1
|
Bairagya HR. Dynamics of nucleoplasm in human leukemia cells: A thrust towards designing anti-leukemic agents. J Mol Graph Model 2024; 131:108807. [PMID: 38908255 DOI: 10.1016/j.jmgm.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
The human inosine monophosphate dehydrogenase (hIMPDH) is a metabolic enzyme that possesses a unique ability to self-assemble into higher-order structures, forming cytoophidia. The hIMPDH II isoform is more active in chronic myeloid leukemia (CML) cancer cells, making it a promising target for anti-leukemic therapy. However, the structural details and molecular mechanisms of the dynamics of hIMPDHcytoophidia assembly in vitro need to be better understood, and it is crucial to reconstitute the computational nucleoplasm model with cytophilic-like polymers in vitro to characterize their structure and function. Finally, a computational model and its dynamics of the nucleoplasm for CML cells have been proposed in this short review. This research on nucleoplasm aims to aid the scientific community's understanding of how metabolic enzymes like hIMPDH function in cancer and normal cells. However, validating and justifying the computational results from modeling and simulation with experimental data is essential. The new insights gained from this research could explain the structure/topology, geometrical, and electronic consequences of hIMPDH inhibitors on leukemic and normal cells. They could lead to further advancements in the knowledge of nucleoplasmic chemical reaction dynamics.
Collapse
Affiliation(s)
- Hridoy R Bairagya
- Computational Drug Design and Bio-molecular Simulation Lab, Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal, 741249, India.
| |
Collapse
|
2
|
Zhan J, Zeng D, Xiao X, Fang Z, Huang T, Zhao B, Zhu Q, Liu C, Jiang B, Zhou X, Li C, He L, Yang D, Liu M, Zhang X. Real-Time Observation of Conformational Changes and Translocation of Endogenous Cytochrome c within Intact Mitochondria. J Am Chem Soc 2024; 146:4455-4466. [PMID: 38335066 DOI: 10.1021/jacs.3c10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Cytochrome c (cyt c) is a multifunctional protein with varying conformations. However, the conformation of cyt c in its native environment, mitochondria, is still unclear. Here, we applied NMR spectroscopy to investigate the conformation and location of endogenous cyt c within intact mitochondria at natural isotopic abundance, mainly using widespread methyl groups as probes. By monitoring time-dependent chemical shift perturbations, we observed that most cyt c is located in the inner mitochondrial membrane and partially unfolded, which is distinct from its native conformation in solution. When suffering oxidative stress, cyt c underwent oxidative modifications due to increasing reactive oxygen species (ROS), weakening electrostatic interactions with the membrane, and gradually translocating into the inner membrane spaces of mitochondria. Meanwhile, the lethality of oxidatively modified cyt c to cells was reduced compared with normal cyt c. Our findings significantly improve the understanding of the molecular mechanisms underlying the regulation of ROS by cyt c in mitochondria. Moreover, it highlights the potential of NMR to monitor high-concentration molecules at a natural isotopic abundance within intact cells or organelles.
Collapse
Affiliation(s)
- Jianhua Zhan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Danyun Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiong Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhongpei Fang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tao Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Beibei Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qinjun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Caixiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
- Optics Valley Laboratory, Wuhan 430074, People's Republic of China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
- Optics Valley Laboratory, Wuhan 430074, People's Republic of China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
- Optics Valley Laboratory, Wuhan 430074, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
- Optics Valley Laboratory, Wuhan 430074, People's Republic of China
| |
Collapse
|
3
|
Erba EB, Pastore A. The Complementarity of Nuclear Magnetic Resonance and Native Mass Spectrometry in Probing Protein-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:109-123. [PMID: 38507203 DOI: 10.1007/978-3-031-52193-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nuclear magnetic resonance (NMR) and native mass spectrometry (MS) are mature physicochemical techniques with long histories and important applications. NMR spectroscopy provides detailed information about the structure, dynamics, interactions, and chemical environment of biomolecules. MS is an effective approach for determining the mass of biomolecules with high accuracy, sensitivity, and speed. The two techniques offer unique advantages and provide solid tools for structural biology. In the present review, we discuss their individual merits in the context of their applications to structural studies in biology with specific focus on protein interactions and evaluate their limitations. We provide specific examples in which these techniques can complement each other, providing new information on the same scientific case. We discuss how the field may develop and what challenges are expected in the future. Overall, the combination of NMR and MS plays an increasingly important role in integrative structural biology, assisting scientists in deciphering the three-dimensional structure of composite macromolecular assemblies.
