adipocyte maturity (LEP), compared to cells cultured directly on a polystyrene tissue culture surface. The gene expression of extracellular matrix proteins (FN1, COL1A1, COL4A1, COL6, LAM) was decreased in 3T3-L1 cells cultured on Matrigel®. Furthermore, growth on Matrigel® increased lipid accumulation in 3T3-L1 cells in the presence and absence of rosiglitazone, a thiazolidinedione routinely used to optimize differentiation in these cells. These changes in adipocyte gene expression and lipid accumulation patterns may be a result of the increased cell-cell and cell-ECM interactions occurring on the Matrigel®, a scenario that is more reflective of an in vivo model. Taken together, our data advance the understanding of the value of culturing 3T3-L1 cells on Matrigel®.
Collapse
Affiliation(s)
- Chitmandeep Josan
- Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sachin Kakar
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Sandeep Raha
- Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Sprenger S, Woldemariam T, Chaturvedi LS. Induction of Adipogenic Genes by Novel Serum-Free Conditions From Pre-adipocyte 3T3-L1 and ST2 Cells. Cureus 2021; 13:e13831. [PMID: 33854851 PMCID: PMC8036016 DOI: 10.7759/cureus.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction Obesity, defined as a condition of excessive fat accumulation in adipose tissue, is a global epidemic implicated in a myriad of processes deleterious to human health. It has become one of the leading impediments to public health globally. The study of obesity necessitates adipocyte models, which commonly employ a medium enriched with adipogenic hormones and fetal bovine serum (FBS) to culture terminal adipocytes. In the current study, we developed a novel protocol for serum-free differentiation of 3T3-L1 and ST2 pre-adipocytes using media enriched with free fatty acids (FFA) and bovine serum albumin (BSA). Differentiation was characterized by measuring FFA uptake and changes in expression of adipogenic genes. The novel protocol was also compared against the existing serum-inclusive method. Methods The National Institutes of Health (NIH)-3T3-L1 and ST2 pre-adipocyte cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) containing 10% calf serum and 1% penicillin-streptomycin and Roswell Park Memorial Institute Medium (RPMI) with 10% FBS and 1% penicillin-streptomycin mixture, respectively, at 37℃, 5% CO2 in a humidified atmosphere. Differentiation was induced using a mixture of 0.25 µM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 10 µg/mL insulin, or 1% insulin-transferrin-selenium (ITS). Cells were cultured in serum-free media containing DMEM with BSA (2.5%) and lipid mixture 1 (LM1 1%) as well as serum-inclusive media enriched with 10% FBS. Total RNA was extracted, and quantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed using delta-delta Ct method, also known as the 2-∆∆Ct method. Ribosomal protein, large, P0 (RPLP0) was used as a house-keeping gene for quantitation of relative expressions. Results We observed an increase in fatty acid accumulation relative to controls using Oil Red O neutral lipid staining and spectrophotometry. This result was consistent with the effects of the serum-inclusive method. Differentiation was further confirmed by increased gene expression of adipogenic transcription factors - peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα); adipogenic genes - fatty acid-binding protein 4 (FABP4/aP2) and fatty acid translocase (FAT/CD36); and the lipogenic gene - perilipin by using quantitative RT-PCR. Conclusion Our data suggest that serum-free differentiation can significantly enhance the free fatty acid accumulation as well as adipogenic gene expression in both NIH-3T3-L1 and ST2 pre-adipocyte cells. Given the shortcomings of FBS, this method may provide advantages to the serum-inclusive protocols described previously.
Collapse
Affiliation(s)
- Steven Sprenger
- Department of Basic Science, California Northstate University College of Medicine, Elk Grove, USA
| | - Tibebe Woldemariam
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, USA
| | - Lakshmi S Chaturvedi
- Department of Basic Sciences and Surgery, California Northstate University College of Medicine, Elk Grove, USA.,Department of Basic Sciences and Surgery, California Northstate University College of Pharmacy, Elk Grove, USA
| |
Collapse
|
7
|
Choi DH, Han JH, Yu KH, Hong M, Lee SY, Park KH, Lee SU, Kwon TH. Antioxidant and Anti-Obesity Activities of Polygonum cuspidatum Extract through Alleviation of Lipid Accumulation on 3T3-L1 Adipocytes. J Microbiol Biotechnol 2020; 30:21-30. [PMID: 31838799 PMCID: PMC9728287 DOI: 10.4014/jmb.1910.10040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural products are widely used due to their various biological activities which include antiinflammatory, antioxidant, and anti-obesity effects. In this study, we determined the antioxidative and anti-obesity effects of Polygonum cuspidatum 50% ethanol extract (PEE). The antioxidative effect of PEE was evaluated using its radical scavenging activity, total phenolic content, and reducing power. The anti-obesity effect of PEE was investigated using 3T3-L1 adipocytes. The antioxidative activity of PEE was progressively increased in various concentrations, mainly due to the presence of phenolic compounds. PEE also alleviated lipid accumulation on 3T3-L1 adipocytes and downregulated the mRNA and protein production of adipogenesis-related (SREBP-1c, PPARγ, C/EBPα) and lipogenesis-related (aP2, FAS, ACC) markers. Furthermore, we found that the inhibitory effect on lipid accumulation via PEE was caused by the alleviation of NF-κB, p38 MAPK, ERK1/2, and JNK at the protein level. Taken together, our results imply that PEE is a potential antioxidant that can prevent obesityassociated disorders.
