1
|
Rizzo R, Capozza M, Conti L, Avalle L, Poli V, Terreno E. Novel FAP-Targeted Heptamethine Cyanines for NIRF Imaging Applications. Mol Pharm 2025; 22:1518-1528. [PMID: 39954291 PMCID: PMC11881144 DOI: 10.1021/acs.molpharmaceut.4c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Fibroblast activation protein (FAP) is a pan-cancer target that is useful for imaging, ideally all epithelial cancers. This work aimed to develop, characterize, and validate two novel FAP-targeted probes for optical imaging, both in vitro and in vivo. IRDye800CW and FNIRTag heptamethine cyanines were conjugated to the NH precursor of the well-known FAP inhibitor FAPI-46, which is widely employed in nuclear medicine. In addition to synthesis, the dyes were characterized in terms of physicochemical properties, biodistribution, and imaging performances in a breast cancer tumor model. FAPI-FNIRTag showed a stronger fluorescence and higher photostability compared to FAPI-IRDye800CW. Notably, both compounds exhibited strong tumor accumulation in TUBO breast cancer-bearing mice 24 h postadministration, suggesting potential for further investigation as fluorescence-guided surgery (FGS) agents.
Collapse
Affiliation(s)
- Rebecca Rizzo
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, Turin 10126, Italy
| | - Martina Capozza
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, Turin 10126, Italy
| | - Laura Conti
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, Turin 10126, Italy
| | - Lidia Avalle
- DISIT, University of Eastern Piedmont, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Valeria Poli
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Enzo Terreno
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, Turin 10126, Italy
| |
Collapse
|
2
|
McMorrow R, de Bruijn HS, Que I, Stuurman DC, de Ridder CMA, Doukas M, Robinson DJ, Mezzanotte L, Lowik CWGM. Rapid Assessment of Bio-distribution and Antitumor Activity of the Photosensitizer Bremachlorin in a Murine PDAC Model: Detection of PDT-induced Tumor Necrosis by IRDye® 800CW Carboxylate, Using Whole-Body Fluorescent Imaging. Mol Imaging Biol 2024; 26:616-627. [PMID: 38890241 PMCID: PMC11281978 DOI: 10.1007/s11307-024-01921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Photodynamic therapy (PDT) is a light-based anticancer therapy that can induce tumor necrosis and/or apoptosis. Two important factors contributing to the efficacy of PDT are the concentration of the photosensitizer in the tumor tissue and its preferential accumulation in the tumor tissue compared to that in normal tissues. In this study, we investigated the use of optical imaging for monitoring whole-body bio-distribution of the fluorescent (660 nm) photosensitizer Bremachlorin in vivo, in a murine pancreatic ductal adenocarcinoma (PDAC) model. Moreover, we non-invasively, examined the induction of tumor necrosis after PDT treatment using near-infrared fluorescent imaging of the necrosis avid cyanine dye IRDye®-800CW Carboxylate. Using whole-body fluorescence imaging, we observed that Bremachlorin preferentially accumulated in pancreatic tumors. Furthermore, in a longitudinal study we showed that 3 hours after Bremachlorin administration, the fluorescent tumor signal reached its maximum. In addition, the tumor-to-background ratio at all-time points was approximately 1.4. Ex vivo, at 6 hours after Bremachlorin administration, the tumor-to-muscle or -normal pancreas ratio exhibited a greater difference than it did at 24 hours, suggesting that, in terms of efficacy, 6 hours after Bremachlorin administration was an effective time point for PDT treatment of PDAC. In vivo administration of the near infrared fluorescence agent IRDye®-800CW Carboxylate showed that PDT, 6 hours after administration of Bremachlorin, selectively induced necrosis in the tumor tissues, which was subsequently confirmed histologically. In conclusion, by using in vivo fluorescence imaging, we could non-invasively and longitudinally monitor, the whole-body distribution of Bremachlorin. Furthermore, we successfully used IRDye®-800CW Carboxylate, a near-infrared fluorescent necrosis avid agent, to image PDT-induced necrotic cell death as a measure of therapeutic efficacy. This study showed how fluorescence can be applied for optimizing, and assessing the efficacy of, PDT.
Collapse
Affiliation(s)
- Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Henriette S de Bruijn
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ivo Que
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Debra C Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Urology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Corrina M A de Ridder
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Urology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dominic J Robinson
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands.
- Department of Molecular Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | - Clemens W G M Lowik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Kravchenko Y, Sikora K, Wireko AA, Lyndin M. Fluorescence visualization for cancer DETECTION: EXPERIENCE and perspectives. Heliyon 2024; 10:e24390. [PMID: 38293525 PMCID: PMC10827512 DOI: 10.1016/j.heliyon.2024.e24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The current review focuses on the latest advances in the improvement and application of fluorescence imaging technology. Near-infrared (NIR) fluorescence imaging is a promising new technique that uses non-specific fluorescent agents and targeted fluorescent tracers combined with a dedicated camera to better navigate and visualize tumors. Fluorescence-guided surgery (FGS) is used to perform various tasks, helping the surgeon to distinguish lymphatic vessels and nodes from surrounding tissues easily and quickly assess the perfusion of the planned resection area, including intraoperative visualization of metastases. The results of the insertion of fluorescence visualization as an auxiliary method to cancer detection and high-risk metastatic lesions in clinical practice have demonstrated enthusiastic results and huge potential. However, intraoperative fluorescence visualization must not be considered as a main diagnostic or treatment method but as an aid to the surgeon. Thus, fluorescence study does not dispense the diagnostic gold standards of benign or malignant tumors (conventional examination, biopsy, ultrasonography and computed tomography, etc.) and can be done usually during intraoperative treatment. Moreover, as fluorescence surgery and fluorescence diagnostic techniques continue to improve, it is likely that they will evolve towards targeted fluorescence imaging probes that will increasingly target a specific type of cancer cell. The most important point remains the search for highly selective messengers of fluorescent labels, which make it possible to identify tumor cells exclusively in the affected organs and indicate to surgeons the boundaries of their spread and metastasis.
Collapse
Affiliation(s)
- Yaroslav Kravchenko
- Sumy State University, Sumy, Ukraine
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | | | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, 45147, Germany
| |
Collapse
|
4
|
Teodori L, Omer M, Kjems J. RNA nanostructures for targeted drug delivery and imaging. RNA Biol 2024; 21:1-19. [PMID: 38555519 PMCID: PMC10984137 DOI: 10.1080/15476286.2024.2328440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.
Collapse
Affiliation(s)
- Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Lengacher R, Martin KE, Śmiłowicz D, Esseln H, Lotlikar P, Grichine A, Maury O, Boros E. Targeted, Molecular Europium (III) Probes Enable Luminescence-Guided Surgery and 1 Photon Post-Surgical Luminescence Microscopy of Solid Tumors. J Am Chem Soc 2023; 145:24358-24366. [PMID: 37869897 PMCID: PMC10670433 DOI: 10.1021/jacs.3c09444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Discrete luminescent lanthanide complexes represent a potential alternative to organic chromophores due to their tunability of optical properties, insensitivity to photobleaching, and large pseudo-Stokes shifts. Previously, we demonstrated that the lack of depth penetration of UV excitation required to sensitize discrete terbium and europium complexes can be overcome using Cherenkov radiation emitted by clinically employed radioisotopes in situ. Here, we show that the second-generation europium complexes [Eu(III)(pcta-PEPA2)] and [Eu(III)(tacn-pic-PEPA2)] (Φ = 57% and 76%, respectively) lower the limit of detection (LoD) to 1 nmol in the presence of 10 μCi of Cherenkov emitting isotopes, 18F and 68Ga. Bifunctionalization provides access to cysteine-linked peptide conjugates with comparable brightness and LoD. The conjugate, [Eu(tacn-(pic-PSMA)-PEPA2)], displays high binding affinity to prostate-specific membrane antigen (PSMA)-expressing PC-3 prostate cancer cells in vitro and can be visualized in the membrane-bound state using confocal microscopy. Biodistribution studies with the [86Y][Y(III)(tacn-(pic-PSMA)-PEPA2)] analogue in a mouse xenograft model were employed to study pharmacokinetics. Systemic administration of the targeted Cherenkov emitter, [68Ga][Ga(III)(PSMA-617)], followed by intratumoral injection or topical application of 20 or 10 nmol [Eu(III)(tacn-(pic-PSMA)-PEPA2)], respectively, in live mice resulted in statistically significant signal enhancement using conventional small animal imaging (620 nm bandpass filter). Optical imaging informed successful tumor resection. Ex vivo imaging of the fixed tumor tissue with 1 and 2 photon excitation further reveals the accumulation of the administered Eu(III) complex in target tissues. This work represents a significant step toward the application of luminescent lanthanide complexes for optical imaging in a clinical setting.
