1
|
Bartoszewska E, Molik K, Woźniak M, Choromańska A. Telomerase Inhibition in the Treatment of Leukemia: A Comprehensive Review. Antioxidants (Basel) 2024; 13:427. [PMID: 38671875 PMCID: PMC11047729 DOI: 10.3390/antiox13040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Leukemia, characterized by the uncontrolled proliferation and differentiation blockage of myeloid or lymphoid precursor cells, presents significant therapeutic challenges despite current treatment modalities like chemotherapy and stem cell transplantation. Pursuing novel therapeutic strategies that selectively target leukemic cells is critical for improving patient outcomes. Natural products offer a promising avenue for developing effective chemotherapy and preventive measures against leukemia, providing a rich source of biologically active compounds. Telomerase, a key enzyme involved in chromosome stabilization and mainly active in cancer cells, presents an attractive target for intervention. In this review article, we focus on the anti-leukemic potential of natural substances, emphasizing vitamins (such as A, D, and E) and polyphenols (including curcumin and indole-3-carbinol), which, in combination with telomerase inhibition, demonstrate reduced cytotoxicity compared to conventional chemotherapies. We discuss the role of human telomerase reverse transcriptase (hTERT), particularly its mRNA expression, as a potential therapeutic target, highlighting the promise of natural compounds in leukemia treatment and prevention.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Mondal R, Pal P, Biswas S, Chattopadhyay A, Bandyopadhyay A, Mukhopadhyay A, Mukhopadhyay PK. Attenuation of sodium arsenite mediated ovarian DNA damage, follicular atresia, and oxidative injury by combined application of vitamin E and C in post pubertal Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2701-2720. [PMID: 37129605 DOI: 10.1007/s00210-023-02491-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Arsenic being a toxic metalloid ubiquitously persists in environment and causes several health complications including female reproductive anomalies. Epidemiological studies documented birth anomalies due to arsenic exposure. Augmented reactive oxygen species (ROS) generation and quenched antioxidant pool are foremost consequences of arsenic threat. On the contrary, Vitamin E (VE) and C (VC) are persuasive antioxidants and conventionally used in toxicity management. Present study was designed to explore the extent of efficacy of combined VE and VC (VEC) against Sodium arsenite (NaAsO2) mediated ovarian damage. Thirty-six female Wistar rats were randomly divided into three groups (Grs) and treated for consecutive 30 days; Gr I (control) was vehicle fed, Gr II (treated) was gavaged with NaAsO2 (3 mg/kg/day), Gr III (supplement) was provided with VE (400 mg/kg/day) & VC (200 mg/kg/day) along with NaAsO2. Marked histological alterations were evidenced by disorganization in oocyte, granulosa cells and zona pellucida layers in treated group. Considerable reduction of different growing follicles along with increased atretic follicles was noted in treated group. Altered activities ofΔ5 3β-Hydroxysteroid dehydrogenase and 17β-Hydroxysteroid dehydrogenase accompanied by reduced luteinizing hormone, follicle-stimulating hormone and estradiol levels were observed in treated animals. Irregular estrous cyclicity pattern was also observed due to NaAsO2 threat. Surplus ROS production affected ovarian antioxidant strata as evidenced by altered oxidative stress markers. Provoked oxidative strain further affects DNA status of ovary. However, supplementation with VEC caused notable restoration from such disparaging effects of NaAsO2 toxicities. Antioxidant and antiapoptotic attributes of those vitamins might be liable for such restoration.
Collapse
Affiliation(s)
- Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Alok Chattopadhyay
- Department of Physiology, Harimohan Ghose College, Affiliated to University of Calcutta, Kolkata, India
| | - Amit Bandyopadhyay
- Sports and Exercise Physiology Laboratory, Department of Physiology, University Colleges of Science & Technology, University of Calcutta, Kolkata, India
| | | | | |
Collapse
|
3
|
Bartolini D, Marinelli R, Giusepponi D, Galarini R, Barola C, Stabile AM, Sebastiani B, Paoletti F, Betti M, Rende M, Galli F. Alpha-Tocopherol Metabolites (the Vitamin E Metabolome) and Their Interindividual Variability during Supplementation. Antioxidants (Basel) 2021; 10:antiox10020173. [PMID: 33503988 PMCID: PMC7912187 DOI: 10.3390/antiox10020173] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
The metabolism of α-tocopherol (α-TOH, vitamin E) shows marked interindividual variability, which may influence the response to nutritional and therapeutic interventions with this vitamin. Recently, new metabolomics protocols have fostered the possibility to explore such variability for the different metabolites of α-TOH so far identified in human blood, i.e., the “vitamin E metabolome”, some of which have been reported to promote important biological functions. Such advances prompt the definition of reference values and degree of interindividual variability for these metabolites at different levels of α-TOH intake. To this end, a one-week oral administration protocol with 800 U RRR-α-TOH/day was performed in 17 healthy volunteers, and α-TOH metabolites were measured in plasma before and at the end of the intervention utilizing a recently validated LC-MS/MS procedure; the expression of two target genes of α-TOH with possible a role in the metabolism and function of this vitamin, namely pregnane X receptor (PXR) and the isoform 4F2 of cytochrome P450 (CYP4F2) was assessed by immunoblot in peripheral blood leukocytes. The levels of enzymatic metabolites showed marked interindividual variability that characteristically increased upon supplementation. With the exception of α-CEHC (carboxy-ethyl-hydroxychroman) and the long-chain metabolites M1 and α-13′OH, such variability was found to interfere with the possibility to utilize them as sensitive indicators of α-TOH intake. On the contrary, the free radical-derived metabolite α-tocopheryl quinone significantly correlated with the post-supplementation levels of α-TOH. The supplementation stimulated PXR, but not CYP4F2, expression of leucocytes, and significant correlations were observed between the baseline levels of α-TOH and both the baseline and post-supplementation levels of PXR. These findings provide original analytical and molecular information regarding the human metabolism of α-TOH and its intrinsic variability, which is worth considering in future nutrigenomics and interventions studies.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (R.M.); (F.G.)
- Department of Medicine, University of Perugia, 06126 Perugia, Italy; (A.M.S.); (M.R.)
- Correspondence: ; Tel.: +39-075-585-7445
| | - Rita Marinelli
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (R.M.); (F.G.)
| | - Danilo Giusepponi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (D.G.); (R.G.); (C.B.); (F.P.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (D.G.); (R.G.); (C.B.); (F.P.)
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (D.G.); (R.G.); (C.B.); (F.P.)
| | - Anna Maria Stabile
- Department of Medicine, University of Perugia, 06126 Perugia, Italy; (A.M.S.); (M.R.)
| | - Bartolomeo Sebastiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy;
| | - Fabiola Paoletti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (D.G.); (R.G.); (C.B.); (F.P.)