Collapse
Affiliation(s)
- Da-Hye Choi
- Department of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea
| | - Joon-Hee Han
- Department of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea
| | - Keun-Hyung Yu
- Department of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea
| | - Min Hong
- Department of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea
| | - Sun-Yeop Lee
- Department of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea
| | - Ka-Hee Park
- Department of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea
| | - Soo-Ung Lee
- Department of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea
| | - Tae-Hyung Kwon
- Department of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea,Corresponding author Phone: +82-33-258-6972 Fax: +82-33-258-6173 E-mail:
| |
Collapse
|
8
|
Kwak SH, Kim YH. Zaluzanin C Inhibits Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes. J Obes Metab Syndr 2019; 28:105-111. [PMID: 31294342 PMCID: PMC6604843 DOI: 10.7570/jomes.2019.28.2.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 01/15/2023] Open
Abstract
Background An excess storage of body fat causes obesity. Since obesity increases risk of chronic diseases, it is important to inhibit excessive storage of fat. Zaluzanin C is a sesquiterpene lactone isolated from Ainsliaea acerifolia. The aim of this study was to demonstrate the effect of zaluzanin C on differentiation of 3T3-L1 preadipocytes into mature adipocytes. Methods The cytotoxicity of zaluzanin C and its effect on cell proliferation was determined. For the induction of adipocyte differentiation, 3T3-L1 preadipocytes were treated with differentiating medium containing 10 μg/mL insulin, 115 μg/mL methylisobutylxanthine, and 1 μM dexamethasone. Differentiated 3T3-L1 cells were subjected to Oil red O solution or used for Western blot analysis. Zaluzanin C was added to the cell culture medium at concentrations of 0, 1, 2.5, 5, and 10 μM. Results Zaluzanin C did not inhibit cell proliferation and showed no cytotoxicity at 10 μM concentration in 3T3-L1 cells. Therefore, concentration range of 0–10 μM zaluzanin C was used for subsequent experiments. Zaluzanin C inhibited accumulation of lipid droplets in 3T3-L1 adipocytes. To understand the underlying mechanism of zaluzanin C, expression of adipogenesis regulators was determined by Western blot analysis. Zaluzanin C suppressed peroxisome proliferator-activated receptor gamma (PPARγ) expression, an adipogenesis related transcription factor, and inhibited aP2/fatty acid-binding protein-4 expression, a target gene of PPARγ. However, it did not affect expression of CCAAT/enhancer-binding protein alpha related with acquisition of insulin sensitivity. Conclusion These data suggest that inhibitory effect of zaluzanin C on adipogenesis of 3T3-L1 adipocytes could be partially caused by suppressing PPARγ.
Collapse
Affiliation(s)
- Sang Hee Kwak
- Department of Food and Nutrition, Daegu University, Gyeongsan, Korea
| | - Yoon Hee Kim
- Department of Food and Nutrition, Daegu University, Gyeongsan, Korea.,Research Institute of Anti-Aging, Daegu University, Gyeongsan, Korea.,Institute of Industrial and Technology, Daegu University, Gyeongsan, Korea
| |
Collapse
|
9
|
D'Aniello E, Fellous T, Iannotti FA, Gentile A, Allarà M, Balestrieri F, Gray R, Amodeo P, Vitale RM, Di Marzo V. Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim Biophys Acta Gen Subj 2019; 1863:586-597. [PMID: 30611848 DOI: 10.1016/j.bbagen.2019.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND The nuclear Peroxisome Proliferator Activated Receptors (PPARs) are ligand-activated transcription factors playing a fundamental role in energy homeostasis and metabolism. Consequently, functional impairment or dysregulation of these receptors lead to a variety of metabolic diseases. While some phytocannabinoids (pCBs) are known to activate PPARγ, no data have been reported so far on their possible activity at PPARα. METHODS The putative binding modes of pCBs into PPARα/γ Ligand Binding Domains were found and assessed by molecular docking and molecular dynamics. Luciferase assays validated in silico predictions whereas the biological effects of such PPARα/γ ligands were assessed in HepG2 and 3T3L1 cell cultures. RESULTS The in silico study identified cannabigerolic acid (CBGA), cannabidiolic acid (CBDA) and cannabigerol (CBG) from C. sativa as PPARα/γ dual agonists, suggesting their binding modes toward PPARα/γ isoforms and predicting their activity as full or partial agonists. These predictions were confirmed by luciferase functional assays. The resulting effects on downstream gene transcription in adipocytes and hepatocytes were also observed, establishing their actions as functional dual agonists. CONCLUSIONS Our work broadens the activity spectrum of CBDA, CBGA and CBG by providing evidence that these pCBs act as dual PPARα/γ agonists with the ability to modulate the lipid metabolism. GENERAL SIGNIFICANCE Dual PPARα/γ agonists have emerged as an attractive alternative to selective PPAR agonists to treat metabolic disorders. We identified some pCBs as dual PPARα/γ agonists, potentially useful for the treatment of dyslipidemia and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica "Anton Dohrn", 80121 Naples, Italy
| | - Tariq Fellous
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Alessandra Gentile
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marco Allarà
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; Epitech Group SpA, Saccolongo, Padova, Italy
| | - Francesca Balestrieri
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Roy Gray
- GW Pharmaceuticals, Sovereign House, Vision Park, Histon, Cambridge CB24 9BZ, UK
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy; Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, Canada.
| |
Collapse
|
10
|
Zhang P, Du J, Wang L, Niu L, Zhao Y, Tang G, Jiang Y, Shuai S, Bai L, Li X, Wang J, Zhang S, Zhu L. MicroRNA-143a-3p modulates preadipocyte proliferation and differentiation by targeting MAPK7. Biomed Pharmacother 2018; 108:531-539. [PMID: 30243086 DOI: 10.1016/j.biopha.2018.09.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023] Open
Abstract
Adipogenesis plays a key role in increasing fat mass, which is a main characteristic for obesity, and involves preadipocyte proliferation and differentiation. Recently, more and more evidences suggested that microRNAs (miRNAs) is an important member of the regulatory network of adipogenesis. In this study, miR-143a-3p was highly expressed in adipose tissues of obese mice, and was up-regulated at the middle and last stage of 3T3-L1 adipocyte differentiation. Using mouse 3T3-L1 cells line, which is an ideal model in vitro for the study of adipogenesis, we observed that overexpression of miR-143a-3p inhibited the preadipocyte proliferation, and enhanced the preadipocyte differentiation. In contrast, the inhibition of miR-143a-3p expression promoted the preadipocyte proliferation, and inhibited the preadipocyte differentiation. Further analysis suggested that miR-143a-3p mediating preadipocyte differentiation might be involved in fatty acid metabolism. In addition, we found that miR-143-3p and PPARγ, an activator of miR-143a-3p transcription, could regulate each other. Compared with miR-143a-3p, MAPK7 played an opposite role in the proliferation and differentiation of adipocyte. Further analysis indicated that MAPK7 is a target gene of miR-143a-3p in 3T3-L1 cells, and inhibition of MAPK7 recede the effect of miR-143a-3p on preadipocyte proliferation and differentiation. Taken together, these results indicated that as a regulator of PPARγ, miR-143a-3p play an important role in adipogenesis via regulating MAPK7 and fatty acid.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linghui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanzhi Jiang
- College of Life and Biology Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Surong Shuai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewi Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, 402460, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis 2018; 28:91-111. [PMID: 29170059 DOI: 10.1016/j.numecd.2017.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 02/07/2023]
Abstract
Obesity is a growing health problem commonly associated with numerous metabolic disorders including type 2 diabetes, hypertension, cardiovascular disease, and some forms of cancer. The burden of obesity and associated cardiometabolic diseases are believed to arise through complex interplay between genetics and epigenetics predisposition, nutrition, environment, and lifestyle. However, the molecular basis and the repertoire of obesity-affecting factors are still unknown. Emerging evidence is connecting microRNAs (miRNAs) dysregulation with adipogenesis and obesity. Alteration in miRNAs expression could result in changes in the pattern of genes controlling a range of biological processes including inflammation, lipid metabolism, insulin resistance and adipogenesis. Hence, understanding exact roles of miRNAs as well as the degree of their contribution to the regulation of adipogenesis and fat cell development in obesity would provide new therapeutic targets for the development of novel and effective anti-obesity drugs. The objective of the current review is to: (i) discuss some of the latest development on relevant miRNAs dysregulation mainly in human adipogenesis and obesity, (ii) emphasize the role of circulating miRNAs as new promising therapeutics and attractive potential biomarkers for treating obesity and associated risk factor diseases, (iii) describe how dietary factors may influence obesity through modulation of miRNAs expression, (iv) highlight some of the actual limitations to the promise of miRNAs as novel therapeutics as well as to their translation for the benefit of patients, and finally (v) provide recommendations for future research on miRNA-based therapeutics that could lead to a breakthrough in the treatment of obesity and its associated pathologies.