Collapse
Affiliation(s)
- Raphael Lengacher
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Helena Esseln
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Piyusha Lotlikar
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Alexei Grichine
- Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, CNRS, UMR 5309, Site Santé, Allée des Alpes, 38700 La Tronche, France
| | - Olivier Maury
- Université Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Lee GH. Special Issue “Advanced Nanomaterials for Bioimaging”. NANOMATERIALS 2022; 12:nano12142496. [PMID: 35889719 PMCID: PMC9320963 DOI: 10.3390/nano12142496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea
| |
Collapse
|
7
|
Derks YHW, Rijpkema M, Amatdjais-Groenen HIV, Loeff CC, de Roode KE, Kip A, Laverman P, Lütje S, Heskamp S, Löwik DWPM. Strain-Promoted Azide-Alkyne Cycloaddition-Based PSMA-Targeting Ligands for Multimodal Intraoperative Tumor Detection of Prostate Cancer. Bioconjug Chem 2022; 33:194-205. [PMID: 34957825 PMCID: PMC8778659 DOI: 10.1021/acs.bioconjchem.1c00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Indexed: 01/18/2023]
Abstract
Strain-promoted azide-alkyne cycloaddition (SPAAC) is a straightforward and multipurpose conjugation strategy. The use of SPAAC to link different functional elements to prostate-specific membrane antigen (PSMA) ligands would facilitate the development of a modular platform for PSMA-targeted imaging and therapy of prostate cancer (PCa). As a first proof of concept for the SPAAC chemistry platform, we synthesized and characterized four dual-labeled PSMA ligands for intraoperative radiodetection and fluorescence imaging of PCa. Ligands were synthesized using solid-phase chemistry and contained a chelator for 111In or 99mTc labeling. The fluorophore IRDye800CW was conjugated using SPAAC chemistry or conventional N-hydroxysuccinimide (NHS)-ester coupling. Log D values were measured and PSMA specificity of these ligands was determined in LS174T-PSMA cells. Tumor targeting was evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wild-type tumors using μSPECT/CT imaging, fluorescence imaging, and biodistribution studies. SPAAC chemistry increased the lipophilicity of the ligands (log D range: -2.4 to -4.4). In vivo, SPAAC chemistry ligands showed high and specific accumulation in s.c. LS174T-PSMA tumors up to 24 h after injection, enabling clear visualization using μSPECT/CT and fluorescence imaging. Overall, no significant differences between the SPAAC chemistry ligands and their NHS-based counterparts were found (2 h p.i., p > 0.05), while 111In-labeled ligands outperformed the 99mTc ligands. Here, we demonstrate that our newly developed SPAAC-based PSMA ligands show high PSMA-specific tumor targeting. The use of click chemistry in PSMA ligand development opens up the opportunity for fast, efficient, and versatile conjugations of multiple imaging moieties and/or drugs.
Collapse
Affiliation(s)
- Yvonne H. W. Derks
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | | | - Cato C. Loeff
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Kim E. de Roode
- Organic
Chemistry, Radboud University Nijmegen,
Institute for Molecules and Materials, 6525XZ Nijmegen, The Netherlands
| | - Annemarie Kip
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Peter Laverman
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Susanne Lütje
- Department
of Nuclear Medicine, University Hospital
Bonn, 53127 Bonn, Germany
| | - Sandra Heskamp
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Dennis W. P. M. Löwik
- Organic
Chemistry, Radboud University Nijmegen,
Institute for Molecules and Materials, 6525XZ Nijmegen, The Netherlands
| |
Collapse
|
8
|
Azab IHE, Thabet H, Almotairi S, Saleh M, Mogharbel R, Mahmoud S, El-Rayyes A, Ibrahim A, Zoromba M, Abdel‑Aziz M, Ibrahim S, Al-Hossainy A. Synthesis of a novel coumarin heterocyclic derivative and fabrication of hybrid nanocomposite thin film with CoOFe2O4 for optoelectronic applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Minhas AS, Sharkey J, Randtke EA, Murray P, Wilm B, Pagel MD, Poptani H. Measuring Kidney Perfusion, pH, and Renal Clearance Consecutively Using MRI and Multispectral Optoacoustic Tomography. Mol Imaging Biol 2021; 22:494-503. [PMID: 31529408 PMCID: PMC7250811 DOI: 10.1007/s11307-019-01429-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose: To establish multi-modal imaging for the assessment of kidney pH, perfusion, and clearance rate using magnetic resonance imaging (MRI) and multispectral optoacoustic tomography (MSOT) in healthy mice. Kidney pH and perfusion values were measured on a pixel-by-pixel basis using the MRI acidoCEST and FAIR-EPI methods. Kidney filtration rate was measured by analyzing the renal clearance rate of IRdye 800 using MSOT. To test the effect of one imaging method on the other, a set of 3 animals were imaged with MSOT followed by MRI, and a second set of 3 animals were imaged with MRI followed by MSOT. In a subsequent study, the reproducibility of pH, perfusion, and renal clearance measurements were tested by imaging 4 animals twice, separated by 4 days. The contrast agents used for acidoCEST based pH measurements influenced the results of MSOT. Specifically, the exponential decay time from the kidney cortex, as measured by MSOT, was significantly altered when MRI was performed prior to MSOT. However, no significant difference in the cortex to pelvis area under the curve (AUC) was noted. When the order of experiments was reversed, no significant differences were noted in the pH or perfusion values. Reproducibility measurements demonstrated similar pH and cortex to pelvis AUC; however, perfusion values were significantly different with the cortex values being higher and the pelvic values being lower in the second imaging time. We demonstrate that using a combination of MRI and MSOT, physiological measurements of pH, blood flow, and clearance rates can be measured in the mouse kidney in the same imaging session.
Collapse
Affiliation(s)
- Atul S Minhas
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK.,School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Jack Sharkey
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK
| | - Edward A Randtke
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Patricia Murray
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK
| | - Bettina Wilm
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK
| | | | - Harish Poptani
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK.
| |
Collapse
|
10
|
Fluksman A, Steinberg E, Orehov N, Shai E, Lahiani A, Katzhendler J, Marcinkiewicz C, Lazarovici P, Benny O. Integrin α 2β 1-Targeted Self-Assembled Nanocarriers for Tumor Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:6059-6070. [DOI: 10.1021/acsabm.0c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnon Fluksman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Eliana Steinberg
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Natalie Orehov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ela Shai
- Department of Hematology, Coagulation Unit, Hadassah−Hebrew University Medical Center, Jerusalem 91121, Israel
| | - Adi Lahiani
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Jehoshua Katzhendler
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Cezary Marcinkiewicz
- Department of Biology, Temple University College of Science and Technology, Philadelphia, Pennsylvania 19122, United States
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofra Benny
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| |
Collapse
|
11
|
Luciano MP, Crooke SN, Nourian S, Dingle I, Nani RR, Kline G, Patel NL, Robinson CM, Difilippantonio S, Kalen JD, Finn MG, Schnermann MJ. A Nonaggregating Heptamethine Cyanine for Building Brighter Labeled Biomolecules. ACS Chem Biol 2019; 14:934-940. [PMID: 31030512 PMCID: PMC6528163 DOI: 10.1021/acschembio.9b00122] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Heptamethine cyanines
are broadly used for a range of near-infrared
imaging applications. As with many fluorophores, these molecules are
prone to forming nonemissive aggregates upon biomolecule conjugation.
Prior work has focused on persulfonation strategies, which only partially
address these issues. Here, we report a new set of peripheral substituents,
short polyethylene glycol chains on the indolenine nitrogens and a
substituted alkyl ether at the C4′ position, that provide exceptionally
aggregation-resistant fluorophores. These symmetrical molecules are
net-neutral, can be prepared in a concise sequence, and exhibit no
evidence of H-aggregation even at high labeling density when
appended to monoclonal antibodies or virus-like particles. The resulting
fluorophore–biomolecule conjugates exhibit exceptionally bright in vitro and in vivo signals when compared
to a conventional persulfonated heptamethine cyanine. Overall, these
efforts provide a new class of heptamethine cyanines with significant
utility for complex labeling applications.
Collapse
Affiliation(s)
- Michael P. Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ivan Dingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Roger R. Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Gabriel Kline
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L. Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Christina M. Robinson
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Simone Difilippantonio
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
12
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Alam MK, Brabant M, Viswas RS, Barreto K, Fonge H, Ronald Geyer C. A novel synthetic trivalent single chain variable fragment (tri-scFv) construction platform based on the SpyTag/SpyCatcher protein ligase system. BMC Biotechnol 2018; 18:55. [PMID: 30200951 PMCID: PMC6131909 DOI: 10.1186/s12896-018-0466-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/03/2018] [Indexed: 01/12/2023] Open
Abstract
Background Advances in antibody engineering provide strategies to construct recombinant antibody-like molecules with modified pharmacokinetic properties. Multermerization is one strategy that has been used to produce antibody-like molecules with two or more antigen binding sites. Multimerization enhances the functional affinity (avidity) and can be used to optimize size and pharmacokinetic properties. Most multimerization strategies involve genetically fusing or non-covalently linking antibody fragments using oligomerization domains. Recent studies have defined guidelines for producing antibody-like molecules with optimal tumor targeting properties, which require intermediates size (70–120 kDa) and bi- or tri-valency. Results We described a highly modular antibody-engineering platform for rapidly constructing synthetic, trivalent single chain variable fragments (Tri-scFv) using the SpyCatcher/SpyTag protein ligase system. We used this platform to construct an anti-human epidermal growth factor receptor 3 (HER3) Tri-scFv. We generated the anti-HER3 Tri-scFv by genetically fusing a SpyCatcher to the C-terminus of an anti-HER3 scFv and ligating it to a synthetic Tri-SpyTag peptide. The anti-HER3 Tri-scFv bound recombinant HER3 with an apparent KD of 2.67 nM, which is approximately 12 times lower than the KD of monomeric anti-HER3 scFv (31.2 nM). Anti-HER3 Tri-scFv also bound endogenous cell surface expressed HER3 stronger than the monomer anti-HER3 scFv. Conclusion We used the SpyTag/SpyCatcher protein ligase system to ligate anti-HER3 scFv fused to a SpyCatcher at its C-termini to a Tri-SpyTag to construct Tr-scFv. This system allowed the construction of a Tri-scFv with all the scFv antigen-binding sites pointed outwards. The anti-HER3 Tri-scFv bound recombinant and endogenously expressed HER3 with higher functional affinity (avidity) than the monomeric anti-HER3 scFv. The Tri-scFv had the size, valency, and functional affinity that are desired for therapeutic and imaging applications. Use of the SpyTag/SpyCatcher protein ligase system allows Tri-scFvs to be rapidly constructed in a simple, modular manner, which can be easily applied to scFvs or other antibody fragments targeting other antigens.
