1
|
Bocoș-Bințințan V, Bocoș-Bințințan PF, Rozsypal T, Beldean-Galea MS. Trace Detection of Di-Isopropyl Methyl Phosphonate DIMP, a By-Product, Precursor, and Simulant of Sarin, Using Either Ion Mobility Spectrometry or GC-MS. TOXICS 2025; 13:102. [PMID: 39997917 PMCID: PMC11861048 DOI: 10.3390/toxics13020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025]
Abstract
Di-isopropyl methyl phosphonate (DIMP) has no major commercial uses but is a by-product or a precursor in the synthesis of the nerve agent sarin (GB). Also, DIMP is utilized as a simulant compound for the chemical warfare agents sarin and soman in order to test and calibrate sensitive IMS instrumentation that warns against the deadly chemical weapons. DIMP was measured from 2 ppbv (15 μg m-3) to 500 ppbv in the air using a pocket-held ToF ion mobility spectrometer, model LCD-3.2E, with a non-radioactive ionization source and ammonia doping in positive ion mode. Excellent sensitivity (LoD of 0.24 ppbv and LoQ of 0.80 ppbv) was noticed; the linear response was up to 10 ppbv, while saturation occurred at >500 ppbv. DIMP identification by IMS relies on the formation of two distinct peaks: the monomer M·NH4+, with a reduced ion mobility K0 = 1.41 cm2 V-1 s-1, and the dimer M2·NH4+, with K0 = 1.04 cm2 V-1 s-1 (where M is the DIMP molecule); positive reactant ions (Pos RIP) have K0 = 2.31 cm2 V-1 s-1. Quantification of DIMP at trace levels was also achieved by GC-MS over the concentration range of 1.5 to 150 μg mL-1; using a capillary column (30 m × 0.25 mm × 0.25 μm) with a TG-5 SilMS stationary phase and temperature programming from 60 to 110 °C, DIMP retention time (RT) was ca. 8.5 min. The lowest amount of DIMP measured by GC-MS was 1.5 ng, with an LoD of 0.21 μg mL-1 and an LoQ of 0.62 μg mL-1 DIMP. Our results demonstrate that these methods provide robust tools for both on-site and off-site detection and quantification of DIMP at trace levels, a finding which has significant implications for forensic investigations of chemical agent use and for environmental monitoring of contamination by organophosphorus compounds.
Collapse
Affiliation(s)
- Victor Bocoș-Bințințan
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, RO-400294 Cluj-Napoca, Romania
- Transcend SRL, RO-400568 Cluj-Napoca, Romania;
| | - Paul-Flaviu Bocoș-Bințințan
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, RO-400294 Cluj-Napoca, Romania
- Transcend SRL, RO-400568 Cluj-Napoca, Romania;
| | - Tomáš Rozsypal
- Nuclear, Biological and Chemical Defence Institute, University of Defence, Vita Nejedleho 1, 682 03 Vyskov, Czech Republic;
| | - Mihail Simion Beldean-Galea
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, RO-400294 Cluj-Napoca, Romania
- Raluca Ripan Institute for Research in Chemistry, Babeş-Bolyai University, RO-400294 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Zhang C, Jiao L, Wei Y, Bao F, Guo R, Dong D. A Review of Methodologies for the Rapid Analysis and Quantification of Gases in Solid Media. SENSORS (BASEL, SWITZERLAND) 2024; 24:7777. [PMID: 39686313 DOI: 10.3390/s24237777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Gas sensors are essential measurement devices that have found extensive applications across various fields, including industry, agriculture, ecological and environmental monitoring, military operations, and biomedical research. Numerous sensing methods based on a diverse range of principles-including optics, electrochemistry, and semiconductors-have been used in the development and manufacture of gas sensing technologies. However, the measurement of certain gases remains challenging when using current sensing techniques and sensors; this is particularly true for the gases that are present in solid media. For example, the nitrous oxide that is emitted from soil is often trapped within soil pores, while a significant portion of the ethylene that is released from fruit dissolves within the flesh of the fruit itself. Measurement of the gases in these situations poses difficulties when using conventional gas sensing methodologies. To enable the detection of these elusive gases, scientists and engineers have devised a variety of specialized approaches over the past two decades. In this review article, we summarize several of these sensing methods-including extraction measurement techniques, in-medium scattering spectroscopy, and the use of micro-nano gas sensing probes-and discuss their respective advantages and disadvantages, along with emerging trends in the development of these techniques.
Collapse
Affiliation(s)
- Chu Zhang
- School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
- Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Leizi Jiao
- Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yibo Wei
- Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Feng Bao
- Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Rui Guo
- Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Daming Dong
- School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
- Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
3
|
Chan CC, Abu Bakar NH, Raju CM, Urban PL. Computer Vision-Assisted Robotized Sampling of Volatile Organic Compounds. Anal Chem 2024; 96:16307-16314. [PMID: 39324688 PMCID: PMC11483429 DOI: 10.1021/acs.analchem.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
In conventional chemical analysis, samples are homogenized, extracted, purified, and injected into an analytical instrument manually or with a certain degree of automation. Such complex methods can provide superior performance in terms of sensitivity or selectivity. However, in some cases, it would be advantageous to possess a method that circumvents those preparatory steps, which require much attention. Here, we present a facile analytical approach to sampling volatile organic compounds (VOCs). Solid specimens emitting VOCs can be dropped onto the drop-off zone at a random position without any special alignment. A computer vision system recognizes specimen position, and a robotic arm places a sampling probe in the proximity of the specimen. The probe aspirates the VOCs─emitted by the specimen─with the aid of a suction force. A portion of the gaseous extract is transferred to the tritium-based ion source of a drift-tube ion mobility spectrometer. The ion mobility spectrum is immediately displayed in the customized graphical user interface (GUI). The sampling system also features a function for flushing extract ducts with hot nitrogen gas. Multiple specimens can be dropped for analysis at the same time. In one embodiment, the system can distinguish fresh meat from spoiled meat. When two meat specimens are placed on the drop-off zone, they are immediately sampled by the robotic arm, analyzed, and labeled on the digital image displayed on the GUI. Thus, the developed autosampling platform provides a hassle-free way of qualitative or semiquantitative analysis of raw specimens.