Collapse
Affiliation(s)
- M Zaiou
- Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000, Nancy, France.
| | - H El Amri
- Laboratoire de Génétique de la Gendarmerie Royale, Avenue Ibn Sina, Agdal, Rabat, Morocco
| | - A Bakillah
- State University of New York, Downstate Medical Center, Department of Medicine, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| |
Collapse
|
12
|
A Herbal Formula HT051, a Combination of Pueraria lobata and Rehmannia glutinosa, Prevents Postmenopausal Obesity in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8641535. [PMID: 29441115 PMCID: PMC5758942 DOI: 10.1155/2017/8641535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022]
Abstract
Menopause is strongly associated with an increased risk of metabolic dysfunctions due to the decline in estrogen. Here, we hypothesized that dietary HT051, containing the roots of Pueraria lobata and Rehmannia glutinosa, has beneficial effects on ovariectomized (OVX) rats by regulating lipid metabolism. Forty-eight female Sprague-Dawley rats were randomly divided into 4 groups: sham-operated (Sham), OVX, OVX with low-dose HT051 supplementation, and OVX with high-dose HT051 supplementation. The rats were fed with a modified AIN-93G diet or an HT051-containing modified AIN-93G diet for 8 weeks. Body weight, fat mass, and serum levels of total cholesterol, triglyceride, glucose, alanine transaminase, and aspartate transaminase decreased in HT051-fed OVX rats. Dietary HT051 supplementation significantly decreased the mRNA expression of lipogenesis-related genes, including sterol regulatory element-binding protein 1c and fatty acid synthase, and increased the mRNA expression of β-oxidation-related genes, including peroxisome proliferator-activated receptor and carnitine palmitoyl transferase 1 in the liver of OVX rats. Moreover, the expression of genes involved in adipogenesis and inflammation was significantly lower in the adipose tissue of OVX rats fed with HT051 than in the OVX group. These findings suggest that HT051 may be a potential natural alternative for the management of postmenopausal metabolic dysfunctions.
Collapse
|
13
|
Bae IS, Park PJ, Lee JH, Cho EG, Lee TR, Kim SH. PPARγ-mediated G-protein coupled receptor 120 signaling pathway promotes transcriptional activation of miR-143 in adipocytes. Gene 2017; 626:64-69. [PMID: 28495174 DOI: 10.1016/j.gene.2017.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/16/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs), the small noncoding RNAs, regulate various biological processes such as adipogenesis. MicroRNA-143 (miR-143) promotes adipocyte differentiation, and is correlated with obesity in mice fed a high-fat diet. However, the transcriptional regulation of miR-143 is largely unknown. In this study, we identified that miR-143 is a target of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor in adipogenesis. Four putative peroxisome proliferator response elements (PPREs) were identified in the miR-143 promoter region. Using chromatin immune-precipitation, we observed that PPARγ was bound with two PPRE regions of the miR-143 promoter in 3T3-L1 adipocytes. A luciferase reporter assay showed that the PPRE1 region (-1330/-1309) of the miR-143 promoter played an important role in PPARγ transcriptional activation. In addition, we determined that G-protein coupled receptor 120 (GPR 120), which functions as an omega 3 fatty acid receptor, affected miR-143 expression in adipocytes. GPR120 silencing in adipocytes inhibited the expression of PPARγ and miR-143, whereas GPR120 overexpression led to increased expressions of PPARγ and miR-143. Silencing of PPARγ inhibited the induction of miR-143 by GPR-120. These results suggested that a PPARγ-mediated GPR120 signaling pathway promotes transcriptional activation of miR-143 in adipocytes.
Collapse
Affiliation(s)
- In-Seon Bae
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil June Park
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Jeong Hwa Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea.
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
14
|
The Inhibitory Effect of Tartary Buckwheat Extracts on Adipogenesis and Inflammatory Response. Molecules 2017; 22:molecules22071160. [PMID: 28704952 PMCID: PMC6152060 DOI: 10.3390/molecules22071160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum) has been established globally as a nutritionally important food item, particularly owing to high levels of bioactive compounds such as rutin. This study investigated the effect of tartary buckwheat extracts (TBEs) on adipogenesis and inflammatory response in 3T3-L1 cells. TBEs inhibited lipid accumulation, triglyceride content, and glycerol-3-phosphate dehydrogenase (GPDH) activity during adipocyte differentiation of 3T3 L1 cells. The mRNA levels of genes involved in fatty acid synthesis, such as peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α (CEBP-α), adipocyte protein 2 (aP2), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoylcoenzyme A desaturase-1 (SCD-1), were suppressed by TBEs. They also reduced the mRNA levels of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), and inducible nitric oxide synthase (iNOS). In addition, TBEs were decreased nitric oxide (NO) production. These results suggest that TBEs may inhibit adipogenesis and inflammatory response; therefore, they seem to be beneficial as a food ingredient to prevent obesity-associated inflammation.