Collapse
Affiliation(s)
- Md Kausar Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, S7N 0W8, Canada
| | - Michelle Brabant
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | - Kris Barreto
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, S7N 0W8, Canada
| | - Humphrey Fonge
- Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, S7N 0W8, Canada.
| |
Collapse
|
14
|
Biju S, Gallo J, Bañobre-López M, Manshian BB, Soenen SJ, Himmelreich U, Vander Elst L, Parac-Vogt TN. A Magnetic Chameleon: Biocompatible Lanthanide Fluoride Nanoparticles with Magnetic Field Dependent Tunable Contrast Properties as a Versatile Contrast Agent for Low to Ultrahigh Field MRI and Optical Imaging in Biological Window. Chemistry 2018; 24:7388-7397. [PMID: 29575427 DOI: 10.1002/chem.201800283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 12/11/2022]
Abstract
A novel type of multimodal, magnetic resonance imaging/optical imaging (MRI/OI) contrast agent was developed, based on core-shell lanthanide fluoride nanoparticles composed of a β-NaHoF4 core plus a β-NaGdF4:Yb3+ , Tm3+ shell with an average size of ∼24 nm. The biocompatibility of the particles was ensured by a surface modification with poly acrylic acid (PAA) and further functionalization with an affinity ligand, folic acid (FA). When excited using 980 nm near infrared (NIR) radiation, the contrast agent (CA) shows intense emission at 802 nm with lifetime of 791±3 μs, due to the transition 3 H4 →3 H6 of Tm3+ . Proton nuclear magnetic relaxation dispersion (1 H-NMRD) studies and magnetic resonance (MR) phantom imaging showed that the newly synthesized nanoparticles, decorated with poly(acrylic acid) and folic acid on the surface (NP-PAA-FA), can act mainly as a T1 -weighted contrast agent below 1.5 T, a T1 /T2 dual-weighted contrast agent at 3 T, and as highly efficient T2 -weighted contrast agent at ultrahigh fields. In addition, NP-PAA-FA showed very low cytotoxicity and no detectable cellular damage up to a dose of 500 μg mL-1 .
Collapse
Affiliation(s)
- Silvanose Biju
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| | - M Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| | - Bella B Manshian
- Department of Imaging and Pathology, Biomedical NMR unit, MoSAIC, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Stefaan J Soenen
- Department of Imaging and Pathology, Biomedical NMR unit, MoSAIC, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Biomedical NMR unit, MoSAIC, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, University of Mons, Place du Parc 23, 7000, Mons, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
15
|
Gordon MR, Zhuang J, Ventura J, Li L, Raghupathi K, Thayumanavan S. Biodistribution Analysis of NIR-Labeled Nanogels Using in Vivo FMT Imaging in Triple Negative Human Mammary Carcinoma Models. Mol Pharm 2018; 15:1180-1191. [PMID: 29378144 DOI: 10.1021/acs.molpharmaceut.7b01011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study is to evaluate the biodistribution properties of random-copolymer-based core-cross-linked nanogels of various sizes and surface poly(ethylene glycol) composition. Systematic variations of near-IR labeled nanogels, comprising varying particle sizes (28-135 nm), PEG corona quantity (0-50 mol %), and PEG length (PEG Mn 1000, 2000, and 5000), were prepared and injected in mice that had been subcutaneously implanted with MDA-MB-231-luc-D3H2LN human mammary carcinoma. In vivo biodistribution was obtained using fluorescence molecular tomography imaging at 0, 6, 24, 48, and 72 h postinjection. Retention of total body probe and percentages of total injected dose in the tumor, liver, spleen, lungs, heart, intestines, and kidneys were obtained. Smaller nanogels (∼30-40 nm) with a high PEG conjugation (∼43-46 mol %) of Mn 2000 on their coronas achieved the highest tumor specificity with peak maximum 27% ID/g, a statistically significant propensity toward accumulation with 16.5% ID/g increase from 0 to 72 h of imaging, which constitutes a 1.5-fold increase. Nanogels with greater tumor localization also had greater retention of total body probe over 72 h. Nanogels without extensive PEGylation were rapidly excreted, even at similar sizes to PEGylated nanogels exhibiting whole body retention. Of all tissues, the liver had the highest % ID, however, like other tissues, it displayed a monotonic decrease over time, suggesting nanogel clearance by hepatic metabolism. Ex vivo quantification of individual tissues from gross necropsy at 72 h postinjection generally correlated with the FMT analysis, providing confidence in tissue signal segmentation in vivo. The parameters determined to most significantly direct a nanogel to the desired tumor target can lead to improve effectiveness for nanogels as therapeutic delivery vehicles.
Collapse
|
16
|
Abstract
MRI contrast is often enhanced using a contrast agent. Gd3+-complexes are the most widely used metallic MRI agents, and several types of Gd3+-based contrast agents (GBCAs) have been developed. Furthermore, recent advances in MRI technology have, in part, been driven by the development of new GBCAs. However, when designing new functional GBCAs in a small-molecular-weight or nanoparticle form for possible clinical applications, their functions are often compromised by poor pharmacokinetics and possible toxicity. Although great progress must be made in overcoming these limitations and many challenges remain, new functional GBCAs with either small-molecular-weight or nanoparticle forms offer an exciting opportunity for use in precision medicine.
Collapse
|
17
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
18
|
Gao Z, Li G, Li X, Zhou J, Duan X, Chen J, Joshi BP, Kuick R, Khoury B, Thomas DG, Fields T, Sabel MS, Appelman HD, Zhou Q, Li H, Kozloff K, Wang TD. In vivo near-infrared imaging of ErbB2 expressing breast tumors with dual-axes confocal endomicroscopy using a targeted peptide. Sci Rep 2017; 7:14404. [PMID: 29089571 PMCID: PMC5663926 DOI: 10.1038/s41598-017-13735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/27/2017] [Indexed: 02/08/2023] Open
Abstract
ErbB2 expression in early breast cancer can predict tumor aggressiveness and clinical outcomes in large patient populations. Accurate assessment with physical biopsy and conventional pathology can be limited by tumor heterogeneity. We aim to demonstrate real-time optical sectioning using a near-infrared labeled ErbB2 peptide that generates tumor-specific contrast in human xenograft breast tumors in vivo. We used IRDye800CW as the fluorophore, validated performance characteristics for specific peptide binding to cells in vitro, and investigated peak peptide uptake in tumors using photoacoustic tomography. We performed real-time optical imaging using a handheld dual-axes confocal fluorescence endomicroscope that collects light off-axis to reduce tissue scattering for greater imaging depths. Optical sections in either the vertical or horizontal plane were collected with sub-cellular resolution. Also, we found significantly greater peptide binding to pre-clinical xenograft breast cancer in vivo and to human specimens of invasive ductal carcinoma that express ErbB2 ex vivo. We used a scrambled peptide for control. Peptide biodistribution showed high tumor uptake by comparison with other organs to support safety. This novel integrated imaging strategy is promising for visualizing ErbB2 expression in breast tumors and serve as an adjunct during surgery to improve diagnostic accuracy, identify tumor margins, and stage early cancers.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Female
- Fluorescent Dyes/chemistry
- Mice, Nude
- Microscopy, Confocal/methods
- Neoplasm Transplantation
- Optical Imaging/methods
- Peptides/chemistry
- Photoacoustic Techniques/methods
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/metabolism
- Tomography/methods
Collapse
Affiliation(s)
- Zhenghong Gao
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Gaoming Li
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Xue Li
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Juan Zhou
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Xiyu Duan
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jing Chen
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Bishnu P Joshi
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Rork Kuick
- Dept of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Basma Khoury
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
- Dept of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Dafydd G Thomas
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Tina Fields
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Michael S Sabel
- Dept of Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Henry D Appelman
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Quan Zhou
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Haijun Li
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ken Kozloff
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
- Dept of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Thomas D Wang
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
- Dept of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
19
|
Miao X, Xu W, Cha H, Chang Y, Oh IT, Chae KS, Lee GH. Application of Dye-coated Ultrasmall Gadolinium Oxide Nanoparticles for Biomedical Dual Imaging. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Miao
- Department of Chemistry, College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
| | - Wenlong Xu
- Department of Chemistry, College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
| | - Hyunsil Cha
- Department of Molecular Medicine and Medical & Biological Engineering and DNN; School of Medicine and Hospital; Taegu 702-701 South Korea
| | - Yongmin Chang
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Molecular Medicine and Medical & Biological Engineering and DNN; School of Medicine and Hospital; Taegu 702-701 South Korea
| | - In Taek Oh
- Department of Biology Education and DNN; Teacher's College; Taegu 41566 South Korea
| | - Kwon Seok Chae
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Biology Education and DNN; Teacher's College; Taegu 41566 South Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
