1
|
Wang J, Wu H, Ma T, Chen H, Chen C, Wang Y, Xian Q, Gong T. Formation of Aromatic Halogenated Disinfection Byproducts in Swimming Pool Water during Chlorination: Organic Precursors and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21782-21793. [PMID: 39610084 DOI: 10.1021/acs.est.4c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Disinfection byproducts (DBPs) in swimming pool water are a significant public health concern. The formation of aromatic halogenated DBPs in swimming pool water has not been clarified previously. In this study, the occurrence of aromatic halogenated DBPs in swimming pool water was examined, and it was found that halohydroxybenzoic acids (HBAs) and halobenzoquinones (HBQs) were the most dominant aromatic halogenated DBPs in swimming pool water that were continuously formed. Thus, the formation of HBAs and HBQs in swimming pool water from different organic precursors, including natural organic matter (NOM), pharmaceuticals and personal care products (PPCPs), during chlorination was examined. The results demonstrate that the formation of HBAs and HBQs from the PPCPs was relatively high compared with that from NOM, suggesting that the PPCPs from human inputs might be important organic precursors of aromatic halogenated DBPs in swimming pool water. The formation mechanisms of HBAs and HBQs from three typical PPCPs (benzophenone-3 (BP-3), methyl p-hydroxybenzoate (MeP) and carbamazepine) were further explored. The results show that the PPCPs containing phenolic groups with higher degradation rates (BP-3 and MeP) possessed higher formation of HBAs and HBQs. The three organic precursors underwent a series of substitution, hydrolysis, oxidation, rearrangement, and intramolecular cyclization reactions to form HBAs and HBQs, while the phenolic groups and ring structures may significantly affect the reactions. The chlorine dose, bromide/iodide concentration, and temperature significantly affected the formation of HBAs and HBQs from MeP during chlorination.
Collapse
Affiliation(s)
- Junjie Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hongyu Wu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Tao Ma
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chuze Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Chatterjee S, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Roy D, Ganguly A, Nanda S, Rajak P. Parabens as the double-edged sword: Understanding the benefits and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176547. [PMID: 39357765 DOI: 10.1016/j.scitotenv.2024.176547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Parabens are globally employed as important preservatives in pharmaceutical, food, and personal care products. Nonetheless, improper disposal of commercial products comprising parabens can potentially contaminate various environmental components, including the soil and water. Residues of parabens have been detected in surface water, ground water, packaged food materials, and other consumer items. Long-term exposure to parabens through numerous consumer products and contaminated water can harm human health. Paraben can modulate the hormonal and immune orchestra of the body. Recent findings have correlated paraben use with hypersensitivity, obesity, and infertility. Notably, parabens have also been detected in the samples of breast cancer patients, suggesting a potential cross-talk between parabens and carcinogenesis. Therefore, the present article aims to dissect the significance of parabens as a preservative in several consumer products and their impact of chronic exposure to human health. This review encompasses various facets of paraben, including its sources, mechanism of action at the molecular level, and sheds light on its toxicological implications on human health.
Collapse
Affiliation(s)
- Sovona Chatterjee
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Aritra Chakraborty
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sohini Dutta
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Dipsikha Roy
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
3
|
Ouyang J, Lin M, Wei F, Ling C, Lu T, Liu Y, Qi B, Hu J, He J, Zhuang G. Estimation of suspected estrogenic transformation products generated during preservative butylparaben chlorination using a simplified effect-based analysis approach. WATER RESEARCH 2024; 267:122414. [PMID: 39303581 DOI: 10.1016/j.watres.2024.122414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Estrogenic transformation products (TPs) generated after water chlorination can be considered as an environmental and health concern, since they can retain and even increase the estrogenicity of the parent compound, thus posing possible risks to drinking water safety. Identification of the estrogenic TPs generated from estrogenic precursor during water chlorination is important. Herein, butylparaben (BuP), which was widely used as preservative in food, pharmaceuticals and personal care products (PPCPs), was selected for research. A simplified effect-based analysis (EDA) approach was applied for the identification of estrogenic TPs generated during BuP chlorination. Despite the removal of BuP corresponds to the decrease of estrogenicity in chlorinated samples, an significant increase of estrogenicity was observed (at T = 30 min, presented an estrogenicity equivalent to 17β-estradiol). Chemical analysis of the estrogenic chlorinated samples that have been previously subjected to biological analysis (in vitro assays), in combination with the principal component analysis (PCA) evaluation, followed by validating the estrogenic potency of most relevant estrogenic TPs through an in silico approach (molecular dynamics simulations), identified that the halogenated TP3 (3,5-Dichloro-butylparaben) increased by 62.5 % and 61.8 % of the estrogenic activity of the parent compound in samples chlorinated with 30 min and 1 h, respectively being classified as a potentially estrogenic activity driver after BuP chlorination. This study provides a scientific basis for the more comprehensive assessment of the environmental and health risk associated with BuP chlorination, highlighting the necessity of identifying the unknown estrogenic TPs generateded from estrogenic precursors chlorination.
Collapse
Affiliation(s)
- Jie Ouyang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Min Lin
- Hangzhou Jasu Environmental Monitoring Co., Ltd, Hangzhou, Zhejiang 310018, PR China
| | - Fang Wei
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Chen Ling
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, Zhejiang 310018, PR China
| | - Tingyu Lu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Yao Liu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Beimeng Qi
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Hu
- Eco-In-dustrial Innovation Institute ZJUT, Quzhou 324400, PR China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
4
|
Rojo M, Ball AL, Penrose MT, Weir SM, LeBaron H, Terasaki M, Cobb GP, Lavado R. Accumulation of Parabens, Their Metabolites, and Halogenated Byproducts in Migratory Birds of Prey: A Comparative Study in Texas and North Carolina, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2365-2376. [PMID: 39172001 DOI: 10.1002/etc.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid that are commonly used as preservatives in personal care products such as cosmetics. Recent studies have revealed the presence of parabens in surface and tap water because of their use as disinfection products; however, little is known about their occurrence in biological samples and their bioaccumulation potential, particularly in raptor birds known as sentinels for pollutant detection. We examined the occurrence and tissue distribution of parabens, their metabolites, and halogenated byproducts in the liver, kidney, brain, and muscle of birds of prey from Texas and North Carolina (USA). Methylparaben (MeP), propylparaben (PrP), and butylparaben (BuP) were detected in more than 50% of all tissues examined, with the kidney exhibiting the highest concentration of MeP (0.65-6.84 ng/g wet wt). Para-hydroxybenzoic acid (PHBA), a primary metabolite, had the highest detection frequency (>50%) and a high accumulation range in the liver, of 4.64 to 12.55 ng/g. The chlorinated compounds chloromethylparaben and chloroethylparaben were found in over half of the tissues, of which dichloromethylparaben (2.20-3.99 ng/g) and dichloroethylparaben (1.01-5.95 ng/g) in the kidney exhibited the highest concentrations. The dibrominated derivatives dibromideethylparaben (Br2EtP) was detected in more than 50% of samples, particularly in muscle and brain. Concentrations in the range of 0.14 to 17.38 ng/g of Br2EtP were detected in the kidney. Dibromidepropylparaben (Br2PrP) was not frequently detected, but concentrations ranged from 0.09 to 21.70 ng/g in muscle. The accumulations of total amounts (sum) of parent parabens (∑P), metabolites (∑M), and halogenated byproducts (∑H) in different species were not significantly different, but their distribution in tissues differed among the species. Positive correlations were observed among MeP, PrP, BuP, and PHBA in the liver, suggesting similar origins and metabolic pathways. Environ Toxicol Chem 2024;43:2365-2376. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Mike T Penrose
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | | | - Masanori Terasaki
- Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, Iwate, Japan
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
5
|
Yoon Y, Lee Y, Cho M. Acute toxicity assessment and QSAR modeling of zebrafish embryos exposed to methyl paraben and its halogenated byproducts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122844. [PMID: 39405839 DOI: 10.1016/j.jenvman.2024.122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Halogenated methyl parabens are formed readily during water chlorination, with or without bromide ion presence. However, research gaps persist in in vivo toxicological assessments of vertebrates exposed to halo-MePs. To address this gap, this study evaluated acute toxicities at 24-96 h-post-fertilization in zebrafish embryos exposed to methyl paraben and its mono- or di-halogenated derivatives, using various apical endpoints. Significant enhanced toxic effects were confirmed for halo-MePs compared to MeP on embryo coagulation (3-19 fold), heartbeat rate decrement (11-80 fold), deformity rate increment (9-68 fold), and hatching failure (4-33 fold), with parentheses indicating the determined toxic potency ratios. Moreover, halo-MePs showed a significantly higher increase in biochemical levels of reactive oxygen species, catalase, superoxide dismutase, and malondialdehyde, while acetylcholinesterase activity was inhibited compared to NT and MeP. The experimental toxic potencies (log(1/EC50 or LC50)) were compared with the predicted ones (log(1/EC50 or LC50, baseline)) using the baseline toxicity Quantitative Structure-Activity Relationship previously established for zebrafish embryos. Halo-MePs were specific (or reactive) toxicants based on their toxic ratios of more than 10 for apical endpoints including heartbeat rate, deformity rate, and hatching rate, while MeP acted as a baseline toxicant. Overall, this study presents the comprehensive toxicological assessment of halo-MePs in zebrafish embryos, contributing to an essential in vivo toxicity database for halogenated phenolic contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Younggun Yoon
- GwangJu Institute, 55, Jingoksandanjungang-ro, Gwangsan-gu, Gwangju, 62465, Republic of Korea; Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, Republic of Korea; Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Min Cho
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
6
|
Okon C, Rocha MB, de Souza Ratuchinski L, Santo DE, Duarte CCS, de Lima Feitoza L, Junior OV, Ferreira PMP, de Almeida EA, Halmemam MCO, Dade SilvaOliveira DC, da Silva Gonzalez R, de Souza DC, Peron AP. Toxicity of the emerging pollutants propylparaben and dichloropropylparaben to terrestrial plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45834-45846. [PMID: 38972946 DOI: 10.1007/s11356-024-34178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Propylparaben (PrP) and dichloropropylparaben (diClPrP) are found in soil worldwide, mainly due to the incorporation of urban sludge in crop soils and the use of non-raw wastewater for irrigation. Studies on the adverse effects of PrP on plants are incipient and not found for diClPrP. PrP and diClPrP were evaluated at concentrations 4, 40, and 400 µg/L for their phytotoxic potential to seeds of Allium cepa (onion), Cucumis sativus (cucumber), Lycopersicum sculentum (tomato), and Lactuca sativa (lettuce), and cytotoxic, genotoxic potential, and for generating oxygen-reactive substances in root meristems of A. cepa bulbs. PrP and diClPrP caused a significant reduction in seed root elongation in all four species. In A. cepa bulb roots, PrP and diClPrP resulted in a high prophase index; in addition, PrP at 400 µg/L and diClPrP at the three concentrations significantly decreased cell proliferation and caused alterations in a significant number of cells. Furthermore, diClPrP concentrations induced the development of hooked roots in onion bulbs. The two chemical compounds caused significant changes in the modulation of catalase, ascorbate peroxidase, and guaiacol peroxidase, disarming the root meristems against hydroxyl radicals and superoxides. Therefore, PrP and diClPrP were phytotoxic and cytogenotoxic to the species tested, proving dangerous to plants.