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy;
| | - Mario Rende
- Department of Medicine, University of Perugia, 06126 Perugia, Italy; (A.M.S.); (M.R.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (R.M.); (F.G.)
| |
Collapse
|
4
|
Lucchinetti E, Lou PH, Wawrzyniak P, Wawrzyniak M, Scharl M, Holtzhauer GA, Krämer SD, Hersberger M, Rogler G, Zaugg M. Novel Strategies to Prevent Total Parenteral Nutrition-Induced Gut and Liver Inflammation, and Adverse Metabolic Outcomes. Mol Nutr Food Res 2020; 65:e1901270. [PMID: 32359213 DOI: 10.1002/mnfr.201901270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Total parenteral nutrition (TPN) is a life-saving therapy administered to millions of patients. However, it is associated with significant adverse effects, namely liver injury, risk of infections, and metabolic derangements. In this review, the underlying causes of TPN-associated adverse effects, specifically gut atrophy, dysbiosis of the intestinal microbiome, leakage of the epithelial barrier with bacterial invasion, and inflammation are first described. The role of the bile acid receptors farnesoid X receptor and Takeda G protein-coupled receptor, of pleiotropic hormones, and growth factors is highlighted, and the mechanisms of insulin resistance, namely the lack of insulinotropic and insulinomimetic signaling of gut-originating incretins as well as the potentially toxicity of phytosterols and pro-inflammatory fatty acids mainly released from soybean oil-based lipid emulsions, are discussed. Finally, novel approaches in the design of next generation lipid delivery systems are proposed. Propositions include modifying the physicochemical properties of lipid emulsions, the use of lipid emulsions generated from sustainable oils with favorable ratios of anti-inflammatory n-3 to pro-inflammatory n-6 fatty acids, beneficial adjuncts to TPN, and concomitant pharmacotherapies to mitigate TPN-associated adverse effects.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Gregory A Holtzhauer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada.,Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
5
|
Jee SC, Kim M, Sung JS. Modulatory Effects of Silymarin on Benzo[a]pyrene-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21072369. [PMID: 32235460 PMCID: PMC7177818 DOI: 10.3390/ijms21072369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a group 1 carcinogen that introduces mutagenic DNA adducts into the genome. In this study, we investigated the molecular mechanisms underlying the involvement of silymarin in the reduction of DNA adduct formation by B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), induced by B[a]P. B[a]P exhibited toxicity in HepG2 cells, whereas co-treatment of the cells with B[a]P and silymarin reduced the formation of BPDE-DNA adducts, thereby increasing cell viability. Determination of the level of major B[a]P metabolites in the treated cells showed that BPDE levels were reduced by silymarin. Nuclear factor erythroid 2-related factor 2 (Nrf2) and pregnane X receptor (PXR) were found to be involved in the activation of detoxifying genes against B[a]P-mediated toxicity. Silymarin did not increase the expression of these major transcription factors, but greatly facilitated their nuclear translocation. In this manner, treatment of HepG2 cells with silymarin modulated detoxification enzymes through NRF2 and PXR to eliminate B[a]P metabolites. Knockdown of Nrf2 abolished the preventive effect of silymarin on BPDE-DNA adduct formation, indicating that activation of the Nrf2 pathway plays a key role in preventing B[a]P-induced genotoxicity. Our results suggest that silymarin has anti-genotoxic effects, as it prevents BPDE-DNA adduct formation by modulating the Nrf2 and PXR signaling pathways.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
6
|
Vatankhah H, Ramaswamy HS. High pressure impregnation of oil in water emulsions into selected fruits: A novel approach to fortify plant-based biomaterials by lipophilic compounds. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Reboul E. Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life 2018; 71:416-423. [PMID: 30308094 DOI: 10.1002/iub.1955] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022]
Abstract
Vitamin E is an essential molecule for our development and health. It has long been thought that it was absorbed and transported through cellular membranes by a passive diffusion process. However, data obtained during the past 15 years showed that its absorption is actually mediated, at least in part, by cholesterol membrane transporters including the scavenger receptor class B type I (SR-BI), CD36 molecule (CD36), NPC1-like transporter 1 (NPC1L1), and ATP-binding cassettes A1 and G1 (ABCA1 and ABCG1). This review focuses on the absorption process of vitamin E across the enterocyte. A special attention is given to the regulation of this process, including the possible competition with other fat-soluble micronutrients, and the modulation of transporter expressions. Overall, recent results noticeably increased the comprehension of vitamin E intestinal transport, but additional investigations are still required to fully appreciate the mechanisms governing vitamin E bioavailability. © 2018 IUBMB Life, 71(4):416-423, 2019.
Collapse
|
8
|
Elbel EE, Lavine JE, Downes M, Van Natta M, Yu R, Schwimmer JB, Behling C, Brunt EM, Tonascia J, Evans R. Hepatic Nuclear Receptor Expression Associates with Features of Histology in Pediatric Nonalcoholic Fatty Liver Disease. Hepatol Commun 2018; 2:1213-1226. [PMID: 30288476 PMCID: PMC6167075 DOI: 10.1002/hep4.1232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 01/10/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children and adults. This study examined the relationship between hepatic nuclear receptor (NR) expression and histologic features of NAFLD. Drugs targeting a variety of NRs for nonalcoholic steatohepatitis (NASH) are in clinical trials. Liver messenger RNA was isolated from 40 children (10-19 years) undergoing end-of-treatment biopsy in the Treatment of NAFLD in Children (TONIC) trial. High-throughput quantitative polymerase chain reaction assayed NR messenger RNA. Cluster analysis was used to group 36 NRs, and NR levels were related to histologic measures of specific NAFLD features. Cluster analysis determined five groupings of NRs. Significant (P < 0.05) differential expressions of specific NRs associated with histologic measures include farnesoid X receptor alpha and retinoic acid receptor (RARβ and RARβ) for steatosis; estrogen receptor alpha (ERα) and peroxisome proliferator-activated receptor gamma 3 (PPARγ3) for hepatocellular ballooning; ER and PPARγ2 for lobular inflammation; PPARα/δ/γ1/γ2, ERα, constitutive androstane receptor, chicken ovalbumin upstream promoter transcription factor 1, RARα, RARβ1, retinoid X receptor, pregnane X receptor, thyroid hormone receptors α and β, and nuclear receptor related-1 for fibrosis; and ERα and RARβ/β1/α for diagnosis of NASH. Conclusion: Differential expression of specific NRs correlates with histologic severity of specific NAFLD features. These NRs are pleiotropic transactivators regulating basal metabolic functions and inflammatory responses. Derangement of activity of these receptors in NAFLD provides a rationale for exploiting their ability with receptor-specific ligands to ameliorate NASH and its consequences.
Collapse
Affiliation(s)
- Erin E Elbel
- Department of Pediatrics Columbia University New York NY
| | - Joel E Lavine
- Department of Pediatrics Columbia University New York NY
| | - Michael Downes
- Gene Expression Laboratory The Salk Institute La Jolla CA
| | - Mark Van Natta
- Bloomberg School of Public Health Johns Hopkins University Baltimore MD
| | - Ruth Yu
- Gene Expression Laboratory The Salk Institute La Jolla CA
| | | | - Cynthia Behling
- Department of Pediatrics University of California,San Diego San Diego CA
| | - Elizabeth M Brunt
- Department of Pathology and Immunology Washington University St. Louis MO
| | - James Tonascia
- Bloomberg School of Public Health Johns Hopkins University Baltimore MD
| | - Ronald Evans
- Gene Expression Laboratory The Salk Institute La Jolla CA
| |
Collapse
|
9
|
Tebbens JD, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction. Int J Mol Sci 2018; 19:ijms19061785. [PMID: 29914136 PMCID: PMC6032247 DOI: 10.3390/ijms19061785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug–drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
Collapse
Affiliation(s)
- Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Malek Azar
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Elfriede Friedmann
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Mathematikon, University Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany.
