1
|
Aphrham S, Verheijden M, Huskens J. Quantifying and Controlling DNA Probe Density on the Surface of Silicon Nitride Optical Waveguides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11205-11214. [PMID: 40263986 PMCID: PMC12060268 DOI: 10.1021/acs.langmuir.5c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Photonic biosensors offer a label-free, sensitive, and cost-effective means of detecting pathogens and biomarkers, such as methylated DNA, in liquid biopsy samples. However, challenges persist in controlling and quantifying the surface density of probes and complementary targets, which is essential to achieve optimal sensitivity. To address these issues in DNA detection, the surfaces of asymmetric Mach-Zehnder interferometer (aMZI) waveguide sensors were functionalized using two approaches to achieve density-controlled probe-DNA surfaces. In one method, varying ratios of BSA and biotinylated BSA were incubated on each sensor surface, followed by neutravidin and biotinylated probe DNA (pDNA), allowing for controlled surface coverage on each aMZI sensor. A second approach involved direct binding of amino-pDNA, mixed with nonprobe DNA, to the carboxylated aMZI surface after EDC-NHS activation. Target-DNA (tDNA) hybridization was then introduced at different concentrations to assess the effect of surface density on binding. A quantification method was developed to account for the molecular mass density, enabling the estimation of real-time signal responses during both protein functionalization and DNA binding steps. Results showed that higher tDNA solution concentrations exhibited a strong dependence on surface coverage, while lower concentrations showed a minimal dependence. Fluorescence spectroscopy, using fluorescently labeled tDNA, confirmed a direct linear correlation between the surface density and fluorescence intensity, offering a simpler yet robust method for quantitative surface characterization. This correlation provides an alternative method for estimating surface density without the need for laborious characterization. This study contributes to the development and understanding of photonic biosensing techniques for biomarker detection in liquid biopsy samples.
Collapse
Affiliation(s)
- Samer Aphrham
- Department
of Molecules and Materials, Faculty of Science & Technology, MESA+
Institute and TechMed Centre, University
of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
- Qurin
Diagnostics B.V, Emmy
Noetherweg 2, Leiden 2333
BK, The Netherlands
| | - Mark Verheijden
- Qurin
Diagnostics B.V, Emmy
Noetherweg 2, Leiden 2333
BK, The Netherlands
| | - Jurriaan Huskens
- Department
of Molecules and Materials, Faculty of Science & Technology, MESA+
Institute and TechMed Centre, University
of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
2
|
Zhuang L, Gong J, Shen J, Zhao Y, Yang J, Liu Q, Zhang Y, Shen Q. Advances in molecular epidemiology and detection methods of pseudorabies virus. DISCOVER NANO 2025; 20:45. [PMID: 39992589 PMCID: PMC11850701 DOI: 10.1186/s11671-025-04217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Pseudorabies (PR), a highly contagious disease caused by the pseudorabies virus (PRV), represents a significant threat to the global swine industry. Despite the success of developed countries in controlling the PRV epidemic through swine pseudorabies eradication programs, wild boars, as a potential source of infection, still require sustained attention and effective control measures. Concurrently, there has been considerable global attention directed towards cases of PRV infection in humans. In consideration of the aforementioned factors, this paper presents a comprehensive review of recent developments in the PRV genome, epidemiology, vaccine research, and molecular detection methods. The epidemiology section presents an analysis of the transmission routes, susceptible animal groups, and geographic distribution of PRV, as well as an examination of the trend of the epidemic in recent years. In the field of vaccine research, the current development of genetically engineered vaccines is emphasized, and the immunogenicity and safety of vaccines are discussed. Moreover, the molecular detection techniques utilized to identify PRV, including immunological methods, nucleic acid detection methods, biosensors, and so forth, are presented in a systematic manner. Finally, this paper presents a comprehensive discussion of the current status of PRV-related research and offers insights into future directions, with the aim of providing a foundation for the scientific prevention and control of PRV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
3
|
Omidifar N, Masoumzadeh R, Saghi SA, Nikmanesh A, Shokripour M, Mousavi SM, Nikmanesh Y, Gholami A. A New Approach in the Early Electrochemical Diagnosis of Hepatitis B Virus Infection using Carbon-based Nanomaterials. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:166-182. [PMID: 38523523 DOI: 10.2174/0118722105285022240311062943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 03/26/2024]
Abstract
The importance of early diagnosis of hepatitis B virus infection to treat and follow up this disease has led to many advances in diagnostic techniques and materials. Conventional diagnostic tests are not very useful, especially in the early stages of infection; it is therefore suggested that nanomaterials can enhance them by changing and strengthening their performance for a more accurate and rapid diagnosis. Electrochemical immunosensors with unique features such as miniaturization, low cost, specificity and simplicity have become a suitable and vital tool in the rapid diagnosis of hepatitis B since the patent. Different strategies have been presented, such as graphene oxide and gold nanorods (GO-GNRs), graphene oxide (GO), copper metal-organic framework/ electrochemically reduced graphene oxide (Cu-MOF/ErGO) composite, Label-free graphene oxide/ Fe3O4/Prussian Blue (GO/Fe3O4/PB) immunosensor, and graphene oxide-ferrocene-CS/Au (GOFc- CS/Au) nanoparticle layered electrochemical immunosensor. In this review, we discuss a group of the most widely used nanostructures, such as graphene and carbon nanotubes, which are used to develop electrochemical immunosensors for the early diagnosis of the hepatitis B virus.
Collapse
Affiliation(s)
- Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Masoumzadeh
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Nikmanesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Zhou K, Zhou J, Cao S, Zheng Y, Zhang XY, Chen C, Zhang XE, Men D. Bifunctional Protein TC1 Mediated One-Pot Strategy for Robust Immobilization of DNA with High Accessibility. SMALL METHODS 2024; 8:e2400049. [PMID: 38804235 DOI: 10.1002/smtd.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Immobilizing DNA with high accessibility at the interface is attractive but challenging. Current methods often involve multiple chemical reactions and derivatives. In this study, an endonuclease, TC1, is introduced to develop a robust strategy for immobilizing DNA with enhanced accessibility. TC1 enables direct immobilization of DNA onto a solid support through self-catalytic DNA covalent coupling and robust solid adsorption capabilities. This method demonstrates high accessibility to target molecules, supported by the improved sensitivity of DNA hybridization and aptamer-target recognition assays. TC1-mediated DNA immobilization is a one-pot reaction that does not require chemical derivatives, making it promising for the development of high-performance DNA materials and technologies.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shanshan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou National Laboratory, Guangzhou, 510005, P. R. China
| | - Ying Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin-Yu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou National Laboratory, Guangzhou, 510005, P. R. China
| | - Chen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou National Laboratory, Guangzhou, 510005, P. R. China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen university of Advanced Technology, Shenzhen, 518055, P. R. China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou National Laboratory, Guangzhou, 510005, P. R. China
- State Key Laboratory of Respiratory Disease, Guangzhou institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
5
|
Napoletano S, Battista E, Netti PA, Causa F. MicroLOCK: Highly stable microgel biosensor using locked nucleic acids as bioreceptors for sensitive and selective detection of let-7a. Biosens Bioelectron 2024; 260:116406. [PMID: 38805889 DOI: 10.1016/j.bios.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Chemically modified oligonucleotides can solve biosensing issues for the development of capture probes, antisense, CRISPR/Cas, and siRNA, by enhancing their duplex-forming ability, their stability against enzymatic degradation, and their specificity for targets with high sequence similarity as microRNA families. However, the use of modified oligonucleotides such as locked nucleic acids (LNA) for biosensors is still limited by hurdles in design and from performances on the material interface. Here we developed a fluorogenic biosensor for non-coding RNAs, represented by polymeric PEG microgels conjugated with molecular beacons (MB) modified with locked nucleic acids (MicroLOCK). By 3D modeling and computational analysis, we designed molecular beacons (MB) inserting spot-on LNAs for high specificity among targets with high sequence similarity (95%). MicroLOCK can reversibly detect microRNA targets in a tiny amount of biological sample (2 μL) at 25 °C with a higher sensitivity (LOD 1.3 fM) without any reverse transcription or amplification. MicroLOCK can hybridize the target with fast kinetic (about 30 min), high duplex stability without interferences from the polymer interface, showing high signal-to-noise ratio (up to S/N = 7.3). MicroLOCK also demonstrated excellent resistance to highly nuclease-rich environments, in real samples. These findings represent a great breakthrough for using the LNA in developing low-cost biosensing approaches and can be applied not only for nucleic acids and protein detection but also for real-time imaging and quantitative assessment of gene targeting both in vitro and in vivo.