Collapse
Affiliation(s)
- Caio Okon
- Chemical Enginnering Course, Federal Technological, University of Paraná, Campo Mourão, Paraná, Brazil
| | - Mylena Bathke Rocha
- Chemical Enginnering Course, Federal Technological, University of Paraná, Campo Mourão, Paraná, Brazil
| | | | - Diego Espirito Santo
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil
| | - Charla Chaionara Schults Duarte
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil
| | - Lidiane de Lima Feitoza
- Academic Department of Biological Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Osvaldo Valarini Junior
- Academic Department of Food and Chemical Engineering, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Academic Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | | | - Regiane da Silva Gonzalez
- Academic Department of Chemistry, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
- Graduate Program in Food Technology, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Débora Cristina de Souza
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
- Graduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Paraná, Brazil
| | - Ana Paula Peron
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil.
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil.
- Graduate Program in Technological Innovations, Federal Technological University of Paraná, Via Rosalina Maria Dos Santos, Campo Mourão, Paraná, 1233, Brazil.
| |
Collapse
|
7
|
Yoon Y, Cho M. Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171448. [PMID: 38453088 DOI: 10.1016/j.scitotenv.2024.171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Collapse
Affiliation(s)
- Younggun Yoon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, South Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
8
|
Weiss V, Gobec M, Jakopin Ž. Halogenation of common phenolic household and personal care product ingredients enhances their AhR-modulating capacity. CHEMOSPHERE 2024; 350:141116. [PMID: 38182088 DOI: 10.1016/j.chemosphere.2024.141116] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The Aryl Hydrocarbon Receptor (AhR), a ligand-activated transcription factor, orchestrates responses to numerous structurally diverse endogenous and exogenous ligands. In addition to binding various xenobiotics, AhR also recognizes endocrine disruptors, particularly those featuring chlorinated or brominated aromatic structures. There is limited data available on the impact of common household and personal care product ingredients let alone their halogenated transformation products. Herein we bridge this knowledge gap by preparing a library of chlorinated and brominated parabens, bisphenols, UV filters, and nonylphenols. An evaluation of total of 125 compounds for agonistic and antagonistic activity on AhR unveiled a low micromolar agonist, Cl2BPAF with an EC50 of 13 μM. Moreover, our study identified several AhR antagonists, with BrBzP emerging as the most potent with an IC50 of 8.9 μM. To further investigate the functional implications of these compounds, we subjected the most potent agonist and antagonist to a functional assay involving cytokine secretion from peripheral blood mononuclear cells and compared their activity with the commercially available AhR agonist and antagonist. Cl2BPAF exhibited an overall immunosuppressive effect by reducing the secretion of proinflammatory cytokines, including IL-6, IFN-γ, and TNF-α, while BrBzP displayed opposite effects, leading to an increase of those cytokines. Notably, the immunomodulatory effects of Cl2BPAF surpassed those of ITE, a bona fide AhR agonist, while the impact of BrBzP exceeded that of CH223191, a bona fide AhR antagonist. In summary, our study underscores the potential influence of halogenated transformation products on the AhR pathway and, consequently, their role in shaping the immune responses.
Collapse
Affiliation(s)
- Veronika Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Huo Y, Li M, An Z, Jiang J, Zhou Y, Ma Y, Xie J, Wei F, He M. Effect of pH on UV/H 2O 2-mediated removal of single, mixed and halogenated parabens from water. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132818. [PMID: 37879281 DOI: 10.1016/j.jhazmat.2023.132818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Adjusting pH values in aqueous environments can significantly improve the efficiency by which parabens and halo-parabens are removed. In this study, 20 neutral and deprotonated species were selected as models to investigate their pH-dependent removal mechanisms and kinetics by a UV/H2O2 process using density functional theory (DFT). Compared to neutral species, deprotonated species exhibit higher reactivity to HO• due to their high electron cloud density. H atom abstraction (HAA) reactions on the substitution groups are the most favorable pathways for neutral species, while radical adduct formation (RAF) reactions are the most favorable for deprotonated species. Single electron transfer (SET) reactions can be neglected for neutral species, while these reactions become a viable route for deprotonated molecules. The total reaction rate constants range from 1.63 × 109 to 3.74 × 1010 M- 1 s- 1 at pH 7.0, confirming the experimental results. Neutral and weakly alkaline conditions are favorable for the degradation of MeP and halo-parabens in the UV/H2O2 process. The order of removal efficiency at optimum pH is dihalo-parabens > mono-halo-parabens ≈ F, F-MeP > MeP. Furthermore, the transformation products must undergo oxidative degradation due to their high toxicity. Our findings provide new insights into the removal of parabens and their halogenated derivatives from wastewater.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Fenghua Wei
- Assets and Laboratory Management Office, Shandong University, Qingdao 266237, PR China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
10
|
Pereira AR, Simões M, Gomes IB. Parabens as environmental contaminants of aquatic systems affecting water quality and microbial dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167332. [PMID: 37758132 DOI: 10.1016/j.scitotenv.2023.167332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Among different pollutants of emerging concern, parabens have gained rising interest due to their widespread detection in water sources worldwide. This occurs because parabens are used in personal care products, pharmaceuticals, and food, in which residues are generated and released into aquatic environments. The regulation of the use of parabens varies across different geographic regions, resulting in diverse concentrations observed globally. Concentrations of parabens exceeding 100 μg/L have been found in wastewater treatment plants and surface waters while drinking water (DW) sources typically exhibit concentrations below 6 μg/L. Despite their low levels, the presence of parabens in DW is a potential exposure route for humans, raising concerns for both human health and environmental microbiota. Although a few studies have reported alterations in the functions and characteristics of microbial communities following exposure to emerging contaminants, the impact of the exposure to parabens by microbial communities, particularly biofilm colonizers, remains largely understudied. This review gathers the most recent information on the occurrence of parabens in water sources, as well as their effects on human health and aquatic organisms. The interactions of parabens with microbial communities are reviewed for the first time, filling the knowledge gaps on the effects of paraben exposure on microbial ecosystems and their impact on disinfection tolerance and antimicrobial resistance, with potential implications for public health.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
11
|
Psoras AW, McCoy SW, Reber KP, McCurry DL, Sivey JD. Ipso Substitution of Aromatic Bromine in Chlorinated Waters: Impacts on Trihalomethane Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18801-18810. [PMID: 37096875 DOI: 10.1021/acs.est.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore the possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C-Br bonds into C-Cl bonds was confirmed for several parabens and salicylates. The co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br-) generated polybrominated THMs, implicating ipso substitution. The THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. The THM molar yield from brominated precursors was enhanced by a factor of ≤20 relative to that from nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine enrichment among DBPs in chlorinated waters.