Collapse
|
4
|
Andersen CB, Lausdahl AK, Nielsen J, Clausen MP, Mulder FAA, Otzen DE, Arnspang EC. 4-Oxo-2-nonenal-Induced α-Synuclein Oligomers Interact with Membranes in the Cell, Leading to Mitochondrial Fragmentation. Biochemistry 2023; 62:2417-2425. [PMID: 37487228 DOI: 10.1021/acs.biochem.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Oxidative stress and formation of cytotoxic oligomers by the natively unfolded protein α-synuclein (α-syn) are both connected to the development of Parkinson's disease. This effect has been linked to lipid peroxidation and membrane disruption, but the specific mechanisms behind these phenomena remain unclear. To address this, we have prepared α-syn oligomers (αSOs) in vitro in the presence of the lipid peroxidation product 4-oxo-2-nonenal and investigated their interaction with live cells using in-cell NMR as well as stimulated emission depletion (STED) super-resolution and confocal microscopy. We find that the αSOs interact strongly with organellar components, leading to strong immobilization of the protein's otherwise flexible C-terminus. STED microscopy reveals that the oligomers localize to small circular structures inside the cell, while confocal microscopy shows mitochondrial fragmentation and association with both late endosome and retromer complex before the SOs interact with mitochondria. Our study provides direct evidence for close contact between cytotoxic α-syn aggregates and membraneous compartments in the cell.
Collapse
Affiliation(s)
- Camilla B Andersen
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University, 8000 Aarhus C, Denmark
- Department of Green Technology, SDU-Biotechnology, University of Southern Denmark, 5230 Odense, Denmark
| | - Astrid K Lausdahl
- Department of Green Technology, SDU-Biotechnology, University of Southern Denmark, 5230 Odense, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University, 8000 Aarhus C, Denmark
| | - Mathias P Clausen
- Department of Green Technology, SDU-Biotechnology, University of Southern Denmark, 5230 Odense, Denmark
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University, 8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Eva C Arnspang
- Department of Green Technology, SDU-Biotechnology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
5
|
Araujo-Abad S, Neira JL, Rizzuti B, García-Morales P, de Juan Romero C, Santofimia-Castaño P, Iovanna J. Intrinsically Disordered Chromatin Protein NUPR1 Binds to the Enzyme PADI4. J Mol Biol 2023; 435:168033. [PMID: 36858171 DOI: 10.1016/j.jmb.2023.168033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions. We characterized the interaction between NUPR1 and PADI4 in vitro, in silico, and in cellulo. The interaction of NUPR1 and PADI4 occurred with a dissociation constant of 18 ± 6 μM. The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch surrounding the key residue Ala33, as pinpointed by: (i) computational results; and, (ii) site-directed mutagenesis of residues of NUPR1. The association between PADI4 and wild-type NUPR1 was also assessed in cellulo by using proximity ligation assays (PLAs) and immunofluorescence (IF), and it occurred mainly in the nucleus. Moreover, binding between NUPR1L and PADI4 also occurred in vitro with an affinity similar to that of NUPR1. Molecular modelling provided information on the binding hot spot for PADI4. This is an example of a disordered partner of PADI4, whereas its other known interacting proteins are well-folded. Altogether, our results suggest that the NUPR1/PADI4 complex could have crucial functions in modulating DNA-repair, favoring metastasis, or facilitating citrullination of other proteins.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Centro de Biotecnología, Universidad Nacional de Loja, Avda. Pío Jaramillo Alvarado s/n, Loja, 110111 Loja, Ecuador
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Bruno Rizzuti
- Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
| | | | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche (Alicante), Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
| |
Collapse
|
6
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
7
|
Puglisi R, Cioni P, Gabellieri E, Presciuttini G, Pastore A, Temussi PA. Heat and cold denaturation of yeast frataxin: The effect of pressure. Biophys J 2022; 121:1502-1511. [PMID: 35278425 PMCID: PMC9072581 DOI: 10.1016/j.bpj.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Yfh1 is a yeast protein with the peculiar characteristic to undergo, in the absence of salt, cold denaturation at temperatures above the water freezing point. This feature makes the protein particularly interesting for studies aiming at understanding the rules that determine protein fold stability. Here, we present the phase diagram of Yfh1 unfolding as a function of pressure (0.1-500 MPa) and temperature 278-313 K (5-40°C) both in the absence and in the presence of stabilizers using Trp fluorescence as a monitor. The protein showed a remarkable sensitivity to pressure: at 293 K, pressures around 10 MPa are sufficient to cause 50% of unfolding. Higher pressures were required for the unfolding of the protein in the presence of stabilizers. The phase diagram on the pressure-temperature plane together with a critical comparison between our results and those found in the literature allowed us to draw conclusions on the mechanism of the unfolding process under different environmental conditions.