Collapse
Affiliation(s)
- Ching-Chi Chan
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Noor Hidayat Abu Bakar
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Chamarthi Maheswar Raju
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Pawel L. Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
4
|
Anttalainen O, Karjalainen M, Lattouf E, Hecht O, Vanninen P, Hakulinen H, Kotiaho T, Thomas C, Eiceman G. Time-Resolved Ion Mobility Spectrometry with a Stop Flow Confined Volume Reaction Region. Anal Chem 2024; 96:10182-10192. [PMID: 38857882 PMCID: PMC11209659 DOI: 10.1021/acs.analchem.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
An ion source concept is described where the sample flow is stopped in a confined volume of an ion mobility spectrometer creating time-dependent patterns of ion patterns of signal intensities for ions from mixtures of volatile organic compounds and improved signal-to-noise rate compared to conventional unidirectional drift gas flow. Hydrated protons from a corona discharge were introduced continuously into the confined volume with the sample in air at ambient pressure, and product ions were extracted continuously using an electric field for subsequent mobility analysis. Ion signal intensities for protonated monomers and proton bound dimers were measured and computationally extracted using mobilities from mobility spectra and exhibited distinct times of appearance over 30 s or more after sample injection. Models, and experimental findings with a ternary mixture, suggest that the separation of vapors as ions over time was consistent with differences in the reaction rate for reactions between primary ions from hydrated protons and constituents and from cross-reactions that follow the initial step of ionization. The findings suggest that the concept of stopped flow, introduced here for the first time, may provide a method for the temporal separation of atmospheric pressure ions. This separation relies on ion kinetics and does not require chromatographic technology.
Collapse
Affiliation(s)
- Osmo Anttalainen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Markus Karjalainen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Elie Lattouf
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Oliver Hecht
- Airsense
Analytics GmbH, Hagenower
Straße 73, Schwerin 19061, Germany
| | - Paula Vanninen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Hanna Hakulinen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Tapio Kotiaho
- Drug
Research Program and Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O.Box 55, Helsinki FIN-00014, Finland
| | - Charles Thomas
- Department
of Chemistry, Loughborough University, Leicestershire LE11 3TU, U.K.
| | - Gary Eiceman
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- New
Mexico
State University, 1175 N Horseshoe Dr., Las Cruces, New Mexico 88003, United States
| |
Collapse
|
5
|
Son CE, Choi HR, Choi SS. Test method for vapor collection and ion mobility detection of explosives with low vapor pressure. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9645. [PMID: 37942691 DOI: 10.1002/rcm.9645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
RATIONALE Ion mobility spectrometry (IMS) has been widely used for on-site detection of explosives. Air sampling method is applicable only when the concentration of explosive vapor is considerably high in the air, but vapor pressures of common explosives such as 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and pentaerythritol tetranitrate (PETN) are very low. A test method for analyzing the vapor detection efficiency of explosives with low vapor pressure via IMS was developed using artificial vapor and collection matrices. METHODS Artificial explosive vapor was produced by spraying an explosive solution in acetone. Fifteen collection matrices of various materials with woven or nonwoven structures were tested. Two arrangements of horizontal and vertical positions of the collection matrices were employed. Explosive vapor collected in the matrix was analyzed using IMS. RESULTS Only three collection matrices of stainless steel mesh (SSM), polytetrafluoroethylene sheet (PFS), and lens cleansing paper (LCP) showed the TNT and/or RDX ion peaks at an explosive vapor concentration of 49 ng/L. There was no collection matrix to detect PETN vapor at or lower than 49 ng/L. For the PFS, TNT and RDX were detected at a vapor concentration of 49 ng/L. For the LCP, TNT and RDX were detected at vapor concentrations of 14 and 49 ng/L, irrespectively. CONCLUSIONS The difference in the explosive vapor detection efficiencies could be explained by the adsorption and desorption capabilities of the collection matrices. The proposed method can be used for evaluating the vapor detection efficiency of hazardous materials with low vapor pressure.
Collapse
Affiliation(s)
- Chae Eun Son
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - He-Ryun Choi
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Bai X, Liu S, Huang W, Wang W, Li D, Wang A, Chen Y, Zhang Y, Cang H, Li H. Real-time monitoring of atmospheric ammonia based on modifier-enhanced vacuum ultraviolet photoionization ion mobility spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2191-2198. [PMID: 37114921 DOI: 10.1039/d3ay00257h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ammonia (NH3) plays an important role in the atmospheric environment such as the formation of PM2.5, the concentration monitoring of which could hence help in the air quality assessment. In this study, a method for quantitative monitoring of atmospheric NH3 was developed based on modifier-enhanced selectivity detection using a homemade vacuum ultraviolet photoionization ion mobility spectrometry (VUV-PI-IMS). To enhance the resolution and sensitivity of measuring NH3, 2-butanone as the gas modifier was introduced into the drift tube with the drift gas. Atmospheric NH3 can be selectively detected, where the peak-to-peak resolution (RP-P) of 7.69 was obtained. The product ions were identified to be [C4H8O]2NH4+ by using a homemade time-of-flight mass spectrometer. The calculated limit of detection (LOD) was 0.39 ppbv improving about 10 times. For the most common concentration variation of atmospheric NH3 in the range of 10-100 ppbv, the linear curve was obtained with R2 of 0.997. Lastly, the VUV-PI-IMS was used to monitor the evolution of atmospheric NH3 near our laboratory and mounted on a car for monitoring the regional distribution of atmospheric NH3 in Dalian, China. The results also showed that VUV-PI-IMS has a promising application prospect in monitoring the concentration of atmospheric NH3 and supporting the air quality assessment.
Collapse
Affiliation(s)
- Xueying Bai
- Dalian Jiaotong University, School of Materials Science and Engineering, Dalian 116028, China.
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Shimin Liu
- Dalian Jiaotong University, School of Materials Science and Engineering, Dalian 116028, China.
| | - Wei Huang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Dongming Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Aibo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yi Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yuanzhi Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Huaiwen Cang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
Mandal S, Poi R, Hazra DK, Ansary I, Bhattacharyya S, Karmakar R. Review of extraction and detection techniques for the analysis of pesticide residues in fruits to evaluate food safety and make legislative decisions: Challenges and anticipations. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123587. [PMID: 36628882 DOI: 10.1016/j.jchromb.2022.123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Fruits are vital parts of the human diet because they include necessary nutrients that the body needs. Pesticide use has increased dramatically in recent years to combat fruit pests across the world. Pesticide usage during production, on the other hand, frequently results in undesirable residues in fruits after harvest. Consumers are concerned about pesticide residues since most of the fruits are directly consumed and even recommended for the patients as dietary supplements. As a result of this worry, pesticide residues in fruits are being randomly monitored to re-assess the food safety situation and make informed legislative decisions. To assess the degree of pesticide residues in fruits, a simple and quick analytical procedure is usually required. As a result, pesticide residue detection (using various analytical techniques: GC, LC and Biosensors) becomes critical, and regulatory directives are formed to regulate their amounts via the Maximum Residue Limit (MRL). Over the previous two decades, a variety of extraction techniques and analytical methodologies for xenobiotic's efficient extraction, identification, confirmation and quantification have been developed, ranging from traditional to advanced. The goal of this review is to give readers an overview of the evolution of numerous extraction and detection methods for pesticide residue analysis in fruits. The objective is to assist analysts in better understanding how the ever-changing regulatory landscape might drive the need for new analytical methodologies to be developed in order to comply with current standards and safeguard consumers.