Collapse
Affiliation(s)
- Andrew W Psoras
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
| | - Seth W McCoy
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Keith P Reber
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - John D Sivey
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
- Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
12
|
Cai Y, Li X, Feng M, Chovelon JM, Zhou L, Lu J, Chen J, Ji Y. Formation of halogenated chloroxylenols through chlorination and their photochemical activity. WATER RESEARCH 2023; 243:120366. [PMID: 37494746 DOI: 10.1016/j.watres.2023.120366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Trace organic contaminants usually go through multiple treatment units in a modern water treatment train. Structural modification triggered by pretreatment (e.g., prechlorination) may influence the further transformation and fate of contaminants in downstream units. However, knowledge on this aspect is still limited. In this contribution, we investigated the chlorination of chloroxylenol (PCMX), an antimicrobial agent extensively used during COVID-19 pandemic, and the photoreactivity of its halogenated derivatives. Results indicate that chlorination of PCMX mainly proceeded through electrophilic substitution to give chlorinated products, including Cl- and 2Cl-PCMX. The presence of bromide (Br-) resulted in brominated analogues. Owing to the bathochromic and "heavy atom" effects of halogen substituents, these products show increased light absorption and photoreactivity. Toxicity evaluation suggest that these halo-derivatives have higher persistence, bioaccumulation, and toxicity (PBT) than the parent PCMX. Results of this contribution advance our understanding of the transformation of PCMX during chlorination and the photochemical activity of its halogenated derivatives in subsequent UV disinfection process or sunlit surface waters.
Collapse
Affiliation(s)
- Yan Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoci Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Penrose MT, Cobb GP. Evaluating seasonal differences in paraben transformation at two different wastewater treatment plants in Texas and comparing parent compound transformation to byproduct formation. WATER RESEARCH 2023; 235:119798. [PMID: 36958223 DOI: 10.1016/j.watres.2023.119798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Parabens are commonly used preservatives that are weakly estrogenic. Wastewater effluent is the greatest contributor to the spread of parabens into rivers and other surface water. While previous studies indicate parabens are well removed in wastewater treatment by way of transformation, not much is known about the paraben transformation products. This study evaluates paraben transformation and release at two different wastewater treatment plants in Texas. Paraben concentrations were quantified for influent and effluent by season and by year at both treatment plants. Both seasonal and annual transformation rates were compared between the two wastewater treatment plants. Compounds were compared to evaluate differences in transformation rates and to determine if decreases in parent product concentrations are correlated to changes in transformation product concentrations. The study took place over one year and evaluated each season. Spring had higher influent concentrations and transformation rates at treatment plant 1, while summer had higher influent concentrations and transformation rates at treatment plant 2. PHBA was present in greatest amounts in influent and effluent at both sites with average yearly influent concentrations at 223.9 pM at plant 1 and 211.4 pM at plant 2. Transformation rates of parent parabens were greater at plant 1 with concentration of all three shorter chained parabens decreasing by over 50% after treatment. Formation of dichlorinated transformation products were greater at plant 1 with concentrations of Cl2MeP increasing by 1200% after treatment and Cl2EtP increasing by 940%. While shorter chained parabens generally had a greater transformation rate, no correlations were found between decreases in methyl and ethyl parabens and the formation of their respective dichlorinated transformation products.
Collapse
Affiliation(s)
- Michael T Penrose
- Department of Environmental Science, Baylor University, Waco, TX, United States.
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, United States
| |
Collapse
|
14
|
Albouy M, Deceuninck Y, Migeot V, Doumas M, Dupuis A, Venisse N, Engene PP, Veyrand B, Geny T, Marchand P, Le Bizec B, Bichon E, Carato P. Characterization of pregnant women exposure to halogenated parabens and bisphenols through water consumption. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130945. [PMID: 36758432 DOI: 10.1016/j.jhazmat.2023.130945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Exposure of pregnant women to endocrine disruptor compounds, such as parabens and bisphenol A is of concern for fetal transition. Their halogenated degradation products, mainly coming from water treatment plans, could be problematic as well, depending on their occurrence in drinking water in the first place. Thus, 25 halogenated compounds were synthesised in order to investigate 60 substances (Bisphenols, parabens and their degradation products) in 325 drinking water samples coming from a French cohort study of pregnant women. Analysis was performed by tandem mass spectrometry coupled to gas chromatography (GC-MS/MS) after SPE extraction and derivation of the contaminants. Results indicate that parabens (methylparaben, n-propylparaben, ethylparaben and n-butylparaben), bisphenols S, A and F, and their degradation product, 4-hydroxybenzoic acid, were detected up to several hundred ng/L in drinking water, with detection frequencies between 16% and 88%. Regarding halogenated degradation products, the highest detection frequencies were found for monochlorinated products (about 50% for 2-chlorobisphenol A), which were quantified up to several tens of ng/L. Such analytical approaches with broader spectrum of monitoring (i.e. chemical hazards and their degradation products) constitute in the beginning of a solution to exhaustively answer the questions related to the characterization of the human chemical exposome.
Collapse
Affiliation(s)
- Marion Albouy
- Université de Poitiers, F-86000 Poitiers, France; Pole Biospharm Service de Santé Publique, CHU, Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France.
| | | | - Virginie Migeot
- Université de Poitiers, F-86000 Poitiers, France; Pole Biospharm Service de Santé Publique, CHU, Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France.
| | - Manon Doumas
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France; IC2MP, CNRS 7285, UFR Médecine Pharmacie, Poitiers, France.
| | - Antoine Dupuis
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France; Service de Pharmacie, CHU, Poitiers, France.
| | - Nicolas Venisse
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France; Service de Toxicologie et Pharmacocinétique, CHU, Poitiers, France.
| | - Pascale Pierre Engene
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France.
| | | | - Thomas Geny
- Oniris, INRAE, LABERCA, 44307 Nantes, France.
| | | | | | | | - Pascal Carato
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France.
| |
Collapse
|
15
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Reber KP, Sivey JD, Vollmuth M, Gujarati PD. Synthesis of
13
C‐Labeled Parabens from Isotopically Enriched Phenols Using the Houben–Hoesch Reaction. J Labelled Comp Radiopharm 2022; 65:254-263. [DOI: 10.1002/jlcr.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - John D. Sivey
- Department of Chemistry Towson University Towson MD USA
| | | | - Priyansh D. Gujarati
- Department of Chemistry Towson University Towson MD USA
- Department of Chemistry University of Oxford Oxford UK
| |
Collapse
|
18
|
Ball AL, Solan ME, Franco ME, Lavado R. Comparative cytotoxicity induced by parabens and their halogenated byproducts in human and fish cell lines. Drug Chem Toxicol 2022:1-9. [PMID: 35854652 DOI: 10.1080/01480545.2022.2100900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parabens are a group of para-hydroxybenzoic acid (p-HBA) esters widely used in pharmaceutical industries. Their safety is well documented in mammalian models, but little is known about their toxicity in non-mammal species. In addition, chlorinated and brominated parabens resulting from wastewater treatment have been identified in effluents. In the present study, we explored the cytotoxic effects (EC50) of five parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BuP), and benzylparaben (BeP); the primary metabolite, 4-hydroxybenzoic acid (4-HBA), and three of the wastewater chlorinated/brominated byproducts on fish and human cell lines. In general, higher cytotoxicity was observed with increased paraben chain length. The tested compounds induced toxicity in the order of 4-HBA < MP < EP < PP < BuP < BeP. The halogenated byproducts led to higher toxicity with the addition of second chlorine. The longer chain-parabens (BuP and BeP) caused a concentration-dependent decrease in cell viability in fish cell lines. Intriguingly, the main paraben metabolite, 4-HBA, proved to be more toxic to fish hepatocytes than human hepatocytes by 100-fold. Our study demonstrated that the cytotoxicity of some of these compounds appears to be tissue-dependent. These observations provide valuable information for early cellular responses in human and non-mammalian models upon exposure to paraben congeners.
Collapse
Affiliation(s)
- Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
19
|
Lee W, Marcotullio S, Yeom H, Son H, Kim TH, Lee Y. Reaction kinetics and degradation efficiency of halogenated methylparabens during ozonation and UV/H 2O 2 treatment of drinking water and wastewater effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127878. [PMID: 34872780 DOI: 10.1016/j.jhazmat.2021.127878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the reaction kinetics and degradation efficiency of methylparaben and its halogenated products (Cl-, Br-, Cl,Cl-, Br,Cl-, and Br,Br-methylparabens) during ozonation and UV254/H2O2 treatment. Second-order rate constants for reactions of the parabens with ozone and •OH were [Formula: see text] = 107 - 108 M-1 s-1 and [Formula: see text] = (2.3 - 4.3)× 109 M-1 s-1 at pH 7. Species-specific [Formula: see text] values of the protonated and deprotonated parabens were closely related to phenol ring substituent effects via quantitative structure-activity relationships with other substituted phenols. The UV photolysis rate of the parabens [kUV = (2.4 - 7.2)× 10-4 cm2 mJ-1] depended on the halogenation state of the paraben and solution pH, from which species-specific quantum yields were also determined. In simulated treatments of drinking water and wastewater effluent, the parabens were efficiently eliminated during ozonation, requiring a specific ozone dose of > 0.26 gO3/gDOC for > 97% degradation. During UV/H2O2 treatment with 10 mg L-1 H2O2, the degradation levels were > 90% at a UV fluence of 2000 mJ cm-2, except for Cl,Cl-methylparaben. Kinetic models based on the obtained reaction kinetic parameters could successfully predict the degradation levels of the parabens. Overall, ozonation and UV/H2O2 were effective in controlling parabens and their halogenated products during advanced water treatment.
