1
|
Yu J, Li Y, Zhu B, Shen J, Miao L. Vitamin D: an important treatment for secondary hyperparathyroidism in chronic kidney disease? Int Urol Nephrol 2025; 57:1853-1863. [PMID: 39738859 PMCID: PMC12049386 DOI: 10.1007/s11255-024-04334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Secondary hyperparathyroidism (SHPT) is one of the most common complications of chronic kidney disease (CKD). Vitamin D levels begin to decrease in the early stages of CKD, and these vitamin D-related changes play a central role in the occurrence and development of SHPT. Vitamin D-based drugs, which inhibit parathyroid hormone secretion either directly or indirectly, are commonly used to treat SHPT. However, vitamin D-based drugs can also lead to a dysregulated balance between serum calcium and phosphorus, as well as other adverse reactions. Over the past several decades, researchers have conducted in-depth studies on the pathogenesis of SHPT, developed new vitamin D-based drugs, and explored combinatory methods to improve treatment efficacy for the disease. Here, we review vitamin D metabolism, the diagnosis of vitamin D deficiency in patients with CKD, the pathogenesis of SHPT, the pharmacological effects of vitamin D drugs, and the benefits and side effects of using vitamin D to treat SHPT.
Collapse
Affiliation(s)
- Jie Yu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yulu Li
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianqin Shen
- Department of Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Liying Miao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
2
|
Qu Y, Zhao Y. Nutritional insights into pulmonary fibrosis: a comprehensive review on the impact of vitamins. Front Nutr 2025; 12:1525408. [PMID: 40290659 PMCID: PMC12021645 DOI: 10.3389/fnut.2025.1525408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Pulmonary fibrosis is a fatal interstitial disease characterized by diffuse alveolitis, abnormal fibroblast proliferation, and extracellular matrix (ECM) accumulation, resulting in structural lung destruction and impaired lung function. Numerous studies have demonstrated that vitamins appear to play a crucial role in regulating inflammatory responses, cell differentiation, redox homeostasis, and collagen synthesis. Beyond their conventional nutritional functions, specific vitamins have recently been found to modulate various biological processes involved in pulmonary fibrosis. This study aims to provide a comprehensive overview of the current understanding regarding the impact of vitamins on pulmonary fibrotic disease.
Collapse
Affiliation(s)
- Yaqian Qu
- Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Youliang Zhao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Dong W, Gao X, Guan F, Pan J, Chen W, Zhang L, Zhang L. Establishment and characterization of liver-specific Apoa4-Cre and Cyp2c11-Cre rat models in juvenile and adult stages. Animal Model Exp Med 2025; 8:718-727. [PMID: 39916324 PMCID: PMC12008442 DOI: 10.1002/ame2.12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/04/2024] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Liver diseases are a major contributor to both morbidity and mortality. Conditional knockout animals are always produced through crossing floxed animals with a tissue-specific Cre animal. The use of floxed rat resource has rapidly increased, but the liver-specific Cre rat lines for studying liver diseases and interested genes are limited, especially in a spatially and temporally restricted manner. METHODS RNA sequencing and real-time polymerase chain reaction (PCR) were used to screen and confirm the presence of liver-specific genes. Apoa4-Cre rats and Cyp2c11-Cre rats were produced by CRISPR/Cas9 knockin. Rosa26-imCherry rats were employed to hybridize with the Cre rats to obtain the Apoa4-Cre/Rosa26-imCherry and Cyp2c11-Cre/Rosa26-imCherry rats. The temporal and spatial patterns of Cre expression were determined by the observation of red fluorescence on tissue sections. Hematoxylin-eosin stain was used to evaluate the liver histopathologic changes. The blood biochemical analysis of several liver enzymes and liver lipid profile was performed to evaluate the liver function of Cre rats. RESULTS Apoa4 and Cyp2c11 were identified as two liver-specific genes. Apoa4-Cre and Cyp2c11-Cre rats were produced and hybridized with Rosa26-imCherry rats. The red fluorescence indicated that the Cre recombinases were specially expressed in the juvenile and adult liver and not in other organs of two hybridized rats. All the blood biochemical parameters except low-density lipoprotein (LDL) did not change significantly in the Cre rats. No histological alterations were detected in the livers of the Cre rats. CONCLUSIONS Liver-specific Apoa4-Cre and Cyp2c11-Cre rats have been established successfully and could be used to study gene knockout, specifically in juvenile and adult liver.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jirong Pan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
Artusa P, White JH. Vitamin D and its analogs in immune system regulation. Pharmacol Rev 2025; 77:100032. [PMID: 40148037 DOI: 10.1016/j.pharmr.2024.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Vitamin D was discovered as the cure for nutritional rickets, a disease of bone growth arising from inadequate intestinal calcium absorption, and for much of the 20th century, it was studied for its critical role in calcium homeostasis. However, we now recognize that the vitamin D receptor and vitamin D metabolic enzymes are expressed in numerous tissues unrelated to calcium homeostasis. Notably, vitamin D signaling can induce cellular differentiation and cell cycle arrest. Moreover, the vitamin D receptor and the enzyme CYP27B1, which produces the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), are expressed throughout the immune system. In addition, CYP27B1 expression in immune cells is regulated by physiological inputs independent of those controlling its expression in calcium homeostatic tissues. These observations have driven the development of 1,25D-like secosteroidal analogs and nonsecosteroidal analogs to separate the effects of vitamin D on cell differentiation and function from its calcemic activities. Notably, some of these analogs have had considerable success in the clinic in the treatment of inflammatory and immune-related disorders. In this review, we described in detail the mechanisms of vitamin D signaling and the physiological signals controlling 1,25D synthesis and catabolism, with a focus on the immune system. We also surveyed the effects of 1,25D and its analogs on the regulation of immune system function and their implications for human immune-related disorders. Finally, we described the potential of vitamin D analogs as anticancer therapeutics, in particular, their use as adjuncts to cancer immunotherapy. SIGNIFICANCE STATEMENT: Vitamin D signaling is active in both the innate and adaptive arms of the immune system. Numerous vitamin D analogs, developed primarily to minimize the dose-limiting hypercalcemia of the active form of vitamin D, have been used widely in preclinical and clinical studies of immune system regulation. This review presents a description of the mechanisms of action of vitamin D signaling, an overview of analog development, and an in-depth discussion of the immunoregulatory roles of vitamin D analogs.
Collapse
Affiliation(s)
- Patricio Artusa
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Rivero A, Wehmeier KR, Haas MJ, Mooradian AD. Vitamin D, immune function, and atherosclerosis. Where are we now? Nutr Res 2025; 133:148-160. [PMID: 39733509 DOI: 10.1016/j.nutres.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 12/31/2024]
Abstract
The role of vitamin D in regulating calcium metabolism and skeletal growth and disease is widely recognized. Indeed, current recommendations for serum vitamin D concentrations are based on these parameters. A serum vitamin D <20 ng/mL is considered deficient, concentrations between 20 and 30 ng/mL are insufficient, and >30 ng/mL is adequate. However, over the past number of years, epidemiological studies, randomized clinical trials, and preclinical animal and cell culture-based research have demonstrated that vitamin D modulates immune function. Cardiovascular disease (CVD), the leading cause of morbidity and mortality in the United States and in industrialized nations, is mediated in part by chronic inflammation as well as by other well-established risk factors including dyslipidemia, hypertension, obesity, and diabetes. Vitamin D deficiency (<20 ng/mL or <50 nM) is associated with increased CVD risk. As described in this review, several recent systematic reviews and meta-analyses provide some evidence that vitamin D administration to individuals with vitamin D deficiency may have little effect on CVD-related mortality. Many well-designed randomized clinical trials in the general population as well as in people at risk for CVD-related complication later in life provide evidence that treatment may be beneficial. These latter studies as well as the paucity of information regarding the optimal vitamin D concentration required for optimizing immune function in patients indicate that more research is needed to address whether vitamin D supplements may be a cost-effective intervention for preventing CVD.
Collapse
Affiliation(s)
- Ailyn Rivero
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32206
| | - Kent R Wehmeier
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32206
| | - Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32206.
| | - Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32206
| |
Collapse
|
6
|
Wang P, Li J, Ji M, Pan J, Cao Y, Kong Y, Zhu L, Li J, Li B, Chang L, Zhang Z. Vitamin D receptor attenuates carbon tetrachloride-induced liver fibrosis via downregulation of YAP. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135480. [PMID: 39146589 DOI: 10.1016/j.jhazmat.2024.135480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix proteins, which can lead to cirrhosis and liver cancer. Metabolic dysfunction-associated steatosis liver diseases are common causes of liver fibrosis, sharing a similar pathogenesis with carbon tetrachloride (CCl₄) exposure. This process involves the activation of hepatic stellate cells (HSCs) into myofibroblasts. However, the detailed mechanism and effective treatment strategies require further investigation. In this study, we uncovered a negative correlation between VDR expression and YAP within HSCs. Subsequently, we demonstrated that VDR exerted a downregulatory influence on YAP transcriptional activity in HSCs. Intriguingly, activation VDR effectively inhibited the culture induced activation of primary HSCs by suppressing the transcriptional activity of early YAP. Furthermore, in vivo results manifested that hepatic-specific deletion of YAP/TAZ ameliorates CCl4-induced liver fibrosis, and nullified the antifibrotic efficacy of VDR. Importantly, a YAP inhibitor rescued the exacerbation of liver fibrosis induced by hepatic-specific VDR knockout. Moreover, the combined pharmacological of VDR agonist and YAP inhibitor demonstrated a synergistic effect in diminishing CCl4-induced liver fibrosis, primary HSCs activation and hepatic injury in vivo. These effects were underpinned by their collective ability to inhibit HSC activation through AMPK activation, consequently curbing ATP synthesis and HSCs proliferation. In conclusion, our results not only revealed the inhibition of VDR on YAP-activated liver stellate cells but also identified a synergistic effect of VDR agonist and YAP inhibitor in an AMPKα-dependent manner, providing a practical foundation for integration of multi-targeted drugs in the therapy of CCl4-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Mintao Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity. The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jinjing Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yanmei Cao
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Yulin Kong
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Li Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity. The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China; Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200433, China.