Collapse
Affiliation(s)
- Swagata Mandal
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India; Department of Chemistry, Burdwan University, Burdwan, West Bengal 713104, India
| | - Rajlakshmi Poi
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Dipak Kumar Hazra
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Inul Ansary
- Department of Chemistry, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sudip Bhattacharyya
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Rajib Karmakar
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
8
|
Kenessov B, Kapar A. Optimization of headspace solid-phase microextraction of volatile organic compounds from dry soil samples by porous coatings using COMSOL Multiphysics. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2022. [DOI: 10.15328/cb1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Headspace solid-phase microextraction (HSSPME) is one of the simplest and cost-efficient sample preparation approaches for determination of volatile organic compounds (VOCs) in soil. This study was aimed at the development of the model for numerical optimization of HSSPME of volatile organic compounds from dry soil samples by porous coatings using COMSOL Multiphysics (CMP). ‘Transport of Diluted Species in Porous Medium’ physics was used for modeling. Effect of sample mass, pressure, fiber-headspace and soil-headspace distribution constants on extraction profiles and time of 95% equilibrium has been studied using the developed model. Equilibrium extraction under atmospheric pressure (1 atm) can take up to 97 min, while under vacuum (0.0313 atm) – 2.3 min. Equilibration time under vacuum was 42-43 times lower than under 1 atm at all studied distribution constants and sample masses. The developed model was modified for optimization of pre-incubation time using ‘Transport of Diluted Species’ physics. According to the obtained plots, 95% equilibration time can reach 13.3 min and depends on both sample mass and soil-headspace distribution constant of the analyte. The developed model can be recommended for optimization of pressure, preincubation and extraction time when fiber-headspace and soil-headspace distribution constants, soil porosity and density are known.
Collapse
|
9
|
Meng Q, Jia X, Zhang H, Wang Z, Liu W. Almost perfect sequence modulated multiplexing ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9329. [PMID: 35618651 DOI: 10.1002/rcm.9329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Multiplexing ion mobility spectrometry with multiple ion injection pulses was used to achieve a high duty cycle and thus improve the signal-to-noise (S/N) ratio while maintaining high resolving power compared with the traditional single-pulse signal averaging method. Historically, an ion mobility spectrum was reconstructed by various multiplexing methods including Fourier transform ion mobility spectrometry (FT-IMS), Hadamard transform ion mobility spectrometry (HT-IMS), and linear frequency modulation correlation ion mobility spectrometry (LFM-CIMS) sequence or Barker code. METHODS To achieve an artifact-free multiplexing ion mobility spectrum, an almost perfect sequence (APS) with correlation technique was proposed to modulate the Bradbury-Nielson ion gate and was compared with FT-IMS, HT-IMS, LFM-IMS, and the traditional single-pulse signal averaging method. RESULTS Experimental results showed that there are no artifact peaks in the APS-IMS spectra except an inverted mirror peak, and the S/N ratio was improved 5-8 times with a repetition time of 40-60 ms, corresponding to the improvement in the duty cycle. With the same duty cycle and similar acquisition time, APS-IMS showed a higher S/N ratio than HT-IMS for its unique autocorrelation response. CONCLUSIONS The APS-IMS technique offered a higher duty cycle and relatively shorter modulation period compared with reported multiplexing methods and is suitable to track rapidly changing signals without losing information and adding extra transformation artifact peaks.
Collapse
Affiliation(s)
- Qingyan Meng
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Tarim University, Alar, Xinjiang, China
| | - Xu Jia
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Tarim University, Alar, Xinjiang, China
| | - Hanghang Zhang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Tarim University, Alar, Xinjiang, China
| | - Zhiyan Wang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Tarim University, Alar, Xinjiang, China
| | - Wenjie Liu
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Tarim University, Alar, Xinjiang, China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, China
| |
Collapse
|
10
|
Volatilomics-Based Microbiome Evaluation of Fermented Dairy by Prototypic Headspace-Gas Chromatography–High-Temperature Ion Mobility Spectrometry (HS-GC-HTIMS) and Non-Negative Matrix Factorization (NNMF). Metabolites 2022; 12:metabo12040299. [PMID: 35448485 PMCID: PMC9025153 DOI: 10.3390/metabo12040299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
Fermented foods, such as yogurt and kefir, contain a versatile spectrum of volatile organic compounds (VOCs), including ethanol, acetic acid, ethyl acetate, and diacetyl. To overcome the challenge of overlapping peaks regarding these key compounds, the drift tube temperature was raised in a prototypic high-temperature ion mobility spectrometer (HTIMS). This HS-GC-HTIMS was used for the volatilomic profiling of 33 traditional kefir, 13 commercial kefir, and 15 commercial yogurt samples. Pattern recognition techniques, including principal component analysis (PCA) and NNMF, in combination with non-targeted screening, revealed distinct differences between traditional and commercial kefir while showing strong similarities between commercial kefir and yogurt. Classification of fermented dairy samples into commercial yogurt, commercial kefir, traditional mild kefir, and traditional tangy kefir was also possible for both PCA- and NNMF-based models, obtaining cross-validation (CV) error rates of 0% for PCA-LDA, PCA-kNN (k = 5), and NNMF-kNN (k = 5) and 3.3% for PCA-SVM and NNMF-LDA. Through back projection of NNMF loadings, characteristic substances were identified, indicating a mild flavor composition of commercial samples, with high concentrations of buttery-flavored diacetyl. In contrast, traditional kefir showed a diverse VOC profile with high amounts of flavorful alcohols (including ethanol and methyl-1-butanol), esters (including ethyl acetate and 3-methylbutyl acetate), and aldehydes. For validation of the results and deeper understanding, qPCR sequencing was used to evaluate the microbial consortia, confirming the microbial associations between commercial kefir and commercial yogurt and reinforcing the differences between traditional and commercial kefir. The diverse flavor profile of traditional kefir primarily results from the yeast consortium, while commercial kefir and yogurt is primarily, but not exclusively, produced through bacterial fermentation. The flavor profile of fermented dairy products may be used to directly evaluate the microbial consortium using HS-GC-HTIMS analysis.