Collapse
Affiliation(s)
- Woorim Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Sandro Marcotullio
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hoonsik Yeom
- Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Tae-Hun Kim
- Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
20
|
Chen X, Sun C, Ma C, Zhang H, Cao L, Yang J. Stabilized PbO2 electrode prepared via crystal facet controlling for outstanding degradation of MePB. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Abdallah P, Dossier-Berne F, Karpel Vel Leitner N, Deborde M. Methylparaben chlorination in the presence of bromide ions and ammonia: kinetic study and modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31256-31267. [PMID: 33599931 DOI: 10.1007/s11356-020-11503-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The impacts of chlorination on methylparaben (MP) removal, as well as of bromide and ammonia on the MP elimination kinetics, were studied. Bromide and ammonia react with chlorine and are promptly transformed into bromine and chloramines, respectively. Rate constants of chlorine, bromine, and monochloramine with MP were determined under different pH conditions. At pH 8.5, the apparent second-order rate constants of MP reactions with chlorine and bromine were found to be 3.37(±0.50) × 101 and 2.37 (±0.11) × 106 M-1.s-1 for kChlorine/MP and kBromine/MP, respectively, yet there was low reactivity with monochloramine ([Formula: see text] = 0.045 M-1.s-1). Regarding chlorination and bromination, in order to gain further insight into the observed pH-dependence of the reaction, the elementary reactions were considered and the corresponding second-order rate constants were calculated. The experimental and modeled values were quite consistent under these conditions. Then, chlorination experiments with different bromide and/or ammonia concentrations were performed to assess the impact of inorganic water content on MP elimination and a kinetic model was designed to assess MP degradation. Under these conditions, MP degradation was found to be enhanced in the presence of bromide whereas it was inhibited in the presence of ammonia, and the overall impact was pH dependent.
Collapse
Affiliation(s)
- Pamela Abdallah
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Florence Dossier-Berne
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Nathalie Karpel Vel Leitner
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Marie Deborde
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France.
- UFR Médecine et de Pharmacie, Université de Poitiers, 6 rue de la Milétrie, Bâtiment D1, TSA 51115, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
22
|
Li H, Cai L, Wang X, Shi H. Fabrication of AgCl/Ag 3PO 4/graphitic carbon nitride heterojunctions for enhanced visible light photocatalytic decomposition of methylene blue, methylparaben and E. coli. RSC Adv 2021; 11:6383-6394. [PMID: 35423154 PMCID: PMC8694848 DOI: 10.1039/d0ra09147b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized via sedimentation precipitation and ion exchange method. The photocatalytic performance of the as-prepared AgCl/Ag3PO4/g-C3N4 nanocomposite was investigated via photocatalytic degradation of methylene blue (MB), methylparaben (MPB) and inactivation of E. coli under visible light irradiation. The AgCl/Ag3PO4/g-C3N4 composite presented the optimal photocatalytic performance, degrading almost 100% MB and 100% MPB, respectively. The excellent stability of AgCl/Ag3PO4/g-C3N4 was also verified in the cycle operations; the degradation efficiency of MPB could still be maintained at 85.3% after five cycles of experiments. Moreover, the AgCl/Ag3PO4/g-C3N4 composite displayed more superior photocatalytic inactivation efficiency with 100% removal of E. coli (7-log) in 20 min under visible light irradiation. The efficient photo-generated charge separation originated from a strong interaction in the intimate contact interface, which was confirmed by the results of photocurrent and EIS measurements. In addition, radical trapping experiments revealed that hole (h+) was the predominant active species in the photocatalytic system. Based on the experimental results, a photocatalytic mechanism for the degradation of parabens over AgCl/Ag3PO4/g-C3N4 was also proposed. We believe that this work provides new insights into the multifunctional composite materials for the applications in solar photocatalytic degradation of harmful organic compounds and common pathogenic bacteria in wastewater. A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.![]()
Collapse
Affiliation(s)
- Haishuai Li
- Institute of New Carbon Materials, College of Material Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Linlin Cai
- Institute of New Carbon Materials, College of Material Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Xin Wang
- Institute of New Carbon Materials, College of Material Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Huixian Shi
- Institute of New Carbon Materials, College of Material Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
23
|
Jakopin Ž. Assessment of the endocrine-disrupting potential of halogenated parabens: An in silico approach. CHEMOSPHERE 2021; 264:128447. [PMID: 33007571 DOI: 10.1016/j.chemosphere.2020.128447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Parabens are endocrine-disrupting chemicals present in a variety of pharmaceutical and personal care products. Due to their wide-spread use, significant amounts are also released into the aquatic domain of the environment. During water disinfection, parabens give rise to halogenated transformation products. As opposed to parabens, there is considerable lack of knowledge with regard to the endocrine-disrupting potential of their halogenated counterparts, which presents a challenge for regulatory decision making. We aimed to fill this knowledge gap by using the Endocrine Disruptome and VirtualToxLab™ to predict their endocrine-disrupting potential on the basis of calculated affinities for different nuclear receptors. The applied computational approach indicates a high probability of halogenated parabens binding to glucocorticoid, thyroid and aryl hydrocarbon receptors and suggests that disinfection is likely to form transformation products with more pronounced endocrine-disrupting activities than those of parent parabens. The obtained results not only highlight the need for additional in vitro/in vivo investigations of these chemicals as endocrine disruptors but also provide a means of guiding and prioritizing these future studies, in order to assess fully their hazard to human health.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI - 1000, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Li Y, Chen L, Li H, Peng F, Zhou X, Yang Z. Occurrence, distribution, and health risk assessment of 20 personal care products in indoor and outdoor swimming pools. CHEMOSPHERE 2020; 254:126872. [PMID: 32957284 DOI: 10.1016/j.chemosphere.2020.126872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The distribution of 20 personal care products (PCPs), including seven preservatives, six UV filters, five anticorrosion agents, and two antimicrobials, were determined in 40 swimming pools using solid phase extraction followed by liquid chromatography-tandem mass spectrometry. Among 14 targets detected, 1H-benzotriazole and triclocarban were observed in all samples. The detected concentrations of preservatives, UV filters, anticorrosion agents, and antimicrobials were in the ranges of not detected (nd)-179 ng L-1, nd-289 ng L-1, nd-58.4 ng L-1, and nd-56.9 ng L-1, respectively. The presence of preservatives, UV filters and antimicrobials in pool waters might be mainly brought in by human activities while anticorrosion agents were mainly from the source water. Furthermore, the concentrations of methylparaben, ethylparaben, 1H-benzotriazole, 5-methyl-1H-benzotriazole, 5-chloro-1H-benzotriazole, and 5,6-dimethyl-1H-benzotriazole in indoor pools were found higher than those in outdoor pools. The longer opening time and weaker light intensity for indoor pools might cause the difference. The redundancy analysis showed significantly negative correlations between the concentrations of parabens and the contents of residual chlorine in the pool waters. A higher chlorine residue may promote the decomposition of parabens. Health risk assessment showed that skin penetration would be the main approach for the intake of PCPs by swimmers while swimming. Compared with the non-athletic swimmers, the athletic swimmers might be more sensitive, but the health risks for both groups of swimmers could be negligible.
Collapse
Affiliation(s)
- Yue Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Leilei Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Fangyuan Peng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Xinyi Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
25
|
Becerra-Herrera M, Miranda V, Richter P. Rapid Determination of Parabens in Water Samples by Ultra-high Performance Liquid Chromatography Coupled to Time of Flight Mass Spectrometry. ANAL SCI 2020; 36:675-679. [PMID: 31902828 DOI: 10.2116/analsci.19p409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 11/16/2019] [Indexed: 08/09/2023]
Abstract
An analytical methodology has been developed and validated for the purpose of identifying and quantifying four parabens (methylparaben, ethylparaben, propylparaben and n-butylparaben) in water samples. The combination of rotating disk sorptive extraction (RDSE) technology with ultra-high performance liquid chromatography (UHPLC), along with electrospray ionization source (ESI) and time of flight mass spectrometry (TOF/MS) in trap mode, allowed for eliminating derivatization processes and a reduction of the chromatographic time required, achieving a greener analytical method. In this method, detection limits and precision (%RSD) were lower than 0.018 μg L-1 and lower than 9.7% for all the parabens, respectively, being better than similar works. Matrix effect and absolute recoveries were studied in tap and sewage water samples to observe suppressions of the signals for all analytes, and absolute recoveries were around 60%. This methodology was applied to the analysis of two sewage samples (punctual and composite) obtained from locations in Santiago, Chile.