Collapse
Affiliation(s)
- Rita Puglisi
- UK-DRI at King's College London, The Wohl Institute, London, (UK)
| | | | | | | | - Annalisa Pastore
- UK-DRI at King's College London, The Wohl Institute, London, (UK); European Synchrotron Radiation Facility, Grenoble, (France).
| | | |
Collapse
|
8
|
Nami F, Ferraz MJ, Bakkum T, Aerts JMFG, Pandit A. Real-Time NMR Recording of Fermentation and Lipid Metabolism Processes in Live Microalgae Cells. Angew Chem Int Ed Engl 2022; 61:e202117521. [PMID: 35103372 PMCID: PMC9305762 DOI: 10.1002/anie.202117521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/10/2022]
Abstract
Non-invasive and real-time recording of processes in living cells has been limited to detection of small cellular components such as soluble proteins and metabolites. Here we report a multiphase NMR approach using magic-angle spinning NMR to synchronously follow microbial processes of fermentation, lipid metabolism and structural dynamic changes in live microalgae cells. Chlamydomonas reinhardtii green algae were highly concentrated, introducing dark fermentation and anoxia conditions. Single-pulse NMR experiments were applied to obtain temperature-dependent kinetic profiles of the formed fermentation products. Through dynamics-based spectral editing NMR, simultaneous conversion of galactolipids into TAG and free fatty acids was observed and rapid loss of rigid lipid structures. This suggests that lipolysis under dark and anoxia conditions finally results in the breakdown of cell and organelle membranes, which could be beneficial for recovery of intracellular microbial useful products.
Collapse
Affiliation(s)
- Faezeh Nami
- Dept. of Solid-State NMRLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Maria Joao Ferraz
- Dept. of Medicinal BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Dept. of Bio Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Dept. of Medicinal BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Anjali Pandit
- Dept. of Solid-State NMRLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
9
|
Nami F, Ferraz MJ, Bakkum T, Aerts JMFG, Pandit A. Real‐Time NMR Recording of Fermentation and Lipid Metabolism Processes in Live Microalgae Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Faezeh Nami
- Dept. of Solid-State NMR Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Maria Joao Ferraz
- Dept. of Medicinal Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Thomas Bakkum
- Dept. of Bio Organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Dept. of Medicinal Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Anjali Pandit
- Dept. of Solid-State NMR Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
10
|
Madl T. Intracellular drug binding affinities by NMR. Acta Crystallogr D Struct Biol 2021; 77:1216-1217. [PMID: 34605425 PMCID: PMC8489227 DOI: 10.1107/s2059798321010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A commentary on the article by Luchinat et al. [(2021), Acta Cryst. D77 , 1247–1258] where they describe an approach to identify the details of a compound binding to a molecular target using in-cell NMR to provide intracellular binding affinities.
Collapse
Affiliation(s)
- Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/VI, 8010 Graz, Austria
| |
Collapse
|
11
|
Puglisi R, Karunanithy G, Hansen DF, Pastore A, Temussi PA. The anatomy of unfolding of Yfh1 is revealed by site-specific fold stability analysis measured by 2D NMR spectroscopy. Commun Chem 2021; 4:127. [PMID: 35243007 PMCID: PMC7612453 DOI: 10.1038/s42004-021-00566-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most techniques allow detection of protein unfolding either by following the behaviour of single reporters or as an averaged all-or-none process. We recently added 2D NMR spectroscopy to the well-established techniques able to obtain information on the process of unfolding using resonances of residues in the hydrophobic core of a protein. Here, we questioned whether an analysis of the individual stability curves from each resonance could provide additional site-specific information. We used the Yfh1 protein that has the unique feature to undergo both cold and heat denaturation at temperatures above water freezing at low ionic strength. We show that stability curves inconsistent with the average NMR curve from hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide precious information. By monitoring both cold and heat denaturation of individual residues we gain knowledge on the process of cold denaturation and convincingly demonstrate that the two unfolding processes are intrinsically different.