Collapse
|
11
|
Aliaño-González MJ, Montalvo G, García-Ruiz C, Ferreiro-González M, Palma M. Assessment of Volatile Compound Transference through Firefighter Turnout Gear. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3663. [PMID: 35329348 PMCID: PMC8953482 DOI: 10.3390/ijerph19063663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022]
Abstract
There is high concern about the exposure of firefighters to toxic products or carcinogens resulting from combustion during fire interventions. Firefighter turnout gear is designed to protect against immediate fire hazards but not against chemical agents. Additionally, the decontamination of firefighter personal protective equipment remains unresolved. This study evaluated the feasibility of a screening method based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) in combination with chemometrics (cluster analysis, principal component analysis, and linear discriminant analysis) for the assessment of the transference of volatile compounds through turnout gear. To achieve this, firefighter turnout gears exposed to two different fire scenes (with different combustion materials) were directly analyzed. We obtained a spectral fingerprint for turnout gears that were both exposed and non-exposed to fire scenes. The results showed that (i): the contamination of the turnout gears is different depending on the type of fire loading; and (ii) it is possible to determine if the turnout gear is free of volatile compounds. Based on the latest results, we concluded that HS-GC-IMS can be applied as a screening technique to assess the quality of turnout gear prior to a new fire intervention.
Collapse
Affiliation(s)
- María José Aliaño-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cadiz, The Wine and Food Research Institute IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.J.A.-G.); (M.P.)
| | - Gemma Montalvo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid–Barcelona km 33,600, 28871 Madrid, Spain; (G.M.); (C.G.-R.)
- Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Calle Libreros 27, 28801 Madrid, Spain
| | - Carmen García-Ruiz
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid–Barcelona km 33,600, 28871 Madrid, Spain; (G.M.); (C.G.-R.)
- Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Calle Libreros 27, 28801 Madrid, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cadiz, The Wine and Food Research Institute IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.J.A.-G.); (M.P.)
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cadiz, The Wine and Food Research Institute IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.J.A.-G.); (M.P.)
| |
Collapse
|
12
|
Wu H, Yuan Y, Wu Q, Bu X, Hu L, Li X, Wang X, Liu W. A dimethyl methylphonate sensor based on HFIPPH modified SWCNTs. NANOTECHNOLOGY 2022; 33:165505. [PMID: 35008068 DOI: 10.1088/1361-6528/ac49c0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In order to meet the requirements of ultra-fast real-time monitoring of sarin simulator with high sensitivity and selectivity, it is of great significance to develop high performance dimethyl methylphonate (DMMP) sensor. Herein, we proposed a DMMP sensor based on p-hexafluoroisopropanol phenyl (HFIPPH) modified self-assembled single-walled carbon nanotubes (SWCNTs) with field effect transistor (FET) structure. The self-assembly method provides a 4 nanometres thick and micron sized SWCNT channel, with high selectivity to DMMP. The proposed SWCNTs-HFIPPH based sensor exhibits remarkably higher response to DMMP than bare SWCNT based gas sensor within only few seconds. The gas sensing response of SWCNTs-HFIPPH based sensor for 1 ppm DMMP is 18.2%, and the response time is about 10 s. What's more, the gas sensor we proposed here shows excellent selectivity and reproducibility, and the limitation of detection is as low as ppb level. The proposed method lays the foundation for miniaturization and integration of DMMP sensors, expecting to develop detection system for practical sarin sensing application.
Collapse
Affiliation(s)
- Haiyang Wu
- Department of Microelectronics, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yubin Yuan
- Department of Microelectronics, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qiang Wu
- Department of Microelectronics, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiangrui Bu
- Department of Microelectronics, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Long Hu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Xin Li
- Department of Microelectronics, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiaoli Wang
- Department of Microelectronics, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Weihua Liu
- Department of Microelectronics, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Research Institute, Xi'an Jiaotong University, Zhejiang 311215, People's Republic of China
| |
Collapse
|
13
|
Asadi S, Maddah B. Rapid screening of chemical warfare agents (nerve agents) using dimethyl methylphosphonate as simulant substances in beverages by hollow fiber membrane-protected solid phase microextraction followed by corona discharge ion mobility spectrometry. J Chromatogr A 2021; 1661:462704. [PMID: 34871940 DOI: 10.1016/j.chroma.2021.462704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
The following work presents a new, rapid, potential to be portable, convenient, and low-cost method using hollow fiber membrane-protected solid phase microextraction followed by corona discharge ion mobility spectrometry which was used for determining dimethyl methylphosphonate in beverages. Response surface methodology based on the design of Box-Behnken was implemented for optimizing the different factors influencing the proposed method for obtaining the best results. Optimal extractions were calculated with 65 µm polydimethylsiloxane-divinylbenzene fiber, fiber equilibration time of 10 min, stirring rate of the sample solution at 750 rpm, and extraction temperature of 50 °C. The proposed technique provided linear range (0.5-50 µg mL-1), good linearity (>0.991), and repeatability (the relative standard deviations of 5.42% and 8.37% of intra- and inter-day analyses, respectively) under the optimized extraction conditions. Finally, the developed method was successfully used for determining dimethyl methylphosphonate in beverages such as coffee mix, fruit juice, tap water, milk, and tea.
Collapse
Affiliation(s)
- Sajad Asadi
- Department of Chemistry, Faculty of Sciences, Imam Hossein University, Tehran, Iran
| | - Bozorgmehr Maddah
- Department of Chemistry, Faculty of Sciences, Imam Hossein University, Tehran, Iran.
| |
Collapse
|
14
|
Capitain C, Weller P. Non-Targeted Screening Approaches for Profiling of Volatile Organic Compounds Based on Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) and Machine Learning. Molecules 2021; 26:molecules26185457. [PMID: 34576928 PMCID: PMC8468721 DOI: 10.3390/molecules26185457] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Due to its high sensitivity and resolving power, gas chromatography-ion mobility spectrometry (GC-IMS) is a powerful technique for the separation and sensitive detection of volatile organic compounds. It is a robust and easy-to-handle technique, which has recently gained attention for non-targeted screening (NTS) approaches. In this article, the general working principles of GC-IMS are presented. Next, the workflow for NTS using GC-IMS is described, including data acquisition, data processing and model building, model interpretation and complementary data analysis. A detailed overview of recent studies for NTS using GC-IMS is included, including several examples which have demonstrated GC-IMS to be an effective technique for various classification and quantification tasks. Lastly, a comparison of targeted and non-targeted strategies using GC-IMS are provided, highlighting the potential of GC-IMS in combination with NTS.