| |
Collapse
|
20
|
Jo D, Hyun H. Structure-Inherent Targeting of Near-Infrared Fluorophores for Image-Guided Surgery. Chonnam Med J 2017; 53:95-102. [PMID: 28584787 PMCID: PMC5457957 DOI: 10.4068/cmj.2017.53.2.95] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/27/2022] Open
Abstract
Although various clinical imaging modalities have been developed to visualize internal body structures and detect abnormal tissues prior to surgical procedures, most medical imaging modalities do not provide disease-specific images in real-time. Optical imaging can provide the surgeon with real-time visualization of the surgical field for intraoperative image-guided surgery. Imaging in the near-infrared (NIR) window (650-900 nm), also known as the "therapeutic window" has high potential by offering low absorbance and scattering in tissues resulting in minimized background autofluorescence. Clinically, optical fluorescence imaging with the targeted contrast agents provides opportunities for significant advances in intraoperative image-guided surgery. There are only two clinically available NIR fluorophores, indocyanine green (ICG) and methylene blue (MB), that support the image-guided surgery. However, neither of them perform in vivo by providing optimum specificity and stability for targeted image guidance. Therefore, it is of paramount importance to develop targeted NIR fluorophores for unmet clinical needs. Using the right combination of an NIR fluorescence imaging system and a targeted fluorophore, the desired target tissues can be imaged to provide real-time fluorescence guidance without changing the field-of-view during surgery. Thus, in a clinical discipline, the development of NIR fluorophores for 'structure-inherent targeting' is an unmet need for early phase diagnostics with accurate targeting.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
21
|
Liang J, Zhang X, Miao Y, Li J, Gan Y. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma. Int J Nanomedicine 2017; 12:2033-2044. [PMID: 28352173 PMCID: PMC5358985 DOI: 10.2147/ijn.s128525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of noninvasive imaging techniques for the accurate diagnosis of progressive hepatocellular carcinoma (HCC) is of great clinical significance and has always been desired. Herein, a hepatocellular carcinoma cell-targeting fluorescent magnetic nanoparticle (NP) was obtained by conjugating near-infrared fluorescence to the surface of Fe3O4 (NIRF-Fe3O4) NPs, followed by coating the lipids consisting of tumoral hepatocytes-targeting polymer (Gal-P123). This magnetic NP (GPC@NIRF-Fe3O4) with superparamagnetic behavior showed high stability and safety in physiological conditions. In addition, GPC@NIRF-Fe3O4 achieved more specific uptake of human liver cancer cells than free Fe3O4 NPs. Importantly, with superpara-magnetic iron oxide and strong NIR absorbance, GPC@NIRF-Fe3O4 NPs demonstrate prominent tumor-contrasted imaging performance both on fluorescent and T2-weighted magnetic resonance (MR) imaging modalities in a living body. The relative MR signal enhancement of GPC@NIRF-Fe3O4 NPs achieved 5.4-fold improvement compared with NIR-Fe3O4 NPs. Therefore, GPC@ NIRF-Fe3O4 NPs may be potentially used as a candidate for dual-modal imaging of tumors with information covalidated and directly compared by combining fluorescence and MR imaging.
Collapse
Affiliation(s)
- Jinying Liang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China; School of Pharmacy, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yunqiu Miao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Juan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Dall'Ara E, Boudiffa M, Taylor C, Schug D, Fiegle E, Kennerley AJ, Damianou C, Tozer GM, Kiessling F, Müller R. Longitudinal imaging of the ageing mouse. Mech Ageing Dev 2016; 160:93-116. [PMID: 27530773 DOI: 10.1016/j.mad.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging.
Collapse
Affiliation(s)
- E Dall'Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - M Boudiffa
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| | - C Taylor
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - D Schug
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
| | - E Fiegle
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
| | - A J Kennerley
- Biological Services Unit, University of Sheffield, Sheffield, UK.
| | - C Damianou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus.
| | - G M Tozer
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| | - F Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
| | - R Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Keating JJ, Runge JJ, Singhal S, Nims S, Venegas O, Durham AC, Swain G, Nie S, Low PS, Holt DE. Intraoperative near-infrared fluorescence imaging targeting folate receptors identifies lung cancer in a large-animal model. Cancer 2016; 123:1051-1060. [PMID: 28263385 DOI: 10.1002/cncr.30419] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Complete tumor resection is the most important predictor of patient survival with non-small cell lung cancer. Methods for intraoperative margin assessment after lung cancer excision are lacking. This study evaluated near-infrared (NIR) intraoperative imaging with a folate-targeted molecular contrast agent (OTL0038) for the localization of primary lung adenocarcinomas, lymph node sampling, and margin assessment. METHODS Ten dogs with lung cancer underwent either video-assisted thoracoscopic surgery or open thoracotomy and tumor excision after an intravenous injection of OTL0038. Lungs were imaged with an NIR imaging device both in vivo and ex vivo. The wound bed was re-imaged for retained fluorescence suspicious for positive tumor margins. The tumor signal-to-background ratio (SBR) was measured in all cases. Next, 3 human patients were enrolled in a proof-of-principle study. Tumor fluorescence was measured both in situ and ex vivo. RESULTS All canine tumors fluoresced in situ (mean Fluoptics SBR, 5.2 [range, 2.7-8.1]; mean Karl Storz SBR 1.9 [range, 1.4-2.6]). In addition, the fluorescence was consistent with tumor margins on pathology. Three positive lymph nodes were discovered with NIR imaging. Also, a positive retained tumor margin was discovered upon NIR imaging of the wound bed. Human pulmonary adenocarcinomas were also fluorescent both in situ and ex vivo (mean SBR, > 2.0). CONCLUSIONS NIR imaging can identify lung cancer in a large-animal model. In addition, NIR imaging can discriminate lymph nodes harboring cancer cells and also bring attention to a positive tumor margin. In humans, pulmonary adenocarcinomas fluoresce after the injection of the targeted contrast agent. Cancer 2017;123:1051-60. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Jane J Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Precision Surgery, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey J Runge
- Center for Precision Surgery, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Precision Surgery, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah Nims
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Precision Surgery, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ollin Venegas
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Precision Surgery, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy C Durham
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary Swain
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shuming Nie
- Department of Biomedical Engineering, Emory University, Atlanta, Georgia.,Department of Chemistry, Emory University, Atlanta, Georgia
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - David E Holt
- Center for Precision Surgery, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Hernandez R, Sun H, England CG, Valdovinos HF, Ehlerding EB, Barnhart TE, Yang Y, Cai W. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody. Am J Cancer Res 2016; 6:1918-33. [PMID: 27570560 PMCID: PMC4997246 DOI: 10.7150/thno.15568] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022] Open
Abstract
Overexpression of CD146 has been correlated with aggressiveness, recurrence rate, and poor overall survival in hepatocellular carcinoma (HCC) patients. In this study, we set out to develop a CD146-targeting probe for high-contrast noninvasive in vivo positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of HCCs. YY146, an anti-CD146 monoclonal antibody, was employed as a targeting molecule to which we conjugated the zwitterionic near-infrared fluorescence (NIRF) dye ZW800-1 and the chelator deferoxamine (Df). This enabled labeling of Df-YY146-ZW800 with (89)Zr and its subsequent detection using PET and NIRF imaging, all without compromising antibody binding properties. Two HCC cell lines expressing high (HepG2) and low (Huh7) levels of CD146 were employed to generate subcutaneous (s.c.) and orthotopic xenografts in athymic nude mice. Sequential PET and NIRF imaging performed after intravenous injection of (89)Zr-Df-YY146-ZW800 into tumor-bearing mice unveiled prominent and persistent uptake of the tracer in HepG2 tumors that peaked at 31.65 ± 7.15 percentage of injected dose per gram (%ID/g; n=4) 72 h post-injection. Owing to such marked accumulation, tumor delineation was successful by both PET and NIRF, which facilitated the fluorescence image-guided resection of orthotopic HepG2 tumors, despite the relatively high liver background. CD146-negative Huh7 and CD146-blocked HepG2 tumors exhibited significantly lower (89)Zr-Df-YY146-ZW800 accretion (6.1 ± 0.5 and 8.1 ± 1.0 %ID/g at 72 h p.i., respectively; n=4), demonstrating the CD146-specificity of the tracer in vivo. Ex vivo biodistribution and immunofluorescent staining corroborated the accuracy of the imaging data and correlated tracer uptake with in situ CD146 expression. Overall, (89)Zr-Df-YY146-ZW800 showed excellent properties as a PET/NIRF imaging agent, including high in vivo affinity and specificity for CD146-expressing HCC. CD146-targeted molecular imaging using dual-labeled YY146 has great potential for early detection, prognostication, and image-guided surgical resection of liver malignancies.