Collapse
Affiliation(s)
- Rita Puglisi
- grid.511435.7UK-DRI at King’s College London, The Wohl Institute, London, UK
| | - Gogulan Karunanithy
- grid.83440.3b0000000121901201Department of Structural Biology, Division of Biosciences, University College London, London, UK
| | - D. Flemming Hansen
- grid.83440.3b0000000121901201Department of Structural Biology, Division of Biosciences, University College London, London, UK
| | - Annalisa Pastore
- grid.511435.7UK-DRI at King’s College London, The Wohl Institute, London, UK ,grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, Grenoble, France
| | | |
Collapse
|
12
|
Bonucci A, Palomino-Schätzlein M, Malo de Molina P, Arbe A, Pierattelli R, Rizzuti B, Iovanna JL, Neira JL. Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1. Front Mol Biosci 2021; 8:684622. [PMID: 34291085 PMCID: PMC8287036 DOI: 10.3389/fmolb.2021.684622] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
The intracellular environment is crowded with macromolecules, including sugars, proteins and nucleic acids. In the cytoplasm, crowding effects are capable of excluding up to 40% of the volume available to any macromolecule when compared to dilute conditions. NUPR1 is an intrinsically disordered protein (IDP) involved in cell-cycle regulation, stress-cell response, apoptosis processes, DNA binding and repair, chromatin remodeling and transcription. Simulations of molecular crowding predict that IDPs can adopt compact states, as well as more extended conformations under crowding conditions. In this work, we analyzed the conformation and dynamics of NUPR1 in the presence of two synthetic polymers, Ficoll-70 and Dextran-40, which mimic crowding effects in the cells, at two different concentrations (50 and 150 mg/ml). The study was carried out by using a multi-spectroscopic approach, including: site-directed spin labelling electron paramagnetic resonance spectroscopy (SDSL-EPR), nuclear magnetic resonance spectroscopy (NMR), circular dichroism (CD), small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). SDSL-EPR spectra of two spin-labelled mutants indicate that there was binding with the crowders and that the local dynamics of the C and N termini of NUPR1 were partially affected by the crowders. However, the overall disordered nature of NUPR1 did not change substantially in the presence of the crowders, as shown by circular dichroism CD and NMR, and further confirmed by EPR. The changes in the dynamics of the paramagnetic probes appear to be related to preferred local conformations and thus crowding agents partially affect some specific regions, further pinpointing that NUPR1 flexibility has a key physiological role in its activity.
Collapse
Affiliation(s)
- Alessio Bonucci
- CERM & Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (Florence), Italy
| | | | - Paula Malo de Molina
- Centro de Física de Materiales (CFM), CSIC-UPV/EHU, San Sebastián, Spain.,IKERBASQUE-Basque Foundation for Science, Bilbao, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM), CSIC-UPV/EHU, San Sebastián, Spain
| | - Roberta Pierattelli
- CERM & Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (Florence), Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, Italy.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain.,IDIBE, Universidad Miguel Hernández, Elche (Alicante), Spain
| |
Collapse
|
13
|
Höfurthner T, Mateos B, Konrat R. On-Cell NMR Contributions to Membrane Receptor Binding Characterization. Chempluschem 2021; 86:938-945. [PMID: 34160899 DOI: 10.1002/cplu.202100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/28/2021] [Indexed: 12/21/2022]
Abstract
NMR spectroscopy has matured into a powerful tool to characterize interactions between biological molecules at atomic resolution, most importantly even under near to native (physiological) conditions. The field of in-cell NMR aims to study proteins and nucleic acids inside living cells. However, cells interrogate their environment and are continuously modulated by external stimuli. Cell signaling processes are often initialized by membrane receptors on the cell surface; therefore, characterizing their interactions at atomic resolution by NMR, hereafter referred as on-cell NMR, can provide valuable mechanistic information. This review aims to summarize recent on-cell NMR tools that give information about the binding site and the affinity of membrane receptors to their ligands together with potential applications to in vivo drug screening systems.
Collapse
Affiliation(s)
- Theresa Höfurthner
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| |
Collapse
|
14
|
Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of cellular machineries responsible for the iron–sulfur (Fe–S) cluster biogenesis has led to the identification of a large number of proteins, whose importance for life is documented by an increasing number of diseases linked to them. The labile nature of Fe–S clusters and the transient protein–protein interactions, occurring during the various steps of the maturation process, make their structural characterization in solution particularly difficult. Paramagnetic nuclear magnetic resonance (NMR) has been used for decades to characterize chemical composition, magnetic coupling, and the electronic structure of Fe–S clusters in proteins; it represents, therefore, a powerful tool to study the protein–protein interaction networks of proteins involving into iron–sulfur cluster biogenesis. The optimization of the various NMR experiments with respect to the hyperfine interaction will be summarized here in the form of a protocol; recently developed experiments for measuring longitudinal and transverse nuclear relaxation rates in highly paramagnetic systems will be also reviewed. Finally, we will address the use of extrinsic paramagnetic centers covalently bound to diamagnetic proteins, which contributed over the last twenty years to promote the applications of paramagnetic NMR well beyond the structural biology of metalloproteins.