Collapse
Affiliation(s)
- Sabrina Napoletano
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
| |
Collapse
|
6
|
Malekjahani A, Lekuti AA, Valiente PA, Osborne M, Li VYC, Kim PM, Chan WCW. Engineering a Rigid Nucleic Acid Structure to Improve the Limit of Detection for Genetic Assays. Anal Chem 2024; 96:9729-9736. [PMID: 38801277 DOI: 10.1021/acs.analchem.4c02124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Detecting nucleic acids at ultralow concentrations is critical for research and clinical applications. Particle-based assays are commonly used to detect nucleic acids. However, DNA hybridization on particle surfaces is inefficient due to the instability of tethered sequences, which negatively influences the assay's detection sensitivity. Here, we report a method to stabilize sequences on particle surfaces using a double-stranded linker at the 5' end of the tethered sequence. We termed this method Rigid Double Stranded Genomic Linkers for Improved DNA Analysis (RIGID-DNA). Our method led to a 3- and 100-fold improvement of the assays' clinical and analytical sensitivity, respectively. Our approach can enhance the hybridization efficiency of particle-based assays without altering existing assay workflows. This approach can be adapted to other platforms and surfaces to enhance the detection sensitivity.
Collapse
Affiliation(s)
- Ayden Malekjahani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Ayokunle A Lekuti
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Pedro A Valiente
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Matthew Osborne
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Vanessa Y C Li
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Zhou X, Zamani M, Austin K, De Bock M, Chaj Ullola J, Riki S, Furst AL. Improving electrochemical hybridization assays with restriction enzymes. Chem Commun (Camb) 2024; 60:1948-1951. [PMID: 38284146 PMCID: PMC10863419 DOI: 10.1039/d3cc06192b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Nucleic acids in blood are early indicators of disease that could be detected by point-of-care biosensors if sufficiently sensitive and facile sensors existed. Electrochemical hybridization assays are sensitive and specific but are limited to very short nucleic acids. We have developed a restriction enzyme-assisted electrochemical hybridization (REH) assay for improved nucleic acid detection. By incorporating target-specific restriction enzymes, we detect long nucleic acids, with performance dependent on the location of the cut site relative to the electrode surface. Thus, we have further established guidelines for REH design to serve as a generalizable platform for robust electrochemical detection of long nucleic acids.
Collapse
Affiliation(s)
- Xingcheng Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Marjon Zamani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Katherine Austin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Marieke De Bock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Joshua Chaj Ullola
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Smah Riki
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Qiao YP, Ren CL. Correlated Hybrid DNA Structures Explored by the oxDNA Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:109-117. [PMID: 38154122 DOI: 10.1021/acs.langmuir.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Thermodynamically, perfect DNA hybridization can be formed between probes and their corresponding targets due to the favorable energy. However, this is not the case dynamically. Here, we use molecular dynamics (MD) simulations based on the oxDNA model to investigate the process of DNA microarray hybridization. In general, correlated hybrid DNA structures are formed, including one probe associated with several targets as well as one target hybrid with multiple probes leading to the target-mediated hybridization. The formation of these two types of correlated structures largely depends on the surface coverage of the DNA microarray. Moreover, DNA sequence, DNA length, and spacer length have an impact on the structural formation. Our findings shed light on the dynamics of DNA hybridization, which is important for the application of DNA microarray.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Pereira RL, Oliveira D, Pêgo AP, Santos SD, Moreira FTC. Electrochemical miRNA-34a-based biosensor for the diagnosis of Alzheimer's disease. Bioelectrochemistry 2023; 154:108553. [PMID: 37672968 DOI: 10.1016/j.bioelechem.2023.108553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is the most common dementia type and a leading cause of death and disability in the elderly. Diagnosis is expensive and invasive, urging the development of new, affordable, and less invasive diagnostic tools. The identification of changes in the expression of non-coding RNAs prompts the development of diagnostic tools to detect disease-specific blood biomarkers. Building on this idea, this work reports a novel electrochemical microRNA (miRNA) biosensor for the diagnosis of AD, based on carbon screen-printed electrodes (C-SPEs) modified with two gold nanostructures and a complementary anti-miR-34a oligonucleotide probe. This biosensor showed good target affinity, reflected on a 100 pM to 1 μM linearity range and a limit of detection (LOD) of 39 pM in buffer and 94 aM in serum. Moreover, the biosensor's response was not affected by serum compounds, indicating selectivity for miR-34a. The biosensor also detected miR-34a in the cell culture medium of a common AD model, stimulated with a neurotoxin to increase miR-34a secretion. Overall, the proposed biosensor makes a solid case for the introduction of a novel, inexpensive, and minimally invasive tool for the early diagnosis of AD, based on the detection of a circulating miRNA overexpressed in this pathology.
Collapse
Affiliation(s)
- Raquel L Pereira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Daniela Oliveira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia D Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Felismina T C Moreira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.
| |
Collapse
|
10
|
Grzędowski A, Ma T, Bizzotto D. FRET Imaging of Nonuniformly Distributed DNA SAMs on Gold Reveals the Role Played by the Donor/Acceptor Ratio and the Local Environment in Measuring the Rate of Hybridization. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:286-296. [PMID: 37388962 PMCID: PMC10302881 DOI: 10.1021/cbmi.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/01/2023]
Abstract
Mixed DNA SAMs labeled with a fluorophore (either AlexaFluor488 or AlexaFluor647) were prepared on a single crystal gold bead electrode using potential-assisted thiol exchange and studied using Förster resonance energy transfer (FRET). A measure of the local environment of the DNA SAM (e.g., crowding) was possible using FRET imaging on these surfaces since electrodes prepared this way have a range of surface densities (ΓDNA). The FRET signal was strongly dependent on ΓDNA and on the ratio of AlexaFluor488 to AlexaFluor647 used to make the DNA SAM, which were consistent with a model of FRET in 2D systems. FRET was shown to provide a direct measure of the local DNA SAM arrangement on each crystallographic region of interest providing a direct assessment of the probe environment and its influence on the rate of hybridization. The kinetics of duplex formation for these DNA SAMs was also studied using FRET imaging over a range of coverages and DNA SAM compositions. Hybridization of the surface-bound DNA increased the average distance between the fluorophore label and the gold electrode surface and decreased the distance between the donor (D) and acceptor (A), both of which result in an increase in FRET intensity. This increase in FRET was modeled using a second order Langmuir adsorption rate equation, reflecting the fact that both D and A labeled DNA are required to become hybridized to observe a FRET signal. The self-consistent analysis of the hybridization rates on low and high coverage regions on the same electrode showed that the low coverage regions achieved full hybridization 5× faster than the higher coverage regions, approaching rates typically found in solution. The relative increase in FRET intensity from each region of interest was controlled by manipulating the donor to acceptor composition of the DNA SAM without changing the rate of hybridization. The FRET response can be optimized by controlling the coverage and the composition of the DNA SAM sensor surface and could be further improved with the use of a FRET pair with a larger (e.g., > 5 nm) Förster radius.