| | - Martin Lanzendörfer
- Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Qu Y, Elsasser T, Kahl S, Garcia M, Scholte C, Connor E, Schroeder G, Moyes K. The effects of feeding mixed tocopherol oil on whole-blood respiratory burst and neutrophil immunometabolic-related gene expression in lactating dairy cows. J Dairy Sci 2018; 101:4332-4342. [DOI: 10.3168/jds.2017-13902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
|
11
|
Csaba G. Vitamin-caused faulty perinatal hormonal imprinting and its consequences in adult age. Physiol Int 2017; 104:217-225. [DOI: 10.1556/2060.104.2017.3.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipid-soluble vitamins (vitamins A, D, E, and K) are actually hormones (exohormones), as they can be directly bound by hormone receptors or are in connection with molecules, which influence hormone receptors. Vitamin D is a transition between endo- and exohormones and the possibility of similar situation in case of other lipid-soluble hormones is discussed. The perinatal exposition with these “vitamins” can cause faulty perinatal hormonal imprinting with similar consequences as the faulty imprinting by the synthetic endohormones, members of the same hormone family or industrial, communal, or medical endocrine disruptors. The faulty imprinting leads to late (lifelong) consequences with altered hormone binding by receptors, altered sexuality, brain function, immunity, bone development, and fractures, etc. In addition, as hormonal imprinting is an epigenetic process, the effect of a single exposure by fat-soluble vitamins is inherited to the progeny generations. As vitamins are handled differently from hormones; however, perinatal treatments take place frequently and sometimes it is forced, the negative late effect of faulty perinatal vitamin-caused hormonal imprinting must be considered.
Collapse
Affiliation(s)
- G Csaba
- 1 Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Juskiewicz J, Jankowski J, Zielinski H, Zdunczyk Z, Mikulski D, Antoszkiewicz Z, Kosmala M, Zdunczyk P. The Fatty Acid Profile and Oxidative Stability of Meat from Turkeys Fed Diets Enriched with n-3 Polyunsaturated Fatty Acids and Dried Fruit Pomaces as a Source of Polyphenols. PLoS One 2017; 12:e0170074. [PMID: 28076425 PMCID: PMC5226801 DOI: 10.1371/journal.pone.0170074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to determine the efficacy of different dietary fruit pomaces in reducing lipid oxidation in the meat of turkeys fed diets with a high content of n-3 polyunsaturated fatty acids (PUFAs). Over a period of 4 weeks before slaughter, turkeys were fed diets with the addition of 5% dried apple, blackcurrant, strawberry and seedless strawberry pomaces (groups AP, BP, SP and SSP, respectively) and 2.5% linseed oil. Pomaces differed in the content (from 5.5 in AP to 43.1 mg/g in SSP) and composition of polyphenols Proanthocyanidins were the main polyphenolic fraction in all pomaces, AP contained flavone glycosides and dihydrochalcones, BP contained anthocyanins, and SP and SSP-ellagitannins. The n-6/n-3 PUFA ratio in all diets was comparable and lower than 2:1. In comparison with groups C and AP, the percentage of n-3 PUFAs in the total fatty acid pool of white meat from the breast muscles of turkeys in groups BP, SP and SSP was significantly higher, proportionally to the higher content of α-linolenic acid in berry pomaces. The fatty acid profile of dark meat from thigh muscles, including the n-6/n-3 PUFA ratio, was similar and lower than 3:1 in all groups. Vitamin A levels in raw breast muscles were higher in group AP than in groups C and BP (P<0.05). The addition of fruit pomaces to turkey diets lowered vitamin E concentrations (P = 0.001) in raw breast muscles relative to group C. Diets supplemented with fruit pomaces significantly lowered the concentration of thiobarbituric acid reactive substances (TBARS) in raw, frozen and cooked meat. Our results indicate that the dietary application of dried fruit pomaces increases the oxidative stability of meat from turkeys fed linseed oil, and strawberry pomace exerted the most desirable effects due to its highest polyphenol content and antioxidant potential.
Collapse
Affiliation(s)
- Jerzy Juskiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Henryk Zielinski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Zenon Zdunczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition and Food Management, University of Warmia and Mazury, Olsztyn, Poland
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Lodz University of Technology, Lodz, Poland
| | - Przemyslaw Zdunczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
13
|
Ng K, Stoll B, Chacko S, Saenz de Pipaon M, Lauridsen C, Gray M, Squires EJ, Marini J, Zamora IJ, Olutoye OO, Burrin DG. Vitamin E in New-Generation Lipid Emulsions Protects Against Parenteral Nutrition-Associated Liver Disease in Parenteral Nutrition-Fed Preterm Pigs. JPEN J Parenter Enteral Nutr 2015; 40:656-71. [PMID: 25596209 DOI: 10.1177/0148607114567900] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/13/2014] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Parenteral nutrition (PN) in preterm infants leads to PN-associated liver disease (PNALD). PNALD has been linked to serum accumulation of phytosterols that are abundant in plant oil but absent in fish oil emulsions. HYPOTHESIS Whether modifying the phytosterol and vitamin E composition of soy and fish oil lipid emulsions affects development of PNALD in preterm pigs. METHODS We measured markers of PNALD in preterm pigs that received 14 days of PN that included 1 of the following: (1) Intralipid (IL, 100% soybean oil), (2) Intralipid + vitamin E (ILE, d-α-tocopherol), (3) Omegaven (OV, 100% fish oil), or (4) Omegaven + phytosterols (PS, β-sitosterol, campesterol, and stigmasterol). RESULTS Serum levels of direct bilirubin, gamma glutamyl transferase, serum triglyceride, low-density lipoprotein, and hepatic triglyceride content were significantly lower (P < .05) in the ILE, OV, and PS compared to IL. Hepatic cholesterol 7-hydroxylase and organic solute transporter-α expression was lower (P < .05) and portal plasma FGF19 higher in the ILE, OV, and PS vs IL. Hepatic expression of mitochondrial carnitine palmitoyltransferase 1A and microsomal cytochrome P450 2E1 fatty acid oxidation genes was higher in ILE, OV, and PS vs IL. In vivo (13)C-CDCA clearance and expression of pregnane X receptor target genes, cytochrome P450 3A29 and multidrug resistance-associated protein 2, were higher in ILE, OV, and PS vs IL. CONCLUSIONS α-tocopherol in Omegaven and added to Intralipid prevented serum and liver increases in biliary and lipidemic markers of PNALD in preterm piglets. The addition of phytosterols to Omegaven did not produce evidence of PNALD.
Collapse
Affiliation(s)
- Kenneth Ng
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara Stoll
- USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | - Shaji Chacko
- USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | | | | | - Matthew Gray
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - E James Squires
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Juan Marini
- USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | - Irving J Zamora
- Texas Children's Hospital, Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Oluyinka O Olutoye
- Texas Children's Hospital, Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Douglas G Burrin
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| |
Collapse
|
14
|
Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. "Disease modifying nutricals" for multiple sclerosis. Pharmacol Ther 2014; 148:85-113. [PMID: 25435020 DOI: 10.1016/j.pharmthera.2014.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022]
Abstract
The association between vitamin D and multiple sclerosis has (re)-opened new interest in nutrition and natural compounds in the prevention and treatment of this neuroinflammatory disease. The dietary amount and type of fat, probiotics and biologicals, salmon proteoglycans, phytoestrogens and protease inhibitor of soy, sodium chloride and trace elements, and fat soluble vitamins including D, A and E were all considered as disease-modifying nutraceuticals. Studies in experimental autoimmune encephalomyelitis mice suggest that poly-unsaturated fatty acids and their 'inflammation-resolving' metabolites and the gut microflora may reduce auto-aggressive immune cells and reduce progression or risk of relapse, and infection with whipworm eggs may positively change the gut-brain communication. Encouraged by the recent interest in multiple sclerosis-nutrition nature's pharmacy has been searched for novel compounds with anti-inflammatory, immune-modifying and antioxidative properties, the most interesting being the scorpion toxins that inhibit specific potassium channels of T cells and antioxidative compounds including the green tea flavonoid epigallocatechin-3-gallate, curcumin and the mustard oil glycoside from e.g. broccoli and sulforaphane. They mostly also inhibit pro-inflammatory signaling through NF-κB or toll-like receptors and stabilize the blood brain barrier. Disease modifying functions may also complement analgesic and anti-spastic effects of cannabis, its constituents, and of 'endocannabinoid enhancing' drugs or nutricals like inhibitors of fatty acid amide hydrolase. Nutricals will not solve multiple sclerosis therapeutic challenges but possibly support pharmacological interventions or unearth novel structures.