Collapse
|
25
|
Yen TH, Lee GD, Chai JW, Liao JW, Lau JY, Hu LC, Liao KC. Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment. J Biomed Sci 2016; 23:46. [PMID: 27188327 PMCID: PMC4869355 DOI: 10.1186/s12929-016-0261-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/06/2016] [Indexed: 01/31/2023] Open
Abstract
Background The aim of the study was to develop a nude mouse xenograft model implanted with both benign and malignant xenografts as the preliminary candidate screening tool for contrast agent development in lesion malignancy indication. Results A malignant xenograft (either MCF-7 cell/matrigel™ or MDA-MB 231 cell/matrigel) and a benign xenograft (culture medium/matrigel) with cleft and slit-like features of intracanaliculer fibroadenoma were implanted subcutaneously into flanks of individual nu/nu nude mouse with >90 % successful inoculation rate. Both malignant and benign xenografts with volume up to 4 cm3 and (size up to 2 cm) after 5th week were characterized in vivo by sonogram (exhibiting endogenous morphological contrast features between benign and malignant xenografts), dynamic contrast enhanced multi-detector computed tomography (presenting non-targeting exogenous morphological and dynamic contrast features between benign and malignant xenografts), and then were harvested for histological and immunohistochemistry (revealing example of targeting/molecular contrast features, such as expression of cancer vascular markers of malignant xenografts). Malignant xenografts appeared morphologically taller than wide (axis parallel to skin) with angular/ill-defined margin under sonogram observations, revealed more evident rim enhancement, angular margin and washout pattern in the time-density curve from dynamic contrast enhance multi-detector computed tomography images, and had more visible cancer vascular markers (CD31 and VEGF) expression. With limited number of subjects (5–27 for each group of a specific imaging contrast feature), those imaging contrast features of the xenograft model had larger than 85 % sensitivity, specificity, accuracy, positive and negative prediction values in indicating xenograft malignancy except for results from color Doppler detections. Conclusions The murine xenograft model might provide an earlier efficacy evaluation of new contrast agent candidate for lesion malignancy interrogation with qualitative and quantitative indication before a human study to reduce the risk and conserve the resources (time, finance and manpower).
Collapse
Affiliation(s)
- Tsung-Hsien Yen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City, Taiwan, 40227, Republic of China.,Department of Radiology, Cheng Ching General Hospital, 118 Sec. 3, Taichung Port Rd., Xitun Dist., Taichung City, Taiwan, 40764, Republic of China
| | - Gi-Da Lee
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City, Taiwan, 40227, Republic of China.,Department of Radiology, Taichung Veterans General Hospital, 1650 Sec. 4, Taichung Port Rd., Xitun Dist., Taichung City, Taiwan, 40705, Republic of China
| | - Jyn-Wen Chai
- Department of Radiology, Taichung Veterans General Hospital, 1650 Sec. 4, Taichung Port Rd., Xitun Dist., Taichung City, Taiwan, 40705, Republic of China.,College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., Taichung City, Taiwan, 40402, Republic of China
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung-Hsing University, 250 Kuo-Kuang Rd., Taichung City, Taiwan, 40227, Republic of China
| | - Jia-Yu Lau
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City, Taiwan, 40227, Republic of China
| | - Li-Che Hu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City, Taiwan, 40227, Republic of China
| | - Kuo-Chih Liao
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City, Taiwan, 40227, Republic of China.
| |
Collapse
|
26
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 1: Rationale for Gene Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 33:63-85. [PMID: 27081214 PMCID: PMC4829385 DOI: 10.14356/kona.2016014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article reviews the pulmonary route of administration, aerosol delivery devices, characterization of pulmonary drug delivery systems, and discusses the rationale for inhaled delivery of siRNA. Diseases with known protein malfunctions may be mitigated through the use of siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics for the treatment of various pulmonary diseases, however barriers to pulmonary delivery and intracellular delivery of siRNA exists. siRNA loaded nanocarriers can be used to overcome the barriers associated with the pulmonary route, such as anatomical barriers, mucociliary clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems comprise of lipidic, polymeric, peptide, or inorganic origin. Such siRNA delivery systems formulated as aerosols can be successfully delivered via an inhaler or nebulizer to the pulmonary region. Preclinical animal investigations of inhaled siRNA therapeutics rely on intratracheal and intranasal siRNA and siRNA nanocarrier delivery. Aerosolized siRNA delivery systems may be characterized using in vitro techniques, such as dissolution test, inertial cascade impaction, delivered dose uniformity assay, laser diffraction, and laser Doppler velocimetry. The ex vivo techniques used to characterize pulmonary administered formulations include the isolated perfused lung model. In vivo techniques like gamma scintigraphy, 3D SPECT, PET, MRI, fluorescence imaging and pharmacokinetic/pharmacodynamics analysis may be used for evaluation of aerosolized siRNA delivery systems. The use of inhalable siRNA delivery systems encounters barriers to their delivery, however overcoming the barriers while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
27
|
de Oliveira C, Patel K, Mishra V, Trivedi RN, Noel P, Singh A, Yaron JR, Singh VP. Characterization and Predictive Value of Near Infrared 2-Deoxyglucose Optical Imaging in Severe Acute Pancreatitis. PLoS One 2016; 11:e0149073. [PMID: 26901564 PMCID: PMC4765766 DOI: 10.1371/journal.pone.0149073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Background Studying the uptake of 2-deoxy glucose (2-DG) analogs such as 2-Deoxy-2-[18F] fluoroglucose (FDG) is a common approach to identify and monitor malignancies and more recently chronic inflammation. While pancreatitis is a common cause for false positive results in human studies on pancreatic cancer using FDG, the relevance of these findings to acute pancreatitis (AP) is unknown. FDG has a short half-life. Thus, with an aim to accurately characterize the metabolic demand of the pancreas during AP in real-time, we studied the uptake of the non-radioactive, near infrared fluorescence labelled 2-deoxyglucose analog, IRDye® 800CW 2-DG probe (NIR 2-DG; Li-Cor) during mild and severe biliary AP. Methods Wistar rats (300 g; 8–12/group) were administered NIR 2-DG (10 nM; I.V.). Mild and severe biliary AP were respectively induced by biliopancreatic duct ligation (DL) alone or along with infusing glyceryl trilinoleate (GTL; 50 μL/100 g) within 10 minutes of giving NIR 2-DG. Controls (CON) only received NIR 2-DG. Imaging was done every 5–10 minutes over 3 hrs. Average Radiant Efficiency [p/s/cm²/sr]/[μW/cm²] was measured over the pancreas using the IVIS 200 in-vivo imaging system (PerkinElmer) using the Living Image® software and verified in ex vivo pancreata. Blood amylase, lipase and pancreatic edema, necrosis were measured over the course of AP. Results NIR 2-DG uptake over the first hour was not influenced by AP induction. However, while the signal declined in controls and rats with mild AP, there was significantly higher retention of NIR 2-DG in the pancreas after 1 hour in those with GTL pancreatitis. The increase was > 3 fold over controls in the GTL group and was verified to be in the pancreas ex vivo. In vitro, pancreatic acini exposed to GTL had a similar increase in NIR 2-DG uptake which was followed by progressively worse acinar necrosis. Greater retention of NIR 2-DG in vivo was associated with worse pancreatic necrosis, reduced ATP concentrations and mortality, which were not predicted by the blood parameters. Conclusion In-vivo fluorescent imaging of a non-radioactive near infrared 2-DG optical probe can predict the AP severity early during the disease.
Collapse
Affiliation(s)
| | - Krutika Patel
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Vivek Mishra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ram N. Trivedi
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Pawan Noel
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Abhilasha Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jordan R. Yaron
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Vijay P. Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kijanka MM, van Brussel ASA, van der Wall E, Mali WPTM, van Diest PJ, van Bergen En Henegouwen PMP, Oliveira S. Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization. EJNMMI Res 2016; 6:14. [PMID: 26860296 PMCID: PMC4747965 DOI: 10.1186/s13550-016-0166-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background Optical molecular imaging is an emerging novel technology with applications in the diagnosis of cancer and assistance in image-guided surgery. A high tumour-to-background (T/B) ratio is crucial for successful imaging, which strongly depends on tumour-specific probes that rapidly accumulate in the tumour, while non-bound probes are rapidly cleared. Here, using pre-invasive breast cancer as a model, we investigate whether the use of combinations of probes with different target specificities results in higher T/B ratios and whether dual-spectral imaging leads to improvements in tumour characterization. Methods We performed optical molecular imaging of an orthotopic breast cancer model mimicking ductal carcinoma in situ (DCIS). A combination of carbonic anhydrase IX (CAIX)- and human epidermal growth factor receptor 2 (HER2)-specific variable domains of the heavy chain from heavy-chain antibodies (VHHs) was conjugated either to the same fluorophore (IRDye800CW) to evaluate T/B ratios or to different fluorophores (IRDye800CW, IRDye680RD or IRDye700DX) to analyse the expression of CAIX and HER2 simultaneously through dual-fluorescence detection. These experiments were performed non-invasively in vivo, in a mimicked intra-operative setting, and ex vivo on tumour sections. Results Application of the CAIX- and HER2-specific VHH combination resulted in an increase of the T/B ratio, as compared to T/B ratios obtained from each of these single VHHs together with an irrelevant VHH. This dual tumour marker-specific VHH combination also enabled the detection of small metastases in the lung. Furthermore, dual-spectral imaging enabled the assessment of the expression status of both CAIX and HER2 in a mimicked intra-operative setting, as well as on tumour sections, which was confirmed by immunohistochemistry. Conclusions These results establish the feasibility of the use of VHH ‘cocktails’ to increase T/B ratios and improve early detection of heterogeneous tumours and the use of multispectral molecular imaging to facilitate the assessment of the target expression status of tumours and metastases, both invasive or non-invasively. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0166-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta M Kijanka
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Aram S A van Brussel
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands. .,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Elsken van der Wall
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Willem P T M Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | - Sabrina Oliveira
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands. .,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Wang J, Lv Y, Wan W, Wang X, Li ADQ, Tian Z. Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4399-4406. [PMID: 26859429 DOI: 10.1021/acsami.5b10837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a very sensitive technique, photoswitchable fluorescence not only gains ultrasensitivity but also imparts many novel and unexpected applications. Applications of near-infrared (NIR) fluorescence have demonstrated low background noises, high tissue-penetrating ability, and an ability to reduce photodamage to live cells. Because of these desired features, NIR-fluorescent dyes have been the premium among fluorescent dyes, and probes with photoswitchable NIR fluorescence are even more desirable for enhanced signal quality in the emerging optical imaging modalities but rarely used because they are extremely challenging to design and construct. Using a spiropyran derivative functioning as both a photoswitch and a fluorophore to launch its periodically modulated red fluorescence excitation energy into a NIR acceptor, we fabricated core-shell polymer nanoparticles exhibiting a photoswitchable fluorescence signal within the biological window (∼700-1000 nm) with a peak maximum of 776 nm. Live cells constantly synthesize new molecules, including fluorescent molecules, and also endocytose exogenous particles, including fluorescent particles. Upon excitation at different wavelengths, these fluorescent species bring about background noises and interferences covering nearly the whole visible region and therefore render many intracellular targets unaddressable. The oscillating NIR fluorescence signal with an on/off ratio of up to 67 that the polymer nanoparticles display is beyond the typical background noises and interferences, thus producing superior sharpness, reliability, and signal-to-noise ratios in cellular imaging. Taking these salient features, we anticipate that these types of nanoparticles will be useful for in vivo imaging of biological tissue and other complex specimens, where two-photon activation and excitation are used in combination with NIR-fluorescence photoswitching.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yanlin Lv
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Wei Wan
- Department of Chemistry and Center for Materials Research, Washington State University Pullman, Washington 99164, United States
| | - Xuefei Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Alexander D Q Li
- Department of Chemistry and Center for Materials Research, Washington State University Pullman, Washington 99164, United States
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
30
|
Abstract
Small interfering RNA (siRNA) is emerging as a class of therapeutic with extremely high potential, particularly in the field of oncology. Despite this growing interest, further understanding of how siRNA behaves in vivo is still required before significant uptake into clinical application. To this end, many molecular imaging modalities have been utilised to gain a better understanding of the biodistribution and pharmacokinetics of administered siRNA and delivery vehicles. This highlight aims to provide an overview of the current state of the field for preclinical imaging of siRNA delivery.