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Wimalawansa SJ. Physiology of Vitamin D-Focusing on Disease Prevention. Nutrients 2024; 16:1666. [PMID: 38892599 PMCID: PMC11174958 DOI: 10.3390/nu16111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Vitamin D is a crucial micronutrient, critical to human health, and influences many physiological processes. Oral and skin-derived vitamin D is hydroxylated to form calcifediol (25(OH)D) in the liver, then to 1,25(OH)2D (calcitriol) in the kidney. Alongside the parathyroid hormone, calcitriol regulates neuro-musculoskeletal activities by tightly controlling blood-ionized calcium concentrations through intestinal calcium absorption, renal tubular reabsorption, and skeletal mineralization. Beyond its classical roles, evidence underscores the impact of vitamin D on the prevention and reduction of the severity of diverse conditions such as cardiovascular and metabolic diseases, autoimmune disorders, infection, and cancer. Peripheral target cells, like immune cells, obtain vitamin D and 25(OH)D through concentration-dependent diffusion from the circulation. Calcitriol is synthesized intracellularly in these cells from these precursors, which is crucial for their protective physiological actions. Its deficiency exacerbates inflammation, oxidative stress, and increased susceptibility to metabolic disorders and infections; deficiency also causes premature deaths. Thus, maintaining optimal serum levels above 40 ng/mL is vital for health and disease prevention. However, achieving it requires several times more than the government's recommended vitamin D doses. Despite extensive published research, recommended daily intake and therapeutic serum 25(OH)D concentrations have lagged and are outdated, preventing people from benefiting. Evidence suggests that maintaining the 25(OH)D concentrations above 40 ng/mL with a range of 40-80 ng/mL in the population is optimal for disease prevention and reducing morbidities and mortality without adverse effects. The recommendation for individuals is to maintain serum 25(OH)D concentrations above 50 ng/mL (125 nmol/L) for optimal clinical outcomes. Insights from metabolomics, transcriptomics, and epigenetics offer promise for better clinical outcomes from vitamin D sufficiency. Given its broader positive impact on human health with minimal cost and little adverse effects, proactively integrating vitamin D assessment and supplementation into clinical practice promises significant benefits, including reduced healthcare costs. This review synthesized recent novel findings related to the physiology of vitamin D that have significant implications for disease prevention.
Collapse
|
8
|
Becker LL, Gebhardt JT, Tokach MD, Woodworth JC, Goodband RD, DeRouchey JM. A review of calcium and phosphorus requirement estimates for gestating and lactating sows. Transl Anim Sci 2024; 8:txae087. [PMID: 38863597 PMCID: PMC11165643 DOI: 10.1093/tas/txae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Calcium (Ca) and phosphorus (P) are minerals involved in biological functions and essential structural components of the skeleton. The body tightly regulates Ca and P to maintain homeostasis. Maternal needs for Ca and P increase during gestation and lactation to support conceptus growth and milk synthesis. Litter size and litter average daily gain (ADG) have a large effect on Ca and P requirements for sows because as they increase, the requirements increase due to a greater need from the sow. The objective of this review was to summarize published literature on Ca and P requirements in gestating and lactating sows derived from empirical data and factorial models. A total of nine empirical studies and seven factorial models were reviewed for determining the Ca and P requirements in gestation. For lactation, there were six empirical studies and seven factorial models reviewed. Empirical studies determined requirements based on the observed effect of Ca and P on bone mineralization, sow and litter performance, and milk characteristics. Factorial models generated equations to estimate Ca and P requirements using the main components of maintenance, fetal and placental growth, and maternal retention in gestation. The main components for factorial equations in lactation include maintenance and milk production. In gestation, the standardized total tract digestible phosphorus (STTD P) requirement estimates from empirical studies range from 5.4 to 9.5 g/d with total Ca ranging from 12.9 to 18.6 g/d to maximize bone measurements or performance criteria. According to the factorial models, the requirements increase throughout gestation to meet the needs of the growing fetuses and range from 7.6 to 10.6 g/d and 18.4 to 38.2 g/d of STTD P and total Ca, respectively, on day 114 of gestation for parity 1 sows. During lactation, STTD P requirement estimates from empirical studies ranged from 8.5 to 22.1 g/d and total Ca ranged from 21.2 to 50.4 g/d. For the lactation factorial models, STTD P requirements ranged from 14.2 to 25.1 g/d for STTD P and 28.4 to 55.6 g/d for total Ca for parity 1 sows with a litter size of 15 pigs. The large variation in requirement estimates makes it difficult to define Ca and P requirements; however, a minimum level of 6.0 and 22.1 g/d of STTD P during gestation and lactation, respectively, appears to be adequate to meet basal requirements. The limited data and high variation indicate a need for future research evaluating Ca and P requirements for gestating and lactating sows.
Collapse
Affiliation(s)
- Larissa L Becker
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
9
|
Solnier J, Chang C, Zhang Y, Kuo YC, Du M, Roh YS, See J, Brix J, Gahler RJ, Green T, Wood S. A Comparison and Safety Evaluation of Micellar versus Standard Vitamin D 3 Oral Supplementation in a Randomized, Double-Blind Human Pilot Study. Nutrients 2024; 16:1573. [PMID: 38892507 PMCID: PMC11174535 DOI: 10.3390/nu16111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this pilot study was to evaluate and compare bioavailability and safety of two Vitamin D3 formulations (softgels) in healthy adults, at single daily doses of 1000 and 2500 IU, over a 60-day period. A total of 69 participants were initially screened for eligibility in a double-blind randomized study with a four-arm parallel design; 35 participants were randomized to treatment groups: (1) standard Vitamin D3 1000 IU (STD1000), (2) micellar Vitamin D3 1000 IU (LMD1000), (3) standard Vitamin D3 2500 IU (STD2500), and (4) micellar Vitamin D3 2500 IU (LMD2500). Serum Vitamin D concentrations were determined through calcifediol [25(OH)D] at baseline (=before treatment), at day 5, 10, and 15 (=during treatment), at day 30 (=end of treatment), and at day 45 and 60 (=during follow-up/post treatment). Safety markers and minerals were evaluated at baseline and at day 30 and day 60. The pharmacokinetic parameters with respect to iAUC were found to be significantly different between LMD1000 vs. STD1000: iAUC(5-60): 992 ± 260 vs. 177 ± 140 nmol day/L; p < 0.05, suggesting up to 6 times higher Vitamin D3 absorption of LMD when measured incrementally. During follow-up, participants in the LMD1000 treatment group showed approx. 7 times higher Vitamin D3 concentrations than the STD1000 group (iAUC(30-60): 680 ± 190 vs. 104 ± 91 nmol day/L; p < 0.05). However, no significant differences were found between the pharmacokinetics of the higher dosing groups STD2500 and LMD2500. No significant changes in serum 1,25(OH)2D concentrations or other biochemical safety markers were detected at day 60; no excess risks of hypercalcemia (i.e., total serum calcium > 2.63 mmol/L) or other adverse events were identified. LMD, a micellar delivery vehicle for microencapsulating Vitamin D3 (LipoMicel®), proved to be safe and only showed superior bioavailability when compared to standard Vitamin D at the lower dose of 1000 IU. This study has clinical trial registration: NCT05209425.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Clinical Research, Burnaby, BC V3N4S9, Canada; (C.C.); (Y.Z.); (Y.C.K.); (M.D.); (Y.S.R.)
| | - Chuck Chang
- ISURA, Clinical Research, Burnaby, BC V3N4S9, Canada; (C.C.); (Y.Z.); (Y.C.K.); (M.D.); (Y.S.R.)
| | - Yiming Zhang
- ISURA, Clinical Research, Burnaby, BC V3N4S9, Canada; (C.C.); (Y.Z.); (Y.C.K.); (M.D.); (Y.S.R.)
| | - Yun Chai Kuo
- ISURA, Clinical Research, Burnaby, BC V3N4S9, Canada; (C.C.); (Y.Z.); (Y.C.K.); (M.D.); (Y.S.R.)
| | - Min Du
- ISURA, Clinical Research, Burnaby, BC V3N4S9, Canada; (C.C.); (Y.Z.); (Y.C.K.); (M.D.); (Y.S.R.)
| | - Yoon Seok Roh
- ISURA, Clinical Research, Burnaby, BC V3N4S9, Canada; (C.C.); (Y.Z.); (Y.C.K.); (M.D.); (Y.S.R.)
| | - Janet See
- Factors Group of Nutritional Companies Ltd., Burnaby, BC V3N4S9, Canada; (J.S.); (J.B.)
| | - Jennifer Brix
- Factors Group of Nutritional Companies Ltd., Burnaby, BC V3N4S9, Canada; (J.S.); (J.B.)
- Brix Wellness, Ltd., Victoria, BC V8Z 3E9, Canada
| | - Roland J. Gahler
- Factors Group of Nutritional Companies Ltd., Burnaby, BC V3N4S9, Canada; (J.S.); (J.B.)
| | - Tim Green
- College of Nursing and Health Sciences, Flinders University, Sturt Road, Adelaide, SA 5042, Australia;
| | - Simon Wood
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia;
- InovoBiologic Inc., Calgary, AB Y2N4Y7, Canada
- Food, Nutrition and Health Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
10
|
Backus RC, Ueda DC. Age-dependent changes in plasma concentrations of 25-hydroxyvitamin D may complicate vitamin D status assessment of immature cats. Front Vet Sci 2024; 11:1365204. [PMID: 38756523 PMCID: PMC11097665 DOI: 10.3389/fvets.2024.1365204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Background Vitamin D deficiency and excess in clinically presented cats conventionally is diagnosed by comparison of patient plasma 25-hydroxyvitamin D (25 (OH)D) concentration with plasma reference intervals determined in healthy adult cats. For immature cats, validity of this vitamin D status assessment method is uncertain. Objective The overall objective was determination of whether plasma concentration of 25 (OH) D and other vitamin D metabolites in immature cats markedly change with developmental age as has been reported in other species. Methods Four male and 4 female domestic short-hair kittens from weaning were continuously presented a single nutritionally adequate growth-diet. Concentrations of 25 (OH) D and 24,25-dihydroxyvitamin D (24,25 (OH)2D), and calcitriol were quantified in plasma of jugular venous blood collected at 12, 15, 18, and 21 weeks and 1 year of age. Plasma was liquid and solid-phase extracted and fractionation by normal-phase HPLC, and 25 (OH) D and 24,25 OH)2D quantified by reverse-phase HPLC-UV and calcitriol by RIA. Results Plasma 3-epi-25 (OH) D and 25 (OH) D concentrations increased (p < 0.001) with age so that by study end the concentrations rose by 1-and 2-fold, respectively. Concentrations of 3-epi-25 (OH) D relative to 25 (OH) D were 30% at 12 weeks and 20% at 1 year. Between ages 12 and 21 weeks, rises in 25 (OH) D concentration were positively correlated with body weight gains (ρ = 0.952, p < 0.001) and 24,25 (OH)2D concentrations were consistently greater than 25 (OH) D concentrations (p < 0.001). At 1 year of age, concentrations of 24,25 (OH)2D declined below those of 25 (OH) D and 3-epi-24,25 (OH)2D consistency occurred in low concentrations. Vitamin D2 metabolites and sex differences in metabolite concentrations were not observed. Conclusion Reliance on quantification of plasma 25 (OH) D concentration for vitamin D status assessment in kittens may be confounded by developmental changes in 25 (OH) D independent of vitamin D intake. High 24,25 (OH)2D concentration and occurrence of 3-epi-25 (OH) D in plasma additionally may interfere with the quantification.