Collapse
|
15
|
Preparation of Polyacrylonitrile/Ni-MOF electrospun nanofiber as an efficient fiber coating material for headspace solid-phase microextraction of diazinon and chlorpyrifos followed by CD-IMS analysis. Food Chem 2021; 350:129242. [PMID: 33626398 DOI: 10.1016/j.foodchem.2021.129242] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
Herein, an electrospun polyacrylonitrile/nickel-based metal-organic framework nanocomposite (PAN/Ni-MOF) coating on a stainless steel wire was synthesized and employed as a novel nanosorbent for headspace solid-phase microextraction (HS-SPME) of organophosphorus pesticides (OPPs), diazinon (DIZ), and chlorpyrifos (CPS) from the diverse aqueous media followed by corona discharge ion mobility spectrometry (CD-IMS). Under the optimum experimental conditions, the calibration plots were linear in the range of 1.0-250.0 ng mL-1 for DIZ and 0.5-300.0 ng mL-1 for CPS with r2 > 0.999. The detection limits (S/N = 3) were 0.3 and 0.2 ng mL-1 for DIZ and CPS, respectively. The intra-day relative standard deviations (RSDs%) (n = 5) at the concentration levels of 20.0, 40.0, and 100.0 ng mL-1 were ≤ 5.2%. To investigate the extraction efficiency, PAN/Ni-MOF was employed to analyze various juice samples, including orange, apple, and grape juices, and in three water samples where it led to good recoveries ranged between 87% and 98%.
Collapse
|
16
|
Cui Z, Yan H, Manoli T, Mo H, Li H, Zhang H. Changes in the volatile components of squid ( illex argentinus) for different cooking methods via headspace-gas chromatography-ion mobility spectrometry. Food Sci Nutr 2020; 8:5748-5762. [PMID: 33133576 PMCID: PMC7590335 DOI: 10.1002/fsn3.1877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 11/09/2022] Open
Abstract
Squid products are becoming more and more popular with consumers because of their high yields and nutrition, including novel textures with desirable sensory properties. However, it has not been determined whether the cooking method has effects on the flavor of the squid. In this study, the aroma and volatile substances of squid samples from different cooking methods (boiled, steamed, sous vide) were determined and analyzed by headspace-gas chromatography-ion mobility spectrometry and differentiated by using, as well, an electronic nose and sensory evaluation. A total of 43 characteristic flavor compounds were identified. Based on the signal intensity of the identified violate compounds, we established a fingerprint of heat-treated squid from different cooking methods. Due to the long-term low-temperature heating conditions under vacuum, the flavor of sous vide squid is different from steamed and boiled squid, and it has unique special flavor compounds. Different cooking methods can affect the aroma of squid, providing support for the industrial production of squid.
Collapse
Affiliation(s)
- Zhenkun Cui
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
- Faculty of Food TechnologiesSumy National Agrarian UniversitySumyUkraine
| | - Han Yan
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Tatiana Manoli
- Faculty of Technology and Commodity Science of Food Products and Food BusinessOdessa National Academy of Food TechnologiesOdessaUkraine
| | - Haizhen Mo
- School of Food and BioengineeringShaanxi University of Science and TechnologyWeiyang University CampusXi'anChina
| | - Hongbo Li
- School of Food and BioengineeringShaanxi University of Science and TechnologyWeiyang University CampusXi'anChina
| | - Hao Zhang
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| |
Collapse
|
17
|
Dowling S, McBride EM, McKenna J, Glaros T, Manicke NE. Direct soil analysis by paper spray mass spectrometry: Detection of drugs and chemical warfare agent hydrolysis products. Forensic Chem 2020. [DOI: 10.1016/j.forc.2019.100206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Forbes TP, Lawrence J, Verkouteren JR, Verkouteren RM. Discriminative potential of ion mobility spectrometry for the detection of fentanyl and fentanyl analogues relative to confounding environmental interferents. Analyst 2019; 144:6391-6403. [PMID: 31579898 PMCID: PMC7008973 DOI: 10.1039/c9an01771b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The opioid crisis and emergence of fentanyl, fentanyl analogues, and other synthetic opioids has highlighted the need for sensitive and robust detection for interdiction at screening points, notably vehicles at border crossings and packages at postal facilities. This work investigates the discriminative potential, sensitivity and specificity, of ion mobility spectrometry (IMS) for the detection of fentanyl and fifteen (15) fentanyl-related compounds (analogues, other opioids, and metabolites) relative to confounding environmental interferents. The environmental background interferent levels, frequency and intensity, were derived from over 10 000 screening samples collected from delivery vehicles entering a federal site. A receiver operating characteristic (ROC) curve methodology was employed to quantify the relationship between sensitivity and specificity for these target compounds on two instruments/configurations. These instrument configurations differed in desorption and drift tube temperatures, reactant ion dopant chemistry, and analysis time. This work identified reduced mobility areas of high interference that resulted in increased false positive rates (FPR), effectively reducing sensitivity (true positive rate: TPR) in those regions. Except for a few target compounds on either of the instruments that exhibited elevated FPRs, detection of fentanyl and fentanyl-related species was achieved at single to tens of nanograms with ≥90% TPR and ≤2% FPR. This work established the importance of systematic environmental background characterization at each specific screening setting in evaluating a platform's true performance.