Collapse
Affiliation(s)
- Katja Schmitz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Julia Barthelmes
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Leonie Stolz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Susanne Beyer
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Olaf Diehl
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Irmgard Tegeder
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany.
| |
Collapse
|
15
|
Burrin DG, Ng K, Stoll B, De Pipaón MS. Impact of new-generation lipid emulsions on cellular mechanisms of parenteral nutrition-associated liver disease. Adv Nutr 2014; 5:82-91. [PMID: 24425726 PMCID: PMC3884104 DOI: 10.3945/an.113.004796] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Parenteral nutrition (PN) is a life-saving nutritional support for a large population of hospitalized infants, and lipids make a substantial contribution to their energy and essential fatty acid (FA) needs. A challenge in the care of these infants is that their metabolic needs require prolonged PN support that increases the risk of PN-associated liver disease (PNALD). In recent years, the emergence of new parenteral lipid emulsions containing different source lipids and FA profiles has created nutritional alternatives to the first-generation, soybean oil-based lipid emulsion Intralipid. The limited U.S. introduction of the new-generation fish-oil emulsion Omegaven has generated promising results in infants with PNALD and spawned a renewed interest in how PN and lipid emulsions, in particular, contribute to this disease. Studies suggest that the lipid load and constituents, such as specific FAs, ratio of n-3 (ω-3) to n-6 (ω-6) long-chain polyunsaturated FAs, phytosterols, and vitamin E content, may be involved. There is an existing literature describing the molecular mechanisms whereby these specific nutrients affect hepatic metabolism and function via lipid and bile acid sensing nuclear receptors, such as peroxisome proliferator-activated receptor α, liver X receptor, and farnesoid X receptor, yet virtually no information as to how they interact and modulate liver function in the context of PN in pediatric patients or animal models. This article will review the recent development of parenteral lipid emulsions and their influence on PNALD and highlight some of the emerging molecular mechanisms that may explain the effects on liver function and disease.
Collapse
Affiliation(s)
- Douglas G. Burrin
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics and,Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX; and,To whom correspondence should be addressed. E-mail:
| | - Ken Ng
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Barbara Stoll
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics and
| | - Miguel Sáenz De Pipaón
- Department of Neonatology, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Nagapan G, Meng Goh Y, Shameha Abdul Razak I, Nesaretnam K, Ebrahimi M. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats. BMC Neurosci 2013; 14:77. [PMID: 23902378 PMCID: PMC3750608 DOI: 10.1186/1471-2202-14-77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 07/29/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. RESULTS Results showed that prenatal and postnatal TRF supplementation increased the brain (4-6 fold increase) and plasma α-tocotrienol (0.8 fold increase) levels in male off-springs. There is also notably better cognitive performance based on the Morris water maze test among these male off-springs. CONCLUSION Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats.
Collapse
Affiliation(s)
- Gowri Nagapan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute for Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Intan Shameha Abdul Razak
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kalanithi Nesaretnam
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mahdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Doricakova A, Novotna A, Vrzal R, Pavek P, Dvorak Z. The role of residues T248, Y249 and T422 in the function of human pregnane X receptor. Arch Toxicol 2012; 87:291-301. [PMID: 22976785 DOI: 10.1007/s00204-012-0937-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
The pregnane X receptor (PXR) is a key xenobiotic receptor that regulates the expression of numerous drug-metabolizing enzymes. Some posttranslational mechanisms modulate its transcriptional activity. Although several kinases have been shown to directly phosphorylate this receptor, little is known about phosphorylation sites of PXR. In the present work, we examined T248, Y249 and T422 putative phosphorylation sites determined based on in silico consensus kinase site prediction analysis. T248 and T422 residues are critical for the interaction of the PXR ligand-binding domain and the activation function-2 (AF2) domain. Site-directed mutagenesis analysis was performed to generate phospho-deficient and phospho-mimetic mutants. We examined transactivation activity of the PXR mutants in gene reporter assays, formation of PXRmutant/RXRα heterodimer, binding of PXR mutants to the CYP3A4 gene response element DR3 and CYP3A4 expression in HepG2 cells after expression of the mutants. We found that T248D mutant activated CYP3A4 transactivation constitutively regardless of the presence or absence of a ligand. Contrary, T248V mutant exhibited low basal and ligand-inducible transactivation capacity as compared to wild-type PXR. Dose-response analysis revealed reduced ligand-dependent transactivation potency of PXR Y249D mutant. Transactivation of the CYP3A4 promoter was abolished with T422A/D mutants. All PXR mutants formed heterodimer with RXRα at a similar level to that observed with wild-type PXR. The ability to bind to DNA in vitro was substantially decreased in case of T248D, T422D and T248V mutants. Our data thus indicate that phosphorylation of T248, Y249 and T422 residues may be critical for the both basal and ligand-activated function of PXR.