Collapse
Affiliation(s)
- Robert C. Backus
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Devon C. Ueda
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Ben-Eltriki M, Gayle EJ, Paras JM, Nyame-Addo L, Chhabra M, Deb S. Vitamin D in Melanoma: Potential Role of Cytochrome P450 Enzymes. Life (Basel) 2024; 14:510. [PMID: 38672780 PMCID: PMC11050855 DOI: 10.3390/life14040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin D is a promising anticancer agent for the prevention and treatment of several cancers, including melanoma. Low 25-hydroxyvitamin D levels, a routinely used marker for vitamin D, have been suggested as one of the factors in the development and progression of melanoma. The parent vitamin D needs activation by cytochrome P450 (CYP) enzymes to exert its actions via the vitamin D receptor (VDR). This review discusses the role of vitamin D in melanoma and how CYP-mediated metabolism can potentially affect the actions of vitamin D. Through interacting with the retinoid X receptor, VDR signaling leads to anti-inflammatory, antioxidative, and anticancer actions. Calcitriol, the dihydroxylated form of vitamin D3, is the most active and potent ligand of VDR. CYP27A1, CYP27B1, and CYP2R1 are involved in the activation of vitamin D, whereas CYP24A1 and CYP3A4 are responsible for the degradation of the active vitamin D. CYP24A1, the primary catabolic enzyme of calcitriol, is overexpressed in melanoma tissues and cells. Several drug classes and natural health products can modulate vitamin D-related CYP enzymes and eventually cause lower levels of vitamin D and its active metabolites in tissues. Although the role of vitamin D in the development of melanoma is yet to be fully elucidated, it has been proposed that melanoma prevention may be significantly aided by increased vitamin D signaling. Furthermore, selective targeting of the catabolic enzymes responsible for vitamin D degradation could be a plausible strategy in melanoma therapy. Vitamin D signaling can be improved by utilizing dietary supplements or by modulating CYP metabolism. A positive association exists between the intake of vitamin D supplements and improved prognosis for melanoma patients. Further investigation is required to determine the function of vitamin D supplementation and specific enzyme targeting in the prevention of melanoma.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Clinical Pharmacology Lab, Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Erysa J. Gayle
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Jhoanne M. Paras
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Louisa Nyame-Addo
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Manik Chhabra
- Clinical Pharmacology Lab, Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
12
|
Rahman A, Abu-Farha M, Channanath A, Hammad MM, Anoop E, Chandy B, Melhem M, Al-Mulla F, Thanaraj TA, Abubaker J. Single nucleotide polymorphisms in vitamin D binding protein and 25-hydroxylase genes affect vitamin D levels in adolescents of Arab ethnicity in Kuwait. Front Endocrinol (Lausanne) 2023; 14:1257051. [PMID: 37929021 PMCID: PMC10623322 DOI: 10.3389/fendo.2023.1257051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Vitamin D deficiency (VDD) is widespread in the Arab world despite ample sunshine throughout the year. In our previous study, lifestyle and socio-demographic factors could explain only 45% of variability in vitamin D levels in Kuwaiti adolescents, suggesting that genetics might contribute to VDD in this region. Single nucleotide polymorphisms (SNP) in the 25-hydroxylase (CYP2R1) and the GC globulin (GC) genes have been reported to affect vitamin D levels in various ethnic groups in adults. In this study, we investigated the association of two SNPs from GC (rs4588 and rs7041) and three SNPs from CYP2R1 (rs10741657, rs11023374 and rs12794714) with vitamin D levels and VDD in a nationally representative sample of adolescents of Arab ethnicity from Kuwait. Multivariable linear regression, corrected for age, sex, parental education, governorate, body mass index, and exposure to sun, demonstrated that each of the 5 study variants showed significant associations with plasma 25(OH)D levels in one or more of the additive, recessive, and dominant genetic models - the rs10741657 under all the three models, rs12794714 under both the additive and recessive models, rs7041 under the recessive model; and rs4588 and rs11023374 under the dominant model. Minor alleles at rs4588 (T), rs7041 (A), rs11023374 (C), and rs12794714 (A) led to a decrease in plasma 25(OH)D levels - rs4588:[β (95%CI) = -4.522 (-8.66,-0.38); p=0.033]; rs7041:[β (95%CI) = -6.139 (-11.12,-1.15); p=0.016]; rs11023374:[β (95%CI) = -4.296 (-8.18,-0.40); p=0.031]; and rs12794714:[β (95%CI) = -3.498 (-6.27,-0.72); p=0.014]. Minor allele A at rs10741657 was associated with higher levels of plasma 25(OH)D levels [β (95%CI) = 4.844 (1.62,8.06); p=0.003)] and lower odds of vitamin D deficiency (OR 0.40; p=0.002). These results suggest that the CYP2R1 and GC SNP variants are partly responsible for the high prevalence of VDD in Kuwait. Genotyping these variants may be considered for the prognosis of VDD in Kuwait.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry & Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Arshad Channanath
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Maha M. Hammad
- Department of Biochemistry & Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Emil Anoop
- Special Services Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Betty Chandy
- Special Services Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Motasem Melhem
- Special Services Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Department of Biochemistry & Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
13
|
Norlin M, Wikvall K. Enzymatic activation in vitamin D signaling - Past, present and future. Arch Biochem Biophys 2023; 742:109639. [PMID: 37196753 DOI: 10.1016/j.abb.2023.109639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Vitamin D signaling is important in regulating calcium homeostasis essential for bone health but also displays other functions in cells of several tissues. Disturbed vitamin D signaling is linked to a large number of diseases. The multiple cytochrome P450 (CYP) enzymes catalyzing the different hydroxylations in bioactivation of vitamin D3 are crucial for vitamin D signaling and function. This review is focused on the progress achieved in identification of the bioactivating enzymes and their genes in production of 1α,25-dihydroxyvitamin D3 and other active metabolites. Results obtained on species- and tissue-specific expression, catalytic reactions, substrate specificity, enzyme kinetics, and consequences of gene mutations are evaluated. Matters of incomplete understanding regarding the physiological roles of some vitamin D hydroxylases are critically discussed and the authors will give their view of the importance of each enzyme for vitamin D signaling. Roles of different vitamin D receptors and an alternative bioactivation pathway, leading to 20-hydroxylated vitamin D3 metabolites, are also discussed. Considerable progress has been achieved in knowledge of the vitamin D3 bioactivating enzymes. Nevertheless, several intriguing areas deserve further attention to understand the pleiotropic and diverse activities elicited by vitamin D signaling and the mechanisms of enzymatic activation necessary for vitamin D-induced responses.
Collapse
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Avila E, Noriega-Mejía BJ, González-Macías J, Cortes-Hernández U, García-Quiroz J, García-Becerra R, Díaz L. The Preventive Role of the Vitamin D Endocrine System in Cervical Cancer. Int J Mol Sci 2023; 24:8665. [PMID: 37240017 PMCID: PMC10218637 DOI: 10.3390/ijms24108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D along with its active metabolite calcitriol and its metabolic and signaling system, known as the vitamin D endocrine system, have been widely recognized as a pivotal regulator of calcium homeostasis in addition to non-calcemic antitumoral effects in a variety of human cancers, including cervical cancer. Several studies have found an inverse relationship between the incidence of cervical neoplasia and vitamin D levels. This narrative review updates the current evidence supporting the notion that the vitamin D endocrine system has a preventive role on cervical cancer, mainly in the early phases of the disease, acting at the level of suppressing cell proliferation, promoting apoptosis, modulating inflammatory responses, and probably favoring the clearance of human papillomavirus-dependent cervical lesions. Although an optimal vitamin D status helps in the prevention and regression of low-grade squamous intraepithelial lesions of the cervix, it appears that vitamin D alone or combined with chemotherapeutic agents has little effectivity once advanced cervical cancer is established. These observations suggest that an optimal vitamin D status might exert beneficial actions in the early phases of cervical cancer by preventing its onset and progression.
Collapse
Affiliation(s)
- Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Bryan Javier Noriega-Mejía
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Jocelyn González-Macías
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Ulises Cortes-Hernández
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (B.J.N.-M.); (J.G.-M.); (U.C.-H.); (J.G.-Q.); (L.D.)
| |
Collapse
|
15
|
Bouillon R, Quesada Gomez JM. Comparison of calcifediol with vitamin D for prevention or cure of vitamin D deficiency. J Steroid Biochem Mol Biol 2023; 228:106248. [PMID: 36646151 DOI: 10.1016/j.jsbmb.2023.106248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Vitamin D deficiency remains prevalent, with about 7% of the world's population living with severe vitamin D deficiency and about one third with mild deficiency. We compare the relative merits of calcifediol or 25-hydroxyvitamin D (25OHD) compared to vitamin D itself for supplementation as to prevent or cure vitamin D deficiency. The intestinal absorption of calcifediol is nearly 100% and thus higher than that of vitamin D itself. Moreover, calcifediol is absorbed by the intestinal cells and transported through the portal vein and thus immediately accessible to the circulation, while vitamin D is transported with chylomicrons through the lymph system. Therefore, in case of fat malabsorption or after bariatric surgery, calcifediol is much better absorbed in comparison with vitamin D itself. Serum 25OHD increases linearly with increasing doses of calcifediol, whereas serum 25OHD reaches a plateau when higher oral doses of vitamin D are used. Calcifediol, on a weight basis, is about 3 times more potent than vitamin D in subjects with mild vitamin D deficiency. This potency is even 6-8 times higher than vitamin D when baseline serum 25OHD is higher or when large doses are compared. In conclusion, calcifediol is an alternative option to correct vitamin D deficiency and may even be the preferred strategy in case of intestinal fat malabsorption, after bariatric surgery or in case of other conditions with suspected impaired 25-hydroxylase activity in the liver.
Collapse
Affiliation(s)
- Roger Bouillon
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat, ON 1/902, 3000 Leuven, Belgium.
| | - Jose Manuel Quesada Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) & Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain.; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
16
|
Punchoo R, Dreyer G, Pillay TS. 25-Hydroxycholecalciferol Inhibits Cell Growth and Induces Apoptosis in SiHa Cervical Cells via Autocrine Vitamin D Metabolism. Biomedicines 2023; 11:biomedicines11030871. [PMID: 36979850 PMCID: PMC10045786 DOI: 10.3390/biomedicines11030871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Preclinical studies show that the anticancer actions of vitamin D metabolites are mediated by apoptosis, inhibition of cell proliferation and induction of cell cycle arrest. Cervical cancer cells express an autocrine vitamin D metabolising system (VDMS) comprised of a vitamin D receptor, vitamin D catabolic enzyme (CYP24A1), and the activating enzyme of 25-hydroxycholecalciferol (25(OH)D3), CYP27B1. We assessed the anticancer effects of 25(OH)D3 at clinically relevant concentrations on a cervical squamous cell cancer cell line, SiHa. We evaluated cell health parameters (cell count, viability, and cell cycle), cell death modes (apoptosis, autophagic-dependent death, and necrosis by flow cytometry and transmission electron microscopy), and autocrine VDMS gene and protein expression by qPCR and Western blot, respectively. Our study demonstrates that physiological and supraphysiological doses of 25(OH)D3 inhibit cell growth and viability and induce biochemical and morphological apoptosis in SiHa cells. These growth effects are mediated by alteration in the VDMS gene and protein expression, with prominent negative feedback at supraphysiological treatment dose. These data identify promising therapeutic potential of 25(OH)D3 in cervical cancer, which warrants further clinical translational investigations.