Collapse
|
15
|
Lee MS, Jung S, Shin Y, Lee S, Kim CT, Kim IH, Kim Y. Lipolytic efficacy of alginate double-layer nanoemulsion containing oleoresin capsicum in differentiated 3T3-L1 adipocytes. Food Nutr Res 2017; 61:1339553. [PMID: 28747860 PMCID: PMC5510203 DOI: 10.1080/16546628.2017.1339553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/19/2017] [Indexed: 01/25/2023] Open
Abstract
Background: Oleoresin capsicum (OC) is an organic extract from fruits of the genus Capsicum, and has been reported to have an anti-obesity effect. Objective: This study comparatively investigated lipolytic effects of single-layer nanoemulsion (SN) and alginate double-layer nanoemulsion (AN) containing OC in 3T3-L1 adipocytes. Methods: SN and AN were compared by analyzing the intracellular lipid accumulation, triglyceride (TG) content, release of free fatty acids (FFAs) and glycerol, and mRNA expression of genes related to adipogenesis and lipolysis were analyzed in fully differentiated 3T3-L1 adipocytes. Results: Compared with SN, AN exhibited higher efficiency in inhibiting the intracellular lipid accumulation and TG content, and enhanced the release of FFAs and glycerol into the medium. In AN-treated cells, mRNA levels of peroxisome proliferator-activated receptor-γ and the fatty acid-binding protein adipocyte protein-2, which are involved in adipogenesis, were down-regulated, whereas those of genes related to lipolysis, including hormone-sensitive lipase and carnitine palmitoyl transferase-1α, were up-regulated compared with SN-treated cells. Conclusion: The lipolytic effect of AN was greater than that of SN; this was partly associated with the increased TG hydrolysis via induction of lipolytic gene expression and suppression of adipogenic gene expression in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Sunyoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonjin Shin
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Seohyun Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Chong-Tai Kim
- Research Group of Bioprocess Engineering, Korea Food Research Institute, Seongnam, Republic of Korea
| | - In-Hwan Kim
- Department of Food and Nutrition, Korea University, Seoul, Republic of Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Kadota Y, Toriuchi Y, Aki Y, Mizuno Y, Kawakami T, Nakaya T, Sato M, Suzuki S. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway. PLoS One 2017; 12:e0176070. [PMID: 28426713 PMCID: PMC5398611 DOI: 10.1371/journal.pone.0176070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuriko Toriuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuka Aki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuto Mizuno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Tomoko Nakaya
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
17
|
Lee JH, Kim T, Lee JJ, Lee KJ, Kim HK, Yun B, Jeon J, Kim SK, Ma JY. The Herbal Medicine KBH-1 Inhibits Fat Accumulation in 3T3-L1 Adipocytes and Reduces High Fat Diet-Induced Obesity through Regulation of the AMPK Pathway. PLoS One 2015; 10:e0142041. [PMID: 26649747 PMCID: PMC4674115 DOI: 10.1371/journal.pone.0142041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to investigate whether a novel formulation of an herbal extract, KBH-1, has an inhibitory effect on obesity. To determine its anti-obesity effects and its underlying mechanism, we performed anti-obesity-related experiments in vitro and in vivo. 3T3-L1 preadipocytes were analyzed for lipid accumulation as well as the protein and gene expression of molecular targets involved in fatty acid synthesis. To determine whether KBH-1 oral administration results in a reduction in high-fat diet (HFD)-induced obesity, we examined five groups (n = 9) of C57BL/6 mice as follows: 10% kcal fat diet-fed mice (ND), 60% kcal fat diet-fed mice (HFD), HFD-fed mice treated with orlistat (tetrahydrolipstatin, marketed under the trade name Xenical), HFD-fed mice treated with 150 mg/kg KBH-1 (KBH-1 150) and HFD-fed mice treated with 300 mg/kg KBH-1 (KBH-1 300). During adipogenesis of 3T3-L1 cells in vitro, KBH-1 significantly reduced lipid accumulation and down-regulated the expression of master adipogenic transcription factors, including CCAAT/enhancer binding protein (C/EBP) β, C/EBP α and peroxisome proliferation-activity receptor (PPAR) γ, which led to the suppression of the expression of several adipocyte-specific genes and proteins. KBH-1 also markedly phosphorylated the adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). In addition, KBH-1-induced the inhibition effect on lipid accumulation and AMPK-mediated signal activation were decreased by blocking AMPK phosphorylation using AMPK siRNA. Furthermore, daily oral administration of KBH-1 resulted in dose-dependent decreases in body weight, fat pad mass and fat tissue size without systemic toxicity. These results suggest that KBH-1 inhibits lipid accumulation by down-regulating the major transcription factors of the adipogenesis pathway by regulating the AMPK pathway in 3T3-L1 adipocytes and in mice with HFD-induced obesity. These results implicate KBH-1, a safe herbal extract, as a potential anti-obesity therapeutic agent.
Collapse
Affiliation(s)
- Ji-Hye Lee
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, 305–764, Republic of Korea
| | - Taesoo Kim
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
| | - Jung-Jin Lee
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
| | - Kwang Jin Lee
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
| | - Hyun-Kyu Kim
- Nutraceutical Food R&D center, Kolmar BNH, 22–15 Sandan-gil, Jeonui-myeon, Sejong, 339–851, Republic of Korea
| | - Bora Yun
- Nutraceutical Food R&D center, Kolmar BNH, 22–15 Sandan-gil, Jeonui-myeon, Sejong, 339–851, Republic of Korea
| | - Jongwook Jeon
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 305–764, Republic of Korea
- * E-mail: (SKK); (JYM)
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
- * E-mail: (SKK); (JYM)
| |
Collapse
|
18
|
Nie F, Liang Y, Xun H, Sun J, He F, Ma X. Inhibitory effects of tannic acid in the early stage of 3T3-L1 preadipocytes differentiation by down-regulating PPARγ expression. Food Funct 2015; 6:894-901. [DOI: 10.1039/c4fo00871e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tannic acid inhibits lipid accumulation in the early stage of 3T3-L1 preadipocytes differentiation by down-regulating PPARγ.