Collapse
|
11
|
Wang Z, Lou X. Recent Progress in Functional-Nucleic-Acid-Based Fluorescent Fiber-Optic Evanescent Wave Biosensors. BIOSENSORS 2023; 13:bios13040425. [PMID: 37185500 PMCID: PMC10135899 DOI: 10.3390/bios13040425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Biosensors capable of onsite and continuous detection of environmental and food pollutants and biomarkers are highly desired, but only a few sensing platforms meet the "2-SAR" requirements (sensitivity, specificity, affordability, automation, rapidity, and reusability). A fiber optic evanescent wave (FOEW) sensor is an attractive type of portable device that has the advantages of high sensitivity, low cost, good reusability, and long-term stability. By utilizing functional nucleic acids (FNAs) such as aptamers, DNAzymes, and rational designed nucleic acid probes as specific recognition ligands, the FOEW sensor has been demonstrated to be a general sensing platform for the onsite and continuous detection of various targets ranging from small molecules and heavy metal ions to proteins, nucleic acids, and pathogens. In this review, we cover the progress of the fluorescent FNA-based FOEW biosensor since its first report in 1995. We focus on the chemical modification of the optical fiber and the sensing mechanisms for the five above-mentioned types of targets. The challenges and prospects on the isolation of high-quality aptamers, reagent-free detection, long-term stability under application conditions, and high throughput are also included in this review to highlight the future trends for the development of FOEW biosensors capable of onsite and continuous detection.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| |
Collapse
|
12
|
Damin F, Galbiati S, Clementi N, Ferrarese R, Mancini N, Sola L, Chiari M. Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay. BIOSENSORS 2023; 13:269. [PMID: 36832035 PMCID: PMC9953785 DOI: 10.3390/bios13020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Since the emergence of the COVID-19 pandemic in December 2019, the SARS-CoV-2 virus continues to evolve into many variants emerging around the world. To enable regular surveillance and timely adjustments in public health interventions, it is of the utmost importance to accurately monitor and track the distribution of variants as rapidly as possible. Genome sequencing is the gold standard for monitoring the evolution of the virus, but it is not cost-effective, rapid and easily accessible. We have developed a microarray-based assay that can distinguish known viral variants present in clinical samples by simultaneously detecting mutations in the Spike protein gene. In this method, the viral nucleic acid, extracted from nasopharyngeal swabs, after RT-PCR, hybridizes in solution with specific dual-domain oligonucleotide reporters. The domains complementary to the Spike protein gene sequence encompassing the mutation form hybrids in solution that are directed by the second domain ("barcode" domain) at specific locations on coated silicon chips. The method utilizes characteristic fluorescence signatures to unequivocally differentiate, in a single assay, different known SARS-CoV-2 variants. In the nasopharyngeal swabs of patients, this multiplex system was able to genotype the variants which have caused waves of infections worldwide, reported by the WHO as being of concern (VOCs), namely Alpha, Beta, Gamma, Delta and Omicron variants.
Collapse
Affiliation(s)
- Francesco Damin
- National Research Council of Italy, Institute of Chemical Sciences and Technologies “G. Natta”, 20131 Milan, Italy
| | - Silvia Galbiati
- Complications of Diabetes Units, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Roberto Ferrarese
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Laura Sola
- National Research Council of Italy, Institute of Chemical Sciences and Technologies “G. Natta”, 20131 Milan, Italy
| | - Marcella Chiari
- National Research Council of Italy, Institute of Chemical Sciences and Technologies “G. Natta”, 20131 Milan, Italy
| |
Collapse
|
13
|
Development and scale-up of oligo-dT monolithic chromatographic column for mRNA capture through understanding of base-pairing interactions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Alsadig A, Abbasgholi-NA B, Vondracek H, Medagli B, Fortuna S, Posocco P, Parisse P, Cabrera H, Casalis L. DNA-Directed Protein Anchoring on Oligo/Alkanethiol-Coated Gold Nanoparticles: A Versatile Platform for Biosensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010078. [PMID: 36615988 PMCID: PMC9823620 DOI: 10.3390/nano13010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 05/27/2023]
Abstract
Herein, we report on a smart biosensing platform that exploits gold nanoparticles (AuNPs) functionalized through ssDNA self-assembled monolayers (SAM) and the DNA-directed immobilization (DDI) of DNA-protein conjugates; a novel, high-sensitivity optical characterization technique based on a miniaturized gel electrophoresis chip integrated with online thermal lens spectrometry (MGEC-TLS), for the high-sensitivity detection of antigen binding events. Specifically, we characterized the physicochemical properties of 20 nm AuNPs covered with mixed SAMs of thiolated single-stranded DNA and bio-repellent molecules, referred to as top-terminated oligo-ethylene glycol (TOEG6), demonstrating high colloidal stability, optimal binder surface density, and proper hybridization capacity. Further, to explore the design in the frame of cancer-associated antigen detection, complementary ssDNA fragments conjugated with a nanobody, called C8, were loaded on the particles and employed to detect the presence of the HER2-ECD antigen in liquid. At variance with conventional surface plasmon resonance detection, MGEC-TLS characterization confirmed the capability of the assay to titrate the HER2-ECD antigen down to concentrations of 440 ng/mL. The high versatility of the directed protein-DNA conjugates immobilization through DNA hybridization on plasmonic scaffolds and coupled with the high sensitivity of the MGEC-TLS detection qualifies the proposed assay as a potential, easily operated biosensing strategy for the fast and label-free detection of disease-relevant antigens.
Collapse
Affiliation(s)
- Ahmed Alsadig
- Department of Physics, University of Trieste, 34127 Trieste, Italy
- NanoInnovation Lab, Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Behnaz Abbasgholi-NA
- NanoInnovation Lab, Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
- Optics Lab, STI Unit, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Hendrik Vondracek
- NanoInnovation Lab, Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Barbara Medagli
- Department of Medicine, Surgery and Health Sciences at the University of Trieste, 34149 Trieste, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Via Melen–83, B Block, 16152 Genova, Italy
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Pietro Parisse
- NanoInnovation Lab, Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
- Institute of Materials (IOM-CNR), Area Science Park, 34149 Trieste, Italy
| | - Humberto Cabrera
- Optics Lab, STI Unit, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Loredana Casalis
- NanoInnovation Lab, Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| |
Collapse
|
15
|
A lateral flow strip biosensor platform based on cascade nucleic acid amplification technology for ultrasensitive detection of OSCC-associated salivary MicroRNA. Anal Chim Acta 2022; 1221:340112. [DOI: 10.1016/j.aca.2022.340112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
|
16
|
Abbasgholi N. Asbaghi B, Alsadig A, Casalis L, Parisse P, Niemela J, Bellucci S, Cabrera H. An electrophoresis approach with online thermal lens detection to monitoring DNA surface coatings on gold nanoparticles. Microchem J 2022; 173:106961. [DOI: 10.1016/j.microc.2021.106961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Marti A, Huskens J. Au Nanoparticle-Based Amplified DNA Detection on Poly-l-lysine Monolayer-Functionalized Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:242. [PMID: 35055260 PMCID: PMC8780787 DOI: 10.3390/nano12020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Affinity sensing of nucleic acids is among the most investigated areas in biosensing due to the growing importance of DNA diagnostics in healthcare research and clinical applications. Here, we report a simple electrochemical DNA detection layer, based on poly-l-lysine (PLL), in combination with gold nanoparticles (AuNPs) as a signal amplifier. The layer shows excellent reduction of non-specific binding and thereby high contrast between amplified and non-amplified signals with functionalized AuNPs; the relative change in current was 10-fold compared to the non-amplified signal. The present work may provide a general method for the detection of tumor markers based on electrochemical DNA sensing.