Collapse
Affiliation(s)
- Rivak Punchoo
- Tshwane Academic Division, National Health Laboratory Service (NHLS), Pretoria 0001, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Correspondence: ; Tel.: +27-12-3192671
| | - Greta Dreyer
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Tahir S. Pillay
- Tshwane Academic Division, National Health Laboratory Service (NHLS), Pretoria 0001, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
17
|
Kouba BR, Camargo A, Rodrigues ALS. Neuroinflammation in Alzheimer's disease: potential beneficial effects of vitamin D. Metab Brain Dis 2023; 38:819-829. [PMID: 36862275 DOI: 10.1007/s11011-023-01188-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. In recent years, several studies have robustly shown that neuroinflammation plays a crucial role in the pathophysiology of this disease. The co-localization of amyloid-β plaques near activated glial cells and the increased levels of inflammatory cytokines in AD patients indicate the involvement of the neuroinflammatory process in AD progression. Considering that pharmacological treatment remains a challenge for the management of this disease, compounds with anti-inflammatory and antioxidant properties are promising therapeutic strategies. In this context, vitamin D has gained attention in the last few years due to its neuroprotective property and the high prevalence of vitamin D deficiency in the population. Herein, in this narrative review we present the possible contribution of the antioxidant and anti-inflammatory properties of vitamin D for its neuroprotective effects, and the clinical and preclinical data dealing with the effects of vitamin D in AD, focusing mainly on the neuroinflammatory process.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
18
|
Szulc M, Świątkowska-Stodulska R, Pawłowska E, Derwich M. Vitamin D 3 Metabolism and Its Role in Temporomandibular Joint Osteoarthritis and Autoimmune Thyroid Diseases. Int J Mol Sci 2023; 24:4080. [PMID: 36835491 PMCID: PMC9964750 DOI: 10.3390/ijms24044080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The aim of this review was to present the metabolism of vitamin D3, as well as to discuss the role of vitamin D3 in bone metabolism, temporomandibular joint osteoarthritis (TMJ OA), and autoimmune thyroid diseases (AITD) on the basis of the literature. Vitamin D3 plays a significant role in human health, as it affects the calcium-phosphate balance and regulates the bone metabolism. Calcitriol impresses the pleiotropic effect on human biology and metabolism. Its modulative function upon the immune system is based on the reduction of Th1 cell activity and increased immunotolerance. Vitamin D3 deficiency may lead to an imbalance in the relationship between Th1/Th17 and Th2, Th17/Th reg, and is considered by some authors as one of the possible backgrounds of autoimmune thyroid diseases (AITD), e.g., Hashimoto's thyroiditis or Graves' disease. Moreover, vitamin D3, through its direct and indirect influence on bones and joints, may also play an important role in the development and progression of degenerative joint diseases, including temporomandibular joint osteoarthritis. Further randomized, double blind studies are needed to unequivocally confirm the relationship between vitamin D3 and abovementioned diseases and to answer the question concerning whether vitamin D3 supplementation may be used in the prevention and/or treatment of either AITD or OA diseases.
Collapse
Affiliation(s)
- Michał Szulc
- Department of Endocrinology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland
| | - Renata Świątkowska-Stodulska
- Department of Endocrinology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland
| | - Elżbieta Pawłowska
- Department of Pediatric Dentistry, Medical University of Lodz, 90-419 Łódź, Poland
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 90-419 Łódź, Poland
| |
Collapse
|
19
|
Borel P, Dangles O, Kopec RE. Fat-soluble vitamin and phytochemical metabolites: Production, gastrointestinal absorption, and health effects. Prog Lipid Res 2023; 90:101220. [PMID: 36657621 DOI: 10.1016/j.plipres.2023.101220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Consumption of diets rich in fruits and vegetables, which provide some fat-soluble vitamins and many phytochemicals, is associated with a lower risk of developing certain degenerative diseases. It is well accepted that not only the parent compounds, but also their derivatives formed upon enzymatic or nonenzymatic transformations, can produce protective biological effects. These derivatives can be formed during food storage, processing, or cooking. They can also be formed in the lumen of the upper digestive tract during digestion, or via metabolism by microbiota in the colon. This review compiles the known metabolites of fat-soluble vitamins and fat-soluble phytochemicals (FSV and FSP) that have been identified in food and in the human digestive tract, or could potentially be present based on the known reactivity of the parent compounds in normal or pathological conditions, or following surgical interventions of the digestive tract or consumption of xenobiotics known to impair lipid absorption. It also covers the very limited data available on the bioavailability (absorption, intestinal mucosa metabolism) and summarizes their effects on health. Notably, despite great interest in identifying bioactive derivatives of FSV and FSP, studying their absorption, and probing their putative health effects, much research remains to be conducted to understand and capitalize on the potential of these molecules to preserve health.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France.
| | | | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Reboul E. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: New insights from the past decade. Prog Lipid Res 2023; 89:101208. [PMID: 36493998 DOI: 10.1016/j.plipres.2022.101208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It is now well established that vitamins D, E, and K and carotenoids are not absorbed solely through passive diffusion. Broad-specificity membrane transporters such as SR-BI (scavenger receptor class B type I), CD36 (CD36 molecule), NPC1L1 (Niemann Pick C1-like 1) or ABCA1 (ATP-binding cassette A1) are involved in the uptake of these micronutrients from the lumen to the enterocyte cytosol and in their secretion into the bloodstream. Recently, the existence of efflux pathways from the enterocyte back to the lumen or from the bloodstream to the lumen, involving ABCB1 (P-glycoprotein/MDR1) or the ABCG5/ABCG8 complex, has also been evidenced for vitamins D and K. Surprisingly, no membrane proteins have been involved in dietary vitamin A uptake so far. After an overview of the metabolism of fat-soluble vitamins and carotenoids along the gastrointestinal tract (from the mouth to the colon where interactions with microbiota may occur), a focus is placed on the identified and candidate proteins participating in the apical uptake, intracellular transport, basolateral secretion and efflux back to the lumen of fat-soluble vitamins and carotenoids in enterocytes. This review also highlights the mechanisms that remain to be identified to fully unravel the pathways involved in fat-soluble vitamin and carotenoid intestinal absorption.
Collapse
|
21
|
Gezen-Ak D, Dursun E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration. J Alzheimers Dis 2023; 95:1273-1299. [PMID: 37661883 DOI: 10.3233/jad-230214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vitamin D is a secosteroid hormone exerting neurosteroid-like properties. Its well-known nuclear hormone receptor, and recently proposed as a mitochondrial transcription factor, vitamin D receptor, acts for its primary functions. The second receptor is an endoplasmic reticulum protein, protein disulfide isomerase A3 (PDIA3), suggested to act as a rapid response. Vitamin D has effects on various systems, particularly through calcium metabolism. Among them, the nervous system has an important place in the context of our subject. Recent studies have shown that vitamin D and its receptors have numerous effects on the nervous system. Neurodegeneration is a long-term process. Throughout a human life span, so is vitamin D deficiency. Our previous studies and others have suggested that the out-come of long-term vitamin D deficiency (hypovitaminosis D or inefficient utilization of vitamin D), may lead neurons to be vulnerable to aging and neurodegeneration. We suggest that keeping vitamin D levels at adequate levels at all stages of life, considering new approaches such as agonists that can activate vitamin D receptors, and utilizing other derivatives produced in the synthesis process with UVB are crucial when considering vitamin D-based intervention studies. Given most aspects of vitamin D, this review outlines how vitamin D and its receptors work and are involved in neurodegeneration, emphasizing Alzheimer's disease.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinc Dursun
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
22
|
Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N. Vitamin D in Neurological Diseases. Int J Mol Sci 2022; 24:87. [PMID: 36613531 PMCID: PMC9820561 DOI: 10.3390/ijms24010087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.
Collapse
Affiliation(s)
- Domenico Plantone
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carlo Manco
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Sara Locci
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
23
|
Detopoulou P, Papadopoulou SK, Voulgaridou G, Dedes V, Tsoumana D, Gioxari A, Gerostergios G, Detopoulou M, Panoutsopoulos GI. Ketogenic Diet and Vitamin D Metabolism: A Review of Evidence. Metabolites 2022; 12:metabo12121288. [PMID: 36557329 PMCID: PMC9788458 DOI: 10.3390/metabo12121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The ketogenic diet (KD), which is low in carbohydrates and high to normal in fat and protein, has been traditionally used in epilepsy for the last 100 years. More recently, its application in obesity has been introduced. The present review aimed to investigate the effects of the KD on vitamin D. In total, five studies were done in healthy adults, one in subjects with type 2 diabetes, and seven in subjects with epilepsy that assessed the levels of vitamin D pre- and post-intervention. In the majority of studies, increases in circulating vitamin D were reported. The relationship of the KD with vitamin D was explained through several mechanisms: ketone bodies, macronutrient intake, the status levels of other fat-soluble vitamins, weight loss, changes in the hormonal milieu, and effects on gut microbiota. Moreover, potential nutrient-gene-related interactions were discussed. There is still a need to conduct multiple arm studies to compare the effects of the KD versus other diets and better decipher the particular effects of the KD on vitamin D levels and metabolism. Moreover, differentiations of the diet's effects according to sex and genetic makeup should be investigated to prescribe KDs on a more personalized basis.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, 11526 Athens, Greece
- Correspondence:
| | - Sousana K. Papadopoulou
- Department of Nutritional Science and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Gavriela Voulgaridou
- Department of Nutritional Science and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Vasileios Dedes
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, 24100 Kalamata, Greece
| | - Despoina Tsoumana
- Department of Nutritional Science and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Aristea Gioxari
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, 24100 Kalamata, Greece
| | - George Gerostergios
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, 11526 Athens, Greece
| | - Maria Detopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17676 Athens, Greece
| | - George I. Panoutsopoulos
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
24
|
Hasan M, Oster M, Reyer H, Ponsuksili S, Murani E, Wolf P, Fischer DC, Wimmers K. Tissue-Wide Expression of Genes Related to Vitamin D Metabolism and FGF23 Signaling following Variable Phosphorus Intake in Pigs. Metabolites 2022; 12:metabo12080729. [PMID: 36005601 PMCID: PMC9413461 DOI: 10.3390/metabo12080729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca) and phosphorus (P) homeostasis is maintained by several regulators, including vitamin D and fibroblast growth factor 23 (FGF23), and their tissue-specific activation and signaling cascades. In this study, the tissue-wide expression of key genes linked to vitamin D metabolism (CYP2R1, CYP27A1, CYP27B1, CYP24A1, GC, VDR) and FGF23 signaling (FGF23, FGFR1-4, KL) were investigated in pigs fed conventional (trial 1) and divergent P diets (trial 2). The tissue set comprised kidney, liver, bone, lung, aorta, and gastrointestinal tract sections. Expression patterns revealed that non-renal tissues and cells (NRTC) express genes to form active vitamin D [1,25(OH)2D3] according to site-specific requirements. A low P diet resulted in higher serum calcitriol and increased CYP24A1 expression in the small intestine, indicating local suppression of vitamin D signaling. A high P diet prompted increased mRNA abundances of CYP27B1 for local vitamin D synthesis, specifically in bone. For FGF23 signaling, analyses revealed ubiquitous expression of FGFR1-4, whereas KL was expressed in a tissue-specific manner. Dietary P supply did not affect skeletal FGF23; however, FGFR4 and KL showed increased expression in bone at high P supply, suggesting regulation to balance mineralization. Specific NRTC responses influence vitamin D metabolism and P homeostasis, which should be considered for a thrifty but healthy P supply.