Collapse
Affiliation(s)
- Aneta Doricakova
- Department of Cell Biology and Genetic, Palacky University Olomouc, Slechtitelu 11, 783 71 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
18
|
Finno C, Valberg S. A Comparative Review of Vitamin E and Associated Equine Disorders. J Vet Intern Med 2012; 26:1251-66. [DOI: 10.1111/j.1939-1676.2012.00994.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/29/2012] [Accepted: 07/18/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
- C.J. Finno
- Department of Veterinary Population Medicine; College of Veterinary Medicine; University of Minnesota; St. Paul; MN
| | - S.J. Valberg
- Department of Veterinary Population Medicine; College of Veterinary Medicine; University of Minnesota; St. Paul; MN
| |
Collapse
|
19
|
Traber MG, Labut EM, Leonard SW, Lebold KM. α-Tocopherol injections in rats up-regulate hepatic ABC transporters, but not cytochrome P450 enzymes. Free Radic Biol Med 2011; 51:2031-40. [PMID: 21945367 PMCID: PMC3208783 DOI: 10.1016/j.freeradbiomed.2011.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 12/11/2022]
Abstract
The role of hepatic xenobiotic regulatory mechanisms in modulating hepatic α-tocopherol concentrations during excess vitamin E administration remains unclear. We hypothesized that increased hepatic α-tocopherol would cause a marked xenobiotic response. Thus, we assessed cytochrome P450 oxidation systems (phase I), conjugation systems (phase II), and transporters (phase III) after daily α-tocopherol injections (100mg/kg body wt) for up to 9days in rats. α-Tocopherol injections increased hepatic α-tocopherol concentrations nearly 20-fold, along with a 10-fold increase in the hepatic α-tocopherol metabolites α-CEHC and α-CMBHC. Expression of phase I (CYP3A2, CYP3A1, CYP2B2) and phase II (SULT2A1) proteins and/or mRNAs was variably affected by α-tocopherol injections; however, expression of phase III transporter genes was consistently changed by α-tocopherol. Two liver efflux transporter genes, ABCB1b and ABCG2, were up-regulated after α-tocopherol injections, whereas OATP, a liver influx transporter, was down-regulated. Thus, an overload of hepatic α-tocopherol increases its own metabolism and increases expression of genes of transporters that are postulated to lead to increased excretion of both vitamin E and its metabolites.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|
20
|
Dvorak Z, Pavek P. Regulation of drug-metabolizing cytochrome P450 enzymes by glucocorticoids. Drug Metab Rev 2011; 42:621-35. [PMID: 20482443 DOI: 10.3109/03602532.2010.484462] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulation of drug-metabolizing cytochrome P450 enzymes (CYP) is a complex process involving multiple mechanisms. Among them, transcriptional regulation through ligand-activated nuclear receptors is the crucial mechanism involved in hormone-controlled and xenobiotic-induced expression of drug-metabolizing CYPs. In this article, we focus, in detail, on the role of the glucocorticoid receptor (GR) in the transcriptional regulation of human drug-metabolizing CYP enzymes and the mechanisms of the regulation. There are at least three distinct transcriptional mechanisms by which GR controls the expression of CYPs: 1) direct binding of GR to a specific gene-promoter sequence called the glucocorticoid responsive element (GRE); 2) indirect binding of GR in the form of a multiprotein complex to gene promoters without a direct contact between GR and promoter DNA; and 3) up- or downregulation of other CYP transcriptional regulators or nuclear receptors (i.e., transcriptional regulatory cross-talk). However, due to the general effect of glucocorticoids on numerous cellular pathways and functions, the net transcriptional effect of glucocorticoids on drug-metabolizing enzymes is usually a combination of several mechanisms. Since synthetic glucocorticoids are widely prescribed in human pharmacotherapy for the treatment of many diseases, comprehensive understanding of the transcriptional regulation of drug-metabolizing CYPs via GR with respect to glucocorticoid therapy or glucocorticoid hormonal status will aid in the development of efficient individualized pharmacotherapy without drug-drug interactions.
Collapse
Affiliation(s)
- Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | | |
Collapse
|
21
|
Schröder A, Wollnik J, Wrzodek C, Dräger A, Bonin M, Burk O, Thomas M, Thasler WE, Zanger UM, Zell A. Inferring statin-induced gene regulatory relationships in primary human hepatocytes. Bioinformatics 2011; 27:2473-7. [DOI: 10.1093/bioinformatics/btr416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
22
|
Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E. GENES AND NUTRITION 2011; 7:29-41. [PMID: 21505906 DOI: 10.1007/s12263-011-0219-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/23/2022]
Abstract
The selective constraint of liver uptake and the sustained metabolism of tocotrienols (T3) demonstrate the need for a prompt detoxification of this class of lipophilic vitamers, and thus the potential for cytotoxic effects in hepatic and extra-hepatic tissues. Hypomethylated (γ and δ) forms of T3 show the highest in vitro and in vivo metabolism and are also the most potent natural xenobiotics of the entire vitamin E family of compounds. These stimulate a stress response with the induction of detoxification and antioxidant genes. Depending on the intensity of this response, these genes may confer cell protection or alternatively they stimulate a senescence-like phenotype with cell cycle inhibition or even mitochondrial toxicity and apoptosis. In cancer cells, the uptake rate and thus the cell content of these vitamers is again higher for the hypomethylated forms, and it is the critical factor that drives the dichotomy between protection and toxicity responses to different T3 forms and doses. These aspects suggest the potential for marked biological activity of hypomethylated "highly metabolized" T3 that may result in cytoprotection and cancer prevention or even chemotherapeutic effects. Cytotoxicity and metabolism of hypomethylated T3 have been extensively investigated in vitro using different cell model systems that will be discussed in this review paper as regard molecular mechanisms and possible relevance in cancer therapy.
Collapse
|
23
|
Leonard SW, Traber MG. Measurement of the vitamin E metabolites, carboxyethyl hydroxychromans (CEHCs), in biological samples. ACTA ACUST UNITED AC 2011; Chapter 7:Unit7.8. [PMID: 20954161 DOI: 10.1002/0471140856.tx0708s29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metabolites of α- and γ-tocopherol, 2,5,7,8-tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman (α-CEHC) and 2,7,8-trimethyl-2-(β-carboxyethyl)-6-hydroxychroman (γ-CEHC), respectively, are produced in the liver and have been measured in biological fluids and tissue. Compared to α-tocopherol concentrations, metabolite concentrations are as much as a factor of a thousand lower, requiring extremely sensitive methodology to attain accurate measurements. This unit presents a protocol for CEHC extraction from biological samples, and describes very specific and sensitive HPLC/MS analysis.
Collapse
Affiliation(s)
- Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
24
|
|
25
|
Kugita M, Nishii K, Morita M, Yoshihara D, Kowa-Sugiyama H, Yamada K, Yamaguchi T, Wallace DP, Calvet JP, Kurahashi H, Nagao S. Global gene expression profiling in early-stage polycystic kidney disease in the Han:SPRD Cy rat identifies a role for RXR signaling. Am J Physiol Renal Physiol 2011; 300:F177-88. [PMID: 20926632 DOI: 10.1152/ajprenal.00470.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Han:SPRD Cy is a spontaneous rat model of polycystic kidney disease (PKD) caused by a missense mutation in Pkdr1. Cystogenesis in this model is not clearly understood. In the current study, we performed global gene expression profiling in early-stage PKD cyst development in Cy/Cy kidneys and normal (+/+) kidneys at 3 and 7 days of postnatal age. Expression profiles were determined by microarray analysis, followed by validation with real-time RT-PCR. Genes were selected with over 1.5-fold expression changes compared with age-matched +/+ kidneys for canonical pathway analysis. We found nine pathways in common between 3- and 7-day Cy/Cy kidneys. Three significantly changed pathways were designated "Vitamin D Receptor (VDR)/Retinoid X Receptor (RXR) Activation," "LPS/IL-1-Mediated Inhibition of RXR Function," and "Liver X Receptor (LXR)/RXR Activation." These results suggest that RXR-mediated signaling is significantly altered in developing kidneys with mutated Pkdr1. In gene ontology analysis, the functions of these RXR-related genes were found to be involved in regulating cell proliferation and organ morphogenesis. With real-time RT-PCR analysis, the upregulation of Ptx2, Alox15b, OSP, and PCNA, major markers of cell proliferation associated with the RXR pathway, were confirmed in 3- and 7-day Cy/Cy kidneys compared with 3-day +/+ kidneys. The increased RXR protein was observed in both the nucleus and cytoplasm of cystic epithelial cells in early-stage Cy/Cy kidneys, and the RXR-positive cells were strongly positive for PCNA staining. Taken together, cell proliferation and organ morphogenesis signals transduced by RXR-mediated pathways may have important roles for cystogenesis in early-stage PKD in this Pkdr1-mutated Cy rat.