Collapse
Affiliation(s)
- Fangyuan Nie
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yan Liang
- School of Kinesiology and Health
- Capital University of Physical Education and Sports
- Beijing 100191
- China
| | - Hang Xun
- State Forestry Administration
- International Centre for Bamboo and Rattan Academy of Bioresource Utilization
- Beijing 100102
- China
| | - Jia Sun
- State Forestry Administration
- International Centre for Bamboo and Rattan Academy of Bioresource Utilization
- Beijing 100102
- China
| | - Fei He
- Xinjiang Technical Institute of Physics & Chemistry
- Chinese Academy of Sciences
- Urmuqi 830011
- China
| | - Xiaofeng Ma
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
19
|
Xu J, Yin L, Xu Y, Li Y, Zalzala M, Cheng G, Zhang Y. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS One 2014; 9:e109663. [PMID: 25285996 PMCID: PMC4186840 DOI: 10.1371/journal.pone.0109663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1) is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL), an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yuanyuan Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Munaf Zalzala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition. Proc Natl Acad Sci U S A 2014; 111:E3043-52. [PMID: 25024173 DOI: 10.1073/pnas.1405879111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia. These abnormalities did not develop in P1-null mice, which produce medium/long collagen XVIII. White adipose tissue samples from P2-null mice contain larger reserves of a cell population enriched in early adipocyte progenitors; however, their embryonic fibroblasts had ∼ 50% lower adipocyte differentiation potential. Differentiating 3T3-L1 fibroblasts into mature adipocytes produced striking increases in P2 gene-products and dramatic falls in P1-transcribed mRNA, whereas Wnt3a-induced dedifferentiation of mature adipocytes produced reciprocal changes in P1 and P2 transcript levels. P2-derived gene-products containing frizzled-like sequences bound the potent adipogenic inhibitor, Wnt10b, in vitro. Previously, we have shown that these same sequences bind Wnt3a, inhibiting Wnt3a-mediated signaling. P2-transcript levels in visceral fat were positively correlated with serum free fatty acid levels, suggesting that collagen α1 (XVIII) expression contributes to regulation of adipose tissue metabolism in visceral obesity. Medium/long collagen XVIII is deposited in the Space of Disse, and interaction between hepatic apolipoprotein E and this proteoglycan is lost in P2-null mice. These results describe a previously unidentified extracellular matrix-directed mechanism contributing to the control of the multistep adipogenic program that determines the number of precursors committing to adipocyte differentiation, the maintenance of the differentiated state, and the physiological consequences of its impairment on ectopic fat deposition.
Collapse
|
21
|
3T3-L1 preadipocytes exhibit heightened monocyte-chemoattractant protein-1 response to acute fatty acid exposure. PLoS One 2014; 9:e99382. [PMID: 24911931 PMCID: PMC4049800 DOI: 10.1371/journal.pone.0099382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 05/14/2014] [Indexed: 12/28/2022] Open
Abstract
Preadipocytes contribute to the inflammatory responses within adipose tissue. Whilst fatty acids are known to elicit an inflammatory response within adipose tissue, the relative contribution of preadipocytes and mature adipocytes to this is yet to be determined. We aimed to examine the actions of common dietary fatty acids on the acute inflammatory and adipokine response in 3T3-L1 preadipocytes and differentiated mature adipocytes. Gene expression levels of key adipokines in 3T3-L1 preadipocytes and adipocytes were determined following incubation with palmitic acid, myristic acid or oleic acid and positive inflammatory control, lipopolysaccharide for 2 and 4 h. Inflammatory kinase signalling was assessed by analysis of nuclear factor-κB, p38-mitogen-activated protein kinase and c-jun amino-terminal kinase phosphorylation. Under basal conditions, intracellular monocyte chemoattractant protein-1 and interleukin-6 gene expression levels were increased in preadipocytes, whereas mature adipocytes expressed increased gene expression levels of leptin and adiponectin. Fatty acid exposure at 2 and 4 h increased both monocyte chemoattractant protein-1 and interleukin-6 gene expression levels in preadipocytes to greater levels than in mature adipocytes. There was an accompanying increase of inhibitor of κB-α degradation and nuclear factor-κB (p65) (Ser536) phosphorylation with fatty acid exposure in the preadipocytes only. The current study points to preadipocytes rather than the adipocytes as the contributors to both immune cell recruitment and inflammatory adipokine secretion with acute increases in fatty acids.
Collapse
|
22
|
Horswell SD, Fryer LGD, Hutchison CE, Zindrou D, Speedy HE, Town MM, Duncan EJ, Sivapackianathan R, Patel HN, Jones EL, Braithwaite A, Salm MPA, Neuwirth CKY, Potter E, Anderson JR, Taylor KM, Seed M, Betteridge DJ, Crook MA, Wierzbicki AS, Scott J, Naoumova RP, Shoulders CC. CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res 2013; 54:3491-505. [PMID: 24103848 DOI: 10.1194/jlr.m041814] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3'UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis.
Collapse
Affiliation(s)
- Stuart D Horswell
- Medical Research Council, Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kwak DH, Lee JH, Song KH, Ma JY. Inhibitory effects of baicalin in the early stage of 3T3-L1 preadipocytes differentiation by down-regulation of PDK1/Akt phosphorylation. Mol Cell Biochem 2013; 385:257-64. [DOI: 10.1007/s11010-013-1834-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022]
|
24
|
Bionaz M, Chen S, Khan MJ, Loor JJ. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation. PPAR Res 2013; 2013:684159. [PMID: 23737762 PMCID: PMC3657398 DOI: 10.1155/2013/684159] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022] Open
Abstract
Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle.
Collapse
Affiliation(s)
- Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Shuowen Chen
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Muhammad J. Khan
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Juan J. Loor
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Tan Y, Muise ES, Dai H, Raubertas R, Wong KK, Thompson GM, Wood HB, Meinke PT, Lum PY, Thompson JR, Berger JP. Novel transcriptome profiling analyses demonstrate that selective peroxisome proliferator-activated receptor γ (PPARγ) modulators display attenuated and selective gene regulatory activity in comparison with PPARγ full agonists. Mol Pharmacol 2012; 82:68-79. [PMID: 22496518 DOI: 10.1124/mol.111.076679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Selective peroxisome proliferator-activated receptor γ (PPARγ) modulators (SPPARγMs) have been actively pursued as the next generation of insulin-sensitizing antidiabetic drugs, because the currently marketed PPARγ full agonists, pioglitazone and rosiglitazone, have been reported to produce serious adverse effects among patients with type 2 diabetes mellitus. We conducted extensive transcriptome profiling studies to characterize and to contrast the activities of 70 SPPARγMs and seven PPARγ full agonists. In both 3T3-L1 adipocytes and adipose tissue from db/db mice, the SPPARγMs generated attenuated and selective gene-regulatory responses, in comparison with full agonists. More importantly, SPPARγMs regulated the expression of antidiabetic efficacy-associated genes to a greater extent than that of adverse effect-associated genes, whereas PPARγ full agonists regulated both gene sets proportionally. Such SPPARγM selectivity demonstrates that PPARγ ligand regulation of gene expression can be fine-tuned, and not just turned on and off, to achieve precise control of complex cellular and physiological functions. It also provides a potential molecular basis for the superior therapeutic window previously observed with SPPARγMs versus full agonists. On the basis of our profiling results, we introduce two novel, gene expression-based scores, the γ activation index and the selectivity index, to aid in the detection and characterization of novel SPPARγMs. These studies provide new insights into the gene-regulatory activity of SPPARγMs as well as novel quantitative indices to facilitate the identification of PPARγ ligands with robust insulin-sensitizing activity and improved tolerance among patients with type 2 diabetes, compared with presently available PPARγ agonist drugs.