Collapse
|
31
|
Monitoring Cell Death in Regorafenib-Treated Experimental Colon Carcinomas Using Annexin-Based Optical Fluorescence Imaging Validated by Perfusion MRI. PLoS One 2015; 10:e0138452. [PMID: 26393949 PMCID: PMC4578959 DOI: 10.1371/journal.pone.0138452] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate annexin-based optical fluorescence imaging (OI) for monitoring regorafenib-induced early cell death in experimental colon carcinomas in rats, validated by perfusion MRI and multiparametric immunohistochemistry. Materials and Methods Subcutaneous human colon carcinomas (HT-29) in athymic rats (n = 16) were imaged before and after a one-week therapy with regorafenib (n = 8) or placebo (n = 8) using annexin-based OI and perfusion MRI at 3 Tesla. Optical signal-to-noise ratio (SNR) and MRI tumor perfusion parameters (plasma flow PF, mL/100mL/min; plasma volume PV, %) were assessed. On day 7, tumors underwent immunohistochemical analysis for tumor cell apoptosis (TUNEL), proliferation (Ki-67), and microvascular density (CD31). Results Apoptosis-targeted OI demonstrated a tumor-specific probe accumulation with a significant increase of tumor SNR under therapy (mean Δ +7.78±2.95, control: -0.80±2.48, p = 0.021). MRI detected a significant reduction of tumor perfusion in the therapy group (mean ΔPF -8.17±2.32 mL/100 mL/min, control -0.11±3.36 mL/100 mL/min, p = 0.036). Immunohistochemistry showed significantly more apoptosis (TUNEL; 11392±1486 vs. 2921±334, p = 0.001), significantly less proliferation (Ki-67; 1754±184 vs. 2883±323, p = 0.012), and significantly lower microvascular density (CD31; 107±10 vs. 182±22, p = 0.006) in the therapy group. Conclusions Annexin-based OI allowed for the non-invasive monitoring of regorafenib-induced early cell death in experimental colon carcinomas, validated by perfusion MRI and multiparametric immunohistochemistry.
Collapse
|
32
|
Ofori LO, Withana NP, Prestwood TR, Verdoes M, Brady JJ, Winslow MM, Sorger J, Bogyo M. Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery. ACS Chem Biol 2015; 10:1977-88. [PMID: 26039341 PMCID: PMC4577961 DOI: 10.1021/acschembio.5b00205] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is a need for new molecular-guided contrast agents to enhance surgical procedures such as tumor resection that require a high degree of precision. Cysteine cathepsins are highly up-regulated in a wide variety of cancers, both in tumor cells and in the tumor-supporting cells of the surrounding stroma. Therefore, tools that can be used to dynamically monitor their activity in vivo could be used as imaging contrast agents for intraoperative fluorescence image guided surgery (FGS). Although multiple classes of cathepsin-targeted substrate probes have been reported, most suffer from overall fast clearance from sites of protease activation, leading to reduced signal intensity and duration in vivo. Here we describe the design and synthesis of a series of near-infrared fluorogenic probes that exploit a latent cationic lysosomotropic effect (LLE) to promote cellular retention upon protease activation. These probes show tumor-specific retention, fast activation kinetics, and rapid systemic distribution. We demonstrate that they are suitable for detection of diverse cancer types including breast, colon and lung tumors. Most importantly, the agents are compatible with the existing, FDA approved, da Vinci surgical system for fluorescence guided tumor resection. Therefore, our data suggest that the probes reported here can be used with existing clinical instrumentation to detect tumors and potentially other types of inflammatory lesions to guide surgical decision making in real time.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jonathan Sorger
- Intuitive Surgical
Inc., 1020 Kifer Road, Sunnyvale, California 94086, United States
| | | |
Collapse
|
33
|
Snir JA, Suchy M, Lawrence KS, Hudson RH, Pasternak S, Bartha R. Prolonged In Vivo Retention of a Cathepsin D Targeted Optical Contrast Agent in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2015; 48:73-87. [DOI: 10.3233/jad-150123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jonatan A. Snir
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Mojmir Suchy
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Robert H.E. Hudson
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Stephen H. Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Robert Bartha
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
34
|
Wartella KA, Khalilzad-Sharghi V, Kelso ML, Kovar JL, Kaplan DL, Xu H, Othman SF. Multi-modal imaging for assessment of tissue-engineered bone in a critical-sized calvarial defect mouse model. J Tissue Eng Regen Med 2015; 11:1732-1740. [DOI: 10.1002/term.2068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/09/2015] [Accepted: 06/12/2015] [Indexed: 01/04/2023]
Affiliation(s)
- K. A. Wartella
- Department of Biological Systems Engineering; University of Nebraska-Lincoln; Lincoln NE USA
| | - V. Khalilzad-Sharghi
- Department of Biological Systems Engineering; University of Nebraska-Lincoln; Lincoln NE USA
| | - M. L. Kelso
- Department of Pharmacy Practice; University of Nebraska Medical Center; Omaha NE USA
| | - J. L. Kovar
- LI-COR Biosciences; Biology Research and Development; Lincoln NE USA
| | - D. L. Kaplan
- Department of Biomedical Engineering; Tufts University; Medford MA USA
| | - H. Xu
- School of Engineering and Computer Science; University of the Pacific; Stockton CA USA
| | - S. F. Othman
- Department of Biological Systems Engineering; University of Nebraska-Lincoln; Lincoln NE USA
| |
Collapse
|
35
|
Shrivastava A, Ding H, Kothandaraman S, Wang SH, Gong L, Williams M, Milum K, Zhang S, Tweedle MF. A high-affinity near-infrared fluorescent probe to target bombesin receptors. Mol Imaging Biol 2015; 16:661-9. [PMID: 24604209 DOI: 10.1007/s11307-014-0727-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE This study aimed to create new optical surgical navigation NIRF probes for prostate and breast cancers. PROCEDURES IR800-linker-QWAVGHLM-NH2 with linker = GSG, GGG, and G-Abz4 were synthesized and characterized. IC50 for bombesin receptors (BBN-R) in PC-3 prostate and T47D breast cancer cells, fluorescence microscopy in PC-3 cells, and NIRF imaging in mice PC-3 tumor xenografts were studied. RESULTS GGG, GSG, and G-Abz4 derivatives had IC50 (nM) for BBN-R+ PC-3 cells = 187 ± 31, 56 ± 5, and 2.6 ± 0.2 and T47D cells = 383 ± 1, 57.4 ± 1.2, and 3.1 ± 1.1, respectively. By microscopy the Abz4 derivative showed the highest uptake, was competed with by BBN, and had little to no binding to BBN-R- cells. In NIRF imaging the G-Abz4 probe was brighter than GGG probe in BBN-R+ tissues in vivo and tissues, tumors, and tumor slices ex vivo. Uptake could be partially blocked in BBN-R+ pancreas but not visibly in tumor. CONCLUSIONS Linker choice can dominate peptidic BBN-R binding. The G-Abz4 linker yields a higher affinity and specific BBN-R binder in this series of molecules.