Collapse
Affiliation(s)
- Thomas P Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA.
| | | | | | | |
Collapse
|
19
|
Piendl SK, Raddatz CR, Hartner NT, Thoben C, Warias R, Zimmermann S, Belder D. 2D in Seconds: Coupling of Chip-HPLC with Ion Mobility Spectrometry. Anal Chem 2019; 91:7613-7620. [DOI: 10.1021/acs.analchem.9b00302] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Nora T. Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Thoben
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Son CE, Choi SS. Influence of smear matrix types on detection behaviors and efficiencies of polycyclic aromatic hydrocarbons using ion mobility spectrometry. CHEMOSPHERE 2019; 218:368-375. [PMID: 30476768 DOI: 10.1016/j.chemosphere.2018.11.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/02/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Influence of smear matrix types on detection behaviors and efficiencies of polycyclic aromatic hydrocarbons (PAHs) with different molecular weights in ion mobility spectrometry (IMS) were investigated. Various smear matrices of stainless steel mesh (SM), cellulose paper (CP), and cotton fabric (CF) were employed. Anisole was used as the solvent and IMS analysis was performed without evaporation step of the solvent to apply charge transfer reactions between PAH molecules and the molecular ions of solvent. Shapes of reactant ion peaks (RIPs) were varied according to the smear matrix types. At the beginning of the sample inlet, intensity of RIPs of air and moisture notably decreased due to the lots of solvent vapor. The SM with good gas permeability showed relatively strong RIPs of air and moisture, whereas the CP with no gas permeability showed weak ones. Detection times and efficiencies of PAH ions were varied according to the smear matrix types as well as the kinds of PAHs. PAHs were on the whole detected well in 1-3 s after the sample inlet. Detection limits of PAHs measured using the SM were slightly better than those measured using the CP, while those measured using the CP were much better than those measured using the CF. The experimental results could be explained by structures of the smear matrices and evaporation behaviors of the PAH solutions.
Collapse
Affiliation(s)
- Chae Eun Son
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
21
|
Li S. Preconcentration and Determination of Psychotropic Drugs in Urine Samples by Ion Mobility Spectrometry with Electrospray Ionization Coupling On-Line Single-Drop Liquid-Liquid-Liquid Microextraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:8561801. [PMID: 31827974 PMCID: PMC6885222 DOI: 10.1155/2019/8561801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 05/05/2023]
Abstract
A method for analysis of psychotropic drugs in urine is investigated using a novel single-drop liquid-liquid-liquid microextraction (SDLLLME) apparatus as an electrospray emitter in ion mobility spectrometry (IMS). In this method, ketamine and pethidine are back-extracted into the acceptor phase (water and methanol) from the water and methanol immiscible organic phase. Sensitivity of extraction is improved as it does not require further methanol-adding procedure. Factors affecting the extraction of psychotropic drugs are characterized, including organic solvent type, extraction time, and concentration of NaOH/Ac in the donor/acceptor phase. The best extraction sensitivity is obtained with 600 μL dodecane as the organic phase, 30 minutes extraction time, and 10 mL donor phase with 0.01 M sodium hydroxide (NaOH) and 3 μL acceptor phase with 0.5 M acetic acid (Ac). Using this method, the two analytes can be extracted and analyzed simultaneously, showing this method is valuable for field application.
Collapse
Affiliation(s)
- Shu Li
- National Institutes for Food and Drug Control, Institute for Medical Devices Control, No. 29, HuaTuo Road, Daxing District, Beijing 102629, China
| |
Collapse
|
22
|
Hauck BC, Harden CS, McHugh VM. Current status and need for standards in ion mobility spectrometry. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s12127-018-0239-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Sorribes-Soriano A, de la Guardia M, Esteve-Turrillas FA, Armenta S. Trace analysis by ion mobility spectrometry: From conventional to smart sample preconcentration methods. A review. Anal Chim Acta 2018; 1026:37-50. [PMID: 29852992 DOI: 10.1016/j.aca.2018.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid and high sensitive technique widely used in security and forensic areas. However, a lack of selectivity is usually observed in the analysis of complex samples due to the scarce resolution of the technique. The literature concerning the use of conventional and novel smart materials in the pretreatment and preconcentration of samples previous to IMS determinations has been critically reviewed. The most relevant strategies to enhance selectivity and sensitivity of IMS determinations have been widely discussed, based in the use of smart materials, as immunosorbents, aptamers, molecularly imprinted polymers (MIPs), ionic liquids (ILs) and nanomaterial. The observed trend is focused on the development of IMS analytical methods in combination of selective sample treatments in order to achieve quick, reliable, sensitive, and selective methods for the analysis of complex samples such as biological fluids, food, or environmental samples.
Collapse
Affiliation(s)
- A Sorribes-Soriano
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - M de la Guardia
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - F A Esteve-Turrillas
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - S Armenta
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain.
| |
Collapse
|
24
|
Du Z, Sun T, Zhao J, Wang D, Zhang Z, Yu W. Development of a plug-type IMS-MS instrument and its applications in resolving problems existing in in-situ detection of illicit drugs and explosives by IMS. Talanta 2018; 184:65-72. [PMID: 29674084 DOI: 10.1016/j.talanta.2018.02.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/12/2017] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
Ion mobility spectrometry (IMS) which acts as a rapid analysis technique is widely used in the field detection of illicit drugs and explosives. Due to limited separation abilities of the pint-sized IMS challenges and problems still exist regarding high false positive and false negative responses due to the interference of the matrix. In addition, the gas-phase ion chemistry and special phenomena in the IMS spectra, such one substance showing two peaks, were not identified unambiguously. In order to explain or resolve these questions, in this paper, an ion mobility spectrometry was coupled to a mass spectrometry (IMS-MS). A commercial IMS is embedded in a custom-built ion chamber shell was attached to the mass spectrometer. The faraday plate of IMS was fabricated with a hole for the ions to passing through to the mass spectrometer. The ion transmission efficiency of IMS-MS was optimized by optimizing the various parameters, especially the distance between the faraday plate and the cone of mass spectrum. This design keeps the integrity of the two original instruments and the mass spectrometry still works with multimode ionization source (i.e., IMS-MS, ESI-MS, APCI-MS modes). The illicit drugs and explosive samples were analyzed by the IMS-MS with 63Ni source. The results showed that the IMS-MS is of high sensitivity. The ionization mechanism of the illicit drug and explosive samples with 63Ni source were systematically studied. In addition, the interferent which interfered the detection of cocaine was identified as dibutyl phthalate (DBP) by this platform. The reason why the acetone solution of amphetamine showed two peaks was explained.
Collapse
Affiliation(s)
- Zhenxia Du
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China.
| | - Tangqiang Sun
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Jianan Zhao
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Di Wang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | | | - Wenlian Yu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
25
|
Witkiewicz Z, Neffe S, Sliwka E, Quagliano J. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents. Crit Rev Anal Chem 2018. [PMID: 29533075 DOI: 10.1080/10408347.2018.1439366] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.