Collapse
|
15
|
Puglisi R, Brylski O, Alfano C, Martin SR, Pastore A, Temussi PA. Quantifying the thermodynamics of protein unfolding using 2D NMR spectroscopy. Commun Chem 2020; 3:100. [PMID: 33718626 PMCID: PMC7116895 DOI: 10.1038/s42004-020-00358-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023] Open
Abstract
A topic that has attracted considerable interest in recent years is the possibility to perform thermodynamic studies of proteins directly in-cell or in complex environments which mimic the cellular interior. Nuclear magnetic resonance (NMR) could be an attractive technique for these studies but its applicability has so far been limited by technical issues. Here, we demonstrate that 2D NMR methods can be successfully applied to measure thermodynamic parameters provided that a suitable choice of the residues used for the calculation is made. We propose a new parameter, named RAD, which reflects the level of protection of a specific amide proton in the protein core and can guide through the selection of the resonances. We also suggest a way to calibrate the volumes to become independent of technical limitations. The methodology we propose leads to stability curves comparable to that calculated from CD data and provides a new tool for thermodynamic measurements in complex environments.
Collapse
Affiliation(s)
- Rita Puglisi
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
| | - Oliver Brylski
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | - Annalisa Pastore
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
| | - Piero A. Temussi
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Napoli, Italy
| |
Collapse
|
16
|
Abstract
Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network-type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Siegal G, Selenko P. Cells, drugs and NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:202-212. [PMID: 31358370 DOI: 10.1016/j.jmr.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for investigating cellular structures and their compositions. While in vivo and whole-cell NMR have a long tradition in cell-based approaches, high-resolution in-cell NMR spectroscopy is a new addition to these methods. In recent years, technological advancements in multiple areas provided converging benefits for cellular MR applications, especially in terms of robustness, reproducibility and physiological relevance. Here, we review the use of cellular NMR methods for drug discovery purposes in academia and industry. Specifically, we discuss how developments in NMR technologies such as miniaturized bioreactors and flow-probe perfusion systems have helped to consolidate NMR's role in cell-based drug discovery efforts.
Collapse
Affiliation(s)
- Gregg Siegal
- ZoBio B.V., BioPartner 2 Building, J.H. Oortweg 19, 2333 Leiden, the Netherlands
| | - Philipp Selenko
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 761000 Rehovot, Israel.
| |
Collapse
|
18
|
Gadomski A. On (sub)mesoscopic scale peculiarities of diffusion driven growth in an active matter confined space, and related (bio)material realizations. Biosystems 2019; 176:56-58. [PMID: 30611845 DOI: 10.1016/j.biosystems.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/08/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Diffusion in a confined space becomes an extremely important problem with many versatile applications, ranging from biomedical to biotechnological, and involving functional and smart (bio)materials. In this study, we have shown that the well-known Mullins-Sekerka approach to morphological stability of the diffusional non-ideal sphere's growth, for which a confinement factor disappears, is a firm starting point for further questions. It has two modifications and/or extensions for which the confinement factor is involved readily and becomes (in)finite firstly for microscale (or micrometer scale) involving biomatter packing phenomena. They are also applicable for nanoscopic biomaterial arrangements for which very tightly packed material and active-matter including outcomes of subdiffusive proveniency would manifest, as it has already been observed for the protein crystal growth in pores and globule-to-coil crossover phenomena.
Collapse
Affiliation(s)
- Adam Gadomski
- Department of Modeling of Physicochemical Processes, Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, PL-85796, Bydgoszcz, Poland.
| |
Collapse
|
19
|
Applications of In-Cell NMR in Structural Biology and Drug Discovery. Int J Mol Sci 2019; 20:ijms20010139. [PMID: 30609728 PMCID: PMC6337603 DOI: 10.3390/ijms20010139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/23/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) is a method to provide the structural information of a target at an atomic level under physiological conditions and a full view of the conformational changes of a protein caused by ligand binding, post-translational modifications or protein⁻protein interactions in living cells. Previous in-cell NMR studies have focused on proteins that were overexpressed in bacterial cells and isotopically labeled proteins injected into oocytes of Xenopus laevis or delivered into human cells. Applications of in-cell NMR in probing protein modifications, conformational changes and ligand bindings have been carried out in mammalian cells by monitoring isotopically labeled proteins overexpressed in living cells. The available protocols and successful examples encourage wide applications of this technique in different fields such as drug discovery. Despite the challenges in this method, progress has been made in recent years. In this review, applications of in-cell NMR are summarized. The successful applications of this method in mammalian and bacterial cells make it feasible to play important roles in drug discovery, especially in the step of target engagement.