Collapse
Affiliation(s)
| | - Jurriaan Huskens
- Department of Molecules & Materials, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| |
Collapse
|
18
|
Hanson RL, Lazalde E, Knob R, Harris DH, Akuoko Y, Nielsen JB, Woolley AT. Multilabel hybridization probes for sequence-specific detection of sepsis-related drug resistance genes in plasmids. TALANTA OPEN 2021; 3. [PMID: 34950926 DOI: 10.1016/j.talo.2021.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Emerging antimicrobial drug resistance is increasing the complexity involved in treating critical conditions such as bacterial induced sepsis. Methods for diagnosing specific drug resistance tend to be rapid or sensitive, but not both. Detection methods like sequence-specific single-molecule analysis could address this concern if they could be adapted to work on smaller targets similar to those produced in traditional clinical situations. In this work we demonstrate that a 120 bp double stranded polynucleotide with an overhanging single stranded 25 bp probe sequence can be created by immobilizing DNA with a biotin/streptavidin magnetic bead system, labeling with SYBR Gold, and rinsing the excess away while the probe retains multiple fluorophores. These probes with multiple fluorophores can then be used to label a bacterial plasmid target in a sequence-specific manner. These probes enabled the detection of 1 pM plasmid samples containing a portion of an antibiotic resistance gene sequence. This system shows the possibility of improving capture and fluorescence labeling of small nucleic acid fragments, generating lower limits of detection for clinically relevant samples while maintaining rapid processing times.
Collapse
Affiliation(s)
- Robert L Hanson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Elaine Lazalde
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Radim Knob
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - David H Harris
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Yesman Akuoko
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacob B Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
19
|
Oligonucleotide conjugated antibody strategies for cyclic immunostaining. Sci Rep 2021; 11:23844. [PMID: 34903759 PMCID: PMC8668956 DOI: 10.1038/s41598-021-03135-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
A number of highly multiplexed immunostaining and imaging methods have advanced spatial proteomics of cancer for improved treatment strategies. While a variety of methods have been developed, the most widely used methods are limited by harmful signal removal techniques, difficulties with reagent production and antigen sensitivity. Multiplexed immunostaining employing oligonucleotide (oligos)-barcoded antibodies is an alternative approach that is growing in popularity. However, challenges remain in consistent conjugation of oligos to antibodies with maintained antigenicity as well as non-destructive, robust and cost-effective signal removal methods. Herein, a variety of oligo conjugation and signal removal methods were evaluated in the development of a robust oligo conjugated antibody cyclic immunofluorescence (Ab-oligo cyCIF) methodology. Both non- and site-specific conjugation strategies were assessed to label antibodies, where site-specific conjugation resulted in higher retained binding affinity and antigen-specific staining. A variety of fluorescence signal removal methods were also evaluated, where incorporation of a photocleavable link (PCL) resulted in full fluorescence signal removal with minimal tissue disruption. In summary, this work resulted in an optimized Ab-oligo cyCIF platform capable of generating high dimensional images to characterize the spatial proteomics of the hallmarks of cancer.
Collapse
|
20
|
Mazzarotta A, Caputo TM, Battista E, Netti PA, Causa F. Hydrogel Microparticles for Fluorescence Detection of miRNA in Mix-Read Bioassay. SENSORS (BASEL, SWITZERLAND) 2021; 21:7671. [PMID: 34833752 PMCID: PMC8624599 DOI: 10.3390/s21227671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Herein we describe the development of a mix-read bioassay based on a three-dimensional (3D) poly ethylene glycol-(PEG)-hydrogel microparticles for the detection of oligonucleotides in complex media. The key steps of hydrogels synthesis and molecular recognition in a 3D polymer network are elucidated. The design of the DNA probes and their density in polymer network were opportunely optimized. Furthermore, the diffusion into the polymer was tuned adjusting the polymer concentration and consequently the characteristic mesh size. Upon parameters optimization, 3D-PEG-hydrogels were synthetized in a microfluidic system and provided with fluorescent probe. Target detection occurred by double strand displacement assay associated to fluorescence depletion within the hydrogel microparticle. Proposed 3D-PEG-hydrogel microparticles were designed for miR-143-3p detection. Results showed 3D-hydrogel microparticles with working range comprise between 10-6-10-12 M, had limit of detection of 30 pM and good specificity. Moreover, due to the anti-fouling properties of PEG-hydrogel, the target detection occurred in human serum with performance comparable to that in buffer. Due to the approach versatility, such design could be easily adapted to other short oligonucleotides detection.
Collapse
Affiliation(s)
- Alessia Mazzarotta
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, 53, 80125 Naples, Italy; (A.M.); (T.M.C.); (P.A.N.); (F.C.)
| | - Tania Mariastella Caputo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, 53, 80125 Naples, Italy; (A.M.); (T.M.C.); (P.A.N.); (F.C.)
| | - Edmondo Battista
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, 53, 80125 Naples, Italy; (A.M.); (T.M.C.); (P.A.N.); (F.C.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, 53, 80125 Naples, Italy; (A.M.); (T.M.C.); (P.A.N.); (F.C.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
21
|
Martorell S, Tortajada-Genaro LA, González-Martínez MÁ, Maquieira Á. Surface coupling of oligo-functionalized dendrimers to detect DNA mutations after blocked isothermal amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Kuscu M, Ramezani H, Dinc E, Akhavan S, Akan OB. Fabrication and microfluidic analysis of graphene-based molecular communication receiver for Internet of Nano Things (IoNT). Sci Rep 2021; 11:19600. [PMID: 34599208 PMCID: PMC8486847 DOI: 10.1038/s41598-021-98609-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Bio-inspired molecular communications (MC), where molecules are used to transfer information, is the most promising technique to realise the Internet of Nano Things (IoNT), thanks to its inherent biocompatibility, energy-efficiency, and reliability in physiologically-relevant environments. Despite a substantial body of theoretical work concerning MC, the lack of practical micro/nanoscale MC devices and MC testbeds has led researchers to make overly simplifying assumptions about the implications of the channel conditions and the physical architectures of the practical transceivers in developing theoretical models and devising communication methods for MC. On the other hand, MC imposes unique challenges resulting from the highly complex, nonlinear, time-varying channel properties that cannot be always tackled by conventional information and communication tools and technologies (ICT). As a result, the reliability of the existing MC methods, which are mostly adopted from electromagnetic communications and not validated with practical testbeds, is highly questionable. As the first step to remove this discrepancy, in this study, we report on the fabrication of a nanoscale MC receiver based on graphene field-effect transistor biosensors. We perform its ICT characterisation in a custom-designed microfluidic MC system with the information encoded into the concentration of single-stranded DNA molecules. This experimental platform is the first practical implementation of a micro/nanoscale MC system with nanoscale MC receivers, and can serve as a testbed for developing realistic MC methods and IoNT applications.
Collapse
Affiliation(s)
- Murat Kuscu
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, 34450, Turkey.
| | - Hamideh Ramezani
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Ergin Dinc
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shahab Akhavan
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Institute for Materials Discovery, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Ozgur B Akan
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
23
|
Pareek S, Jain U, Bharadwaj M, Chauhan N. A label free nanosensing platform for the detection of cervical cancer through analysis of ultratrace DNA hybridization. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
24
|
DNA Microarray-based Detection of Bacteria in Samples Containing Antibiotics: Effect of Antibiotics on the Performance of Pathogen Detection Assays. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Robles-Remacho A, Luque-González MA, González-Casín RA, Cano-Cortés MV, Lopez-Delgado FJ, Guardia-Monteagudo JJ, Antonio Fara M, Sánchez-Martín RM, Díaz-Mochón JJ. Development of a nanotechnology-based approach for capturing and detecting nucleic acids by using flow cytometry. Talanta 2021; 226:122092. [PMID: 33676649 PMCID: PMC7794053 DOI: 10.1016/j.talanta.2021.122092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
Nucleic acid-based molecular diagnosis has gained special importance for the detection and early diagnosis of genetic diseases as well as for the control of infectious disease outbreaks. The development of systems that allow for the detection and analysis of nucleic acids in a low-cost and easy-to-use way is of great importance. In this context, we present a combination of a nanotechnology-based approach with the already validated dynamic chemical labeling (DCL) technology, capable of reading nucleic acids with single-base resolution. This system allows for the detection of biotinylated molecular products followed by simple detection using a standard flow cytometer, a widely used platform in clinical and molecular laboratories, and therefore, is easy to implement. This proof-of-concept assay has been developed to detect mutations in KRAS codon 12, as these mutations are highly important in cancer development and cancer treatments.