Collapse
Affiliation(s)
- Zygfryd Witkiewicz
- a Faculty of Advanced Technologies and Chemistry , Military University of Technology , Warsaw , Poland
| | - Slawomir Neffe
- a Faculty of Advanced Technologies and Chemistry , Military University of Technology , Warsaw , Poland
| | - Ewa Sliwka
- b Division of Chemistry and Technology of Fuel , Wroclaw University of Technology , Wroclaw , Poland
| | - Javier Quagliano
- c Applied Chemistry Department , Argentine Institute for Scientific and Technical Research for the Defense (CITEDEF) , Buenos Aires , Argentina
| |
Collapse
|
26
|
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. High Accuracy Ion Mobility Spectrometry for Instrument Calibration. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Brian C. Hauck
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| | - William F. Siems
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| | - Charles S. Harden
- LEIDOS—U.S. Army Edgewood Chemical Biological Center Operations, P.O. Box 68, Gunpowder, Maryland 21010, United States
| | - Vincent M. McHugh
- U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Herbert H. Hill
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| |
Collapse
|
27
|
Mu R, He X, Gao X, Jia J, Li J. Determination of Malathion Using Corona Discharge – Ion Mobility Spectrometry with Solid-Phase Microextraction. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1362645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ren Mu
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
| | - Xiuli He
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoguang Gao
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
| | - Jian Jia
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
| | - Jianping Li
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. Construction and evaluation of a hermetically sealed accurate ion mobility instrument. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s12127-017-0224-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, Monroe ME, Moore RJ, Smith RD, Baker ES. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:71-92. [PMID: 28301728 PMCID: PMC5627998 DOI: 10.1146/annurev-anchem-061516-045212] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits.
Collapse
Affiliation(s)
- Xueyun Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Roza Wojcik
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Xing Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, Denver, Colorado 80045
| | - Yehia M Ibrahim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Kristin E Burnum-Johnson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Daniel J Orton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Matthew E Monroe
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Ronald J Moore
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Richard D Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Erin S Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| |
Collapse
|
30
|
Ion mobility spectrometry: Current status and application for chemical warfare agents detection. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Kenessov B, Koziel JA, Bakaikina NV, Orazbayeva D. Perspectives and challenges of on-site quantification of organic pollutants in soils using solid-phase microextraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
|
33
|
Forbes TP, Najarro M. Ion mobility spectrometry nuisance alarm threshold analysis for illicit narcotics based on environmental background and a ROC-curve approach. Analyst 2016; 141:4438-46. [PMID: 27206280 PMCID: PMC5054301 DOI: 10.1039/c6an00844e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The discriminative potential of an ion mobility spectrometer (IMS) for trace detection of illicit narcotics relative to environmental background was investigated with a receiver operating characteristic (ROC) curve framework. The IMS response of cocaine, heroin, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), and Δ(9)-tetrahydro-cannabinol (THC) was evaluated against environmental background levels derived from the screening of incoming delivery vehicles at a federal facility. Over 20 000 samples were collected over a multiyear period under two distinct sets of instrument operating conditions, a baseline mode and an increased desorption/drift tube temperature and sampling time mode. ROC curves provided a quantifiable representation of the interplay between sensitivity (true positive rate, TPR) and specificity (1 - false positive rate, FPR). A TPR of 90% and minimized FPR were targeted as the detection limits of IMS for the selected narcotics. MDMA, THC, and cocaine demonstrated single nanogram sensitivity at 90% TPR and <10% FPR, with improvements to both MDMA and cocaine in the elevated temperature/increased sampling mode. Detection limits in the tens of nanograms with poor specificity (FPR ≈ 20%) were observed for methamphetamine and heroin under baseline conditions. However, elevating the temperature reduced the background in the methamphetamine window, drastically improving its response (90% TPR and 3.8% FPR at 1 ng). On the contrary, the altered mode conditions increased the level of background for THC and heroin, partially offsetting observed enhancements to desorption. The presented framework demonstrated the significant effect environmental background distributions have on sensitivity and specificity.
Collapse
Affiliation(s)
- Thomas P Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA.
| | | |
Collapse
|
34
|
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. E/N effects on K0 values revealed by high precision measurements under low field conditions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:075104. [PMID: 27475592 DOI: 10.1063/1.4955208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Ion mobility spectrometry (IMS) is used to detect chemical warfare agents, explosives, and narcotics. While IMS has a low rate of false positives, their occurrence causes the loss of time and money as the alarm is verified. Because numerous variables affect the reduced mobility (K0) of an ion, wide detection windows are required in order to ensure a low false negative response rate. Wide detection windows, however, reduce response selectivity, and interferents with similar K0 values may be mistaken for targeted compounds and trigger a false positive alarm. Detection windows could be narrowed if reference K0 values were accurately known for specific instrumental conditions. Unfortunately, there is a lack of confidence in the literature values due to discrepancies in the reported K0 values and their lack of reported error. This creates the need for the accurate control and measurement of each variable affecting ion mobility, as well as for a central accurate IMS database for reference and calibration. A new ion mobility spectrometer has been built that reduces the error of measurements affecting K0 by an order of magnitude less than ±0.2%. Precise measurements of ±0.002 cm(2) V(-1) s(-1) or better have been produced and, as a result, an unexpected relationship between K0 and the electric field to number density ratio (E/N) has been discovered in which the K0 values of ions decreased as a function of E/N along a second degree polynomial trend line towards an apparent asymptote at approximately 4 Td.
Collapse
Affiliation(s)
- Brian C Hauck
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, USA
| | - William F Siems
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, USA
| | - Charles S Harden
- LEIDOS, US Army ECBC Operations, P.O. Box 68, Gunpowder, Maryland 21010, USA
| | - Vincent M McHugh
- U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, USA
| | - Herbert H Hill
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, USA
| |
Collapse
|
35
|
Choi SS, Son CE, Shin MW, Choi GS. Influence of Smear Matrix Type on Detection Efficiencies of Explosives in Corona Discharge-Ion Mobility Spectrometer. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sung-Seen Choi
- Department of Chemistry; Sejong University; Seoul 143-747 Korea
| | - Chae Eun Son
- Department of Chemistry; Sejong University; Seoul 143-747 Korea
| | | | | |
Collapse
|
36
|
A novel headspace sampler for field detection of chemical warfare agents and simulants connected to a commercial ion mobility detector. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s12127-016-0188-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Li X, Wang Y, Sun Q, Xu B, Yu Y, Wang X. Molecularly imprinted solid phase extraction in a syringe filter for determination of triazine herbicides in Radix Paeoniae Alba by ultra-fast liquid chromatography. Talanta 2015; 148:539-47. [PMID: 26653483 DOI: 10.1016/j.talanta.2015.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
A novel, cost-effective and simple solid phase extraction (SPE) method, by using a syringe connected with a nylon membrane filter as the adsorbent container, was developed for the extraction of triazine herbicides from Radix Paeoniae Alba (RPA) samples. The selective molecularly imprinted polymers (MIPs) synthesized with the template of atrazine were employed as the adsorbents for the enrichment and purification of analytes. The extraction parameters, including the volume and type of loading solvent, the type of washing solvent and eluting solvent, were investigated. Under the optimized conditions, the final extracts were analyzed by ultra-fast liquid chromatography (UFLC). Recoveries of the developed method range from 92.4% to 107.3% with intra- and inter-day relative standard deviations (RSDs) lower than 8.2%. The calibration curve is linear in the concentration range of 0.005-2.4 µg g(-1) for desmetryn, atrazine and terbumeton, and 0.005-1.5 µg g(-1) for dimethametryn and dipropetryn, with the correlation coefficient (R(2)) higher than 0.9995. The limits of detection (LODs) of five triazine herbicides are in the range of 0.09-0.39 ng g(-1), which are lower than the maximum residue levels (MRLs) established by various official organizations. Analytical results of three real Radix Paeoniae Alba samples indicate that the proposed method is cost-effective and easy-to-use than other routine pretreatment methods.