Collapse
|
20
|
Proudfoot A, Frank AO, Frommlet A, Lingel A. Selective Methyl Labeling of Proteins: Enabling Structural and Mechanistic Studies As Well As Drug Discovery Applications by Solution-State NMR. Methods Enzymol 2018; 614:1-36. [PMID: 30611421 DOI: 10.1016/bs.mie.2018.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli expression protocols for selective labeling of methyl groups in proteins have been essential in expanding the size range of targets that can be studied by biomolecular NMR. Based on the initial work achieving selective labeling of isoleucine, leucine, and valine residues, additional methods were developed over the past years which enabled the individual and/or simultaneous combinatorial labeling of all methyl containing amino acids. Together with the introduction of new methyl-optimized NMR experiments, this now allows the detailed characterization of protein-ligand interactions as well as mechanistic and dynamic processes of protein-protein complexes up to 1MDa in size. In this chapter, we provide a general introduction to selective labeling of proteins using E. coli-based expression systems, describe the considerations taken into account prior to the selective labeling of a protein, and include the protocols used to produce such proteins. An overview of applications using selectively labeled proteins with an emphasis on examples relevant to the drug discovery process is then presented.
Collapse
Affiliation(s)
- Andrew Proudfoot
- Structural and Biophysical Chemistry, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, United States
| | - Andreas O Frank
- Structural and Biophysical Chemistry, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, United States
| | - Alexandra Frommlet
- Structural and Biophysical Chemistry, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, United States
| | - Andreas Lingel
- Structural and Biophysical Chemistry, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, United States; Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland.
| |
Collapse
|
21
|
Carvalho J, Alves S, Castro MMCA, Geraldes CFGC, Queiroz JA, Fonseca CP, Cruz C. Development of a bioreactor system for cytotoxic evaluation of pharmacological compounds in living cells using NMR spectroscopy. J Pharmacol Toxicol Methods 2018; 95:70-78. [PMID: 30502390 DOI: 10.1016/j.vascn.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 11/21/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The evaluation of drug's cytotoxicity is a crucial step in the development of new pharmacological compounds. 31P NMR can be a tool for toxicological screening, as it enables the study of drugs' cytotoxicity and their effect on cell energy metabolism in a real-time, in a non- invasive and non-destructive way. This paper details a step-by-step protocol to implement a bioreactor system able to maintain cell viability during NMR acquisitions, at high cell densities and for several hours, enabling toxicological evaluation of pharmacological compounds in living cells. METHOD HeLa cells were immobilized in agarose gel threads and continuously perfused with oxygenated medium inside a 5 mm NMR tube. Signals corresponding to intracellular high-energy phosphorous compounds were continuously monitored by 31P NMR to assess cell energy levels, intracellular pH and intracellular free Mg2+ concentrations ([Mg2+]f) under control and in the presence of two different cytotoxic drugs, calix-NH2 or 5-fluorouracil (5-FU). RESULTS The bioreactor system was effective in maintaining cell energy levels as well as intracellular pH and [Mg2+]f along time, with a good 31P NMR signal to noise ratio. Calix-NH2 and 5-FU decreased cell energy levels by 35% and 39%, respectively, with a negligible increase in intracellular [Mg2+]f, and without affecting intracellular pH. DISCUSSION The immobilization and perfusion system here detailed, along with 31P NMR, is useful in toxicological evaluation of new pharmacological compounds, enabling the continuous assessment of drugs' effect on energy levels, intracellular pH and [Mg2+]f in intact cells, for several hours without compromising cell viability.
Collapse
Affiliation(s)
- Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Sara Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - M Margarida C A Castro
- Department of Life Sciences, Faculty of Science and Technology, Coimbra Chemistry Center - CQC, University of Coimbra, Coimbra, Portugal
| | - Carlos F G C Geraldes
- Department of Life Sciences, Faculty of Science and Technology, Coimbra Chemistry Center - CQC, University of Coimbra, Coimbra, Portugal
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Carla P Fonseca
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
22
|
Santofimia-Castaño P, Rizzuti B, Abián O, Velázquez-Campoy A, Iovanna JL, Neira JL. Amphipathic helical peptides hamper protein-protein interactions of the intrinsically disordered chromatin nuclear protein 1 (NUPR1). Biochim Biophys Acta Gen Subj 2018. [DOI: 10.1016/j.bbagen.2018.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
New structural and functional insights from in-cell NMR. Emerg Top Life Sci 2018; 2:29-38. [PMID: 33525780 DOI: 10.1042/etls20170136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
In recent years, it has become evident that structural characterization would gain significantly in terms of biological relevance if framed within a cellular context, while still maintaining the atomic resolution. Therefore, major efforts have been devoted to developing Cellular Structural Biology approaches. In this respect, in-cell NMR can provide and has provided relevant contributions to the field, not only to investigate the structural and dynamical properties of macromolecules in solution but, even more relevant, to understand functional processes directly in living cells and the factors that modulate them, such as exogenous molecules, partner proteins, and oxidative stress. In this commentary, we review and discuss some of the main contributions to the understanding of protein structural and functional properties achieved by in-cell NMR.