Collapse
Affiliation(s)
- Mercedes Becerra-Herrera
- Department of Chemistry, Faculty of Sciences, University of Chile, P. O. Box 653, Santiago, Chile.
| | - Valentina Miranda
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, P. O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, P. O. Box 233, Santiago, Chile.
| |
Collapse
|
26
|
Gouukon Y, Yasuda MT, Yasukawa H, Terasaki M. Occurrence and AhR activity of brominated parabens in the Kitakami River, North Japan. CHEMOSPHERE 2020; 249:126152. [PMID: 32062214 DOI: 10.1016/j.chemosphere.2020.126152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 05/06/2023]
Abstract
Parabens are used as preservatives in pharmaceuticals and personal care products (PPCPs). Parabens react with aqueous chlorine, which is used in disinfection processes, leading to the formation of halogenated parabens. In the presence of Br-, parabens and HOBr (formed via oxidation of Br-) can react to form brominated parabens. Brominated parabens may result in pollution of river water through effluent discharge from sewage treatment plants. The present study involved measuring brominated paraben concentrations in the Kitakami River, northern Japan, which flows through urban and agricultural areas. Aryl hydrocarbon receptor (AhR) agonist activity was also assessed using a yeast (YCM3) reporter gene and HepG2 ethoxyresorufin O-deethylase (EROD) assays. Dibrominated methylparaben (Br2MP), ethylparaben (Br2EP), propylparaben (Br2PP), butylparaben (Br2BP), and benzylparaben (Br2BnP), and monobrominated benzylparaben (Br1BnP) were detected in 25-100% of river samples during the sampling period from 2017 to 2018 at median concentrations of 8.1-28 ng/L; the highest concentrations were measured during the low flow season (November) in urban areas (P < 0.01). In the yeast assay, 12 compounds exhibited AhR activity (activity relative to β-naphthoflavone; 4.4 × 10-4-7.1 × 10-1). All monobrominated parabens exhibited higher activity than their parent parabens, however, further bromination reduced or eliminated their activity. In the EROD assay, five compounds caused significant induction of CYP1A-dependent activity at 100 μM (P < 0.05). Monobrominated i-butylparaben (Br1iBP) and s-butylparaben (Br1sBP), Br1BnP, and Br2BP exhibited activity in both yeast and EROD assays. We found novel aspects of brominated parabens originating from PPCPs.
Collapse
Affiliation(s)
| | - Michiko T Yasuda
- Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, Japan
| | - Hiro Yasukawa
- Graduate School of Arts and Sciences, Iwate University, Japan
| | | |
Collapse
|
27
|
Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT. Targeted profiling of chlorinated transformation products and the parent micropollutants in the aquatic environment: A comparison between two coastal cities. CHEMOSPHERE 2020; 242:125268. [PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taiwan.
| | - Yee Soon Ling
- Water Research Unit, Faculty of Science and Nature Resources, University Malaysia Sabah, Malaysia
| | | | - Xiao-Qian Lin
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taiwan; Department of Environmental Science and Engineering, Tunghai University, Taiwan
| | - Ze-Ying Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan
| | - Ho-Tang Liao
- Research Center for Environmental Changes, Academia Sinica, Taiwan
| |
Collapse
|
28
|
Bilal M, Mehmood S, Iqbal HMN. The Beast of Beauty: Environmental and Health Concerns of Toxic Components in Cosmetics. COSMETICS 2020; 7:13. [DOI: 10.3390/cosmetics7010013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cosmetic products are used in large quantities across the world. An increasing number of chemical compounds are being added to the formulation of cosmetic products as additives, fragrances, preservatives, stabilizers, surfactants, dye and shine to potentiate their quality, property and shelf life. Owing to their widespread use, active residues of cosmetic products are continuously introduced into the environment in several ways. Many of these chemicals are bioactive and are characterized by potential bioaccumulation ability and environmental persistence, thus exerting a major risk to humans and the health of ecosystems. Hence, the indiscriminate consumption of cosmetics may present a looming issue with significant adverse impacts on public health. This review intends to spotlight a current overview of toxic ingredients used in formulating cosmetics such as parabens, triclosan, benzalkonium chloride, 1,4-dioxane, plastic microbeads, formaldehyde, diazolidinyl urea, imidazolidinyl urea, sunscreen elements (organic and inorganic UV filters) and trace metals. Specific focus is given to illustrate the biological risks of these substances on human health and aquatic system in terms of genotoxicity, cytotoxicity, neurotoxicity mutagenicity, and estrogenicity. In addition to conclusive remarks, future directions are also suggested.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico
| |
Collapse
|
29
|
Characterization and stability study of pseudo-emulsion hollow fiber membrane: Separation of Ethylparaben. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Ultrasonic and volumetric behaviour of glycols with sodium ethylparaben in aqueous medium from T = 293.15 to 308.15 K at atmospheric pressure. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Farinelli G, Minella M, Sordello F, Vione D, Tiraferri A. Metabisulfite as an Unconventional Reagent for Green Oxidation of Emerging Contaminants Using an Iron-Based Catalyst. ACS OMEGA 2019; 4:20732-20741. [PMID: 31858059 PMCID: PMC6906940 DOI: 10.1021/acsomega.9b03088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
In this work, contaminants of emerging concern were catalytically degraded in the homogeneous phase with the use of unconventional green reagents. Three reagents, namely, sulfite, metabisulfite, and persulfate, were tested and compared with conventional hydrogen peroxide in the degradation process activated by Fe-TAML. The latter is a biodegradable, homogeneous tetra-amido macrocyclic ligand catalyst containing iron(III). Metabisulfite showed the highest efficiency among the three tested reagents, and its reactivity was similar to that of H2O2. However, metabisulfite is a safer and cleaner reagent compared to H2O2. A comprehensive study of the activity of metabisulfite with Fe-TAML was carried out toward the oxidative degradation of eight contaminants of emerging concern. The catalytic process was tested at different pH values (7, 9, and 11). Metabisulfite showed the highest activity at pH 11, completely degrading some of the tested micropollutants, but in several cases, the system was active at pH 9 as well. In particular, metabisulfite showed the best efficiency toward phenolic compounds. A preliminary study on the reaction mechanism and the nature of the active species in the Fe-TAML/metabisulfite system was also conducted, highlighting that a high-valent iron-oxo species might be involved in the degradation pathways.
Collapse
Affiliation(s)
- Giulio Farinelli
- Department
of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Minella
- Department
of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Fabrizio Sordello
- Department
of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Davide Vione
- Department
of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Alberto Tiraferri
- Department
of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
32
|
Gmurek M, Gomes JF, Martins RC, Quinta-Ferreira RM. Comparison of radical-driven technologies applied for paraben mixture degradation: mechanism, biodegradability, toxicity and cost assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37174-37192. [PMID: 31749006 PMCID: PMC6937227 DOI: 10.1007/s11356-019-06703-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
Parabens (esters of p-hydroxybenzoic acid) are xenobiosis belonging to endocrine disruptors and commonly used as a preservative in cosmetics, food, pharmaceutical, and personal care products. Their wide use is leading to their appearance in water and wastewater in the range from ng/L to mg/L. In fact, the toxicity of benzylparaben is comparable to bisphenol A. Therefore, it is important to find not only effective but also ecofriendly methods for their removal from aqueous environment since the traditional wastewater treatment approaches are ineffective. Herein, for the first time, such extended comparison of several radical-driven technologies for paraben mixture degradation is presented. The detailed evaluation included (1) comparison of ozone and hydroxyl peroxide processes; (2) comparison of catalytic and photocatalytic processes (including photocatalytic ozonation); (3) characterisation of catalysts using SEM, XRD, DRS, XPS techniques and BET isotherm; (4) mineralisation, biodegradability and toxicity assessment; and (5) cost assessment. O3, H2O2/Fe2+, H2O2/UVC, O3/H2O2, O3/UVA, O3/H2O2/UVA, UVA/catalyst, O3/catalyst and O3/UVA/catalyst were selected from advanced oxidation processes to degrade parabens as well as to decrease its toxicity towards Aliivibrio fischeri, Corbicula fluminea and Lepidium sativum. Research was focused on the photocatalytic process involving visible light (UVA and natural sunlight) and TiO2 catalysts modified by different metals (Ag, Pt, Pd, Au). Photocatalytic oxidation showed the lowest efficiency, while in combining ozone with catalysis and photocatalysis process, degradation efficiency and toxicity removal were improved. Photocatalytic ozonation slightly improved degradation efficiency but appreciably decreased transferred ozone dose (TOD). Results indicate that the degradation pathway is different, or different transformation products (TPs) could be formed, despite that the hydroxyl radicals are the main oxidant. Graphical abstract.