Collapse
Affiliation(s)
- Agustín Robles-Remacho
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain
| | - M. Angélica Luque-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain
| | - Roberto A. González-Casín
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain
| | - M. Victoria Cano-Cortés
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain
| | - F. Javier Lopez-Delgado
- DestiNA Genomica S.L, PTS Granada, Avenida de La Innovación 1, Edificio BIC, 18100, Armilla, Granada, Spain
| | - Juan J. Guardia-Monteagudo
- DestiNA Genomica S.L, PTS Granada, Avenida de La Innovación 1, Edificio BIC, 18100, Armilla, Granada, Spain
| | - Mario Antonio Fara
- DestiNA Genomica S.L, PTS Granada, Avenida de La Innovación 1, Edificio BIC, 18100, Armilla, Granada, Spain
| | - Rosario M. Sánchez-Martín
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain,Corresponding author. GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de la Ilustracion, 114, 18016, Granada, Spain
| | - Juan José Díaz-Mochón
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain,Corresponding author. GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de la Ilustracion, 114, 18016, Granada, Spain
| |
Collapse
|
26
|
Oreskovic A, Lutz BR. Ultrasensitive hybridization capture: Reliable detection of <1 copy/mL short cell-free DNA from large-volume urine samples. PLoS One 2021; 16:e0247851. [PMID: 33635932 PMCID: PMC7909704 DOI: 10.1371/journal.pone.0247851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Urine cell-free DNA (cfDNA) is a valuable non-invasive biomarker with broad potential clinical applications, but there is no consensus on its optimal pre-analytical methodology, including the DNA extraction step. Due to its short length (majority of fragments <100 bp) and low concentration (ng/mL), urine cfDNA is not efficiently recovered by conventional silica-based extraction methods. To maximize sensitivity of urine cfDNA assays, we developed an ultrasensitive hybridization method that uses sequence-specific oligonucleotide capture probes immobilized on magnetic beads to improve extraction of short cfDNA from large-volume urine samples. Our hybridization method recovers near 100% (95% CI: 82.6-117.6%) of target-specific DNA from 10 mL urine, independent of fragment length (25-150 bp), and has a limit of detection of ≤5 copies of double-stranded DNA (0.5 copies/mL). Pairing hybridization with an ultrashort qPCR design, we can efficiently capture and amplify fragments as short as 25 bp. Our method enables amplification of cfDNA from 10 mL urine in a single qPCR well, tolerates variation in sample composition, and effectively removes non-target DNA. Our hybridization protocol improves upon both existing silica-based urine cfDNA extraction methods and previous hybridization-based sample preparation protocols. Two key innovations contribute to the strong performance of our method: a two-probe system enabling recovery of both strands of double-stranded DNA and dual biotinylated capture probes, which ensure consistent, high recovery by facilitating optimal probe density on the bead surface, improving thermostability of the probe-bead linkage, and eliminating interference by endogenous biotin. We originally designed the hybridization method for tuberculosis diagnosis from urine cfDNA, but expect that it will be versatile across urine cfDNA targets, and may be useful for other cfDNA sample types and applications beyond cfDNA. To make our hybridization method accessible to new users, we present a detailed protocol and straightforward guidelines for designing new capture probes.
Collapse
Affiliation(s)
- Amy Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
27
|
Gessner I, Fries JWU, Brune V, Mathur S. Magnetic nanoparticle-based amplification of microRNA detection in body fluids for early disease diagnosis. J Mater Chem B 2020; 9:9-22. [PMID: 33179710 DOI: 10.1039/d0tb02165b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circulating biomarkers such as microRNAs (miRNAs), short noncoding RNA strands, represent prognostic and diagnostic indicators for a variety of physiological disorders making their detection and quantification an attractive approach for minimally invasive early disease diagnosis. However, highly sensitive and selective detection methods are required given the generally low abundance of miRNAs in body fluids together with the presence of large amounts of other potentially interfering biomolecules. Although a variety of miRNA isolation and detection methods have been established in clinics, they usually require trained personnel and often constitute labor-, time- and cost-intensive approaches. During the last years, nanoparticle-based biosensors have received increasing attention due to their superior detection efficiency even in very low concentration regimes. This is based on their unique physicochemical properties in combination with their high surface area that allows for the immobilization of multiple recognition sites resulting in fast and effective recognition of analytes. Among various materials, magnetic nanoparticles have been identified as useful tools for the separation, concentration, and detection of miRNAs. Here, we review state-of-the-art technology with regard to magnetic particle-based miRNA detection from body fluids, critically discussing challenges and future perspective of such biosensors while comparing their handling, sensitivity as well as selectivity against the established miRNA isolation and detection methods.
Collapse
Affiliation(s)
- Isabel Gessner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | | | | | | |
Collapse
|
28
|
Lee Yu HL, Fan TW, Hsing IM. Oligonucleotide hybridization with magnetic separation assay for multiple SNP phasing. Anal Chim Acta X 2020; 5:100050. [PMID: 33117988 PMCID: PMC7587028 DOI: 10.1016/j.acax.2020.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 10/29/2022] Open
Abstract
Since humans have two copies of each gene, multiple mutations in different loci may or may not be found on the same strand of DNA (i.e., inherited from one parent). When a person is heterozygous at more than one position, the placement of these mutations, also called the haplotype phase, (i.e., cis for the same strand and trans for different strands) can result in the expression of different amount and type of proteins. In this work, we described an enzyme-free method to phase two single nucleotide polymorphisms (SNPs) using two fluorophore/quencher-labelled probes, where one of which was biotinylated. The fluorescence signal was obtained twice: first, after the addition of the labelled probes and second, after the addition of the magnetic beads. The first signal was shown to be proportional to the total number of SNP A and SNP B present in the target analyte, while the second signal showed a marked decrease of the fluorescence signal from the non-biotinylated probe when the SNPs were in trans, showing that the probe immobilized on the magnetic bead selectively captures targets with SNPs in a cis configuration. We then mimic the nature of the human genome which consists of two haplotype copies of each gene, and showed that 250 nM of the 10 possible pairs of haplotypes could be differentiated using a combination of fluorescence microscopy and fluorescence detection.
Collapse
Affiliation(s)
- Henson L. Lee Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tsz Wing Fan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
29
|
Warner CN, Hunter ZD, Carte DD, Skidmore TJ, Vint ES, Day BS. Structure and Function Analysis of DNA Monolayers Created from Self-Assembling DNA-Dendron Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5428-5434. [PMID: 32336098 DOI: 10.1021/acs.langmuir.0c00340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Short sequences of DNA immobilized on gold surfaces can be used to capture an array of target molecules because of their high level of specificity. Depending on the nature of the target molecules, the proper density and distribution of the immobilized DNA molecules are fundamental to the quality of the sensor. With the aim to control the packing density and minimize the heterogeneity of the surfaces, DNA-dendron conjugate molecules were synthesized in solution and used to make self-assembled monolayers of single-stranded DNA surfaces on gold. The headgroups used were polyamido amine dendrons (cleaved cystamine core dendrimers) of generations two through five. The structural composition of these self-assembled monolayers was characterized using grazing angle Fourier-transform infrared and X-ray photoelectron spectroscopies. Surface plasmon resonance was used to measure surface densities of the probe monolayers and each monolayer's ability to capture fully complementary DNA strands from solution. The surface density of the probe monolayers was found to decrease with increasing dendron generation number, while the hybridization efficiency increased with increasing dendron generation number.