Collapse
|
24
|
Davis CM, Gruebele M. Labeling for Quantitative Comparison of Imaging Measurements in Vitro and in Cells. Biochemistry 2018; 57:1929-1938. [PMID: 29546761 DOI: 10.1021/acs.biochem.8b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Qualitative imaging of biomolecular localization and distribution inside cells has revolutionized cell biology. Most of these powerful techniques require modifications to the target biomolecule. Over the past 10 years, these techniques have been extended to quantitative measurements, from in-cell protein folding rates to complex dissociation constants to RNA lifetimes. Such measurements can be affected even when a target molecule is just mildly perturbed by its labels. Here, the impact of labeling on protein (and RNA) structure, stability, and function in cells is discussed via practical examples from the recent literature. General guidelines for selecting and validating modification sites are provided to bring the best from cell biology and imaging to quantitative biophysical experiments inside cells.
Collapse
|
25
|
Lippens G, Cahoreau E, Millard P, Charlier C, Lopez J, Hanoulle X, Portais JC. In-cell NMR: from metabolites to macromolecules. Analyst 2018; 143:620-629. [PMID: 29333554 DOI: 10.1039/c7an01635b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-cell NMR of macromolecules has gained momentum over the last ten years as an approach that might bridge the branches of cell biology and structural biology. In this review, we put it in the context of earlier efforts that aimed to characterize by NMR the cellular environment of live cells and their intracellular metabolites. Although technical aspects distinguish these earlier in vivo NMR studies and the more recent in cell NMR efforts to characterize macromolecules in a cellular environment, we believe that both share major concerns ranging from sensitivity and line broadening to cell viability. Approaches to overcome the limitations in one subfield thereby can serve the other one and vice versa. The relevance in biomedical sciences might stretch from the direct following of drug metabolism in the cell to the observation of target binding, and thereby encompasses in-cell NMR both of metabolites and macromolecules. We underline the efforts of the field to move to novel biological insights by some selected examples.
Collapse
Affiliation(s)
- G Lippens
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - E Cahoreau
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - P Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - C Charlier
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - J Lopez
- CERMN, Seccion Quimica, Departemento de Ciencias, Pontificia Universidad Catolica del Peru, Lima 32, Peru
| | - X Hanoulle
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, CNRS UMR8576, Lille, France
| | - J C Portais
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
26
|
Nawrocki G, Wang PH, Yu I, Sugita Y, Feig M. Slow-Down in Diffusion in Crowded Protein Solutions Correlates with Transient Cluster Formation. J Phys Chem B 2017; 121:11072-11084. [PMID: 29151345 PMCID: PMC5951686 DOI: 10.1021/acs.jpcb.7b08785] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For a long time, the effect of a crowded cellular environment on protein dynamics has been largely ignored. Recent experiments indicate that proteins diffuse more slowly in a living cell than in a diluted solution, and further studies suggest that the diffusion depends on the local surroundings. Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on extensive all-atom molecular dynamics simulations of concentrated villin headpiece solutions. After force field adjustments in the form of increased protein-water interactions to reproduce experimental data, translational and rotational diffusion was analyzed in detail. Although internal protein dynamics remained largely unaltered, rotational diffusion was found to slow down more significantly than translational diffusion as the protein concentration increased. The decrease in diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist on sub-microsecond time scales and follow distributions that increasingly shift toward larger cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for different clusters extracted from the simulations with the distribution of clusters largely reproduces the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause for a slow-down in diffusion upon crowding with other proteins.