Collapse
Affiliation(s)
- Masanori Kugita
- Education and Research Center of Animal Models for Human Diseases, Faculty of Rehabilitation, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo Kutsukake-cho, Toyoake, Aichi, Japan 470-1192
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Brigelius-Flohé R, Galli F. Vitamin E: a vitamin still awaiting the detection of its biological function. Mol Nutr Food Res 2010; 54:583-7. [PMID: 20458704 DOI: 10.1002/mnfr.201000091] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Nuthetal, Germany.
| | | |
Collapse
|
28
|
Caputo M, Zirpoli H, Torino G, Tecce MF. Selective regulation of UGT1A1 and SREBP-1c mRNA expression by docosahexaenoic, eicosapentaenoic, and arachidonic acids. J Cell Physiol 2010; 226:187-93. [DOI: 10.1002/jcp.22323] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Yao HT, Lii CK, Chou RH, Lin JH, Yang HT, Chiang MT. Effect of chitosan on hepatic drug-metabolizing enzymes and oxidative stress in rats fed low- and high-fat diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5187-5193. [PMID: 20334365 DOI: 10.1021/jf903857m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chitosan is sold worldwide as a lipid-lowering functional food and may be taken with certain medications. To investigate the effect of chitosan on drug-metabolizing enzymes and oxidative stress in the liver, male Wistar rats were fed a low- or high-fat diet with cellulose or chitosan for 4 weeks. A significant decrease in cytochrome P450 (CYP) 3A-catalyzed testosterone 6beta-hydroxylation in liver microsomes was observed in rats fed the chitosan with low- and high-fat diets. The expression of CYP 3A1 and 3A2, however, was suppressed by chitosan in rats fed the low-fat diet only. Furthermore, rats fed the low-fat diet with chitosan had lower hepatic glutathione S-transferase (GST) activity and superoxide dismutase activity and higher total tissue and microsomal lipid hydroperoxides. Hepatic alpha-tocopherol was lower in rats fed the chitosan-containing diet. The results suggest that chitosan is likely to modulate CYP 3A activity and protein expression and GST activity partially in a dietary fat-dependent manner. This change may cause a decrease in the metabolism of drugs catalyzed by these enzymes in liver tissues. Moreover, decrease of alpha-tocopherol level and SOD activity by chitosan partly accounts for the increase of hepatic lipid peroxidation.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
30
|
Pharmacogenomic identification of c-Myc/Max-regulated genes associated with cytotoxicity of artesunate towards human colon, ovarian and lung cancer cell lines. Molecules 2010; 15:2886-910. [PMID: 20428086 PMCID: PMC6257326 DOI: 10.3390/molecules15042886] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 11/17/2022] Open
Abstract
Development of novel therapy strategies is one of the major pressing topics of clinical oncology to overcome drug resistance of tumors. Artesunate (ART) is an anti-malarial drug, which also exerts profound cytotoxic activity towards cancer cells. We applied a gene-hunting approach using microarray-based transcriptome-wide mRNA expression profiling and COMPARE analyses. We identified a set of genes, whose expression was associated either with high IC50 values or low IC50 values for ART. Therefore, these genes may function as resistance or sensitivity factors for response of tumor cells towards ART. This viewpoint is conceivable for genes involved in ribosomal activity, drug transport, cellular antioxidant defense, apoptosis, cell proliferation, cell cycle progression etc. An investigation of underlying signal transduction by pathway analysis suggested a role of the signaling pathways related to tumor necrosis factor (TNF) and the tumor suppressor p53. On the other hand, there were genes without obvious functional link to cellular response to ART, such as genes involved in the survival of cochlear outer and inner hair cells etc. We proved the hypothesis that ART influences the activity of transcription factors regulating downstream genes involved or not involved in response of cancer cells towards ART. This would explain the identification of genes with and without obvious relation to the cytotoxic activity of ART by microarray and COMPARE analyses. By analysis of the binding motifs for the transcription factors c-Myc and Max, we indeed found that 53 of 56 genes contained one or more binding sites for c-Myc/Max upstream of the gene-location. We conclude that c-Myc and Max-mediated transcriptional control of gene expression might contribute to the therapeutic effects of ART in cancer cells, but may also confer unwanted side effects by affecting therapy-unrelated genes.
Collapse
|
31
|
Traber MG. Regulation of xenobiotic metabolism, the only signaling function of α-tocopherol? Mol Nutr Food Res 2010; 54:661-8. [DOI: 10.1002/mnfr.200900440] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
|
33
|
Fang F, Kang Z, Wong C. Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors. Mol Nutr Food Res 2009; 54:345-52. [DOI: 10.1002/mnfr.200900119] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
|
35
|
Dietrich M, Jacques PF, Pencina MJ, Lanier K, Keyes MJ, Kaur G, Wolf PA, D'Agostino RB, Vasan RS. Vitamin E supplement use and the incidence of cardiovascular disease and all-cause mortality in the Framingham Heart Study: Does the underlying health status play a role? Atherosclerosis 2009; 205:549-53. [PMID: 19195657 PMCID: PMC2717181 DOI: 10.1016/j.atherosclerosis.2008.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 11/13/2008] [Accepted: 12/10/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND Observational studies generally showed beneficial associations between supplemental vitamin E intake and cardiovascular disease (CVD) risk whereas intervention trials reported adverse effects of vitamin E supplements. We hypothesize that these discordant findings result from differing underlying health status of study participants in observational and intervention studies. OBJECTIVE Determine if the relation between supplemental vitamin E intake and CVD and all-cause mortality (ACM) depends on pre-existing CVD. DESIGN Proportional hazards regression to relate supplemental vitamin E intake to the 10-year incidence of CVD and ACM in 4270 Framingham Study participants stratified by baseline CVD status. RESULTS Eleven percent of participants used vitamin E supplements at baseline. In participants with pre-existing CVD, there were 28 (44%) and 20 (32%) incident cases of CVD and ACM in the vitamin E supplement users versus 249 (47%) and 202 (38%) in the non-users, respectively (CVD HR, 0.90; 95% CL, 0.60-1.32; ACM HR, 0.74; 95% CL, 0.46-1.17). In participants without pre-existing CVD, there were 51 (13%) and 47 (12%) cases of CVD and ACM in the vitamin E supplement group versus 428 (13%) and 342 (10%) in the non-vitamin E supplement group, respectively (CVD HR, 1.00; 95% CL, 0.75-1.34; ACM HR 1.20; 95% CL, 0.89-1.64). CONCLUSION CVD status has no apparent influence on the association of supplemental vitamin E intake and risk for CVD and ACM in this large, community-based study. Further research is needed to clarify the basis for the discrepant results between intervention and observational studies of supplemental vitamin E intake.
Collapse
Affiliation(s)
- M Dietrich
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brigelius-Flohé R. Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 2009; 46:543-54. [PMID: 19133328 DOI: 10.1016/j.freeradbiomed.2008.12.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/28/2008] [Accepted: 12/03/2008] [Indexed: 12/16/2022]
Abstract
Vitamin E is the last of all vitamins whose essentiality is not yet understood. Its widely accepted role as a lipophilic antioxidant has been questioned, since proof of its in vivo relevance remained scarce. The influence of vitamin E on biomarkers of oxidative stress in vivo is inconsistent and metabolites of vitamin E having reacted as an antioxidant are hardly detectable. Novel functions of vitamin E include the regulation of enzymes, most of which are membrane bound or activated by membrane recruitment. Also, expression of genes responds to vitamin E. The search for a transcription factor common to all regulated genes failed so far and a receptor that specifically binds vitamin E has not yet been identified. According to microarray data, pathways preferentially affected by the vitamin E status are the inflammatory response and cellular traffic. A role of vitamin E in cellular trafficking could best explain the neurological symptoms seen in vitamin E deficiency. Emerging knowledge on vitamin E is compiled here with the perspective to unravel the molecular mechanisms that could more likely explain the essentiality of the vitamin than its ability to scavenge free radicals.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Biochemistry of Micronutrients, Nuthetal, Germany.
| |
Collapse
|
37
|
Cho JY, Kang DW, Ma X, Ahn SH, Krausz KW, Luecke H, Idle JR, Gonzalez FJ. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation. J Lipid Res 2009; 50:924-37. [PMID: 19141872 DOI: 10.1194/jlr.m800647-jlr200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.