Collapse
Affiliation(s)
- Marta Gmurek
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland.
| | - João F Gomes
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rui C Martins
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rosa M Quinta-Ferreira
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Kang HM, Kim MS, Hwang UK, Jeong CB, Lee JS. Effects of methylparaben, ethylparaben, and propylparaben on life parameters and sex ratio in the marine copepod Tigriopus japonicus. CHEMOSPHERE 2019; 226:388-394. [PMID: 30947048 DOI: 10.1016/j.chemosphere.2019.03.151] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 05/21/2023]
Abstract
Parabens are used as a preservative substance in a wide range of man-made products causing deleterious effects on aquatic organisms and therefore, the concern of their effects to aquatic organisms has been increased. In this study, acute toxicity of methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) was assessed in the marine copepod Tigriopus japonicus. The acute toxicity assessment resulted in the median lethal concentration (LC50) values of MeP, EtP, and PrP were 29,754, 11,659, and 113 μg/L, respectively, for male and 38,183, 15,371, and 357 μg/L, respectively, for female, indicating the strongest toxicity of PrP, compared to MeP and EtP and the higher sensitivity of males compared to females. Developmental retardation and reproduction rate were also measured under chronic exposure. Furthermore, significant alteration in sex ratio was shown in PrP-exposed group, indicating PrP would have feminization effect in T. japonicus. Here we report different toxicity of three types of parabens and also shows potential estrogenic effects of PrP in T. japonicus.
Collapse
Affiliation(s)
- Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
34
|
Bernal V, Giraldo L, Moreno-Piraján JC, Balsamo M, Erto A. Mechanisms of Methylparaben Adsorption onto Activated Carbons: Removal Tests Supported by a Calorimetric Study of the Adsorbent⁻Adsorbate Interactions. Molecules 2019; 24:molecules24030413. [PMID: 30678133 PMCID: PMC6384570 DOI: 10.3390/molecules24030413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 01/25/2023] Open
Abstract
: In this study, the mechanisms of methylparaben adsorption onto activated carbon (AC) are elucidated starting from equilibrium and thermodynamic data. Adsorption tests are carried out on three ACs with different surface chemistry, in different pH and ionic strength aqueous solutions. Experimental results show that the methylparaben adsorption capacity is slightly affected by pH changes, while it is significantly reduced in the presence of high ionic strength. In particular, methylparaben adsorption is directly dependent on the micropore volume of the ACs and the π- stacking interactions, the latter representing the main interaction mechanism of methylparaben adsorption from liquid phase. The equilibrium adsorption data are complemented with novel calorimetric data that allow calculation of the enthalpy change associated with the interactions between solvent-adsorbent, adsorbent-adsorbate and the contribution of the ester functional group (in the methylparaben structure) to the adsorbate⁻adsorbent interactions, in different pH and ionic strength conditions. It was determined that the interaction enthalpy of methylparaben-AC in water increases (absolute value) slightly with the basicity of the activated carbons, due to the formation of interactions with π- electrons and basic functional groups of ACs. The contribution of the ester group to the adsorbate-adsorbent interactions occurs only in the presence of phenol groups on AC by the formation of Brønsted⁻Lowry acid⁻base interactions.
Collapse
Affiliation(s)
- Valentina Bernal
- Departamento de Química, Universidad Nacional de Colombia. Bogotá 11001, Colombia.
| | - Liliana Giraldo
- Departamento de Química, Universidad Nacional de Colombia. Bogotá 11001, Colombia.
| | | | - Marco Balsamo
- Departamento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II. Napoli 80121-80147, Italy.
| | - Alessandro Erto
- Departamento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II. Napoli 80121-80147, Italy.
| |
Collapse
|
35
|
Zhu B, Wei N. Biocatalytic Degradation of Parabens Mediated by Cell Surface Displayed Cutinase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:354-364. [PMID: 30507170 DOI: 10.1021/acs.est.8b05275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Parabens are emerging environmental contaminants with known endocrine-disrupting effects. This study created a novel biocatalyst (named as SDFsC) by expressing the enzyme Fusarium solani pisi cutinase (FsC) on the cell surface of Baker's yeast Sacchromycese cerevisiae and demonstrated successful enzyme-mediated removal of parabens for the first time. Parabens with different side chain structures had different degradation rates by the SDFsC. The SDFsC preferentially degraded the parabens with relatively long alkyl or aromatic side chains. The structure-dependent degradability was in a good agreement with the binding energy between the active site of FsC and different parabens. In real wastewater effluent solution, the SDFsC effectively degraded 800 μg/L of propylparaben, butylparaben, and benzylparaben, either as a single compound or as a mixture, within 48 h. The estrogenic activity of parabens was considerably reduced as the parent parabens were degraded into 4-hydroxybenzoic acid via hydrolysis pathway by the SDFsC. The SDFsC showed superior reusability and maintained 93% of its initial catalytic activity after six rounds of paraben degradation reaction. Results from this study provide scientific basis for developing biocatalysis as a green chemistry alternative for advanced treatment of parabens in sustainable water reclamation.
Collapse
Affiliation(s)
- Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , 156 Fitzpatrick Hall , Notre Dame , Indiana 46556 , United States
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , 156 Fitzpatrick Hall , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
36
|
Nasri B, Fouché O. Intermittent flux from a sand filter for household wastewater and integrated solute transfer to the vadose zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2167-2183. [PMID: 29478162 DOI: 10.1007/s11356-018-1466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Depending on the actual number of soil-based on-site wastewater treatment system (OWTS) in an area, on-site sanitation may be a significant source of pollutants and a threat to groundwater. Even in the case of a system functioning correctly, here, a sand filter substituted for the in-situ soil, as the treated effluent may reach to the water table, it is necessary evaluating in situ how much the sand and underneath soil respectively contribute to pollutant removal. On the plot of a household in a small rural community, the functioning of a real scale OWTS was monitored for 1.5 years. This system, composed of a septic tank connected to a 5 × 5 m2 and 0.7-m thick aerobic sand filter was equipped with soil hydrodynamic probes (water content and matrix potential) during construction. By using the instantaneous profile method of water content, the intermittent infiltrated flux was determined across the sand-pack according to position and time. Treated water infiltrates into underneath soil acting as post-treatment. Quality of interstitial liquid from the sand and the soil was analysed each month on a 12-h pumping sample obtained through porous plates. Results of water fluxes and concentrations provide an estimate of the annual flux to the vadose zone and groundwater of metals, nutrients and some organic micro-pollutants (parabens and triclosan) through the OWTS and subsoil.
Collapse
Affiliation(s)
- Behzad Nasri
- LEESU lab., UMR MA 102, Ecole des Ponts ParisTech, Université Paris Est, 6 et 8 avenue Blaise Pascal, 77455, Marne-la-Vallée Cedex 2, France.
- GeF lab., Géomatique et foncier, EA 4630, Le Cnam, 2 rue Conté, 75003, Paris, France.
| | - Olivier Fouché
- GeF lab., Géomatique et foncier, EA 4630, Le Cnam, 2 rue Conté, 75003, Paris, France
| |
Collapse
|
37
|
López-Ortiz CM, Sentana-Gadea I, Varó-Galvañ P, Maestre-Pérez SE, Prats-Rico D. The use of combined treatments for reducing parabens in surface waters: Ion-exchange resin and nanofiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:228-236. [PMID: 29787906 DOI: 10.1016/j.scitotenv.2018.05.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
In this study, the removal of parabens from waters, using a combined treatment of magnetic ion exchange resins and subsequent filtration through nanofiltration membranes, was investigated. The selected parabens were methylparaben, ethylparaben, propylparaben and butylparaben. Two different magnetic anionic exchanger resins, MIEX® DOC and MIEX® GOLD, and two nanofiltration membranes (NF), NF-90 and DESAL-HL, were tested. The study was carried out using mono and multicomponent systems, using deionized water and natural waters sampled from two different rivers. In this way, competitive and matrix effects could be evaluated. The results showed, that with the combined treatments, higher elimination rates were obtained. The best removal efficiencies were obtained when the DOC resin was combined with both NF-90 and DESAL-HL membranes. Thus, butylparaben and propylparaben reached removal yields around 100% with both membranes, whereas the corresponding values for methylparaben were 91%, when the NF-90 membrane was employed, or 92% when DESAL-HL membrane was utilized. The elimination rates of ethylparaben with the same treatments were 96% with the NF-90 and 97% when the DESAL-HL membrane was combined with the DOC resin. The elimination percentages were higher as the paraben alkyl chain length increased. In addition, no competitiveness or matrix effects were detected. When the MIEX® GOLD resin was used for pre-treatment, membrane fouling worsened which indicated that resin selection needs to be carefully considered to achieve the best results.