Collapse
Affiliation(s)
- Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Po-hung Wang
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Isseki Yu
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN iTHES, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN iTHES, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minaotojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minaotojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
27
|
Kucherov FA, Egorova KS, Posvyatenko AV, Eremin DB, Ananikov VP. Investigation of Cytotoxic Activity of Mitoxantrone at the Individual Cell Level by Using Ionic-Liquid-Tag-Enhanced Mass Spectrometry. Anal Chem 2017; 89:13374-13381. [PMID: 29214808 DOI: 10.1021/acs.analchem.7b03568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel mitoxantrone conjugate was synthesized by coupling mitoxantrone with ionic liquid tags, and cytotoxic behavior of the designed conjugate was studied in normal and cancer cell lines. The synthesized mitoxantrone conjugate was oil at physiological temperatures and demonstrated high aqueous solubility. Sensitivity of electrospray ionization mass spectrometry (ESI-MS) to the mitoxantrone conjugate was improved by an order of magnitude, in comparison with original mitoxantrone dihydrochloride. The observed ESI-MS signals were shifted to a "clearer" lower-mass region of the spectrum, which allowed investigation of the drug at the level of individual cells. The ionic liquid tags proposed in the present work consist of an easily available imidazolium salt residue and show a number of key advantages from the points of view of drug conjugate synthesis, drug delivery and analytic detection.
Collapse
Affiliation(s)
- Fedor A Kucherov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow, 119991 Russia
| | - Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow, 119991 Russia
| | - Alexandra V Posvyatenko
- Institute of Gene Biology, Russian Academy of Sciences , Vavilova str. 34/5, Moscow, 119334 Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation , Samory Mashela str., Moscow, 117198 Russia
| | - Dmitry B Eremin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow, 119991 Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow, 119991 Russia
| |
Collapse
|
28
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
29
|
Intrinsically disordered chromatin protein NUPR1 binds to the C-terminal region of Polycomb RING1B. Proc Natl Acad Sci U S A 2017; 114:E6332-E6341. [PMID: 28720707 DOI: 10.1073/pnas.1619932114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are ubiquitous in eukaryotes, and they are often associated with diseases in humans. The protein NUPR1 is a multifunctional IDP involved in chromatin remodeling and in the development and progression of pancreatic cancer; however, the details of such functions are unknown. Polycomb proteins are involved in specific transcriptional cascades and gene silencing. One of the proteins of the Polycomb complex is the Ring finger protein 1 (RING1). RING1 is related to aggressive tumor features in multiple cancer types. In this work we characterized the interaction between NUPR1 and the paralogue RING1B in vitro, in silico, and in cellulo. The interaction occurred through the C-terminal region of RING1B (C-RING1B), with an affinity in the low micromolar range (∼10 μM). The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch at the 30s region of its sequence, as pinpointed by computational results and site-directed mutagenesis at Ala33. The association between C-RING1B and wild-type NUPR1 also occurred in cellulo as tested by protein ligation assays; this interaction is inhibited by trifluoperazine, a drug known to hamper binding of wild-type NUPR1 with other proteins. Furthermore, the Thr68Gln and Ala33Gln/Thr68Gln mutants had a reduction in the binding toward C-RING1B as shown by in vitro, in silico, and in cellulo studies. This is an example of a well-folded partner of NUPR1, because its other interacting proteins are also unfolded. We hypothesize that NUPR1 plays an active role in chromatin remodeling and carcinogenesis, together with Polycomb proteins.
Collapse
|
30
|
Feig M, Yu I, Wang PH, Nawrocki G, Sugita Y. Crowding in Cellular Environments at an Atomistic Level from Computer Simulations. J Phys Chem B 2017; 121:8009-8025. [PMID: 28666087 PMCID: PMC5582368 DOI: 10.1021/acs.jpcb.7b03570] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The
effects of crowding in biological environments on biomolecular
structure, dynamics, and function remain not well understood. Computer
simulations of atomistic models of concentrated peptide and protein
systems at different levels of complexity are beginning to provide
new insights. Crowding, weak interactions with other macromolecules
and metabolites, and altered solvent properties within cellular environments
appear to remodel the energy landscape of peptides and proteins in
significant ways including the possibility of native state destabilization.
Crowding is also seen to affect dynamic properties, both conformational
dynamics and diffusional properties of macromolecules. Recent simulations
that address these questions are reviewed here and discussed in the
context of relevant experiments.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States.,Quantitative Biology Center, RIKEN , Kobe, Japan
| | - Isseki Yu
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan
| | - Po-Hung Wang
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan
| | - Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States
| | - Yuji Sugita
- Quantitative Biology Center, RIKEN , Kobe, Japan.,Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan.,Advanced Institute for Computational Science, RIKEN , Kobe, Japan
| |
Collapse
|
31
|
Hinck AP, Neira JL. An introduction to the special issue on biomolecular NMR. Arch Biochem Biophys 2017; 628:1-2. [PMID: 28666741 DOI: 10.1016/j.abb.2017.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jose L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, Elche, Alicante 03202, Spain.
| |
Collapse
|