Collapse
Affiliation(s)
- Yejun Tan
- Department of Informatics and Analysis, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao L, Hu P, Zhou Y, Purohit J, Hwang D. NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2011; 301:E587-98. [PMID: 21693690 DOI: 10.1152/ajpendo.00709.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is associated with obesity and insulin resistance; however, the underlying mechanisms are not fully understood. Pattern recognition receptors Toll-like receptors and nucleotide-oligomerization domain-containing proteins play critical roles in innate immune response. Here, we report that activation of nucleotide binding oligomerization domain-containing protein-1 (NOD1) in adipocytes induces proinflammatory response and impairs insulin signaling and insulin-induced glucose uptake. NOD1 and NOD2 mRNA are markedly increased in differentiated murine 3T3-L1 adipocytes and human primary adipocyte culture upon adipocyte conversion. Moreover, NOD1 mRNA is markedly increased only in the fat tissues in diet-induced obese mice, but not in genetically obese ob/ob mice. Stimulation of NOD1 with a synthetic ligand Tri-DAP induces proinflammatory chemokine MCP-1, RANTES, and cytokine TNF-α and MIP-2 (human IL-8 homolog) and IL-6 mRNA expression in 3T3-L1 adipocytes in a time- and dose-dependent manner. Similar proinflammatory profiles are observed in human primary adipocyte culture stimulated with Tri-DAP. Furthermore, NOD1 activation suppresses insulin signaling, as revealed by attenuated tyrosine phosphorylation and increased inhibitory serine phosphorylation, of IRS-1 and attenuated phosphorylation of Akt and downstream target GSK3α/3β, resulting in decreased insulin-induced glucose uptake in 3T3-L1 adipocytes. Together, our results suggest that NOD1 may play an important role in adipose inflammation and insulin resistance in diet-induced obesity.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, USA.
| | | | | | | | | |
Collapse
|
27
|
Yang CC, Deng SJ, Hsu CC, Liu BH, Lin EC, Cheng WTK, Wang PH, Ding ST. Visfatin regulates genes related to lipid metabolism in porcine adipocytes. J Anim Sci 2010; 88:3233-41. [PMID: 20562354 DOI: 10.2527/jas.2010-2799] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Visfatin is a visceral adipose tissue-specific adipocytokine that plays a positive role in attenuating insulin resistance by binding to the insulin receptor. Visfatin has been suggested to play a role in the regulation of lipid metabolism and inflammation; however, the mechanism remains unclear. We investigated the effects of visfatin on the regulation of gene expression in cultured porcine preadipocytes and differentiated adipocytes. In preadipocytes, the mRNA abundance of lipoprotein lipase and PPARgamma were significantly increased by visfatin or insulin treatment after 8 d (all P < 0.05). In the presence of insulin, the mRNA abundance of adipocyte fatty acid-binding protein was 24.7-fold greater than in the untreated group (P < 0.05), whereas visfatin alone had no effect on adipocyte fatty acid-binding protein mRNA abundance. Adipocyte differentiation was induced by insulin treatment for 8 d. In differentiated porcine adipocytes, exposure to insulin or visfatin for 24 h increased (P < 0.05) fatty acid synthase mRNA abundance but had no effect on the expression of sterol regulatory element binding-protein 1c mRNA. We also found a 5.8-fold upregulation of IL-6 expression in porcine adipocytes after 24 h of treatment with visfatin (P < 0.05). These results demonstrated that visfatin upregulated lipoprotein lipase expression in preadipocytes, potentially facilitating lipid uptake, and increased the gene expression of fatty acid synthase in differentiated adipocytes to potentially enhance lipogenic activity. Furthermore, visfatin can upregulate IL-6 expression in differentiated porcine adipocytes. The information presented in this study provides insights into the roles of visfatin in lipid metabolism in pigs.
Collapse
Affiliation(s)
- C C Yang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Seto S, Okada K, Kiyota K, Isogai S, Iwago M, Shinozaki T, Kitamura Y, Kohno Y, Murakami K. Design, Synthesis, and Structure−Activity Relationship Studies of Novel 2,4,6-Trisubstituted-5-pyrimidinecarboxylic Acids as Peroxisome Proliferator-Activated Receptor γ (PPARγ) Partial Agonists with Comparable Antidiabetic Efficacy to Rosiglitazone. J Med Chem 2010; 53:5012-24. [DOI: 10.1021/jm100443s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigeki Seto
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Kyoko Okada
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Koichi Kiyota
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Shigeki Isogai
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Maki Iwago
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Takehiro Shinozaki
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Yoshiaki Kitamura
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Yasushi Kohno
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Koji Murakami
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| |
Collapse
|
29
|
Poulain-Godefroy O, Le Bacquer O, Plancq P, Lecoeur C, Pattou F, Frühbeck G, Froguel P. Inflammatory role of Toll-like receptors in human and murine adipose tissue. Mediators Inflamm 2010; 2010:823486. [PMID: 20339530 PMCID: PMC2843862 DOI: 10.1155/2010/823486] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 01/07/2010] [Indexed: 01/22/2023] Open
Abstract
It was recently demonstrated that TLR4 activation via dietary lipids triggers inflammatory pathway and alters insulin responsiveness in the fat tissue during obesity. Here, we question whether other TLR family members could participate in the TLR-mediated inflammatory processes occurring in the obese adipose tissue. We thus studied the expression of TLR1, TLR2, TLR4, and TLR6 in adipose tissue. These receptors are expressed in omental and subcutaneous human fat tissue, the expression being higher in the omental tissue, independently of the metabolic status of the subject. We demonstrated a correlation of TLRs expression within and between each depot suggesting a coregulation. Murine 3T3-L1 preadipocyte cells stimulated with Pam3CSK4 induced the expression of some proinflammatory markers. Therefore, beside TLR4, other toll-like receptors are differentially expressed in human fat tissue, and functional in an adipocyte cell line, suggesting that they might participate omental adipose tissue-related inflammation that occurs in obesity.