Collapse
Affiliation(s)
- Maruf Hasan
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Petra Wolf
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, Rostock University Hospital, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
- Correspondence: ; Tel.: +49-38208-68600
| |
Collapse
|
25
|
Bennour I, Haroun N, Sicard F, Mounien L, Landrier JF. Recent insights into vitamin D, adipocyte, and adipose tissue biology. Obes Rev 2022; 23:e13453. [PMID: 35365943 DOI: 10.1111/obr.13453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Several studies bring strong evidence for an active role of vitamin D and its metabolites in physiological adipocyte and adipose tissue processes in adulthood. This role includes effects of vitamin D on key adipose tissue and adipocyte biology parameters, including adipogenesis, energy metabolism, and inflammation. Interestingly, recent data also point to a role of maternal vitamin D deficiency in adipocyte and adipose tissue metabolic programming in offspring. This review summarizes the current state of knowledge on the biological effect of vitamin D on adipocyte/adipose tissue physiology.
Collapse
Affiliation(s)
- Imene Bennour
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Nicole Haroun
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| |
Collapse
|
26
|
Elkhwanky MS, Kummu O, Hakkola J. Streptozotocin-induced Diabetes Represses Hepatic CYP2R1 Expression but Induces Vitamin D 25-Hydroxylation in Male Mice. Endocrinology 2022; 163:6582260. [PMID: 35524739 PMCID: PMC9155637 DOI: 10.1210/endocr/bqac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/19/2022]
Abstract
Vitamin D deficiency [ie, low plasma 25-hydroxyvitamin D (25-OH-D)] associates with the prevalence of metabolic diseases including type 1 diabetes; however, the molecular mechanisms are incompletely understood. Recent studies have indicated that both fasting and metabolic diseases suppress the cytochrome P450 (CYP) 2R1, the major hepatic vitamin D 25-hydroxylase. We specifically studied the effect of a mouse model of type 1 diabetes on the regulation of Cyp2r1 and vitamin D status. We show that streptozotocin-induced diabetes in mice suppresses the expression of the Cyp2r1 in the liver. While insulin therapy normalized the blood glucose levels in the diabetic mice, it did not rescue the diabetes-induced suppression of Cyp2r1. Similar regulation of Cyp2r1 was observed also in the kidney. Plasma 25-OH-D level was not decreased and was, in contrast, higher after 4 and 8 weeks of diabetes. Furthermore, the vitamin D 25-hydroxylase activity was increased in the livers of the diabetic mice, suggesting compensation of the Cyp2r1 repression by other vitamin D 25-hydroxylase enzymes. Cyp27b1, the vitamin D 1α-hydroxylase, expression in the kidney and the plasma 1α,25-dihydroxyvitamin D level were higher after 4 weeks of diabetes, while both were normalized after 13 weeks. In summary, these results indicate that in the mouse model of type 1 diabetes suppression of hepatic Cyp2r1 expression does not result in reduced hepatic vitamin D 25-hydroxylase activity and vitamin D deficiency. This may be due to induction of other vitamin D 25-hydroxylase enzymes in response to diabetes.
Collapse
Affiliation(s)
- Mahmoud-Sobhy Elkhwanky
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jukka Hakkola
- Correspondence: Jukka Hakkola, MD, PhD, Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, FI-90014 University of Oulu, Finland.
| |
Collapse
|
27
|
Kouba BR, Camargo A, Gil-Mohapel J, Rodrigues ALS. Molecular Basis Underlying the Therapeutic Potential of Vitamin D for the Treatment of Depression and Anxiety. Int J Mol Sci 2022; 23:ijms23137077. [PMID: 35806075 PMCID: PMC9266859 DOI: 10.3390/ijms23137077] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder and anxiety disorders are common and disabling conditions that affect millions of people worldwide. Despite being different disorders, symptoms of depression and anxiety frequently overlap in individuals, making them difficult to diagnose and treat adequately. Therefore, compounds capable of exerting beneficial effects against both disorders are of special interest. Noteworthily, vitamin D deficiency has been associated with an increased risk of developing depression and anxiety, and individuals with these psychiatric conditions have low serum levels of this vitamin. Indeed, in the last few years, vitamin D has gained attention for its many functions that go beyond its effects on calcium–phosphorus metabolism. Particularly, antioxidant, anti-inflammatory, pro-neurogenic, and neuromodulatory properties seem to contribute to its antidepressant and anxiolytic effects. Therefore, in this review, we highlight the main mechanisms that may underlie the potential antidepressant and anxiolytic effects of vitamin D. In addition, we discuss preclinical and clinical studies that support the therapeutic potential of this vitamin for the management of these disorders.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
| | - Anderson Camargo
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Correspondence: (J.G.-M.); (A.L.S.R.); Tel.: +1-250-721-6586 (J.G.-M.); +55-(48)-3721-5043 (A.L.S.R.)
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
- Correspondence: (J.G.-M.); (A.L.S.R.); Tel.: +1-250-721-6586 (J.G.-M.); +55-(48)-3721-5043 (A.L.S.R.)
| |
Collapse
|
28
|
Akter R, Afrose A, Sharmin S, Rezwan R, Rahman MR, Neelotpol S. A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed Pharmacother 2022; 153:113285. [PMID: 35728355 DOI: 10.1016/j.biopha.2022.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022] Open
Abstract
Childhood obesity accounts for several psychosocial and clinical consequences. Psychosocial consequences include lower self-esteem, social isolation, poor academic achievement, peer problems, and depression, whereas clinical consequences are cardiovascular diseases, type 2 diabetes, dyslipidemia, cancer, autoimmune diseases, girls early polycystic ovarian syndrome (PCOS), asthma, bone deformities, etc. A growing number of studies have uncovered the association of childhood obesity and its consequences with vitamin-D (vit-D) deficiency and vitamin-D receptor (VDR) gene polymorphisms such as single nucleotide polymorphisms (SNPs), e.g., TaqI, BsmI, ApaI, FokI, and Cdx2. Considering the impact of vit-D deficiency and VDR gene polymorphisms, identifying associated factors and risk groups linked to lower serum vit-D levels and prevention of obesity-related syndromes in children is of utmost importance. Previously published review articles mainly focused on the association of vit-D deficiency with obesity or other non-communicable diseases in children. The nature of the correlation between vit-D deficiency and VDR gene polymorphisms with obesity in children is yet to be clarified. Therefore, this review attempts to delineate the association of obesity with these two factors by identifying the molecular mechanism of the relationship.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Shahana Sharmin
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Rifat Rezwan
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md Rashidur Rahman
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | |
Collapse
|
29
|
Bennour I, Haroun N, Sicard F, Mounien L, Landrier JF. Vitamin D and Obesity/Adiposity—A Brief Overview of Recent Studies. Nutrients 2022; 14:nu14102049. [PMID: 35631190 PMCID: PMC9143180 DOI: 10.3390/nu14102049] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Observational studies classically find an inverse relationship between human plasma 25-hydroxyvitamin D concentration and obesity. However, interventional and genetic studies have failed to provide clear conclusions on the causal effect of vitamin D on obesity/adiposity. Likewise, vitamin D supplementation in obese rodents has mostly failed to improve obesity parameters, whereas several lines of evidence in rodents and prospective studies in humans point to a preventive effect of vitamin D supplementation on the onset of obesity. Recent studies investigating the impact of maternal vitamin D deficiency in women and in rodent models on adipose tissue biology programming in offspring further support a preventive metabolically driven effect of vitamin D sufficiency. The aim of this review is to summarize the state of the knowledge on the relationship between vitamin D and obesity/adiposity in humans and in rodents and the impact of maternal vitamin D deficiency on the metabolic trajectory of the offspring.
Collapse
Affiliation(s)
- Imene Bennour
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
| | - Nicole Haroun
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
| | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
- Correspondence: ; Tel.: +33-4-9129-4275
| |
Collapse
|
30
|
Bertuccio MP, Currò M, Caccamo D, Ientile R. Dietary Intake and Genetic Background Influence Vitamin Needs during Pregnancy. Healthcare (Basel) 2022; 10:healthcare10050768. [PMID: 35627905 PMCID: PMC9141544 DOI: 10.3390/healthcare10050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
Numerous approaches demonstrate how nutritional intake can be sufficient to ensure the necessary supply of vitamins. However, it is evident that not all vitamins are contained in all foods, so it is necessary either to combine different food groups or to use a vitamin supplement to be well-fed. During pregnancy, deficiencies are often exacerbated due to increased energy and nutritional demands, causing adverse outcomes in mother and child. Micronutrient supplementation could lead to optimal pregnancy outcomes being essential for proper metabolic activities that are involved in tissue growth and functioning in the developing fetus. In order to establish adequate vitamin supplementation, various conditions should be considered, such as metabolism, nutrition and genetic elements. This review accurately evaluated vitamin requirements and possible toxic effects during pregnancy. Much attention was given to investigate the mechanisms of cell response and risk assessment of practical applications to improve quality of life. Importantly, genetic studies suggest that common allelic variants and polymorphisms may play an important role in vitamin metabolism during pregnancy. Changes in gene expression of different proteins involved in micronutrients’ metabolism may influence the physiological needs of the pregnant woman.