Collapse
Affiliation(s)
- Christian N Warner
- Department of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - Zachary D Hunter
- Department of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - Destiny D Carte
- Department of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - Tyler J Skidmore
- Department of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - Erik S Vint
- Department of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - B Scott Day
- Department of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| |
Collapse
|
30
|
Petralia S, Forte G, Zimbone M, Conoci S. The cooperative interaction of triplex forming oligonucleotides on DNA-triplex formation at electrode surface: Molecular dynamics studies and experimental evidences. Colloids Surf B Biointerfaces 2019; 187:110648. [PMID: 31767411 DOI: 10.1016/j.colsurfb.2019.110648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
An extensive study on cooperative interaction of Triplex Forming Oligonucleotides (TFOs) with a double strand DNA, to form a triplex-DNA structure at electrode surface, is here reported. The cooperative effect on triplex structure formation was assumed by the higher binding enthalpy value, calculated for the interaction between the duplex DNA structure and the TFO1 and TFO2 probes (-67.3 KJ/mol), respect the sum of the single duplex-TFO1 and duplex-TFO2 interactions (-47.0 kJ/mol). The formation of triplex-DNA structure was proven by kinetic modelling study performed using the Luzar and Chandler model. The results indicate that after 500 ns from interaction, H-bonds between the base pairs in the double strand DNA are weaken while new H-bonds between the TFOs and duplex DNA are formed. Molecular dynamic (MD) simulations indicate that the TFOs sequence distance (138 bps) and the amount of TA*T triplet units are the keystones for the effectiveness of the cooperative effect, reaching for the selected target a minimum of energy value of -19452.6 kJ/mol. The MD data were experimentally corroborated by electrochemical measurements, detecting a HBV-clone genome at TFOs modified electrode surface. The interaction was electrochemical transduced by an intercalative Osmium based compound. The Langmuir isotherm model reports for the forming triplex DNA an association constant value of about 2.9 × 1016M-1, this high value could be attributed to the synergic contribution of the TFOs cooperative effect and to the rigid circular duplex structure. Finally, AFM and SEM investigations suggest the formation of a triplex-DNA structure at electrode surface, consisting in circles of about 1.5 um in diameter with asymmetric stranded thickness. This finding data paving the way to future development of advanced miniaturized DNA computing and biosensors.
Collapse
Affiliation(s)
| | - Giuseppe Forte
- Department of Drug Science, University of Catania, via S. Sofia 64, 95123, Catania, Italy
| | | | - Sabrina Conoci
- Department of Chemical Science, University of Messina, Via Stagno d'Alcontres, 98166, Messina, Italy
| |
Collapse
|
31
|
Song Y, Gyarmati P. Rapid DNA detection using filter paper. N Biotechnol 2019; 55:77-83. [PMID: 31622785 DOI: 10.1016/j.nbt.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/07/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Point-of-care (POC) detection is crucial in clinical diagnosis in order to provide timely and specific treatment. Combining polyamidoamine (PAMAM) dendrimer, p-phenylene diisothiocyanate (PDITC) and superparamagnetic beads, a novel method to activate the surface of filter paper to bind DNA molecules has been developed. The method is based on the primary amination of the filter paper surface with PAMAM dendrimer, followed by generation of isothiocyanate groups via PDITC, and subsequent repetition of these two steps. Different parameters of the process have been optimized, including probe printing, preparation of target DNAs and detection. The result shows that, due to the highly porous structure of filter paper, high amounts of printed probes, target DNAs and magnetic beads can provide high signal intensities in the detection area via probe/target duplex formation. This method is suitable for rapid, specific and cost-efficient DNA detection on cellulose filter paper. It can be used as a POC device, in particular for diagnosis and treatment management of infectious diseases and identification of antimicrobial drug resistance genes.
Collapse
Affiliation(s)
- Yajing Song
- University of Illinois, College of Medicine, Department of Cancer Biology and Pharmacology, Peoria, IL, USA.
| | - Peter Gyarmati
- University of Illinois, College of Medicine, Department of Cancer Biology and Pharmacology, Peoria, IL, USA
| |
Collapse
|
32
|
Costa JA, Dentinger PM, McGall GH, Crnogorac F, Zhou W. Fabrication of Inverted High-Density DNA Microarrays in a Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30534-30541. [PMID: 31389236 DOI: 10.1021/acsami.9b07755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current techniques for making high-resolution, photolithographic DNA microarrays suffer from the limitation that the 3' end of each sequence is anchored to a hard substrate and hence is unavailable for many potential enzymatic reactions. Here, we demonstrate a technique that inverts the entire microarray into a hydrogel. This method preserves the spatial fidelity of the original pattern while simultaneously removing incorrectly synthesized oligomers that are inherent to all other microarray fabrication strategies. First, a standard 5'-up microarray on a donor wafer is synthesized, in which each oligo is anchored with a cleavable linker at the 3' end and an Acrydite phosphoramidite at the 5' end. Following the synthesis of the array, an acrylamide monomer solution is applied to the donor wafer, and an acrylamide-silanized acceptor wafer is placed on top. As the polyacrylamide hydrogel forms between the two wafers, it covalently incorporates the acrydite-terminated sequences into the matrix. Finally, the oligos are released from the donor wafer upon immersing in an ammonia solution that cleaves the 3'-linkers, thus freeing the oligos at the 3' end. The array is now presented 3'-up on the surface of the gel-coated acceptor wafer. Various types of on-gel enzymatic reactions demonstrate a versatile and robust platform that can easily be constructed with far more molecular complexity than traditional photolithographic arrays by endowing the system with multiple enzymatic substrates. We produce a new generation of microarrays where highly ordered, purified oligos are inverted 3'-up, in a biocompatible soft hydrogel, and functional with respect to a wide variety of programable enzymatic reactions.
Collapse
Affiliation(s)
- Justin A Costa
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Paul M Dentinger
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Glenn H McGall
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Filip Crnogorac
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Wei Zhou
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| |
Collapse
|
33
|
Visual detection of bacterial DNA using activated paper stripe. Mikrochim Acta 2019; 186:642. [DOI: 10.1007/s00604-019-3748-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 12/19/2022]
|
34
|
Shokoufi N, Abbasgholi Nejad Asbaghi B, Nouri Hajibaba S. Sensitive determination of DNA based on phosphate-dye interaction using photothermal lens technique. APPLIED OPTICS 2019; 58:3074-3082. [PMID: 31044780 DOI: 10.1364/ao.58.003074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Photothermal lens spectrometry is a powerful optical detection technique that can be used to investigate biomolecules. In this work, for the first time to our knowledge, photothermal lens spectrometry was used for determination of nanomolar concentrations of three distinct deoxyribonucleic acid (DNA) strands using methylene blue as a labeling dye. Methylene blue interacts with phosphate groups of the DNA in lower DNA concentrations. It was observed that phosphate-methylene blue interaction had no obvious effect on methylene blue absorption and fluorescence spectra, but the photothermal lens spectrometry signal of methylene blue increased with DNA concentration. For this purpose, to evaluate the performance of the presented method, herring sperm DNA, Escherichia coli bacteria DNA, and partial 16S rRNA genes were examined. Under optimum conditions, photothermal lens spectrometry intensity of methylene blue increased linearly with DNA concentration when herring sperm DNA, Escherichia coli DNA, and 16S rRNA gene concentrations increased in the ranges of 0.1-250, 1-700, and 1-800 nmol L-1, respectively. The corresponding detection limits were found to be 0.07, 0.71, and 0.56 nmol L-1, respectively, and relative standard deviations for 50 nmol L-1 of the tested samples were 2.59%, 4.95%, and 4.57%, respectively.