Collapse
Affiliation(s)
- Ajay Shrivastava
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Poon W, Heinmiller A, Zhang X, Nadeau JL. Determination of biodistribution of ultrasmall, near-infrared emitting gold nanoparticles by photoacoustic and fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:066007. [PMID: 26102572 DOI: 10.1117/1.jbo.20.6.066007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
This study compares fluorescence and photoacoustic (PA) imaging of ex vivo tumors and organs from tumor-bearing mice injected intravenously with ultrasmall (<3 nm ) tiopronin-capped Au nanoparticles and compares the data with inductively coupled plasma mass spectrometry (ICP-MS). Good agreement is seen in particle distributions and concentrations at the organ level. The spatial resolution from the imaging techniques allows for localization of the particles within organ structures. Although the particles do not have a plasmon peak, their absorbance in the near-infrared (NIR) is sufficient for PA excitation. PA imaging shows an increase of signal as particle concentrations increase, with changes in spectrum if particles aggregate. Fluorescence imaging using the particles’ native NIR emission shows agreement in general intensity in each organ, though quenching of emission can be seen at very high concentrations. Both of these imaging techniques are noninvasive and labor-saving alternatives to organ digestion and ICP-MS and may provide insight into cellular distribution of particles. The simple construct avoids the use of toxic semiconductor materials or dyes, relying upon the gold itself for both the fluorescence and PA signal. This provides a useful alternative to more complex approaches to multimodal imaging and one that is readily translatable to the clinic.
Collapse
Affiliation(s)
- Wilson Poon
- McGill University, Department of Biomedical Engineering, 3775 University Street, Montréal, Quebec H3A 2B4, CanadabUniversity of Toronto, Institute of Biomaterials and Biomedical Engineering, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Andrew Heinmiller
- VisualSonics Inc., 6100-3080 Yonge Street, Toronto, Ontario M4N 3N1, Canada
| | - Xuan Zhang
- McGill University, Department of Biomedical Engineering, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Jay L Nadeau
- McGill University, Department of Biomedical Engineering, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
37
|
Dorsey SM, Haris M, Singh A, Witschey WR, Rodell CB, Kogan F, Reddy R, Burdick JA. Visualization of Injectable Hydrogels Using Chemical Exchange Saturation Transfer MRI. ACS Biomater Sci Eng 2015; 1:227-237. [DOI: 10.1021/ab500097d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shauna M. Dorsey
- Department
of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd
Street, Philadelphia, Pennsylvania 19104, United States
| | - Mohammad Haris
- Department
of Radiology, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Anup Singh
- Department
of Radiology, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Walter R.T. Witschey
- Department
of Radiology, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B. Rodell
- Department
of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd
Street, Philadelphia, Pennsylvania 19104, United States
| | - Feliks Kogan
- Department
of Radiology, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Ravinder Reddy
- Department
of Radiology, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Jason A. Burdick
- Department
of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd
Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
38
|
Muselaers CHJ, Rijpkema M, Bos DL, Langenhuijsen JF, Oyen WJG, Mulders PFA, Oosterwijk E, Boerman OC. Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250. J Urol 2015; 194:532-8. [PMID: 25686542 DOI: 10.1016/j.juro.2015.02.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. MATERIALS AND METHODS BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. RESULTS As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. CONCLUSIONS This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach.
Collapse
Affiliation(s)
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Desirée L Bos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Wim J G Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter F A Mulders
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Wu IC, Yu J, Ye F, Rong Y, Gallina M, Fujimoto BS, Zhang Y, Chan YH, Sun W, Zhou XH, Wu C, Chiu DT. Squaraine-based polymer dots with narrow, bright near-infrared fluorescence for biological applications. J Am Chem Soc 2015; 137:173-8. [PMID: 25494172 PMCID: PMC4304448 DOI: 10.1021/ja5123045] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Indexed: 12/12/2022]
Abstract
This article describes the design and development of squaraine-based semiconducting polymer dots (Pdots) that show large Stokes shifts and narrow-band emissions in the near-infrared (NIR) region. Fluorescent copolymers containing fluorene and squaraine units were synthesized and used as precursors for preparing the Pdots, where exciton diffusion and likely through-bond energy transfer led to highly bright and narrow-band NIR emissions. The resulting Pdots exhibit the emission full width at half-maximum of ∼36 nm, which is ∼2 times narrower than those of inorganic quantum dots in the same wavelength region (∼66 nm for Qdot705). The squaraine-based Pdots show a high fluorescence quantum yield (QY) of 0.30 and a large Stokes shift of ∼340 nm. Single-particle analysis indicates that the average per-particle brightness of the Pdots is ∼6 times higher than that of Qdot705. We demonstrate bioconjugation of the squaraine Pdots and employ the Pdot bioconjugates in flow cytometry and cellular imaging applications. Our results suggest that the narrow bandwidth, high QY, and large Stokes shift are promising for multiplexed biological detections.
Collapse
Affiliation(s)
- I-Che Wu
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jiangbo Yu
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fangmao Ye
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yu Rong
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Maria
Elena Gallina
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bryant S. Fujimoto
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yong Zhang
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yang-Hsiang Chan
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Wei Sun
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xing-Hua Zhou
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Changfeng Wu
- State
Key Laboratory on Integrated Optoelectronics, College of Electronic
Science and Engineering, Jilin University, Changchun 130012, China
| | - Daniel T. Chiu
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
40
|
Quantitative Analysis of Signal Transduction with In-Cell Western Immunofluorescence Assays. Methods Mol Biol 2015; 1314:115-30. [PMID: 26139260 DOI: 10.1007/978-1-4939-2718-0_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein levels and signaling events can be efficiently quantified in many samples with the In-Cell Western (ICW) cell-based assay. This quantitative immunofluorescence method streamlines experimental procedures and data analysis, so hundreds of samples can be processed in parallel with quantitative data output. Cells are cultured in microplates and treated with various drugs or conditions. After fixation and permeabilization of cells in the microplate wells, immunostaining is used to detect target proteins. Secondary antibodies conjugated with IRDye near-infrared (NIR) fluorescent dyes are used for multiplex detection and normalization; cell stains and DNA stains can also be used for cell number normalization. Fluorescent signals reflect the protein expression levels or signaling status of the cell population in each well. ICW assays are a powerful alternative to western blotting. Time-consuming, error-prone steps such as cell lysis, gel electrophoresis, and membrane transfer are eliminated. In situ detection of protein targets in fixed cells provides a relevant cellular context, and enables very rapid and precise quenching of cellular treatments. Results are consistent with western blotting, but precision and reproducibility are enhanced. ICW functional assays are used to analyze protein phosphorylation, monitor the timing and kinetics of signal transduction events, monitor cellular response to agonists and antagonists, and determine IC50 and EC50 values. Modified On-Cell Western (OCW) assays are used for analysis of cell surface proteins, receptor internalization and recycling, and fluorescent ligand binding studies. Here, we describe the basic methodology for In-Cell Western quantitative immunofluorescence assays.
Collapse
|
41
|
Kim SH, Kamaya A, Willmann JK. CT perfusion of the liver: principles and applications in oncology. Radiology 2014; 272:322-44. [PMID: 25058132 DOI: 10.1148/radiol.14130091] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging-such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods-remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented.
Collapse
Affiliation(s)
- Se Hyung Kim
- From the Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621 (S.H.K., A.K., J.K.W.); and Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea (S.H.K.)
| | | | | |
Collapse
|
42
|
Wang W, Mandelis A. Thermally enhanced signal strength and SNR improvement of photoacoustic radar module. BIOMEDICAL OPTICS EXPRESS 2014; 5:2785-2790. [PMID: 25136501 PMCID: PMC4133005 DOI: 10.1364/boe.5.002785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
A thermally enhanced method for improving photoacoustic imaging depth and signal-to-noise (SNR) ratio is presented in this paper. Experimental results showed that the maximum imaging depth increased by 20% through raising the temperature of absorbing biotissues (ex-vivo beef muscle) uniformly from 37 to 43°C, and the SNR was increased by 8%. The parameters making up the Gruneisen constant were investigated experimentally and theoretically. The studies showed that the Gruneisen constant of biotissues increases with temperature, and the results were found to be consistent with the photoacousitc radar theory.
Collapse
|
43
|
Muselaers CH, Stillebroer AB, Rijpkema M, Franssen GM, Oosterwijk E, Mulders PF, Oyen WJ, Boerman OC. Optical Imaging of Renal Cell Carcinoma with Anti–Carbonic Anhydrase IX Monoclonal Antibody Girentuximab. J Nucl Med 2014; 55:1035-40. [DOI: 10.2967/jnumed.114.137356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/06/2014] [Indexed: 12/21/2022] Open
|
44
|
Lütje S, Rijpkema M, Franssen GM, Fracasso G, Helfrich W, Eek A, Oyen WJ, Colombatti M, Boerman OC. Dual-Modality Image-Guided Surgery of Prostate Cancer with a Radiolabeled Fluorescent Anti-PSMA Monoclonal Antibody. J Nucl Med 2014; 55:995-1001. [PMID: 24700882 DOI: 10.2967/jnumed.114.138180] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/19/2014] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Both radionuclide imaging and near-infrared fluorescent (NIRF) imaging have a high sensitivity to detect tumors in vivo. The combination of these modalities using dual-labeled antibodies may allow both preoperative and intraoperative tumor localization and may be used in image-guided surgery to ensure complete resection of tumor tissue. Here, we evaluated the potential of dual-modality imaging of prostate cancer with the monoclonal antibody D2B, directed against an extracellular domain of prostate-specific membrane antigen (PSMA). For these studies, D2B was labeled both with (111)In and with the NIRF dye IRDye800CW. METHODS D2B was conjugated with N-hydroxysuccinimide-IRDye800CW and p-isothiocyanatobenzyl-diethylenetriaminepentaacetic acid (ITC-DTPA) and subsequently radiolabeled with (111)In. For biodistribution and NIRF imaging, (111)In-DTPA-D2B-IRDye800CW (2 μg, 0.55 MBq/mouse) was injected intravenously into BALB/c nude mice with subcutaneous PSMA-expressing LNCaP tumors (right flank) and PSMA-negative PC3 tumors (left flank). The biodistribution was determined at 1, 2, 3, and 7 d after injection. In addition, micro-SPECT/CT and NIRF imaging with (111)In-DTPA-D2B-IRDye800CW (3 μg, 8.5 MBq/mouse) was performed on mice with intraperitoneally growing LS174T-PSMA tumors. RESULTS (111)In-DTPA-D2B-IRDye800CW specifically accumulated in subcutaneous PSMA-positive LNCaP tumors (45.8 ± 8.0 percentage injected dose per gram at 168 h after injection), whereas uptake in subcutaneous PSMA-negative PC3 tumors was significantly lower (6.6 ± 1.3 percentage injected dose per gram at 168 h after injection). Intraperitoneal LS174T-PSMA tumors could be visualized specifically with both micro-SPECT/CT and NIRF imaging at 2 d after injection, and the feasibility of image-guided resection of intraperitoneal tumors was demonstrated in this model. CONCLUSION Dual-labeled (111)In-DTPA-D2B-IRDye800CW enables specific and sensitive detection of prostate cancer lesions in vivo with micro-SPECT/CT and NIRF imaging. In addition to preoperative micro-SPECT/CT imaging to detect tumors, NIRF imaging enables image-guided surgical resection. These preclinical findings warrant clinical studies with (111)In-DTPA-D2B-IRDye800CW to improve tumor detection and resection in prostate cancer patients.