Collapse
Affiliation(s)
- Carmen M López-Ortiz
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain.
| | - Irene Sentana-Gadea
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - Pedro Varó-Galvañ
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - Salvador E Maestre-Pérez
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - Daniel Prats-Rico
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
38
|
Wan D, Chen Y, Su J, Liu L, Zuo Y. Ultraviolet absorption redshift induced direct photodegradation of halogenated parabens under simulated sunlight. WATER RESEARCH 2018; 142:46-54. [PMID: 29859391 DOI: 10.1016/j.watres.2018.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
As disinfection by-products of parabens, halogenated parabens are frequently detected in aquatic environments and exhibit higher persistence and toxicity than parabens themselves. An interesting phenomenon was found that UV absorption redshift (∼45 nm) occurs after halogenation of parabens at circumneutral pH, leading to overlap with the spectrum of terrestrial sunlight. This work presents the first evidence on the direct photodegradation of seven chlorinated and brominated parabens under simulated sunlight. These halogenated parabens underwent rapid direct photodegradation, distinguished from the negligible degradation of the parent compounds. The photodegradation rate depended on their forms and substituents. The deprotonation of halogenated parabens facilitated the direct photodegradation. Brominated parabens exhibited higher degradation efficiency than chlorinated parabens, and mono-halogenated parabens had higher degradation than di-halogenated parabens. The pseudo-first-order rate constants (kobs) for brominated parabens (0.075-0.120 min-1) were approximately 7-fold higher than those of chlorinated parabens (0.011-0.017 min-1). A quantitative structure-activity relationship (QSAR) model suggested that the photodegradation was linearly correlated with the C-X bond energies, electronic and steric effects of halogen substituents. The photodegradation products were identified using QTOF-MS analyses and a degradation pathway was proposed. The yeast two-hybrid estrogenicity assay revealed that the estrogenic activities of the photoproducts were negligible. These findings are important for the removal of halogenated parabens and predictions of their fate and potential impacts in surface waters.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jing Su
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuegang Zuo
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747-2300, USA
| |
Collapse
|
39
|
Gomes FER, Bergo PLS, Trap MA, Spadoto M, Galinaro CA, Rodrigues-Filho E, Leitão A, Tremiliosi-Filho G. Photolysis of parabens using medium-pressure mercury lamps: Toxicity effects in MCF7, Balb/c 3T3 cells and Ceriodaphnia dubia. CHEMOSPHERE 2018; 208:325-334. [PMID: 29885499 DOI: 10.1016/j.chemosphere.2018.05.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 05/06/2023]
Abstract
Degradation studies of the propylparaben (PrP), butylparaben (BuP) and of the propylparaben-butylparaben mixture (PrP-BuP) in deionized water and surface river water was investigated as a function of pH and initial concentration of the reactants using a medium-pressure mercury lamp. The photolysis of parabens (concentration ranging from 5 to 30 mg L-1) followed apparent pseudo-first-order kinetics, with rate constants (k) in deionized water and surface river water changed from 1.80 × 10-1 to 3.68 × 10-2 min-1 and 1.43 × 10-1 to 1.45 × 10-2 min-1, respectively. Degradation reaction was faster at pH 5 in comparison with pH 7 or 11. The photolysis of parabens was greater than 91%, with low mineralization (26.15%) observed in acidic medium after 95 min. Analysis by chromatography coupled to mass spectrometry (LC-MS/MS) showed that only one product was generated during the degradation reaction and has UV bands similar to 3,4-dihydroxybenzoic acid. Estrogenic activity tests showed that non-degraded parabens stimulated the growth of breast adenocarcinoma (MCF-7) cells and this effect was evaluated after the photolysis. Cytotoxicity assays using fibroblasts cells (Balb/C 3T3 clone A31) indicated that the parental compounds and degradation products were not cytotoxic. On the contrary, non-degraded parabens were toxic to Ceriodaphnia dubia, but the product of photolysis was not. Overall, the photolytic method presented was able to degrade these parabens providing safe and non-estrogenic reaction product.
Collapse
Affiliation(s)
- Francisco E R Gomes
- Federal Institute of Education, Science and Technology of Mato Grosso, 78850-000, Primavera do Leste, MT, Brazil.
| | - Patricia L S Bergo
- University of São Paulo - São Carlos Institute of Chemistry, Av. Trabalhador São Carlense, 400, CP 780, 13.560-970, São Carlos, SP, Brazil; Federal University of São Carlos, Department of Chemistry, CP 676, 13.565-905, São Carlos, SP, Brazil
| | - Marília A Trap
- Federal University of São Carlos, Department of Chemistry, CP 676, 13.565-905, São Carlos, SP, Brazil
| | - Mariângela Spadoto
- University of São Paulo - São Carlos Engineering School, Av. Trabalhador São Carlense, 400, CEP 13.560-970, São Carlos, SP, Brazil
| | - Carlos A Galinaro
- University of São Paulo - São Carlos Institute of Chemistry, Av. Trabalhador São Carlense, 400, CP 780, 13.560-970, São Carlos, SP, Brazil.
| | - Edson Rodrigues-Filho
- Federal University of São Carlos, Department of Chemistry, CP 676, 13.565-905, São Carlos, SP, Brazil
| | - Andrei Leitão
- University of São Paulo - São Carlos Institute of Chemistry, Av. Trabalhador São Carlense, 400, CP 780, 13.560-970, São Carlos, SP, Brazil
| | - Germano Tremiliosi-Filho
- University of São Paulo - São Carlos Institute of Chemistry, Av. Trabalhador São Carlense, 400, CP 780, 13.560-970, São Carlos, SP, Brazil
| |
Collapse
|
40
|
Chen WL, Cheng JY, Lin XQ. Systematic screening and identification of the chlorinated transformation products of aromatic pharmaceuticals and personal care products using high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:253-263. [PMID: 29751307 DOI: 10.1016/j.scitotenv.2018.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are an emerging concern because of the large amount of PPCPs that is discharged and its potential ecological effects on the aquatic environment. Chlorination has proven efficient for removing some aromatic PPCPs from wastewater, but the formation of by-products has not been thoroughly investigated partly because of analytical difficulties. This study developed a method for systematically screening and identifying the transformation products (TPs) of multiple aromatic PPCPs through high-resolution mass spectrometry (HRMS). We spiked an environmentally relevant concentration (5000 ng/L) of three anti-inflammatory drugs, four parabens, bisphenol A, oxybenzone, and triclosan in the Milli-Q water and water containing natural organic matter (NOM). Low-dose chlorination (0.2-0.7 mg/L) was performed. We compared the chemical profiles of the chlorinated and untreated water and selected the ions to be identified based on the results of t-test and the ratio of signal intensities. Compound matching and isotopic pattern comparison were applied to characterising the molecular formulae of TPs. The fragmentation of the PPCPs and TPs was used in elucidating the structures of the TPs. The confirmation of TPs was achieved by comparing the retention time and fragment patterns of TPs with the isomer standards. In the chlorinated water, the aromatic PPCPs were substantially removed, except for the anti-inflammatory drugs (removal rates -5.2%-26%). Even with moderate chlorine dosages, all of the aromatic PPCPs, except for acetylsalicylic acid, were transformed into chlorinated derivatives in the Milli-Q water, and so were some PPCPs in the NOM-added water. The results of structure elucidation and compound confirmation as well as the increases in log Kow suggested that chlorination could transform aromatic PPCPs into more persistent, bioaccumulative, and toxic TPs. The presence of these TPs in the effluents where the PPCPs are removed through chlorination may pose increased risks to aquatic organisms.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Department of Environmental Science and Engineering, College of Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan.
| | - Jiun-Yi Cheng
- Department of Environmental Science and Engineering, College of Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Xiao-Qian Lin
- Department of Environmental Science and Engineering, College of Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| |
Collapse
|
41
|
López-Ortiz CM, Sentana-Gadea I, Varó-Galvañ PJ, Maestre-Pérez SE, Prats-Rico D. Effect of magnetic ion exchange (MIEX ®) on removal of emerging organic contaminants. CHEMOSPHERE 2018; 208:433-440. [PMID: 29885510 DOI: 10.1016/j.chemosphere.2018.05.194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/27/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
In this study, the removal of nine emerging organic contaminants was investigated by using anion exchange resins. The selected compounds were carbamazepine, atrazine, simazine, estrone, bisphenol A, methylparaben, ethylparaben, propylparaben and butylparaben. Two different magnetic anionic exchanger resins were tested: MIEX® DOC and MIEX® GOLD. The optimal resin dose (40 mL/L) and contact time (20 min) had been previously determined. Once these optimum parameters were set, the effect of the initial concentration of contaminants on the removal efficiency of the contaminants by the resins was studied. The study was carried out using mono and multicomponent systems, with distilled water and natural waters, to which contaminants had been previously added, in order to evaluate the competitive and matrix effects. Results showed that the average removal percentages obtained with the MIEX® DOC resin were: 51%, 61%, 68% and 80% for methyl-, ethyl-, propyl-, and butylparaben, respectively. For bisphenol A the result was similar, i.e., 66%, whereas for the rest of the compounds studied, removal efficiencies lower than 15% were obtained. The MIEX® GOLD resin achieved lower elimination rates than the MIEX® DOC resin in all cases.