Collapse
|
35
|
Nurul Najian A, Foo PC, Ismail N, Kim-Fatt L, Yean CY. Probe-specific loop-mediated isothermal amplification magnetogenosensor assay for rapid and specific detection of pathogenic Leptospira. Mol Cell Probes 2019; 44:63-68. [DOI: 10.1016/j.mcp.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
|
36
|
Amplified detection of single base mismatches with the competing-strand assay reveals complex kinetic and thermodynamic behavior of strand displacement at the electrode surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Banerjee A, Zhang J, Zhou P, Tuppil K, Sreenivasulu G, Qu H, Zhang T, Timilsina R, Chavez FA, Srinivasan G. Self-assembly of multiferroic core-shell composites using DNA functionalized nanoparticles. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2018; 460:424-431. [PMID: 33981128 PMCID: PMC8112619 DOI: 10.1016/j.jmmm.2018.03.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ferrite-ferroelectric core-shell nanoparticles were prepared by deoxyribonucleic acid (DNA) assisted self-assembly and the strained mediated magneto-electric (ME) interactions between the ferroic phases were studied. The nanoparticle type and size were varied and the DNA linker sequence was also varied. Two kinds of particles, one with 600 nm barium titanate (BTO) core and 200 nm nickel ferrite (NFO) shell and another with 200 nm BTO core and 50 nm nickel cobalt ferrite (NCFO) shell were prepared. The particles were linked by three different oligomeric DNA containing 19, 18 or 30 base pairs. The core-shell structure was evident from electron microscopy and scanning microwave microscopy images. Films and disks of the core-shell particles were assembled in a magnetic field and used for measurements of low frequency ME voltage coefficient (MEVC) and magnet-dielectric effect. The MEVC data on films indicate that particles assembled with DNA with 30 base pairs exhibit the strongest ME coupling suggesting a more fully integrated heterogenous nanocomposite and the weakest interaction for DNA with 18 base pairs. These results indicate that the longer linker region in DNA is the key factor for forming better composites. This result may be due to the irregular shape of the nanoparticles. Longer DNA strands would be able to bridge better generating more linkages. Shorter strands would not able to bridge the irregularly shaped particles as well and therefore result in linkages and less heterogeneity in the composites.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, Oakland University, Rochester, MI 48309-4401, United States
| | - Jitao Zhang
- Department of Physics, Oakland University, Rochester, MI 48309-4401, United States
| | - Peng Zhou
- Department of Physics, Oakland University, Rochester, MI 48309-4401, United States
- Department of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Koushik Tuppil
- Department of Physics, Oakland University, Rochester, MI 48309-4401, United States
| | | | - Hongwei Qu
- Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309-4401, United States
| | - Tianjin Zhang
- Department of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Roshan Timilsina
- Department of Physics, Oakland University, Rochester, MI 48309-4401, United States
| | - Ferman A. Chavez
- Department of Chemistry, Oakland University, Rochester, MI 48309-4401, United States
| | - Gopalan Srinivasan
- Department of Physics, Oakland University, Rochester, MI 48309-4401, United States
| |
Collapse
|
38
|
Application of nanomaterials for the electrical and optical detection of the hepatitis B virus. Anal Biochem 2018; 549:157-163. [DOI: 10.1016/j.ab.2018.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 01/23/2023]
|
39
|
Highly sensitive electrochemical biosensor for streptavidin detection based on CdSe quantum dots. Biosens Bioelectron 2018; 103:99-103. [DOI: 10.1016/j.bios.2017.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/01/2017] [Accepted: 12/16/2017] [Indexed: 12/13/2022]
|
40
|
Miranda-Castro R, Santos-Álvarez NDL, Lobo-Castañón MJ. Understanding the Factors Affecting the Analytical Performance of Sandwich-hybridization Genosensors on Gold Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rebeca Miranda-Castro
- Dpto. Química Física y Analítica; Universidad de Oviedo; Julián Clavería 8 33006 Oviedo Spain
| | | | | |
Collapse
|
41
|
Liu J, Zhou X, Shi H. An Optical Biosensor-Based Quantification of the Microcystin Synthetase A Gene: Early Warning of Toxic Cyanobacterial Blooming. Anal Chem 2018; 90:2362-2368. [PMID: 29303555 DOI: 10.1021/acs.analchem.7b04933] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The monitoring and control of toxic cyanobacterial strains, which can produce microcystins, is critical to protect human and ecological health. We herein reported an optical-biosensor-based quantification of the microcystin synthetase A (mcyA) gene so as to discriminate microcystin-producing strains from nonproducing strains. In this assay, the mcyA-specific ssDNA probes were designed in silico with an on-line tool and then synthesized to be covalently immobilized on an optical-fiber surface. Production of fluorescently modified target DNA fragment amplicons was accomplished through the use of Cy5-tagged deoxycytidine triphosphates (dCTPs) in the polymerase chain reaction (PCR) method, which resulted in copies with internally labeled multiple sites per DNA molecule and delivered great sensitivity. With a facile surface-based hybridization process, the PCR amplicons were captured on the optical-fiber surface and were induced by an evanescent-wave field into fluorescence emission. Under the optimum conditions, the detection limit was found to be 10 pM (S/N ratio = 3) and equaled 103 gene copies/mL. The assay was triumphantly demonstrated for PCR amplicons of mcyA detection and showed satisfactory stability and reproducibility. Moreover, the sensing system exhibited excellent selectivity with quantitative spike recoveries from 87 to 102% for M. aeruginosa species in the mixed samples. There results confirmed that the method would serve as an accurate, cost-effective, and rapid technique for in-field testing of toxic Microcystis sp. in water, giving early information for water quality monitoring against microcystin-producing cyanobacteria.
Collapse
Affiliation(s)
- Jinchuan Liu
- State Key Joint Laboratory of ESPC, School of Environment and ‡Center for Sensor Technology of Environment and Health, Tsinghua University , Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment and ‡Center for Sensor Technology of Environment and Health, Tsinghua University , Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment and ‡Center for Sensor Technology of Environment and Health, Tsinghua University , Beijing 100084, China
| |
Collapse
|
42
|
Alves LM, Rodovalho VR, Castro AC, Freitas MA, Mota CM, Mineo TW, Mineo JR, Madurro JM, Brito-Madurro AG. Development of direct assays for Toxoplasma gondii and its use in genomic DNA sample. J Pharm Biomed Anal 2017; 145:838-844. [DOI: 10.1016/j.jpba.2017.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 01/28/2023]
|
43
|
Ferreira FP, Honorato-Castro AC, da Silva JV, Orellana SC, Oliveira GC, Madurro JM, Brito-Madurro AG. A novel polymer-based genosensor for the detection and quantification of Streptococcus pneumoniae
in genomic DNA sample. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fábio P. Ferreira
- Institute of Chemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| | - Ana C. Honorato-Castro
- Institute of Genetics and Biochemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| | - Jussara Vieira da Silva
- Institute of Chemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| | | | | | - João M. Madurro
- Institute of Chemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| | - Ana G. Brito-Madurro
- Institute of Genetics and Biochemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| |
Collapse
|
44
|
Marczak S, Smith E, Senapati S, Chang HC. Selectivity enhancements in gel-based DNA-nanoparticle assays by membrane-induced isotachophoresis: thermodynamics versus kinetics. Electrophoresis 2017; 38:2592-2602. [PMID: 28726313 DOI: 10.1002/elps.201700146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022]
Abstract
Selectivity against mutant nontargets with a few mismatches remains challenging in nucleic acid sensing. Sensitivity enhancement by analyte concentration does not improve selectivity because it affects targets and nontargets equally. Hydrodynamic or electrical shear enhanced selectivity is often accompanied by substantial losses in target signals, thereby leading to poor limits of detection. We introduce a platform based on depletion isotachophoresis in agarose gel generated by an ion-selective membrane that allows both selectivity and sensitivity enhancement with a two-step assay involving concentration polarization at an ion-selective membrane. By concentrating both the targets and probe-functionalized nanoparticles by ion enrichment at the membrane, the effective thermodynamic dissociation constant is lowered from 40 nM to below 500 pM, and the detection limit is 10 pM as reported previously. A dynamically optimized ion depletion front is then generated from the membrane with a high electrical shear force to selectively and irreversibly dehybridize nontargets. The optimized selectivity against a two-mismatch nontarget (in a 35-base pairing sequence) is shown to be better than the thermodynamic equilibrium selectivity by more than a hundred-fold, such that there is no detectable signal from the two-mismatch nontarget. We offer empirical evidence that irreversible cooperative dehybridization plays an important role in this kinetic selectivity enhancement and that mismatch location controls the optimum selectivity even when there is little change in the corresponding thermodynamic dissociation constant.