Collapse
Affiliation(s)
- Susanne Lütje
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giulio Fracasso
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy; and
| | - Wijnand Helfrich
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Annemarie Eek
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim J Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Colombatti
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy; and
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Ptaszek M. Rational design of fluorophores for in vivo applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 113:59-108. [PMID: 23244789 DOI: 10.1016/b978-0-12-386932-6.00003-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several classes of small organic molecules exhibit properties that make them suitable for fluorescence in vivo imaging. The most promising candidates are cyanines, squaraines, boron dipyrromethenes, porphyrin derivatives, hydroporphyrins, and phthalocyanines. The recent designing and synthetic efforts have been dedicated to improving their optical properties (shift the absorption and emission maxima toward longer wavelengths and increase the brightness) as well as increasing their stability and water solubility. The most notable advances include development of encapsulated cyanine dyes with increased stability and water solubility, squaraine rotaxanes with increased stability, long-wavelength-absorbing boron dipyrromethenes, long-wavelength-absorbing porphyrin and hydroporphyrin derivatives, and water-soluble phthalocyanines. Recent advances in luminescence and bioluminescence have made self-illuminating fluorophores available for in vivo applications. Development of new types of hydroporphyrin energy-transfer dyads gives the promise for further advances in in vivo multicolor imaging.
Collapse
Affiliation(s)
- Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Wang J, Li Y, Duah E, Paruchuri S, Zhou D, Pang Y. A selective NIR-emitting zinc sensor by using Schiff base binding to turn-on excited-state intramolecular proton transfer. J Mater Chem B 2014; 2:2008-2012. [PMID: 25411638 DOI: 10.1039/c3tb21339k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rational design has led to a highly selective and cell-permeable zinc sensor, which exhibits not only a large fluorescence turn-on at ~545 nm but also the desirable NIR emission (~720 nm) with a large Stokes' shift, providing a practical sensor platform with two emission channels for reliable zinc detection.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, USA
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ernest Duah
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, USA
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, USA ; Maurice Morton Institute of Polymer Science, The University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
47
|
Xu W, Bony BA, Kim CR, Baeck JS, Chang Y, Bae JE, Chae KS, Kim TJ, Lee GH. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine. Sci Rep 2013; 3:3210. [PMID: 24220641 PMCID: PMC3826100 DOI: 10.1038/srep03210] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/29/2013] [Indexed: 01/24/2023] Open
Abstract
There is no doubt that the molecular imaging is an extremely important technique in diagnosing diseases. Dual imaging is emerging as a step forward in molecular imaging technique because it can provide us with more information useful for diagnosing diseases than single imaging. Therefore, diverse dual imaging modalities should be developed. Molecular imaging generally relies on imaging agents. Mixed lanthanide oxide nanoparticles could be valuable materials for dual magnetic resonance imaging (MRI)-fluorescent imaging (FI) because they have both excellent and diverse magnetic and fluorescent properties useful for dual MRI-FI, depending on lanthanide ions used. Since they are mixed nanoparticles, they are compact, robust, and stable, which is extremely useful for biomedical applications. They can be also easily synthesized with facile composition control. In this study, we explored three systems of ultrasmall mixed lanthanide (Dy/Eu, Ho/Eu, and Ho/Tb) oxide nanoparticles to demonstrate their usefulness as dual T2 MRI–FI agents.
Collapse
Affiliation(s)
- Wenlong Xu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University (KNU), Taegu 702-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pauli J, Licha K, Berkemeyer J, Grabolle M, Spieles M, Wegner N, Welker P, Resch-Genger U. New Fluorescent Labels with Tunable Hydrophilicity for the Rational Design of Bright Optical Probes for Molecular Imaging. Bioconjug Chem 2013; 24:1174-85. [PMID: 23758616 DOI: 10.1021/bc4000349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jutta Pauli
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics,
Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| | - Kai Licha
- mivenion GmbH, Robert-Koch-Platz 4, D-10115 Berlin, Germany
| | - Janis Berkemeyer
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics,
Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| | - Markus Grabolle
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics,
Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| | - Monika Spieles
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics,
Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| | - Nicole Wegner
- mivenion GmbH, Robert-Koch-Platz 4, D-10115 Berlin, Germany
| | - Pia Welker
- mivenion GmbH, Robert-Koch-Platz 4, D-10115 Berlin, Germany
| | - Ute Resch-Genger
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics,
Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| |
Collapse
|
49
|
Nahar K, Gupta N, Gauvin R, Absar S, Patel B, Gupta V, Khademhosseini A, Ahsan F. In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. Eur J Pharm Sci 2013; 49:805-18. [PMID: 23797056 DOI: 10.1016/j.ejps.2013.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/03/2013] [Accepted: 06/07/2013] [Indexed: 01/14/2023]
Abstract
Delivery of therapeutic agents via the pulmonary route has gained significant attention over the past few decades because this route of administration offers multiple advantages over traditional routes that include localized action, non-invasive nature and favorable lung-to-plasma ratio. However, assessment of post administration behavior of inhaled pharmaceuticals-such as deposition of particles over the respiratory airways, interaction with the respiratory fluid and movement across the air-blood barrier-is challenging because the lung is a very complex organs that is composed of airways with thousands of bifurcations with variable diameters. Thus, much effort has been put forward to develop models that mimic human lungs and allow evaluation of various pharmaceutical and physiological factors that influence the deposition and absorption profiles of inhaled formulations. In this review, we sought to discuss in vitro, in vivo and ex vivo models that have been extensively used to study the behaviors of airborne particles in the lungs and determine the absorption of drugs after pulmonary administration. We have provided a summary of lung cast models, cascade impactors, noninvasive imaging, intact animals, cell culture and isolated perfused lung models as tools to evaluate the distribution and absorption of inhaled particles. We have also outlined the limitations of currently used models and proposed future studies to enhance the reproducibility of these models.
Collapse
Affiliation(s)
- Kamrun Nahar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rapid optical imaging of human breast tumour xenografts using anti-HER2 VHHs site-directly conjugated to IRDye 800CW for image-guided surgery. Eur J Nucl Med Mol Imaging 2013; 40:1718-29. [PMID: 23778558 DOI: 10.1007/s00259-013-2471-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Molecular optical imaging using monoclonal antibodies is slow with low tumour to background ratio. We used anti-HER2 VHHs conjugated to IRDye 800CW to investigate their potential as probes for rapid optical molecular imaging of HER2-positive tumours by the determination of tumour accumulation and tumour to background levels. METHODS Three anti-HER2 VHHs (11A4, 18C3, 22G12) were selected with phage display and produced in Escherichia coli. Binding affinities of these probes to SKBR3 cells were determined before and after site-specific conjugation to IRDye 800CW. To determine the potential of VHH-IR as imaging probes, serial optical imaging studies were carried out using human SKBR3 and human MDA-MB-231 xenograft breast cancer models. Performance of the anti-HER2 VHH-IR was compared to that of trastuzumab-IR and a non-HER2-specific VHH-IR. Image-guided surgery was performed during which SKBR3 tumour was removed under the guidance of the VHH-IR signal. RESULTS Site-specific conjugation of IRDye 800CW to three anti-HER2 VHHs preserved high affinity binding with the following dissociation constants (KD): 11A4 1.9 ± 0.03, 18C3 14.3 ± 1.8 and 22G12 3.2 ± 0.5 nM. Based upon different criteria such as binding, production yield and tumour accumulation, 11A4 was selected for further studies. Comparison of 11A4-IR with trastuzumab-IR showed ∼20 times faster tumour accumulation of the anti-HER2 VHH, with a much higher contrast between tumour and background tissue (11A4-IR 2.5 ± 0.3, trastuzumab-IR 1.4 ± 0.4, 4 h post-injection). 11A4-IR was demonstrated to be a useful tool in image-guided surgery. CONCLUSION VHH-IR led to a much faster tumour accumulation with high tumour to background ratios as compared to trastuzumab-IR allowing same-day imaging for clinical investigation as well as image-guided surgery.
Collapse
|