Collapse
Affiliation(s)
- C M López-Ortiz
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - I Sentana-Gadea
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - P J Varó-Galvañ
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - S E Maestre-Pérez
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain.
| | - D Prats-Rico
- University Institute of Water and Environmental Sciences, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
42
|
Kotzamanidi S, Frontistis Z, Binas V, Kiriakidis G, Mantzavinos D. Solar photocatalytic degradation of propyl paraben in Al-doped TiO2 suspensions. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Yoom H, Shin J, Ra J, Son H, Ryu D, Kim C, Lee Y. Transformation of methylparaben during water chlorination: Effects of bromide and dissolved organic matter on reaction kinetics and transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:677-686. [PMID: 29642049 DOI: 10.1016/j.scitotenv.2018.03.330] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/28/2018] [Accepted: 03/27/2018] [Indexed: 05/06/2023]
Abstract
The reaction kinetics, products, and pathways of methylparaben (MeP) during water chlorination with and without bromide (Br-) were investigated to better understand the fate of parabens in chlorinated waters. During the chlorination of MeP-spiked waters without Br-, MeP was transformed into mono-Cl-MeP and di-Cl-MeP with apparent second-order rate constants (kapp) of 64M-1s-1 and 243M-1s-1 at pH7, respectively, while further chlorination of di-Cl-MeP was relatively slower (kapp=1.3M-1s-1 at pH7). With increasing Br- concentration, brominated MePs, such as mono-Br-MeP, Br-Cl-MeP, and di-Br-MeP, became major transformation products. The di-halogenated MePs (di-Cl-MeP, Br,Cl-MeP, and di-Br-MeP) showed relatively low reactivity to chlorine at pH7 (kapp=1.3-4.6M-1s-1) and bromine (kapp=32-71M-1s-1), which explains the observed high stability of di-halogenated MePs in chlorinated waters. With increasing pH from 7 to 8.5, the transformation of di-halogenated MePs was further slowed due to the decreasing reactivity of di-MePs to chlorine. The formation of the di-halogenated MePs and their further transformation become considerably faster at Br- concentrations higher than 0.5μM (40μg/L). Nonetheless, the accelerating effect of Br- diminishes in the presence of dissolved organic matter (DOM) extract (Suwannee River humic acid (SRHA)) due to a more rapid consumption of bromine by DOM than chlorine. The effect of Br- on the fate of MeP was less in the tested real water matrices, possibly due to a more rapid bromine consumption by the real water DOM compared to SRHA. A kinetic model was developed based on the determined species-specific second-order rate constants for chlorination/bromination of MeP and its chlorinated and brominated MePs and the transformation pathway information, which could reasonably simulate the transformation of MePs during the chlorination of water in the presence of Br- and selected DOM.
Collapse
Affiliation(s)
- Hoonsik Yoom
- Busan Water Quality Institute, Busan, Republic of Korea; Department of Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Jaedon Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiwoon Ra
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Busan, Republic of Korea
| | - Dongchoon Ryu
- Busan Water Quality Institute, Busan, Republic of Korea
| | - Changwon Kim
- Department of Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
44
|
Sasaki K, Terasaki M. Estrogen agonistic/antagonistic activity of brominated parabens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21257-21266. [PMID: 29946845 DOI: 10.1007/s11356-018-2600-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 06/18/2018] [Indexed: 05/06/2023]
Abstract
The estrogen agonistic/antagonistic activity of 16 brominated by-products of parabens was assessed by using a yeast two-hybrid assay transfected with the human estrogen receptor α. Characterization of synthetic compounds including novel brominated parabens was performed using 1H-NMR spectroscopy and high-resolution mass spectrometry. For the agonist assay, five C3-C4 alkylparabens exhibited significant activity (P < 0.05) relative to that of 17β-estradiol, ranging from 3.7 × 10-5 to 7.1 × 10-4. In contrast, none of the brominated alkyl parabens exhibited agonistic activity. In the antagonist assay, 12 brominated alkylparabens and butylparaben exhibited significant antagonistic activity (P < 0.05). Their antagonistic activity relative to 4-hydroxytamoxifen ranged from 0.11 to 2.5. The antagonist activity of C1-C4 alkylparabens increased with the number of bromine substitutions. Benzylparaben exhibited both agonistic and antagonistic activity, and these activities dissipated or were weakened with increased bromination. Thus, increased bromination appeared to attenuate the estrogen agonistic activity of most parabens such that it resulted in increased antagonistic activity, a feature of parabens that had not been previously described.
Collapse
Affiliation(s)
- Kohei Sasaki
- Department of Environmental Sciences, Faculty of Humanities and Social Sciences, Iwate University, 3-18-34 Ueda, Morioka, 020-8550, Japan
| | - Masanori Terasaki
- Department of Environmental Sciences, Faculty of Humanities and Social Sciences, Iwate University, 3-18-34 Ueda, Morioka, 020-8550, Japan.
| |
Collapse
|
45
|
Guo J, Shi H, Huang X, Shi H, An Z. AgCl/Ag3PO4: A stable Ag-Based nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of parabens. J Colloid Interface Sci 2018; 515:10-17. [DOI: 10.1016/j.jcis.2018.01.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/19/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022]
|
46
|
Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta 2018; 176:551-557. [DOI: 10.1016/j.talanta.2017.08.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/23/2023]
|
47
|
Frontistis Z, Antonopoulou M, Yazirdagi M, Kilinc Z, Konstantinou I, Katsaounis A, Mantzavinos D. Boron-doped diamond electrooxidation of ethyl paraben: The effect of electrolyte on by-products distribution and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 195:148-156. [PMID: 27377865 DOI: 10.1016/j.jenvman.2016.06.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Ethyl paraben (EP), a representative emerging pollutant of the parabens family, was subject to electrochemical oxidation over a boron-doped diamond (BDD) anode. Experiments were carried out in a single-compartment cell at 10-70 mA cm-2 current density, 200-600 μg L-1 EP concentration, initial solution pH 3-9 and 0.1 M electrolyte concentration. The degradation rate is favored at increased current densities and in the presence of NaCl as the supporting electrolyte, while the pH effect is inconsiderable. For instance, the first order rate constant for the degradation of 200 μg L-1 EP at 30 mA cm-2 was 0.25, 0.1 and 0.07 min-1 with NaCl, Na2SO4 and HClO4, respectively. Degradation in secondary treated wastewater was faster than in pure water presumably due to the action of chloride ions present in the effluent. Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) was employed to determine major transformation by-products (TBPs). The route of EP degradation with Na2SO4 involves hydroxylation and demethylation reactions, signifying the role of electrogenerated hydroxyl radicals in the process. Twenty one TBPs were identified with NaCl as the electrolyte, including several chlorinated and non-chlorinated dimers and trimers; these findings suggest that indirect oxidation mediated by chlorine radicals and other chlorine active species also takes place. In this view, the role of the supporting electrolyte is crucial since it can influence both reaction kinetics and pathways.
Collapse
Affiliation(s)
- Zacharias Frontistis
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Environmental & Natural Resources Management, University of Patras, 2 Seferi St., GR-30100 Agrinio, Greece
| | - Melis Yazirdagi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zeynep Kilinc
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | | | - Alexandros Katsaounis
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece.
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| |
Collapse
|
48
|
Cosmetic Ingredients as Emerging Pollutants of Environmental and Health Concern. A Mini-Review. COSMETICS 2017. [DOI: 10.3390/cosmetics4020011] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
A simple and fast Double-Flow microfluidic device based liquid-phase microextraction (DF-µLPME) for the determination of parabens in water samples. Talanta 2017; 165:496-501. [DOI: 10.1016/j.talanta.2016.12.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 11/23/2022]
|
50
|
Wu Y, Sun Q, Wang YW, Deng CX, Yu CP. Comparative studies of aerobic and anaerobic biodegradation of methylparaben and propylparaben in activated sludge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:25-31. [PMID: 27992847 DOI: 10.1016/j.ecoenv.2016.12.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/14/2016] [Indexed: 05/06/2023]
Abstract
The biodegradability of two typical parabens (methylparaben and propylparaben) in activated sludge, at initial concentrations of 1mgL-1 or 10mgL-1, was investigated under aerobic and anaerobic conditions. The results showed that microorganisms played a key role in degradation of parabens in WWTPs, especially in aerobic systems. The half-lives of methylparaben and propylparaben under aerobic conditions have been estimated to range between 15.8 and 19.8min, and benzoic acid was found to be one of the major biodegradation products. The calculated biodegradation efficiency of methylparaben and propylparaben in activated sludge under aerobic conditions was significantly higher than that observed under anaerobic (nitrate, sulfate, and Fe (III) reducing) conditions, as methylparaben and propylparaben exhibited comparatively higher persistence in anaerobic systems, with half-lives ≥43.3h and ≥8.6h, respectively. Overall, the results of this study imply that the majority of these parabens can be eliminated by aerobic biodegradation during conventional wastewater treatment processes, whereas minor removal is possible in anaerobic systems if an insufficient hydraulic retention time was maintained.
Collapse
Affiliation(s)
- Yang Wu
- Department of Biology and Environmental Engineering, Hefei University, Hefei 230061, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yu-Wen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cheng-Xun Deng
- Department of Biology and Environmental Engineering, Hefei University, Hefei 230061, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|