Collapse
Affiliation(s)
- Joo-Youn Cho
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mazzini F, Pescitelli G, Di Bari L, Netscher T, Salvadori P. Circular dichroism of tocopherols versus tocotrienols. Chirality 2009; 21:35-43. [DOI: 10.1002/chir.20591] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Bruno RS, Dugan CE, Smyth JA, DiNatale DA, Koo SI. Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury. J Nutr 2008; 138:323-31. [PMID: 18203899 DOI: 10.1093/jn/138.2.323] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) has risen along with the ongoing obesity epidemic. Green tea extract (GTE) inhibits intestinal lipid absorption and may regulate hepatic lipid accumulation. The objective of this study was to determine whether GTE protects against hepatic lipid accumulation during the development of NAFLD in an obese mouse model. Five-wk-old ob/ob (obese) mice and their lean littermates (8 mice x genotype(-1) x dietary treatment(-1)) were fed GTE at 0, 1, or 2% (wt:wt) for 6 wk. The body weights of obese mice and lean littermates fed diets containing GTE were 23-25% and 11-20% lower (P < 0.05) than their respective controls fed no GTE. Histologic evaluation showed a significant reduction in hepatic steatosis in GTE-fed obese mice only and histologic scores were correlated with hepatic lipid concentration (r = 0.84; P < 0.05), which was reduced dose dependently by GTE. GTE protected against hepatic injury as suggested by 30-41% and 22-33% lower serum alanine aminotransferase and aspartate aminotransferase activities, respectively. Hepatic alpha-tocopherol was 36% higher in obese mice than lean mice. GTE tended (P = 0.06) to lower hepatic alpha-tocopherol, which was not fully explained by the GTE-mediated reduction in hepatic lipid. Hepatic ascorbic acid was lower in obese mice than in lean mice (P < 0.05) and was unaltered by GTE. Obese mice had lower serum adiponectin than lean mice and this was not affected by GTE. The results suggest that GTE protects against NAFLD by limiting hepatic lipid accumulation and injury without affecting hepatic antioxidant status and adiponectin-mediated lipid metabolism. Further study is underway to define the events by which GTE protects against obesity-triggered NAFLD.
Collapse
Affiliation(s)
- Richard S Bruno
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA.
| | | | | | | | | |
Collapse
|
40
|
Selman C, McLaren JS, Mayer C, Duncan JS, Collins AR, Duthie GG, Redman P, Speakman JR. Lifelongα-Tocopherol Supplementation Increases the Median Life Span of C57BL/6 Mice in the Cold but Has Only Minor Effects on Oxidative Damage. Rejuvenation Res 2008; 11:83-96. [DOI: 10.1089/rej.2007.0586] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Colin Selman
- Integrative Physiology, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jane S. McLaren
- Integrative Physiology, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Claus Mayer
- BioSS, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom
| | - Jackie S. Duncan
- Obesity and Metabolic Health, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom
| | - Andrew R. Collins
- Nutritional Biochemistry, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom
- Institute for Nutrition Research, School of Medicine, University of Oslo, Oslo, Norway
| | - Garry G. Duthie
- Nutritional Biochemistry, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom
| | - Paula Redman
- Integrative Physiology, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John R. Speakman
- Integrative Physiology, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Obesity and Metabolic Health, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom
| |
Collapse
|
41
|
Caputo M, Eletto D, Torino G, Tecce MF. Cooperation of docosahexaenoic acid and vitamin E in the regulation of UDP-glucuronosyltransferase mRNA expression. J Cell Physiol 2008; 215:765-70. [DOI: 10.1002/jcp.21355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Kussmann M, Affolter M, Nagy K, Holst B, Fay LB. Mass spectrometry in nutrition: understanding dietary health effects at the molecular level. MASS SPECTROMETRY REVIEWS 2007; 26:727-50. [PMID: 17654467 DOI: 10.1002/mas.20147] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In modern nutrition research, mass spectrometry has developed into a tool to assess health, sensory as well as quality and safety aspects of food. In this review, we focus on health-related benefits of food components and, accordingly, on biomarkers of exposure (bioavailability) and bioefficacy. Current nutrition research focuses on unraveling the link between dietary patterns, individual foods or food constituents and the physiological effects at cellular, tissue and whole body level after acute and chronic uptake. The bioavailability of bioactive food constituents as well as dose-effect correlations are key information to understand the impact of food on defined health outcomes. Both strongly depend on appropriate analytical tools to identify and quantify minute amounts of individual compounds in highly complex matrices--food or biological fluids--and to monitor molecular changes in the body in a highly specific and sensitive manner. Based on these requirements, mass spectrometry has become the analytical method of choice with broad applications throughout all areas of nutrition research. The current review focuses on selected areas of application: protein and peptide as well as nutrient and metabolite analysis.
Collapse
Affiliation(s)
- Martin Kussmann
- Bioanalytical Science Department, Nestlé Research Center, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Leonard SW, Joss JD, Mustacich DJ, Blatt DH, Lee YS, Traber MG. Effects of vitamin E on cholesterol levels of hypercholesterolemic patients receiving statins. Am J Health Syst Pharm 2007; 64:2257-66. [DOI: 10.2146/ajhp070041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Scott W. Leonard
- Linus Pauling Institute, Oregon State University (OSU), Corvallis
| | - Jacqueline D. Joss
- Good Samaritan. Regional Medical Center, Samaritan Health Services (SHS), Corvallis
| | | | | | | | | |
Collapse
|
44
|
Abstract
Dietary and supplemental vitamin E is absorbed and delivered to the liver, but of the various antioxidants with vitamin E activity, only alpha-tocopherol is preferentially recognized by the alpha-tocopherol transfer protein (alpha-TTP) and is transferred to plasma, while the other vitamin E forms (e.g., gamma-tocopherol or tocotrienols) are removed from the circulation. Hepatic alpha-TTP is required to maintain plasma and tissue alpha-tocopherol concentrations. The liver is the master regulator of the body's vitamin E levels in that it not only controls alpha-tocopherol concentrations, but also appears to be the major site of vitamin E metabolism and excretion. Vitamin Es are metabolized similarly to xenobiotics; they are initially omega-oxidized by cytochrome P450s, undergo several rounds of beta-oxidation, and then are conjugated and excreted. As a result of these various mechanisms, liver alpha-tocopherol and other vitamin E concentrations are closely regulated; thus, any potential adverse vitamin E effects are limited.
Collapse
Affiliation(s)
- Maret G Traber
- Department of Nutrition and Exercise Science, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
45
|
Soden JS, Devereaux MW, Haas JE, Gumpricht E, Dahl R, Gralla J, Traber MG, Sokol RJ. Subcutaneous vitamin E ameliorates liver injury in an in vivo model of steatocholestasis. Hepatology 2007; 46:485-95. [PMID: 17659596 DOI: 10.1002/hep.21690] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Several genetic metabolic liver diseases share the pathological features of combined steatosis and cholestasis, or steatocholestasis. The aims of this study were to develop and characterize an in vivo model for steatocholestasis and to evaluate the effects of an antioxidant treatment on liver injury, oxidative stress, and mitochondrial perturbations in this model. Obese and lean Zucker rats received intravenous (IV) injections of glycochenodeoxycholic acid (GCDC) and were killed 4 hours later. Liver enzymes were measured; the liver histology was assessed, and hepatic mitochondria were analyzed for mitochondrial lipid peroxidation. In separate experiments, rats received daily injections of subcutaneous (SQ) vitamin E before GCDC infusion. Bile acid-induced injury (serum AST and ALT and liver histology) was more severe in the obese rats than in the lean rats, characterized predominantly by extensive cell necrosis with minimal evidence of apoptosis. SQ vitamin E provided significant protection against IV GCDC-induced hepatic injury, in vitro GCDC-induced permeability transition, and cytochrome C and apoptosis-inducing factor release from isolated mitochondria. CONCLUSION Steatosis sensitizes the liver to bile acid-induced necrotic hepatocyte injury, which is responsive to vitamin E therapy.