Collapse
Affiliation(s)
- Steven Marczak
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Elaine Smith
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
45
|
Giamblanco N, Petralia S, Conoci S, Messineo C, Marletta G. Ionic strength-controlled hybridization and stability of hybrids of KRAS DNA single-nucleotides: A surface plasmon resonance study. Colloids Surf B Biointerfaces 2017; 158:41-46. [PMID: 28662393 DOI: 10.1016/j.colsurfb.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022]
Abstract
The discrimination of a fully matched, unlabeled KRAS wild-type (WT) (C-G) target sample with respect to three of the most frequent KRAS codon mutations (G12 S (C-A), G12 R (C-C), G12C (C-T)) was investigated using an optimized detection strategy involving surface plasmon resonance (SPR), based on optimized probe-surface density and ionic strength control. The changes observed in the SPR signal were always larger for WT compared with the single-mismatch target DNA oligonucleotides, and were aligned with the theoretical energy differences between the base pair C-G, C-T, C-A, C-C. Hybridization rates of ∼106M-1s-1 were detected without the introduction of high temperature and labels, usually needed in conventional hybridization methods. One hundred percent mutation discrimination of the matched KRAS wild-type (C-G) sequence with respect to three mismatched G12C (C-T), G12 S (C-A), G12 R (C-C) target sequences was achieved.
Collapse
Affiliation(s)
- N Giamblanco
- Dept. of Chemical Sciences, University of Catania, Viale A. Doria 6 - 95129 Catania, Italy.
| | - S Petralia
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - S Conoci
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy.
| | - C Messineo
- Dept. of Chemical Sciences, University of Catania, Viale A. Doria 6 - 95129 Catania, Italy
| | - G Marletta
- Dept. of Chemical Sciences, University of Catania, Viale A. Doria 6 - 95129 Catania, Italy
| |
Collapse
|
46
|
Ravan H, Amandadi M, Esmaeili-Mahani S. DNA Domino-Based Nanoscale Logic Circuit: A Versatile Strategy for Ultrasensitive Multiplexed Analysis of Nucleic Acids. Anal Chem 2017; 89:6021-6028. [PMID: 28459545 DOI: 10.1021/acs.analchem.7b00607] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the analytical application of logical nanodevices has attracted much attention for making accurate decisions on molecular diagnosis. Herein, a DNA domino-based nanoscale logic circuit has been constructed by integrating three logic gates (AND-AND-YES) for simultaneous analysis of multiple nucleic acid biomarkers. In the first AND gate, a chimeric target DNA comprising of four biomarkers was hybridized to three biomarker-specific oligonucleotides (TRs) via their 5'-end regions and to a capture probe-magnetic microparticle. After harvesting the complex, 3' overhang regions of the TRs were labeled with three distinct monolayer double-stranded (ds) DNA-gold nanoparticles (DNA-AuNPs). Upon gleaning the complex and addition of initiator oligonucleotide, a series of toehold-mediated strand displacement reactions, which are reminiscent of a domino chain, spontaneously occurred between the confined dsDNAs on the nanoparticles' surface in the second AND gate. The output of the second gate entered into the last gate and triggered an exponential hairpin assembly to form four-way junction nanostructures. The resulting nanostructures bear split parts of DNAzyme at each end of the four arms which, in the presence of hemin, form catalytic hemin/G-quadruplex DNAzymes with peroxidase activity. The smart biosensor has exhibited a turn-on signal when all biomarkers are present in the sample. In fact, should any of the biomarkers be nonexistent, the signal remains turned-off. The biosensor can detect the biomarkers with a LOD value of 100 aM and a noticeable capability to discriminate single-nucleotide substitutions.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Mojdeh Amandadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| |
Collapse
|
47
|
Liu G, Zhang K, Ma K, Care A, Hutchinson MR, Goldys EM. Graphene quantum dot based "switch-on" nanosensors for intracellular cytokine monitoring. NANOSCALE 2017; 9:4934-4943. [PMID: 28368062 DOI: 10.1039/c6nr09381g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The detection of cytokines in body fluids, cells, tissues and organisms continues to attract considerable attention due to the importance of these key cell signalling molecules in biology and medicine. We report a graphene quantum dot (GQD) based aptasensor able to specifically detect ultra-small amounts of cytokine molecules intracellularly. Graphene quantum dots modified with cytokine aptamers (Ap-GQDs) and epitope modified GQDs (Ep-GQDs) were prepared; both are normally fluorescent at sufficient dilution. However, the fluorescence of the conjugates of Ap-GQDs and Ep-GQDs is quenched due to aggregation between Ap-GQDs and Ep-GQDs. After incubation of the cytokine-secreting cells with the conjugates of Ap-GQDs and Ep-GQDs, the cytokines secreted in cells compete for binding with the epitope which is then displaced. The ensuing binding of cytokines with the aptamers results in the disaggregation of Ap-GQDs and Ep-GQDs, and the recovery of fluorescence. The conjugates of Ap-GQDs and Ep-GQDs were used as nanosensors for monitoring intracellular cytokine IFN-γ secretion with very high sensitivity (2 pg mL-1). The disaggregation based sensing strategy in this nanosensor design is simple and universal; similar nanosensors can be used for the detection of a broad spectrum of cell-secreted molecules. Such nanosensors will serve as potential biomaterials for in vivo devices to monitor a variety of biological phenomena, in particular to understand cytokine secretion pathways in live cells.
Collapse
Affiliation(s)
- Guozhen Liu
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Yu ZL, Yang CWT, Triffaux E, Doneux T, Turner RFB, Bizzotto D. Measuring and Remediating Nonspecific Modifications of Gold Surfaces Using a Coupled in Situ Electrochemical Fluorescence Microscopic Methodology. Anal Chem 2016; 89:886-894. [DOI: 10.1021/acs.analchem.6b03953] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhinan Landis Yu
- AMPEL,
Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Cheng Wei Tony Yang
- Michael
Smith Laboratories, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Eleonore Triffaux
- Chimie
Analytique et Chimie des Interfaces, Faculté des Sciences, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Thomas Doneux
- Chimie
Analytique et Chimie des Interfaces, Faculté des Sciences, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Robin F. B. Turner
- Michael
Smith Laboratories, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Electrical and Computer Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dan Bizzotto
- AMPEL,
Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
49
|
Ataci N, Arsu N. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 169:128-133. [PMID: 27367618 DOI: 10.1016/j.saa.2016.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/31/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6×10(5)M(-1)from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7°C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution.
Collapse
Affiliation(s)
- Nese Ataci
- Yildiz Technical University, Chemistry Department, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey
| | - Nergis Arsu
- Yildiz Technical University, Chemistry Department, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey.
| |
Collapse
|
50
|
Sequence Detection of Unlabeled DNA Using the Sandwich Assay: Strand-Displacement, Hybridization Efficiency, and Probe- Conformation Considerations for the Tethered Surface. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|