Collapse
Affiliation(s)
- Xinpei Li
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Yuanpeng Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Qun Sun
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Bo Xu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Yong Yu
- College of Instrumentation & Electrical Engineering, Jilin University, Ximinzhu Street 938, Changchun 130061, PR China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| |
Collapse
|
38
|
Souza-Silva ÉA, Jiang R, Rodríguez-Lafuente A, Gionfriddo E, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.016] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Gałuszka A, Migaszewski ZM, Namieśnik J. Moving your laboratories to the field--Advantages and limitations of the use of field portable instruments in environmental sample analysis. ENVIRONMENTAL RESEARCH 2015; 140:593-603. [PMID: 26051907 DOI: 10.1016/j.envres.2015.05.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/05/2015] [Accepted: 05/16/2015] [Indexed: 05/21/2023]
Abstract
The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet-visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities.
Collapse
Affiliation(s)
- Agnieszka Gałuszka
- Geochemistry and the Environment Division, Institute of Chemistry, Jan Kochanowski University, 15G Świętokrzyska St., 25-406 Kielce, Poland.
| | - Zdzisław M Migaszewski
- Geochemistry and the Environment Division, Institute of Chemistry, Jan Kochanowski University, 15G Świętokrzyska St., 25-406 Kielce, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology (GUT), 11/12 G. Narutowicz St., 80-233 Gdańsk, Poland
| |
Collapse
|
40
|
Bahrami H, Farrokhpour H. Corona discharge ionization of paracetamol molecule: peak assignment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:646-651. [PMID: 25128677 DOI: 10.1016/j.saa.2014.07.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/13/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration.
Collapse
Affiliation(s)
- H Bahrami
- Chemistry Department, University of Zanjan, Zanjan 45371-38791, Iran.
| | - H Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
41
|
Coupling of solid phase microextraction with electrospray ionization ion mobility spectrometry and direct analysis of venlafaxine in human urine and plasma. Anal Chim Acta 2015; 853:460-468. [DOI: 10.1016/j.aca.2014.10.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/25/2014] [Accepted: 10/31/2014] [Indexed: 11/23/2022]
|
42
|
Savel’eva EI, Gustyleva LK, Orlova OI, Khlebnikova NS, Koryagina NL, Radilov AS. Modern methods for identification and quantitative determination of organophosphorus chemical warfare agents. RUSS J APPL CHEM+ 2014. [DOI: 10.1134/s1070427214080011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples. SENSORS 2014; 14:20963-74. [PMID: 25384006 PMCID: PMC4279520 DOI: 10.3390/s141120963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/11/2014] [Accepted: 10/27/2014] [Indexed: 11/21/2022]
Abstract
On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples.
Collapse
|
44
|
Chemometrics-enhanced fiber optic Raman detection, discrimination and quantification of chemical agents simulants concealed in commercial bottles. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ancr.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Lu W, Li H, Meng Z, Liang X, Xue M, Wang Q, Dong X. Detection of nitrobenzene compounds in surface water by ion mobility spectrometry coupled with molecularly imprinted polymers. JOURNAL OF HAZARDOUS MATERIALS 2014; 280:588-594. [PMID: 25222927 DOI: 10.1016/j.jhazmat.2014.08.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/13/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Ion mobility spectrometry (IMS) was explored in the selective detection of nitrobenzene compounds in industrial waste water and surface water, and the selectivity was theoretically elucidated with the transformation energy in the product ion formation reaction. A linear detection range of 0.5-50 ppm and a limit of detection (LOD) of 0.1 ppm were found for 2,4,6-trinitrotoluene (TNT). With the IMS as the detection system of molecularly imprinted polymer (MIP) separation technique, the MIP-IMS system was proved to be excellent method to detect trace amount of nitrobenzene compounds in surface water, in which more than 87% of nitrobenzene compounds could be adsorbed on MIPs with 90-105% of recovery.
Collapse
Affiliation(s)
- Wei Lu
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyang Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zihui Meng
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China.
| | - Xixi Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Min Xue
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Qiuhong Wang
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Dong
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
46
|
Jafari MT, Saraji M, Sherafatmand H. Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography–corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides. Anal Chim Acta 2014; 814:69-78. [DOI: 10.1016/j.aca.2014.01.037] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 11/16/2022]
|
47
|
Direct coupling of packed column supercritical fluid chromatography to continuous corona discharge ion mobility spectrometry. J Chromatogr A 2013; 1272:126-31. [DOI: 10.1016/j.chroma.2012.11.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/17/2012] [Accepted: 11/25/2012] [Indexed: 11/18/2022]
|
48
|
Pomareda V, Lopez-Vidal S, Calvo D, Pardo A, Marco S. A novel differential mobility analyzer as a VOC detector and multivariate techniques for identification and quantification. Analyst 2013; 138:3512-21. [DOI: 10.1039/c3an00078h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Zhou Q, Wang W, Cang H, Du Y, Han F, Chen C, Cheng S, Li J, Li H. On-line measurement of propofol using membrane inlet ion mobility spectrometer. Talanta 2012; 98:241-6. [DOI: 10.1016/j.talanta.2012.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/29/2012] [Accepted: 07/01/2012] [Indexed: 10/28/2022]
|
50
|
Pragney D, Vijaya Saradhi U. Sample-preparation techniques for the analysis of chemical-warfare agents and related degradation products. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|