Collapse
Affiliation(s)
- Jason S Soden
- Pediatric Liver Center and Liver Transplantation Program, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Colorado at Denver Health Sciences Center, Denver, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Li YJ, Shaw HM. Pregnenolone and dexamethasone, modulators of cytochrome P450-3A, not increase but reduce urinary alpha-CEHC excretion in rats. Biofactors 2007; 31:67-76. [PMID: 18806310 DOI: 10.1002/biof.5520310107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, the CYP3A inducer pregnenolone-16alpha-carbonitrile (PCN) and the CYP3A inhibitor ketoconazole (KCZ) were used to investigate whether the metabolism of alpha-tocopherol to its metabolite, alpha-carboxyethyl hydroxychroman (alpha-CEHC), is CYP3A-dependent in rats. In experiment 1, two groups of Wistar rats were fed for 3 wk with either a basal diet (containing 50 ppm of alpha-tocopherol) or the same diet containing 10-fold more alpha-tocopherol. In the last 3 days, each group was divided into 2 subgroups which were given a single i.p. injection of either PCN at 75 mg/kg/d (P50 & P500 groups) or DMSO (D50 & D500 groups). The liver TBARS concentration was highest in the P50 group. Two-way ANOVA analysis showed that alpha-tocopherol levels in the plasma and liver were both significantly decreased by PCN (p < 0.0001), as were alpha-CEHC levels in the urine (p = 0.0004). In experiment 2, alpha-tocopherol levels in the liver were increased and alpha-CEHC excretion in the urine decreased in the Wistar rats fed with KCZ containing diet. In experiment 3, Wistar rats administered with dexamethasone (DEX) significantly decreased alpha-tocopherol levels in the plasma and liver and alpha-CEHC levels in the urine. These data showed CYP3A is not a major contributor of the metabolism of alpha-tocopherol to alpha-CEHC. Nevertheless, vitamin E status was markedly reduced by CYP3A inducers due to increased lipid peroxidation and this would increase the consumption of alpha-tocopherol in the liver.
Collapse
Affiliation(s)
- Yi-Jen Li
- Laboratory of Nutritional Biochemistry, Institute of Microbiology and Biochemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
47
|
Galli F, Polidori MC, Stahl W, Mecocci P, Kelly FJ. Vitamin E Biotransformation in Humans. VITAMIN E 2007; 76:263-80. [PMID: 17628177 DOI: 10.1016/s0083-6729(07)76009-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The presence and activity of vitamin E in the organism as well as its role in disease prevention depend, as for any other microconstituent in food, on a number of factors related to its release from the food matrix, extent of absorption, and metabolic fate. Biotransformation can be defined as the sum of processes in which vitamin E compounds are altered by the body. It involves the bioactivation and production of reactive metabolites, a series of processes generally referred to as "vitamin E metabolism." This chapter will provide an overview of the known and less known steps of vitamin E biotransformation in humans. Due to recent advances related to the biological activities and metabolic processing of vitamin E compounds, particular attention will be given to the description of the formation, identification, and functions of vitamin E metabolites. The hypothesis of a transformation-dependent bioactivation of vitamin E represents an intriguing and emerging aspect of research that deserves further investigation.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Internal Medicine, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
48
|
Bruno RS, Song Y, Leonard SW, Mustacich DJ, Taylor AW, Traber MG, Ho E. Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. J Nutr Biochem 2006; 18:509-18. [PMID: 17142032 DOI: 10.1016/j.jnutbio.2006.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 08/25/2006] [Accepted: 09/27/2006] [Indexed: 12/28/2022]
Abstract
Approximately 12% of Americans do not consume the estimated average requirement for zinc and could be at risk for zinc deficiency. Since zinc has proposed antioxidant function, inadequate zinc consumption may lead to an enhanced susceptibility to oxidative stress through several mechanisms, including altered antioxidant defenses. In this study, we hypothesized that dietary zinc restriction would result in lower antioxidant status and increased oxidative damage. We fed weanling Sprague-Dawley rats (n=12 per group) a zinc-adequate (50 mg/kg of zinc) diet, a zinc-deficient (<0.05 mg/kg of zinc) diet or a pair-fed diet for 3 weeks and then assessed their antioxidant status and oxidative stress parameters. Rats were zinc deficient as indicated by a significant (P<.05) reduction in body weight (49%) and 19% lower (P<.05) hepatic zinc (20.6+/-2.1 mg/kg) as compared with zinc-adequate rats (24.6+/-2.2 mg/kg). Zinc deficiency resulted in elevated (P<.05) plasma F(2) isoprostanes. Zinc deficiency-mediated oxidative stress was accompanied by a 20% decrease (P<.05) in the ferritin-reducing ability of plasma assay and a 50% reduction in plasma uric acid (P<.05). No significant change in plasma ascorbic acid or in plasma alpha-tocopherol and gamma-tocopherol was observed. However, hepatic alpha-tocopherol and gamma-tocopherol concentrations were decreased by 38% and 27% (P<.05), respectively, as compared with those in zinc-adequate rats. Hepatic alpha-tocopherol transfer protein levels were unaltered (P>.05) by zinc deficiency, but cytochrome P450 (CYP) 4F2 protein levels were elevated (P<.05) as compared with those in zinc-adequate rats. Collectively, zinc deficiency increased oxidative stress, which may be partially explained by increased CYP activity and reductions in hepatic alpha-tocopherol and gamma-tocopherol and in plasma uric acid.
Collapse
Affiliation(s)
- Richard S Bruno
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Mazzini F, Galli F, Salvadori P. Vitamin E Metabolites: Synthesis of [D2]- and [D3]-γ-CEHC. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600652] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Abstract
More than 80 years after the discovery of the essentiality of vitamin E for mammals, the molecular basis of its action is still an enigma. From the eight different forms of vitamin E, only α-tocopherol is retained in the body. This is in part due to the specific selection ofRRR-α-tocopherol by the α-tocopherol transfer protein and in part by its low rate of degradation and elimination compared with the other vitamers. Since the tocopherols have comparable antioxidant properties and some tocotrienols are even more effective in scavenging radicals, the antioxidant capacity cannot be the explanation for its essentiality, at least not the only one. In the last decade, a high number of so-called novel functions of almost all forms of vitamin E have been described, including regulation of cellular signalling and gene expression. α-Tocopherol appears to be most involved in gene regulation, whereas γ-tocopherol appears to be highly effective in preventing cancer-related processes. Tocotrienols appear to be effective in amelioration of neurodegeneration. Most of the novel functions of individual forms of vitamin E have been demonstratedin vitroonly and requirein vivoconfirmation. The distinct bioactivities of the various vitamers are discussed, considering their metabolism and the potential functions of metabolites.
Collapse
|