Collapse
|
31
|
Correlation of Vitamin D3, PAI-1, and HCG Hormone in Pre- and Post-Menopausal in Babylon Province. Rep Biochem Mol Biol 2022; 11:36-43. [PMID: 35765537 PMCID: PMC9208565 DOI: 10.52547/rbmb.11.1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023]
Abstract
Background Menopause is a unique event in women's life it usually occurs naturally, most often after age 50 when woman has not menstruated in 12 consecutive months. This study was planned to assess the relationship between Vitamin D3 level, PAI-1 and HCG in Babylon women at age <50 years as pre-menopausal and> 50 years as post-menopausal. Methods The sample were selected from a group of pre- and post-menopausal women, 30 and 50 respectively. All the tests were evaluated to measure Vitamin D3 level, PAI-1 and HCG level. The sample was collected between July 2019 and January 2020 at Merjan medical city GIT and Liver Center, Babylon province, Iraq. Results The result of current study revealed that there are significant differences in vitamin D3 level in various age categories within postmenopausal women (p= 0.02) also there is no significant differences in PAI-1 and HCG with in these two groups, p= 0.08 and 0.07, respectively. Also, there is significant negative correlation between vitamin D3 and PAI-1 in postmenopausal women (p. value is 0.01). Conclusion Indeed, postmenopausal women regarded as elderly, but they have sufficient vitamin D3 and normal PAI-I levels as markers for normal non fibrosis status.
Collapse
|
32
|
Beck MR, Zapalac D, Chapman JD, Zanzalari KP, Holub GA, Bascom SS, Engstrom MA, Reuter RR, Foote AP. Effect of vitamin D source and dietary cation-anion difference in peripartum dairy cows on calcium homeostasis and milk production. Transl Anim Sci 2022; 6:txac010. [PMID: 35291427 PMCID: PMC8918385 DOI: 10.1093/tas/txac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
The objective of this experiment was to determine the effects of dietary vitamin D source on serum calcium (Ca), urinary Ca excretion, and milk production when fed in combination with a prepartum acidogenic negative dietary cation–anion difference (DCAD) diet. Nonlactating, pregnant multiparous cows (n = 15), balanced for breed (Holstein n = 9 and Jersey n = 6), and previous mature equivalent milk production, were assigned to one of three treatments (five cows/treatment), consisting of a control (PCH; positive DCAD, 8.9 mEq/100 g DM) and two negative DCAD diets (−15.4 mEq/100 g DM), one with vitamin D3 (cholecalciferol; NCH) and one with 25-hydroxyvitamin D3 (calcidiol; NCA; DSM nutritional products). The treatments were formulated to provide 1.95 mg/d of vitamin D and were fed 28 d prior to expected calving date. Delivery of vitamin D sources was accomplished by manufacture of a pellet and 2 kg of these pellets were individually fed simultaneously each day along with 2 kg of ground corn daily at 0800 hours. Negative DCAD treatments were formulated to provide 0.46 kg/d of Animate (Phibro Animal Health) and, if needed, additional Animate was top-dressed at each feeding to achieve a urine pH between 5.5 and 6.0 based on the previous day’s urine pH. Close-up cows had ad libitum access to chopped bermudagrass (Cynodon dactylon L.) hay and hay intake was measured using SmartFeed Pro systems (C-Lock Inc.; Rapid City, SD). Prepartum urine and serum samples were collected weekly and serum was collected 36, 48, and 72 h post-calving. Prepartum dry matter intake (DMI) as a percent of body weight was not (P = 0.66) affected by treatments. Cows fed NCH and NCA had greater (P = 0.02) prepartum serum Ca than PCH and tended to have greater urinary Ca excretions (P = 0.10). Average postpartum serum Ca (mg/dL) was greater (P = 0.05) for cows fed NCH (8.8) compared with PCH (7.8), whereas NCA (8.4) was numerically intermediate and not (P > 0.05) different from either of the other treatments. Postpartum DMI was not affected by treatment (P = 0.39). Daily milk yield (MY) (kg/d) was greatest (P < 0.01) for NCA (37.5) compared with the other treatments and NCH (34.1) was intermediate and greater than PCH (29.9). These results suggest that an acidogenic prepartum diet in combination with vitamin D was effective in maintaining peripartum serum Ca and the 25-hydroxy form of vitamin D improved MY compared with NCH in early lactation.
Collapse
Affiliation(s)
- Matthew R Beck
- Department of Animal & Food Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Dakota Zapalac
- Department of Animal & Food Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | | | - K P Zanzalari
- Phibro Animal Health, Teaneck, NJ, United States of America
| | - Glenn A Holub
- Phibro Animal Health, Teaneck, NJ, United States of America
| | - Scott S Bascom
- Phibro Animal Health, Teaneck, NJ, United States of America
| | - Mark A Engstrom
- DSM Nutritional Products, Inc., Parsippany, NJ, United States of America
| | - R Ryan Reuter
- Department of Animal & Food Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Andrew P Foote
- Department of Animal & Food Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
33
|
Dogra AK, Prakash A, Gupta S, Gupta M, Bhat SA. Genetic variations of vitamin D receptor gene and steroid receptors status in breast cancer risk: An updated review. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2022. [DOI: 10.1016/j.abst.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
34
|
Vitamin D Review: The Low Hanging Fruit for Human Health. J Nutr Metab 2021; 2021:6335681. [PMID: 34900350 PMCID: PMC8660220 DOI: 10.1155/2021/6335681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
Vitamin D is an important hormone that is known for the regulation of calcium and phosphate metabolism. Vitamin D deficiency leads to rickets in children and osteoporosis in adults leading to poor bone mineralisation and can also lead to serious dental complications in the same population. Recent studies have shown vitamin D to work as a hormone needed not only in bone and teeth but also in other body organs from intrauterine life up to old age. It has been demonstrated that Vitamin D has various effects on biological processes that deal with cell growth, differentiation, cell death, immune regulation, DNA stability, and neuronal growth. Despite being readily formed in the body through the intervention of the sun, patients are still found to have low vitamin D levels. We review studies done to show how vitamin D works.
Collapse
|
35
|
New Variants of the Cytochrome P450 2R1 ( CYP2R1) Gene in Individuals with Severe Vitamin D-Activating Enzyme 25(OH)D Deficiency. Biomolecules 2021; 11:biom11121867. [PMID: 34944511 PMCID: PMC8699237 DOI: 10.3390/biom11121867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Vitamin D is a fat-soluble cholesterol derivative found in two forms, vitamin D2, and vitamin D3. Cytochrome P450 2R1 (CYP2R1) encoded by the CYP2R1 gene is the major hydroxylase that activates vitamin D by catalyzing the formation of 25-hydroxyvitamin D (25(OH)D). METHODS We collected 89 (100%) subjects, 46 of which (51.69%) had a documented severe deficiency of 25(OH)D (<10 ng/mL) and 43 (48.31%) in the control group with documented optimum levels of 25(OH)D (>30 ng/mL). We performed Sanger sequencing of three selected fragments of the CYP2R1 gene (Ch11: 14878000-14878499; Ch11: 14880058-14880883 and Ch11: 14885321-14886113) that affect the binding of substrates to this enzyme and analyzed the possible involvement of genetic variation in these regions with an increased risk of vitamin D deficiency in healthy Polish individuals. RESULTS Two substitutions were found within the three fragments. Bioinformatic analysis suggested that one of these (NC_000011.10: g.14878291G>A) may influence the structure and function of CYP2R1. CONCLUSIONS Variant NC_000011.10: g.14878291G>A may have a perturbing effect on heme binding in the active site of CYP2R1 and on the function of 25-hydroxylase and probably affects the concentration of 25(OH)D in vivo. We intend to perform functional verification in a larger patient population to confirm and extend these results.
Collapse
|
36
|
Fraser DR. Vitamin D toxicity related to its physiological and unphysiological supply. Trends Endocrinol Metab 2021; 32:929-940. [PMID: 34518055 DOI: 10.1016/j.tem.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/13/2022]
Abstract
Vitamin D is defined as a nutrient despite its rare occurrence in food. Vitamin D status is determined mainly by solar UV light action in skin. However, the strategy to combat vitamin D deficiency has been to increase oral intake of vitamin D in greater amounts than could be obtained from food. Persistent large intakes of vitamin D can cause hypercalcaemic toxicity. Although the amounts recommended to prevent deficiency are far less than those causing such toxicity, the possibility of other toxic actions from increased intake of vitamin D has been ignored. Animal experiments have demonstrated that moderate amounts of oral vitamin D over time result in atherosclerosis. Differences in the fate of vitamin D could explain this angiotoxicity.
Collapse
Affiliation(s)
- David R Fraser
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
37
|
Wang M, Zhang R, Wang M, Zhang L, Ding Y, Tang Z, Wang H, Zhang W, Chen Y, Wang J. Genetic Polymorphism of Vitamin D Family Genes CYP2R1, CYP24A1, and CYP27B1 Are Associated With a High Risk of Non-alcoholic Fatty Liver Disease: A Case-Control Study. Front Genet 2021; 12:717533. [PMID: 34484304 PMCID: PMC8415785 DOI: 10.3389/fgene.2021.717533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Background Previous studies have highlighted the important role of vitamin D and calcium pathway genes in immune modulation, cell differentiation and proliferation, and inflammation regulation, all closely implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Objective This study aims to investigate whether 11 candidate single nucleotide polymorphisms (SNPs) in vitamin D and calcium pathway genes (CYP2R1, CYP24A1, and CYP27B1) are associated with the risk of NAFLD. Methods In this case-control study, a total of 3,023 subjects were enrolled, including 1,114 NAFLD cases and 1,909 controls. Eleven genetic variants in CYP2R1, CYP24A1, and CYP27B1 genes were genotyped. Logistic regression analysis was used to assess the effects of these variants on NAFLD risk. The functional annotations of positive SNPs were further evaluated by bioinformatics analysis. Results After adjusting for age, gender, and metabolic measures, we identified that CYP24A1 rs2296241 variant genotypes (recessive model: OR, 1.316; 95% CI, 1.048–1.653; p = 0.018), rs2248359 variant genotypes (recessive model: OR, 1.315; 95% CI, 1.033–1.674; p = 0.026), and CYP27B1 rs4646536 variant genotypes (additive model: OR, 1.147; 95% CI, 1.005–1.310; p = 0.042) were associated with an elevated risk of NAFLD. In combined effects analysis, we found that NAFLD risk significantly increased among patients carrying more rs2296241-A, rs2248359-T, and rs4646536-T alleles (ptrend = 0.049). Multivariate stepwise analysis indicated that age, visceral obesity, ALT, γ-GT, hypertriglyceridemia, hypertension, low HDL-C, hyperglycemia, and unfavorable alleles were independent predictors of NAFLD (all p < 0.05). The area under the receiver operating characteristic curve was 0.789 for all the above factors. Conclusion The polymorphisms of vitamin family genes CYP24A1 (rs2296241, CYP24A1, and rs2248359) and CYP27B1 (rs4646536) were associated with NAFLD risk in Chinese Han population, which might provide new insight into NAFLD pathogenesis and tools for screening high-risk population.