Collapse
|
30
|
Xue J, Ding W, Liu Y. Anti-diabetic effects of emodin involved in the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2009; 81:173-7. [PMID: 19699280 DOI: 10.1016/j.fitote.2009.08.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 01/30/2023]
Abstract
Rheum palmatum Linn has been widely applied in the clinical treatment of diabetes mellitus. It has been found that emodin as the major bioactive component of R. palmatum L exhibits the competency to activate peroxisomal proliferator-activated receptor-gamma (PPARgamma) in vitro. So the aim of this study was to evaluate the anti-diabetic effects of emodin through the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin (STZ)-induced diabetic mice. The diabetic mice were intraperitoneally injected with emodin for three weeks. No changes of food consumption and the body weight in emodin-treated mice were monitored daily during the entire experiment. At the end of experiment, the levels of blood glucose, triglyceride and total cholesterol in serum were significantly decreased after emodin treatment. However, serum high-density lipoprotein cholesterol (HDLc) concentration was significantly elevated. The glucose tolerance and insulin sensitivity in emodin-treated group were significantly improved. Furthermore, the results of quantitative RT-PCR analysis showed that emodin significantly elevated the mRNA expression level of PPARgamma and regulated the mRNA expressions of LPL, FAT/CD36, resistin and FABPs (ap2) in liver and adipocyte tissues. No effects on the mRNA expressions of PPARalpha and PPARalpha-target genes were observed. Taken together, the results suggested that the activation of PPARgamma and the modulation of metabolism-related genes were likely involved in the anti-diabetic effects of emodin.
Collapse
Affiliation(s)
- Jianfeng Xue
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, No. 19 A Yu Quan Road, Beijing, China
| | | | | |
Collapse
|
31
|
Tu Z, Argmann C, Wong KK, Mitnaul LJ, Edwards S, Sach IC, Zhu J, Schadt EE. Integrating siRNA and protein-protein interaction data to identify an expanded insulin signaling network. Genome Res 2009; 19:1057-67. [PMID: 19261841 DOI: 10.1101/gr.087890.108] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin resistance is one of the dominant symptoms of type 2 diabetes (T2D). Although the molecular mechanisms leading to this resistance are largely unknown, experimental data support that the insulin signaling pathway is impaired in patients who are insulin resistant. To identify novel components/modulators of the insulin signaling pathway, we designed siRNAs targeting over 300 genes and tested the effects of knocking down these genes in an insulin-dependent, anti-lipolysis assay in 3T3-L1 adipocytes. For 126 genes, significant changes in free fatty acid release were observed. However, due to off-target effects (in addition to other limitations), high-throughput RNAi-based screens in cell-based systems generate significant amounts of noise. Therefore, to obtain a more reliable set of genes from the siRNA hits in our screen, we developed and applied a novel network-based approach that elucidates the mechanisms of action for the true positive siRNA hits. Our analysis results in the identification of a core network underlying the insulin signaling pathway that is more significantly enriched for genes previously associated with insulin resistance than the set of genes annotated in the KEGG database as belonging to the insulin signaling pathway. We experimentally validated one of the predictions, S1pr2, as a novel candidate gene for T2D.
Collapse
Affiliation(s)
- Zhidong Tu
- Rosetta Inpharmatics, a wholly owned subsidiary of Merck & Co., Inc., Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li H, Heilbronn LK, Hu D, Poynten AM, Blackburn MA, Shirkhedkar DP, Kaplan WH, Kriketos AD, Ye J, Chisholm DJ. Islet-1: a potentially important role for an islet cell gene in visceral fat. Obesity (Silver Spring) 2008; 16:356-62. [PMID: 18239644 DOI: 10.1038/oby.2007.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To examine differences in gene expression between visceral (VF) and subcutaneous fat (SF) to identity genes of potential importance in regulation of VF. METHODS AND PROCEDURES We compared gene expression (by DNA array and quantitative PCR (qPCR)) in paired VF and SF adipose biopsies from 36 subjects (age 54 +/- 15 years, 15 men/21 women) with varying degrees of adiposity and insulin resistance, in chow and fat fed mice (+/- rosiglitazone treatment) and in c-Cbl(-/-) mice. Gene expression was also examined in 3T3-L1 preadipocytes during differentiation. RESULTS A twofold difference or more was found between VF and SF in 1,343 probe sets, especially for genes related to development, cell differentiation, signal transduction, and receptor activity. Islet-1 (ISL1), a LIM-homeobox gene with important developmental and regulatory function in islet, neural, and cardiac tissue, not previously recognized in adipose tissue was virtually absent in SF but substantially expressed in VF. ISL1 expression correlated negatively with BMI (r = -0.37, P = 0.03), abdominal fat (by dual energy X-ray absorptiometry, r = -0.44, P = 0.02), and positively with circulating adiponectin (r = 0.33, P = 0.04). In diet-induced obese mice, expression was reduced in the presence or absence of rosiglitazone. Correspondingly, expression was increased in the c-Cbl(-/-) mouse, which is lean and insulin sensitive (IS). ISL1 expression was increased sevenfold in 3T3-L1 preadipocytes during early (day 1) differentiation and was reduced by day 2 differentiation. DISCUSSION An important developmental and regulatory gene ISL1 is uniquely expressed in VF, probably in the preadipocyte. Our data suggest that ISL1 may be regulated by adiposity and its role in metabolic regulation merits further study.
Collapse
Affiliation(s)
- Haiyan Li
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Poulain-Godefroy O, Froguel P. Preadipocyte response and impairment of differentiation in an inflammatory environment. Biochem Biophys Res Commun 2007; 356:662-7. [PMID: 17383612 DOI: 10.1016/j.bbrc.2007.03.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 12/31/2022]
Abstract
Recent reports suggest the potential role of toll-like receptor 4 (TLR4) in initiation of inflammatory responses and fatty acid-induced insulin resistance. We describe here the synthesis of pro-inflammatory products in 3T3-L1 preadipocyte cell line after stimulation with lipopolysaccharide (LPS), a TLR4 agonist. Expression profiles of mRNA coding for IL6, CCL2, CCL5, CCL11, NOS2, and PTGS2 demonstrated a higher responsiveness to LPS of these transcripts in preadipocytes than in fully differentiated adipocytes, confirming inflammatory features of preadipocytes. IL6, CCL2, CCL5 and CCL11 were secreted in 3T3-L1 supernatants within 4 h after LPS stimulation. In addition, continuous exposure to LPS during adipocyte differentiation impaired this process as was demonstrated by analysis of mRNA profiles of lipogenesis enzymes (FABP4, GPD1, LPL), adipokines (adiponectin, resistin, visfatin, leptin), and of the transcription factor PPARgamma. This suggests that toll-like receptor mediated activation could regulate maintenance of preadipocyte status, and inflammatory environment encountered in inflamed white adipose tissue.