Collapse
Affiliation(s)
- Minxian Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ru Zhang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Liuxin Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Ding
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Zongzhe Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Hongliang Wang
- Ninghai Road Community Health Service Center of Nanjing, Nanjing, China
| | - Wei Zhang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Backus RC, Foster LR. Investigation of the effects of dietary supplementation with 25-hydroxyvitamin D 3 and vitamin D 3 on indicators of vitamin D status in healthy dogs. Am J Vet Res 2021; 82:722-736. [PMID: 34432521 DOI: 10.2460/ajvr.82.9.722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the effects of short-term dietary supplementation with vitamin D3 and 25-hydroxyvitamin D3 (25[OH]D3) on indicators of vitamin D status in healthy dogs. ANIMALS 13 purpose-bred adult dogs. PROCEDURES 20 extruded commercial dog foods were assayed for 25(OH)D3 content. Six dogs received a custom diet containing low vitamin D concentrations and consumed a treat with vitamin D2 (0.33 μg/kg0.75) plus 1 of 3 doses of 25(OH)D3 (0, 0.23, or 0.46 μg/kg0.75) once daily for 8 weeks followed by the alternate treatments in a crossover-design trial. In another crossover-design trial, 7 dogs received a custom diet supplemented with vitamin D3 or 25(OH)D3 (targeted content, 3,250 U/kg [equivalent to 81.3 μg/kg] and 16 μg/kg, respectively, as fed) for 10 weeks followed by the alternate treatment. In washout periods before each trial and between dietary treatments in the second trial, dogs received the trial diet without D-vitamer supplements. Dietary intake was monitored. Serum or plasma concentrations of vitamin D metabolites and biochemical variables were analyzed at predetermined times. RESULTS 25(OH)D3 concentrations were low or undetected in evaluated commercial diets. In the first trial, vitamin D2 intake resulted in quantifiable circulating concentrations of 25-hydroxyvitamin D2 but not 24R,25-dihydroxyvitamin D2. Circulating 25(OH)D3 concentration appeared to increase linearly with 25(OH)D3 dose. In the second trial, circulating 25(OH)D3 concentration increased with both D vitamer-supplemented diets and did not differ significantly between treatments. No evidence of vitamin D excess was detected in either trial. CONCLUSIONS AND CLINICAL RELEVANCE Potency of the dietary 25(OH)D3 supplement estimated on the basis of targeted content was 5 times that of vitamin D3 to increase indicators of vitamin D status in the study sample. No adverse effects attributed to treatment were observed in short-term feeding trials.
Collapse
|
39
|
Taha R, Abureesh S, Alghamdi S, Hassan RY, Cheikh MM, Bagabir RA, Almoallim H, Abdulkhaliq A. The Relationship Between Vitamin D and Infections Including COVID-19: Any Hopes? Int J Gen Med 2021; 14:3849-3870. [PMID: 34335050 PMCID: PMC8318784 DOI: 10.2147/ijgm.s317421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Vitamin D is proposed to have a potential role in the pathogenicity, clinical presentation, prognosis, complications, and treatment of several diseases. In addition to its well-known role in calcium metabolism, vitamin D regulates both innate and adaptive immunity, and subsequently modulates the antiviral and antibacterial inflammatory immune responses. In view of the emerging coronavirus disease 2019 (COVID-19) pandemic, searching for potential therapeutic and protective strategies is of urgent interest, and vitamin D is one of the promising agents in this field. In this review, we present data from literature that supports the promising role of vitamin D in treatment and/or prevention of several infections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This review summarizes vitamin D metabolism and its role in inflammation, thrombosis and immune regulation. It also reviews, in short, the role of vitamin D and the impact of its deficiency in several infections namely tuberculosis, influenza, human immunodeficiency virus (HIV), and SARS-CoV-2. Considering the roles of vitamin D on immune modulation, controlling of thrombosis, and attacking several microorganisms, the current review will elaborate on the association between these salient roles of vitamin D and the pathogenicity of various infectious agents including COVID-19. Consequently, the comprehensive finding of the current review shows a possible significant impact of vitamin D supplement as a hope in preventing, treating, and/or improving the progression of certain infections, specifically during the worldwide attempts to fight against the COVID-19 pandemic and minimize the severity of health complications encountered accordingly. In addition, avoiding a status of vitamin D deficiency to obtain its positive effects on the immune system and its protective mechanism during infections will be a general benefit overall.
Collapse
Affiliation(s)
- Rbab Taha
- Department of Transplant Infectious Disease, University Health Network, Toronto, Ontario, Canada
| | - Shahd Abureesh
- Department of Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shuruq Alghamdi
- Department of Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rola Y Hassan
- Department of Internal Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Mohamed M Cheikh
- Department of Internal Medicine, Doctor Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
- Department of Medicine, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Rania A Bagabir
- Department of Immunology and Hematology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Almoallim
- Department of Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Alzaidi Chair of Research in Rheumatic Diseases, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Altaf Abdulkhaliq
- Department of Clinical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
40
|
Ruggiero CE, Backus RC. Effects of Vitamin D 2 and 25-Hydroxyvitamin D 2 Supplementation on Plasma Vitamin D Epimeric Metabolites in Adult Cats. Front Vet Sci 2021; 8:654629. [PMID: 34164449 PMCID: PMC8215352 DOI: 10.3389/fvets.2021.654629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Feline vitamin D status is based on dietary consumption but metabolism of this essential nutrient and the efficacy of supplementation forms are poorly described in cats. The aim of this study was to further elucidate the metabolites of vitamin D2 in cats and to compare the effectiveness of vitamin D2 and 25(OH)D2 for increasing feline vitamin D status. Eight adult male castrated domestic shorthair cats received vitamin D2 or 25(OH)D2 in a single crossover design. Vitamin D2 was dosed daily in a molar equivalent dosage to vitamin D3 ingested in the diet while 25(OH)D2 was provided at a daily dose of 20% molar equivalent intake of dietary vitamin D3 based on its expected higher potency. Plasma concentrations of 25-hydroxyvitamin D epimers were evaluated at baseline then every 2 weeks for a total of 10 weeks. Analysis of multiple vitamin D metabolite concentrations was completed at the end of each supplementation period, followed by a washout period preceding the second phase of the crossover trial. Results showed that supplementation with 25(OH)D2 more effectively and rapidly raised circulating 25(OH)D2 levels in cat plasma compared to vitamin D2. Formation of C-3 epimers of 25(OH)D3, 25(OH)D2, and 24,25R(OH)2D3, but not 24,25(OH)2D2, were observed in feline plasma. The abundant concentrations of epimeric forms of vitamin D metabolites found in circulation suggest that these metabolites should be considered during vitamin D analyses in cats. Further studies using 25(OH)D and vitamin D2 forms are needed to conclude safety and efficacy of these vitamers for supplementation in this species.
Collapse
Affiliation(s)
- Catherine E. Ruggiero
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | | |
Collapse
|
41
|
Abstract
Vitamin D (VD) has been reported to play multiple and significant roles in improving pig health via modulating calcium and phosphorus homeostasis, skeletal muscle development and the immune system. Apart from food, photochemical action of 7-dehydrocholesterol in the skin is the main source of this molecule for pigs. The VD from dietary intake or photosynthesized via skin can be absorbed into the liver for hydroxylation, and further hydroxylated into the hormone form of VD (1,25-dihydroxyvitamin D3 or 1,25(OH)2D3) in the kidney. As a sterol hormone, 1,25(OH)2D3 is able to bind with the VD receptor (VDR), and this ligand-receptor complex (VDR/retinoic X receptor) translocates from the cytoplasm into the nucleus to regulate gene expression, thus modulating metabolism. In this review, we summarized the recent studies regarding the non-skeletal health benefits of VD for pigs, and focused on the recent advances in the cellular and molecular mechanisms of VD that affects the immune system and reproductive health. This review provides a reference for future research and application of VD in pigs.
Collapse
|
42
|
Ozden A, Doneray H, Turkyilmaz A. Two novel CYP2R1 mutations in a family with vitamin D-dependent rickets type 1b. Endocrine 2021; 72:852-864. [PMID: 33715104 DOI: 10.1007/s12020-021-02670-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Vitamin D-dependent rickets type 1b (VDDR1b) is a very rare autosomal recessive disorder caused by mutations in CYP2R1 that produces 25-hydroxylase. To date only five mutations in CYP2R1 have been identified. This study has reported the genetic results and the clinical characteristics of a family with VDDR1b and compared this family to the other families with VDDR1b in literature. METHODS After two probands were diagnosed with VDDR1b, all other family members were evaluated. Serum calcium, phosphorus, alkaline phosphatase, parathyroid hormone, 25-hydroxy vitamin D, and 1.25-dihydroxy vitamin D levels were measured in all family members. All individuals were evaluated radiographically, and a genetic analysis was done in all family members. The other families with VDDR1b in literature were reviewed. RESULTS Two novel mutations [c.367 + 1G > C and p.E339Q (c.1015G > C)] were identified. The clinic and laboratory findings were strikingly different among the members of this family regardless of the mutation and the number of alleles affected. The families having different mutations in literature had also extensive variation in both the clinical and the laboratory findings. CONCLUSION The current study further expands CYP2R1 mutation spectrum. The findings of both the current and the previous studies suggest that VDDR1b is a more complex disorder than the known autosomal recessive inheritance model and the phenotype may show an extensive variation regardless of the mutation type and the gene dosage.
Collapse
Affiliation(s)
- Ayse Ozden
- Department of Pediatric Endocrinology, Erzurum Regional Training & Research Hospital, Erzurum, Turkey.
| | - Hakan Doneray
- Department of Pediatric Endocrinology, Ataturk University Faculty of Medicine, Erzurum, Turkey
- Clinical Research Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Erzurum Regional Training & Research Hospital, Erzurum, Turkey
| |
Collapse
|
43
|
Warren MF, Livingston KA. Implications of Vitamin D Research in Chickens can Advance Human Nutrition and Perspectives for the Future. Curr Dev Nutr 2021; 5:nzab018. [PMID: 33977215 PMCID: PMC7929256 DOI: 10.1093/cdn/nzab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The risk of vitamin D insufficiency in humans is a global problem that requires improving ways to increase vitamin D intake. Supplements are a primary means for increasing vitamin D intake, but without a clear consensus on what constitutes vitamin D sufficiency, there is toxicity risk with taking supplements. Chickens have been used in many vitamin-D-related research studies, especially studies involving vitamin D supplementation. Our state-of-the-art review evaluates vitamin D metabolism and how the different hydroxylated forms are synthesized. We provide an overview of how vitamin D is absorbed, transported, excreted, and what tissues in the body store vitamin D metabolites. We also discuss a number of studies involving vitamin D supplementation with broilers and laying hens. Vitamin D deficiency and toxicity are also described and how they can be caused. The vitamin D receptor (VDR) is important for vitamin D metabolism; however, there is much more to understand about VDR in chickens. Potential research aims involving vitamin D and chickens should explore VDR mechanisms that could lead to newer insights into VDR. Utilizing chickens in future research to help elucidate vitamin D mechanisms has great potential to advance human nutrition. Finding ways to increase vitamin D intake will be necessary because the coronavirus disease 2019 (COVID-19) pandemic is leading to increased risk of vitamin D deficiency in many populations. Chickens can provide a dual purpose with addressing pandemic-caused vitamin D deficiency: 1) vitamin D supplementation gives chickens added-value with the possibility of leading to vitamin-D-enriched meat and egg products; and 2) using chickens in research provides data for translational research. We believe expanding vitamin-D-related research in chickens to include more nutritional aims in vitamin D status has great implications for developing better strategies to improve human health.
Collapse
Affiliation(s)
- Matthew F Warren
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kimberly A Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Elanco Animal Health, Greenfield, IN, USA
| |
Collapse
|
44
|
Sawicki K, Czajka M, Matysiak-Kucharek M, Kurzepa J, Wojtyła-Buciora P, Zygo K, Kruszewski M, Kapka-Skrzypczak L. Chlorpyrifos alters expression of enzymes involved in vitamin D 3 synthesis in skin cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104812. [PMID: 33838712 DOI: 10.1016/j.pestbp.2021.104812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Skin acts as a mechanical barrier between human body and environment. Epidermal cells are regularly exposed to many physiological and environmental stressors, such as pesticides, like chlorpyrifos (CPS). It is recognised that CPS may affect metabolism of other exo- and endogenous substances by affecting enzyme activity and expression. This study aims to investigate the effect of CPS on expression of CYP27A1, CYP27B1 and CYP24A1, the enzymes involved in synthesis and metabolism of vitamin D3, in human keratinocytes HaCaT and human fibroblasts BJ. Synthesis of vitamin D3 in cells was initiated by irradiating with UVB. Expression of CYP27A1, CYP27B1 and CYP24A1 was evaluated by RT-qPCR and Western blot. Our experiments revealed that expression of all tested cytochrome P450 isoforms in cells exposed to CPS changed significantly. Exposure of HaCaT keratinocytes to CPS decreased CYP27A1 mRNA levels, but increased CYP27B1 and CYP24A1 mRNA levels. This was confirmed at the protein level, except for the CYP27A1 expression. Outcome for the BJ cells was however less conclusive. Though exposure to CPS decreased CYP27A1 and CYP27B1 mRNA levels, at protein level increasing concentration of CPS and UVB intensity induced expression of CYP27A1 and CYP24A1. The expression of CYP27B1 isoform decreased in line with mRNA level. Nevertheless, it can be concluded that CPS may therefore interrupt vitamin D3 metabolism in skin cells, but further studies are required to better understand such mechanisms.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | | | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University, Lublin, Poland
| | | | - Karol Zygo
- Department of Public Health, Medical University, Lublin, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland; Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
45
|
Spiers JG, Steiger N, Khadka A, Juliani J, Hill AF, Lavidis NA, Anderson ST, Cortina Chen HJ. Repeated acute stress modulates hepatic inflammation and markers of macrophage polarisation in the rat. Biochimie 2021; 180:30-42. [PMID: 33122103 DOI: 10.1016/j.biochi.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/29/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022]
Abstract
Bidirectional communication between the neuroendocrine stress and immune systems permits classically anti-inflammatory glucocorticoids to exert pro-inflammatory effects in specific cells and tissues. Liver macrophages/Kupffer cells play a crucial role in initiating inflammatory cascades mediated by the release of pro-inflammatory cytokines following tissue injury. However, the effects of repeated acute psychological stress on hepatic inflammatory phenotype and macrophage activation state remains poorly understood. We have utilised a model of repeated acute stress in rodents to observe the changes in hepatic inflammatory phenotype, including anti-inflammatory vitamin D status, in addition to examining markers of classically and alternatively-activated macrophages. Male Wistar rats were subjected to control conditions or 6 h of restraint stress applied for 1 or 3 days (n = 8 per group) after which plasma concentrations of stress hormone, enzymes associated with liver damage, and vitamin D status were examined, in addition to hepatic expression of pro- and anti-inflammatory markers. Stress increased glucocorticoids and active vitamin D levels in addition to expression of glucocorticoid alpha/beta receptor, whilst changes in circulating hepatic enzymes indicated sustained liver damage. A pro-inflammatory response was observed in liver tissues following stress, and inducible nitric oxide synthase being observed within hepatic macrophage/Kupffer cells. Together, this suggests that stress preferentially induces a pro-inflammatory response in the liver.
Collapse
Affiliation(s)
- Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Natasha Steiger
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Arun Khadka
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Juliani Juliani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia; WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
46
|
Meza-Meza MR, Ruiz-Ballesteros AI, de la Cruz-Mosso U. Functional effects of vitamin D: From nutrient to immunomodulator. Crit Rev Food Sci Nutr 2020; 62:3042-3062. [PMID: 33354999 DOI: 10.1080/10408398.2020.1862753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vitamin D can be obtained from the endogenous synthesis in the epidermis by exposure to UVB light, and from foods and supplements in the form of ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3). The main metabolite used to measure vitamin D serum status is calcidiol [25(OH)D]. However, its active metabolite calcitriol [1α,25(OH)2D] performs pleiotropic effects in the cardiovascular, neurological, and adipose tissue as well as immune cells. Calcitriol exerts its effects through genomic mechanisms modulated by the nuclear vitamin D receptor (VDR)/retinoid X receptor (RXR) complex, to bind to vitamin D response elements (VDRE) in target genes of several cells such as activated T and B lymphocytes, neutrophils, macrophages, and dendritic cells; besides of its genomic mechanisms, VDR performs novel non-genomic mechanisms that involve its membrane expression and soluble form; highlighting that vitamin D could be an immunomodulatory nutrient that plays a key role during physiological and pathological events. Therefore, the aim of this comprehensive literature review was to describe the most relevant findings of vitamin D dietary sources, absorption, synthesis, metabolism, and factors that influence its serum status, signaling pathways, and biological effects of this immunonutrient in the health and disease.
Collapse
Affiliation(s)
- Mónica R Meza-Meza
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adolfo I Ruiz-Ballesteros
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ulises de la Cruz-Mosso
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
47
|
Ruiz-Ballesteros AI, Meza-Meza MR, Vizmanos-Lamotte B, Parra-Rojas I, de la Cruz-Mosso U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int J Mol Sci 2020; 21:ijms21249626. [PMID: 33348854 PMCID: PMC7766382 DOI: 10.3390/ijms21249626] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
A high prevalence of vitamin D (calcidiol) serum deficiency has been described in several autoimmune diseases, including multiple sclerosis (MS), rheumatoid arthritis (AR), and systemic lupus erythematosus (SLE). Vitamin D is a potent immunonutrient that through its main metabolite calcitriol, regulates the immunomodulation of macrophages, dendritic cells, T and B lymphocytes, which express the vitamin D receptor (VDR), and they produce and respond to calcitriol. Genetic association studies have shown that up to 65% of vitamin D serum variance may be explained due to genetic background. The 90% of genetic variability takes place in the form of single nucleotide polymorphisms (SNPs), and SNPs in genes related to vitamin D metabolism have been linked to influence the calcidiol serum levels, such as in the vitamin D binding protein (VDBP; rs2282679 GC), 25-hydroxylase (rs10751657 CYP2R1), 1α-hydroxylase (rs10877012, CYP27B1) and the vitamin D receptor (FokI (rs2228570), BsmI (rs1544410), ApaI (rs7975232), and TaqI (rs731236) VDR). Therefore, the aim of this comprehensive literature review was to discuss the current findings of functional SNPs in GC, CYP2R1, CYP27B1, and VDR associated to genetic risk, and the most common clinical features of MS, RA, and SLE.
Collapse
Affiliation(s)
- Adolfo I. Ruiz-Ballesteros
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
| | - Mónica R. Meza-Meza
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias Biomédicas Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
| | - Barbara Vizmanos-Lamotte
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo Guerrero 39087, Mexico;
| | - Ulises de la Cruz-Mosso
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
- Programa de Doctorado en Ciencias Biomédicas Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Correspondence: ; Tel.: +52-1-331-744-15-75
| |
Collapse
|
48
|
Vitamin D and its analogs as anticancer and anti-inflammatory agents. Eur J Med Chem 2020; 207:112738. [DOI: 10.1016/j.ejmech.2020.112738] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
|
49
|
Mioni R, Gallea M, Granzotto M, Dassie F, Parolin M, Maffei P, Faggian D, De Marchi F, Litta P, Vettor R. Ovarian 25OH-vitamin D production in young women affected by polycystic ovary syndrome. J Endocrinol Invest 2020; 43:1623-1630. [PMID: 32319048 DOI: 10.1007/s40618-020-01247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Vitamin D is involved in the regulatory mechanisms of ovarian function and is frequently low in PCOS patients. Since obesity and hyperinsulinemic state negatively influenced vitamin D levels, therefore, we evaluated the production of vitamin D at the ovarian level only in lean and normoinsulinemic PCOS subjects. Basal, GnRH analogue-induced ovarian production of 25OH-vitamin D (VitD) and a direct sampling at ovarian vein level were investigated. METHODS Basal and GnRH analogue-induced hormone levels were evaluated at peripheral level in 45 subjects, aged 18-39 years, and in 22 healthy women with age- and BMI-matched as controls. In 12 PCOS patients, undergoing laparoscopy, a venous sampling at both peripheral and ovarian level was further done. All subjects presented low VitD levels, appropriate to the season and with no difference between PCOS and control subjects. RESULTS GnRH analogue significantly stimulated plasma LH, FSH, 17-OHP and estradiol secretion (p from < 0.05 to < 0.001 vs basal levels), whereas no effect was observed on both serum AMH and VitD concentrations in all groups. A significant difference (p < 0.006), between peripheral and ovarian veins, was observed in both AMH and estradiol levels in PCOS subjects, while no gradient of VitD was detected. CONCLUSIONS All patients presented with low VitD levels. The absence of any VitD variation, both at basal and after GnRH analogue administration, or at peripheral-ovarian vein gradient, suggests no pituitary-ovarian axis involvement in VitD production or its direct ovarian production in lean and normoinsulinemic PCOS subjects.
Collapse
Affiliation(s)
- R Mioni
- Department of Medicine, Clinica Medica 3, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, PD, Italy.
| | - M Gallea
- Department of Medicine, Clinica Medica 3, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, PD, Italy
| | - M Granzotto
- Department of Medicine, Clinica Medica 3, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, PD, Italy
| | - F Dassie
- Department of Medicine, Clinica Medica 3, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, PD, Italy
| | - M Parolin
- Department of Medicine, Clinica Medica 3, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, PD, Italy
| | - P Maffei
- Department of Medicine, Clinica Medica 3, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, PD, Italy
| | - D Faggian
- Department of Laboratory Medicine, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - F De Marchi
- Department of Women's and Children's Health, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - P Litta
- Department of Women's and Children's Health, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - R Vettor
- Department of Medicine, Clinica Medica 3, Azienda Ospedaliera di Padova, University of Padua, Via Giustiniani 2, 35128, Padua, PD, Italy
| |
Collapse
|
50
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|