Collapse
Affiliation(s)
- Odile Poulain-Godefroy
- CNRS 8090, Institute of Biology, Pasteur Institute, 1 rue Calmette, BP447, 59021 Lille, France.
| | | |
Collapse
|
34
|
Kato Y, Ozaki N, Yamada T, Miura Y, Oiso Y. H-89 potentiates adipogenesis in 3T3-L1 cells by activating insulin signaling independently of protein kinase A. Life Sci 2006; 80:476-83. [PMID: 17056071 DOI: 10.1016/j.lfs.2006.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 09/17/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
Among four kinds of protein kinase A (PKA) inhibitors tested, H-89 exhibited a unique action to remarkably enhance adipocyte differentiation of 3T3-L1 cells, whereas the other three PKA inhibitors, PKA inhibitor Fragment 14-22 (PKI), Rp-cAMP, and KT 5720, did not enhance adipocyte differentiation. H-85, which is an inactive form of H-89, exhibited a similar enhancing effect on adipocyte differentiation. H-89 also potentiated the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2 in 3T3-L1 cells, which function as downstream signaling of insulin. Phosphoinositide 3-kinase (PI3K) inhibitor wortmannin and mitogen-activated protein kinase kinase (MEK) inhibitor PD 98059 suppressed both the H-89-induced promotion of adipocyte differentiation and the H-89-induced potentiation of phosphorylation of Akt and ERK1/2. Rho kinase inhibitor Y-27632 also promoted the phosphorylation of both Akt and ERK1/2 and enhanced adipocyte differentiation, although its effect was somewhat less than that of H-89. Even when cells were treated with a mixture of Y-27632 and H-89, the additive enhancing effects on both the insulin signaling and adipocyte differentiation were not detected. Therefore, it is suggested that the major possible mechanism whereby H-89 potentiates adipocyte differentiation of 3T3-L1 cells is activation of insulin signaling that is elicited mostly by inhibiting Rho/Rho kinase pathway.
Collapse
Affiliation(s)
- Yoshiro Kato
- Department of Endocrinology and Diabetes, Field of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | |
Collapse
|
35
|
Fan C, Yan J, Qian Y, Wo X, Gao L. Regulation of Lipoprotein Lipase Expression by Effect of Hawthorn Flavonoids on Peroxisome Proliferator Response Element Pathway. J Pharmacol Sci 2006; 100:51-8. [PMID: 16404131 DOI: 10.1254/jphs.fp0050748] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To investigate the possibility that natural medicines affect lipid metabolism by regulating lipoprotein lipase (LPL) expression, a green fluorescent protein (GFP) gene was constructed downstream of the peroxisome proliferator response element (PPRE) and the constructed plasmid was microinjected into Xenopus oocytes to establish a PPRE regulatory reporter system. Using this system, hawthorn flavonoids were quickly selected from a panel of natural medicines and found to up-regulate GFP expression by an effect on PPRE. To confirm the effect of hawthorn flavonoids, we treated mice orally with water (control), hawthorn flavonoids, and pioglitazone and measured the LPL levels in serum, adipose tissue, and muscle by an enzyme-linked immunosorbent assay. The serum LPL levels were no different from the controls after treatment with either hawthorn flavonoids or pioglitazone, but LPL increased significantly in muscular tissues and decreased in adipose tissues. These results demonstrate that hawthorn flavonoids meditate LPL expression in mice with tissue-specific differences. A novel PPRE regulatory report system was established for rapid and effective selection and evaluation of LPL-mediating drugs.
Collapse
Affiliation(s)
- Chunlei Fan
- Life Science Department, Zhejiang College of Traditional Chinese Medicine, Hangzhou, China.
| | | | | | | | | |
Collapse
|
36
|
Liu J, DeYoung SM, Zhang M, Zhang M, Cheng A, Saltiel AR. Changes in integrin expression during adipocyte differentiation. Cell Metab 2005; 2:165-77. [PMID: 16154099 DOI: 10.1016/j.cmet.2005.08.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/15/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
3T3-L1 preadipocytes require cAMP for maximal differentiation. Microarray analysis reveals that the integrins alpha5 and alpha6 are coordinately regulated by cAMP. alpha5 expression is gradually diminished during adipogenesis, whereas alpha6 is increased. Overexpression of alpha5 in preadipocytes results in enhanced proliferation and attenuated differentiation. Conversely, alpha6 overexpression is without effect. The GTPase Rac is normally inhibited during differentiation. However, overexpression of integrin alpha5 increases Rac activity. Constitutively active but not dominant-negative Rac inhibits differentiation when overexpressed in preadipocytes, implying its role downstream of alpha5 integrin in maintaining preadipocytes in an undifferentiated state. Moreover, alpha6 integrin is critically involved in clustering growth-arrested preadipocytes on basement membrane Matrigel. Perturbation of such clustering enhances Rho activity and promotes growth-arrested preadipocytes to reenter the cell cycle. These findings demonstrate a role for integrin alpha6 in connecting morphogenesis with signaling processes leading to terminal differentiation.
Collapse
Affiliation(s)
- Jun Liu
- Department of Internal Medicine, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
37
|
Liu K, Black RM, Acton JJ, Mosley R, Debenham S, Abola R, Yang M, Tschirret-Guth R, Colwell L, Liu C, Wu M, Wang CF, MacNaul KL, McCann ME, Moller DE, Berger JP, Meinke PT, Jones AB, Wood HB. Selective PPARγ modulators with improved pharmacological profiles. Bioorg Med Chem Lett 2005; 15:2437-40. [PMID: 15863293 DOI: 10.1016/j.bmcl.2005.03.092] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/21/2005] [Accepted: 03/23/2005] [Indexed: 12/28/2022]
Abstract
A series of metabolically robust N-benzyl-indole selective PPARgamma modulators with either a 3-benzoyl or 3-benzisoxazoyl moiety have been identified. In vitro, these compounds are partial agonists and exhibit reduced adipogenesis in human adipocytes. In vivo, these SPPARgammaMs result in potent glucose lowering in db/db mice and attenuate increases in heart weight and brown adipose tissue that is typically observed in rats upon treatment with PPARgamma full agonists.
Collapse
Affiliation(s)
- Kun Liu
- Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|